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Abstract: Superconcentrators are switching systems that solve the generic problem of

interconnecting clients and servers during sessions, in situations where either the clients

or the servers are interchangeable (so that it does not matter which client is connected

to which server). Previous constructions of superconcentrators have required an external

agent to �nd the interconnections appropriate in each instance. We remedy this short-

coming by constructing superconcentrators that are \self-routing", in the sense that they

compute for themselves the required interconnections.

Speci�cally, we show how to construct, for each n, a system Sn with the following

properties. (1) The system Sn has n inputs, n outputs, and O(n) components, each of

which is of one of a �xed �nite number of �nite automata, and is connected to a �xed

�nite number of other components through cables, each of which carries signals from a

�xed �nite alphabet. (2) When some of the inputs, and an equal number of outputs,

are \marked" (by the presentation of a certain signal), then after O(log n) steps (a time

proportional to the \diameter" of the network) the system will establish a set of disjoint

paths from the marked inputs to the marked outputs.

* This research was partially supported by an NSERC Operating Grant and an ASI

Fellowship Award.



1. Introduction

Our main goal in this paper is to de�ne the notion of a \self-routing superconcentra-

tor" and show how to construct self-routing superconcentrators that are optimal (to within

constant factors) in a number of respects. Superconcentrators (and the more specialized

concentrators) are networks providing disjoint paths from inputs to outputs in situations

wherein it does not matter which input is connected to which output. The most funda-

mental result concerning superconcentrators is that they can be built from a number of

components (basic switching elements) proportional to the number of inputs and outputs.

(In this respect they contrast with permuting networks, and other networks that provide

paths between speci�c inputs and speci�c outputs, which require a non-linear number of

components.) One obstacle to the application of these networks is that some external agent

must �nd the paths provided by the network in each instance. This amounts to �nding

a maximum 
ow in a network with unit capacities or, equivalently, to �nding a series of

matchings in bipartite graphs. Unfortunately, all known algorithms for this problem re-

quire a decidedly non-linear number of operations, even for a serial algorithm running on

a single central processor.

A self-routing superconcentrator overcomes this obstacle by solving its own routing

problem, using a small amount of hardware associated with each switching element, to-

gether with protocols that allow this hardware to �nd the desired paths in a completely

distributed way. These ideas are formulated in terms of a system of interconnected �-

nite automata. This formulation ensures that the path-�nding process, as well as the

path-providing system, scales without any non-linearity.

Several previous results may reasonably be viewed as furnishing self-routing networks

for certain problems. Firstly, we have the sorting, merging and classifying networks built

from comparators (classical results are due to Batcher [7], and Ajtai, Koml�os and Szemer�edi

[3, 4]). In these networks the �nite automata are particularly simple, and the control

information 
ows unidirectionally through the network. Secondly, Arora, Leighton and

Maggs [5, 6] have described what may be called \self-routing non-blocking networks". Our

formulation is based on theirs, and many of the techniques we use have been taken from

their papers.

A subsidiary goal of this paper is to show how some of our ideas can be used to

improve several previous results concerning circuit- and packet-switching networks. These

improvements are somewhat technical, and deal with the amount of \expansion" needed

for various constructions; this in turn a�ects whether elementary explicit constructions

can be used, or whether known explicit constructions can be used at all, to supply this
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expansion. One of these previous result is that of Arora, Leighton andMaggs [5, 6]; another

is a fault-tolerant packet-routing scheme due to Leighton and Maggs [11].

Section 2 of this paper discusses concentrators, superconcentrators and self-routing

superconcentrators in turn, concluding with the statement of our main theorem. In Section

3 we present the basic combinatorial lemmas used in the proof of this theorem. In Section

4 we use these lemmas to develop some protocols that will serve as building blocks in our

�nal routing protocol. In Section 5 we present the proof of the main theorem. In Section

6 we discuss the applicability of these ideas to the other problems mentioned above. A

preliminary version of this paper appears as Pippenger [180].

2. Self-Routing Networks

A network N = (V;E;A;B) comprises (1) an acyclic directed graph G = (V;E) with

vertices V and edges E, (2) a set A of distinguished vertices having in-degree zero called

inputs, and (3) a set B (disjoint from A) of distinguished vertices having out-degree zero

called outputs. A network with m inputs and n outputs will be called an (m;n)-network

or, if m = n, an n-network. A directed path joining an input to an output will be called a

route, and a set of vertex-disjoint routes will be called a state.

We shall be concerned with three \complexity measures" for networks: the number

of edges, which we shall call the size; the largest number of edges in any route, which we

shall call the depth; and the largest total degree (in-degree plus out-degree) of any vertex,

which we shall call the valence.

An (m;n)-concentrator, wherem > n, is an (m;n)-network N = (V;E;A;B) with the

following property: given any set X � A of inputs with #X � n (where #X denotes the

cardinality of X), there exists a state of N containing routes originating at each input of

X. (The routes of a state must of course terminate at distinct outputs.) A concentrator

is schematic solution to the problem of interconnecting \clients" with \servers" during

\sessions", in situations for which either all the clients, or all the servers, are equivalent,

so that it does not matter which is connected to which.

The notion of a concentrator was de�ned in 1973 by Pinsker [16], who proved the

existence of (m;n)-concentrators with size at most 29m. Pinsker's proof was notewor-

thy as being the �rst published \randomized construction" of a switching network, thus

introducing what has become one of the central tools of this theory.

An n-superconcentrator is an n-network N = (V;E;A;B) with the following property:

given any set X � A of inputs and any set Y � B of outputs with #X = #Y , there exists
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a state containing routes originating at each of the inputs of X and terminating at each of

the outputs of Y . The notion of a superconcentrator was introduced by Aho, Hopcroft and

Ullman [2], who attributed it to conversations with R. W. Floyd. Their intended use was

as a tool for establishing non-linear lower bounds for the complexity of circuits computing

Boolean functions. This hope was dashed by Valiant [20], who used Pinsker's result in a

recursive construction to show that there exist n-superconcentrators of size O(n).

Though a failure for their original purpose, superconcentrators have proved useful for

constructing other types of switching networks, including concentrators: they satisfy a

condition that is similar to that of concentrators, but that is symmetrical between inputs

and outputs; and this symmetry facilitates recursive constructions. Pippenger [17] showed

(by a direct randomized construction, without using concentrators as a building block)

the existence of n-superconcentrators with size O(n), depth O(logn) and valence O(1).

(These depth and valence bounds will be important for us later; Valiant's original argument

established only depth O
�
(logn)2

�
and valence O(logn= log log n).)

All of the interconnection properties discussed in the previous section are de�ned in

terms of the existence of certain paths or sets of paths. In all cases, practical exploitation

of these networks requires the use of algorithms that actually �nd these paths in each

instance. This raises the question of the computational complexity of these path-�nding

or routing problems. For linear-sized superconcentrators, all known constructions require

the solution of matching problems in bipartite graphs; for this problem the best algorithm

known (due to Hopcroft and Karp [9]) yields a routing algorithm running in serial time

O(n3=2). A signi�cant advance in algorithms for bipartite matching would be required to

bring even this serial algorithm within logarithmic factors of the linear input and output

size.

Since parallel and distributed computation constitutes one of the main areas of ap-

plication for switching networks, it is natural to seek switching networks having parallel

and distributed routing algorithms, ideally those in which the routing can be performed

by simple hardware associated with each switching element. Sorting networks, and other

networks based on comparators, were one of the earliest embodiments of this idea.

With appropriate input-output conventions, two sorting networks can be used as a

self-routing superconcentrator. Imagine that the k superconcentrator inputs seeking con-

nections present a \1" signal, while the remaining n� k superconcentrator inputs present

a \0" signal. If these signals are presented at the inputs of a sorting network, the 1's will

appear at the k highest-number outputs of this sorting network. If the k superconcentrator

outputs seeking connections present \1" signals to the inputs of another sorting network,

3



these 1's will appear at the k highest-number outputs of this second sorting network. Thus

by connecting the two sorting networks together, outputs to outputs, the signals from the

superconcentrator inputs and outputs seeking connections will rendezvous at the common

outputs of the sorting networks. If the best constructions known (see Ajtai, Koml�os and

Szemer�edi [3, 4]) are used for the sorting networks, we obtain a construction for self-routing

superconcentrators of size O(n log n), depth O(logn) and valence O(1).

To make further progress, we abandon the requirement that the network be composed

of comparators, and allow the vertices to be copies of an arbitrary �nite automaton. The

edges then carry signals from an arbitrary �nite alphabet, and signals may pass in both

direction over the edges. This model was introduced by Arora, Leighton and Maggs [5, 6].

In the purely graph-theoretic model, it is customary to require routes to be vertex-disjoint.

When discussing protocols, however, it is often more convenient to require only that they

be edge-disjoint, or even to allow an arbitrary �xed number of routes to pass through

each vertex and edge (in this situation, one speaks of \congestion" O(1)). Such extended

networks can be reduced to standard form by replacing each link (that is, each vertex that

is not an input or output) by a complete bipartite graph of appropriate �xed size, and

each edge by a bundle of edges.

For self-routing networks, it will be convenient to introduce two additional complexity

measures to account for the resources they use to solve their routing problem. The total

number of steps taken, between the presentation of the input and output signals and the

arrival at a stable state incorporating the established routes, will be called the latency of

the network. The sum over all components of the number of actual steps taken by that

component (that is, the number of times that the component actually changes its state)

will be called the action of the network. (In reckoning either the latency or the action,

we consider the input and output signals that maximize the quantity in question, so that

we are considering worst-case performance.) If a connected n-network has valence O(1), it

will have depth 
(log n), and this implies that the latency is also 
(log n). On the other

hand, the action may be less that the product of the size and the latency: in the example

of sorting networks, the size and latency are O(n log n) and O(log n), respectively, but the

action is O(n logn), since each comparator changes state just once.

Theorem 1: There is a �nite set of �nite automata from which, for every n, a self-routing

superconcentrator with size O(n) and depth O(log n), latency O(logn) and action O(n),

can be explicitly constructed in space O(logn).
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3. Combinatorial Lemmas

In this section we present some graph-theoretic lemmas that will be needed for the

construction of self-routing superconcentrators. The �rst two (Lemmas 2 and 3, which sup-

port Proposition 4) are based on the notion of a \compressor", as introduced by Pippenger

[18]. The third (Lemma 5) is a straightforward instance of an \expander".

Let G = (A;B;E) be a regular bipartite multigraph of size n and degree d (that is,

in which #A = #B = n, and in which every vertex in A [B has degree d, counting edges

according to their multiplicities). Let M denote the n � n adjacency matrix of G (rows

are indexed by A, columns are indexed by B, and the (i; j)-th entry is the multiplicity

of fi; jg in E). Let MT denote the transpose of M . Then M
T
M and MM

T are real

symmetric matrices with non-negative entries. Their row and column sums are all equal

to d2; thus they each have an eigenvalue of d2 (corresponding to the constant eigenvector),

and all other eigenvalues are at most d2 in absolute value. We shall say that G has

eigenvalue separation " if MT
M and MM

T both have d2 as a simple eigenvalue, and all

other eigenvalues are at most "2d2 is absolute value.

We shall assume that we have available an explicit construction (say, one that can

be carried out in logarithmic space) for regular bipartite multigraphs of various sizes n,

but �xed degree d and �xed eigenvalue separation " < 1. (For example, Jimbo and

Maruoka [10] give a construction for n any perfect square, d = 8 and " =
p
3=2. In

fact, a result of Alon [1] ensures that any explicit construction for expanders with �xed

degree and expansion also yields a �xed eigenvalue separation.) For k � 0, let us write

G
k for the regular bipartite multigraph whose adjacency matrix is Mk. Then the degree

of every vertex in G
k is dk, and if G has eigenvalue separation ", then G

k has eigenvalue

separation "
k. Thus we can obtain graphs with �xed (though perhaps very large) degree

and eigenvalue separation as small as we please.

We may also assume that we can obtain such graphs with size n any integral power

of 2. To see this, we note that the construction of Jimbo and Maruoka [10] (like those

of Margulis [13] and of Gabber and Galil [8] before it) works for n any integral power of

the perfect square 4; this gives us graphs for the even integral powers of 2. If we have a

graph G with size n, degree d and eigenvalue separation " < 1, we can obtain from 4 copies

of G a graph G
0 (the product of G with the complete bipartite graph on two sets of 2

vertices) having size 2n, degree 2d and eigenvalue separation at most ". Thus by doubling

the degree, we obtain graphs for the odd integral powers of 2.
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Lemma 2: Suppose that G = (A;B;E) has size n, degree d and eigenvalue separation

" � 1=8. If X � A satis�es #X=n = � � 1=64, and if Y � B denotes the set of vertices

adjacent to more than d=4 vertices in X, then #Y=n = � � �=2.

Proof: Suppose X contains k elements, and let f be the characteristic vector of X, so that

(f; f) = k. Let e denote the constant vector whose entries are all 1. Let g = e(e; f)=n

denote the projection of f onto the subspace spanned by e, and let h = f � g denote the

projection of f onto the complementary subspace. Then we have

(f;MT
Mf) = (g;MT

Mg) + (h;MT
Mh)

� d
2 (g; g) + "

2
d
2 (h; h)

� d
2
k
2 + "

2
d
2
k(n� k)

n

� nd
2
�
�
2 + "

2
�(1� �)

�
;

since � = k=n. On the other hand,

(f;MT
Mf) = (Mf;Mf) =

X

j2B

dX(j)
2
;

where dX(j) denotes the number of edges from vertices in the set X to j. Since each vertex

in

Y = fj 2 B : dX(j) � d=4g

contributes at least d2=16 to this sum of non-negative terms, we have

X

j2B

dX(j)
2 � ld

2
=16 = nd

2
�=16;

where l is the cardinality of Y and � = l=n. Combining these estimates yields

� � 16�2 + 16"2�(1� �):

Since � � 1=64 and "2 � 1=64, this implies � � �=2. 4
Lemma 3: Suppose that G = (A;B;E) has size n, degree d and eigenvalue separation

" � 1=8. If V � B satis�es #V=n = 
 � 1=64, and if W � A denotes the set of vertices

adjacent to more than d=2 vertices in V , then #W=n = � � 
=8.
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Proof: Let f be the characteristic vector of V . Then

(f;MT
Mf) � nd

2
�


2 + "

2

(1� 
)

�
;

as in the proof of Lemma 2. On the other hand,

(f;MT
Mf) = (Mf;Mf) =

X

i2A

dV (i)
2
;

where dV (i) denotes the number of edges from i to vertices in the set V . Since each vertex

in

W = fi 2 A : dV (i) � d=2g

contributes at least d2=4 to this sum of non-negative terms, we have

X

i2A

dV (i)
2 � kd

2
=4 = nd

2
�=16;

where k is the cardinality of W and � = k=n. Combining these estimates yields

� � 4
2 + 4"2
(1� 
):

Since 
 � 1=64 and "2 � 1=64, this implies � � 
=8. 4
Let G0 = (A1 [A2; B;E1 [E2) be the bipartite graph obtained by taking two disjoint

n-vertex sets A1 and A2, and two disjoint sets of edges E1 and E2, such that (A1; B;E1)

and (A2; B;E2) are each isomorphic to (A;B;E).

Proposition 4: If R � A1 [ A2 satis�es #R=n = % � 1=64, if S � B denotes the set

of vertices adjacent to more than d=2 vertices in R, and if T � A denotes the set of all

vertices adjacent to more than d=2 vertices in S, then #T=n � %=4.

Proof: For i 2 f1; 2g, let Si denote the set of vertices adjacent to more than d=4 vertices

in R \ Ai. Applying Lemma 2 with X = R \ Ai, so that � � %, and Y = Si yields

#Si=n � %=2. Since S � S1 [ S2, we obtain #S=n � %. For i 2 f1; 2g, let Ti denote the
set of vertices in Ai adjacent to more than d=2 vertices in S. Applying Lemma 3 with

V = S, so that 
 � %, and W = Ti yields #Ti=n � %=8. Since T = T1 [ T2, we obtain

#T=n � %=4. 4
We shall now choose a degree d0 such that, whenever n is an integral power of 2, we

can construct a regular bipartite multigraph of size n, degree d0 and eigenvalue separation

"0 = 1=8 (to which we can therefore apply Lemmas 2 and 3, and Proposition 4). For
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example, since (
p
3=2)5 � 1=2, the discussion preceding Lemma 2 implies that we can

choose d0 = 2 � 815 = 246.

We now set "1 = 1=256
p
d0, and choose a degree d1 such that, whenever n is an

integral power of 2, we can construct a regular bipartite multigraph of size n, degree d1

and eigenvalue separation "1. For example, if we choose d0 = 246, we can then choose

d1 = 2 � 8155 = 2466.

Lemma 5: Suppose that K = (A;B;L) is a regular bipartite graph with size n, degree

d1, and eigenvalue separation "1. If X � A and Y � B satisfy #X=n � 1=256 and

#Y=n � 1=256d0 (or #Y=n � 1=256 and #X=n � 1=256d0), then some vertex in X is

adjacent to some vertex in Y .

Proof: Suppose that X � A with #X = k and Y � B with #Y = l are not joined by an

edge. Suppose further that

�� � "
2

1; (3:1)

where � = k=n and � = l=n. We shall show that these suppositions lead to a contradiction.

Since either of the hypotheses of the lemma implies (3:1), this will complete the proof of

the lemma.

Let N denote the adjacency matrix of K, and let f denote the characteristic vector

of X. Then we have

(f;NT
Nf) � d

2
1k

2 + "
2
1d

2
1k(n� k)

n
;

as in the proof of Lemma 2. Now let u be the characteristic vector of the complement

B n Y of Y , so that (u; u) = n� l. Then we have

(f;NT
Nf) = (Nf;Nf)

� (Nf; u)2

(u; u)
;

by Cauchy's inequality. Since no edge joins X and Y , we have

(Nf; u)2

(u; u)
=

(Nf; e)2

(u; u)
=

(f;NT
e)2

(u; u)
=

d
2
1k

2

(n� l)
:

Combining these estimates yields

"
2

1 �
�

1� �

�

1� �
;

which contradicts (3.1). 4
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4. Basic Protocols

In this section we shall describe two protocols that will be basic building blocks in

the proof of Theorem 1. Each of these protocols is based on a bipartite graph, and

each can be executed by a system obtained from this graph by replacing each vertex by

a �nite automaton and replacing each edge by a communication channel with a �nite

signalling alphabet. Our �rst protocol is based on the graph G0 = (A0; B;E0) constructed

for Proposition 4; the resulting system, operating according to this protocol, will be called

a \compactor". The second protocol will based on the graph K = (A;B;L) constructed

for Lemma 5; the resulting system will be called a \broker".

Let G0 = (A0; B;E0) be the graph constructed for Proposition 4. Suppose that each

of the 2n vertices in A0 represents a \boy", each of the n vertices in B represents a \girl",

and that each of the 2nd0 edges in E
0 represents a \boy-knows-girl" relationship. (Since G0

is a multigraph, we allow boys to know girls with multiplicities greater than 1.) Suppose

further that each boy in some set of at most n=64 boys wants to have some number not

exceeding d0=2 of \dates" with girls that he knows (where a given boy may date a given

girl as many times as the multiplicity with which he knows her). Suppose still further that

each girl is willing to have any number of dates not exceeding d0=2. Then the boys will

have as many dates as they want, and the girls will have no more than they are willing,

if they all execute the following protocol. The protocol comprises a sequence of \rounds",

where each round comprises the following three steps.

(1) Each boy that wants one or more dates sends as many \invitations" to each girl

he knows as the multiplicity with which he knows her.

(2) Each girl that receives more than d0=2 invitations sends back \rejections", one

for each invitation received, to the boys who sent them.

(3) Each boy that receives at most d0=2 rejections proceeds to have as many dates as

he wants, choosing from among girls to whom he sent invitations that were not

rejected.

Suppose that at the outset of the �rst round %n � n=64 boys each want one or more

dates. By Proposition 4, at most %n=4 boys receive more than d0=2 rejections, and thus

all but %n=4 of the boys who want one or more dates will have as many dates as they want

in step (3). Thus at the conclusion of the �rst round, all but one-quarter of the boys who

wanted dates will be \satis�ed".

During the second round, only those boys who were not satis�ed during the �rst round

will send out invitations; by the same reasoning, all but at most one-quarter of these will
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be satis�ed during the second round. We can continue in this way until all boys have been

satis�ed.

It remains to verify that the girls are also \satis�ed", that is, that no girl has more

than d0=2 dates during all the rounds of the protocol. Say that the \debut" of a girl (who

has one or more dates) is the round in which she has her �rst date. Then she sends out no

rejections during her debut (since no boy would date her if she did), and thus she receives

at most d0=2 invitations during her debut. Any invitations she receives in rounds after

her debut will be duplicates of invitations she received during her debut, and each of these

invitations results in at most one date, no matter how many times it is duplicated (since

each boy has all his dates during a single round). Thus each girl has at most d0=2 dates

during all the rounds of the protocol.

A network whose underlying graph is G0 and which operates according to the protocol

just described will be called a \compactor". We shall also need \mirror-image compactors",

which are obtained from compactors by exchanging the inputs and the outputs (so that

there are n inputs and 2n outputs), and reversing the directions of the edges. We turn

now from compactors to brokers.

Let K = (A;B;L) be the graph constructed for Lemma 5. Suppose that each of the

n vertices in A represents a boy, that each of the n vertices in B represents a girl, and

that each of the nd1 edges in L represents a boy-knows-girl relationship. Suppose further

that each boy and each girl want some number (not exceeding d0) of dates with members

of the opposite sex whom they know, allowing now for multiple dates between the same

boy and girl, irrespective of the multiplicity with which they know each other. Let us also

assume for simplicity at this point that the total number of dates wanted by boys equals

the total wanted by girls.

The nd1 edges of the regular bipartite multigraphK can be partitioned into d1 match-

ings, in such a way that each vertex is adjacent to exactly one edge of each matching. (For

all currently known explicit constructions for expanders, such a partition is a manifest

byproduct of the construction.)

We consider a protocol which comprises d1 \steps", with each step corresponding to

one of the matchings in K, and with the order of the steps being arbitrary.

During the step corresponding to the matching M , whenever a boy who wants one

or more dates is matched in M to a girl who wants one or more dates, they proceed to

have as many dates as the smaller of these numbers, thereby reducing the number of dates

wanted by each of them by at least one, and reducing one of these numbers to zero.
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Consider now the number of boys who still want one or more dates after all of the

steps. We claim that this number is less than n=256. For if there were n=256 boys wanting

one or more dates, there would be at least n=256d0 girls wanting one or more dates (since

each girl wants at most d0 dates and the totals for girls and boys always remain equal).

By Lemma 5, K would contain an edge between one of these boys and one of these girls.

This would contradict the fact that either the boy or the girl wants no more dates after

the step corresponding to the matching containing this edge. A symmetrical argument

shows that fewer than n=256 girls still want one or more dates after consideration of all

the matchings. Furthemore, even if the total numbers of dates wanted by boys and girls

are not equal, we may still conclude that the number of boys (and also the number of girls)

who still want dates after all the steps is at most n=256 plus the imbalance (the absolute

value of the di�erence) between the numbers wanted. This can be seen by setting aside a

number of unmatched boys or girls equal to the imbalance, then applying the argument

given above for the balanced case.

A network whose underlying graph is K and which operates according to the protocol

just decribed will be called a \broker".

5. Conclusion of the Proof

We shall now construct the self-routing superconcentrators promised by Theorem 1.

The approach that we shall take is to reduce the problem to a case in which the simple

construction based on sorting networks (described in Section 2) can be applied. This

approach has the merit of requiring only local arguments, in that the protocols used by

the various components can be considered in isolation from one another.

We begin by describing the network that will be used. Let b = blog2 log2 nc. Let

I0 denote the set of inputs of the network, and let J0 denote the set of outputs. For

k = 0; 1; : : : ; b�1, when Ik and Jk have been de�ned, install a broker from Ik to Jk, install

a compactor whose inputs are Ik and whose outputs form a new set Ik+1, and install

a mirror-image compactor whose outputs are Jk and whose inputs form a new set Jk+1.

These three networks together will be called \level k". Finally, we shall install a self-routing

superconcentrator � between Ib and Jb. This superconcentrator will have d0 inputs for

each vertex in Ib and d0 outputs for each vertex in Jb. Thus it will have l = nd0=2
b =

O(n= log n) inputs and outputs. If it is constructed from two sorting networks as described

in Section 2, and if these sorting networks are themselves constructed as described by

Ajtai, Koml�os and Szemer�edi [3, 4], the network � will have size O(l log l) = O(n) and
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depth O(log l) = O(logn). Thus the entire network just constructed has size O(n) and

depth O(log n).

We now describe the protocol by which the network �nds routes satisfying given sets of

requests at its inputs and outputs. There are two types of routes that can be used to satisfy

requests. The �rst type proceeds through the broker at level k (for some 0 � k � b � 1),

passing through the compactors at levels smaller than k. The second type proceeds through

the network �, passing through all the compactors.

The protocol for routing will be divided into two parts, Part 1 and Part 2, where

Part 1 will be be responsible for either satisfying each request or advancing it through

the compactors to an input or output of �, and where Part 2 will be responsible for the

routing in �. We shall focus attention on Part 1, since Part 2 is carried out by the sorting

networks.

Part 1 of the protocol will itself be divided into two parts, Part 1.1 and Part 1.2.

Part 1.1 will ful�ll the responsibility of Part 1 for all but at most m = nd0=(2d0)
b pairs of

requests; these m or fewer pairs of requests will be \abandoned" at various times during

Part 1.1. Part 1.2 will be responsible for advancing the abandoned requests to the inputs

and outputs of �, ful�lling the responsibility of Part 1 to them.

Part 1.1 is divided into b phases, which take place at levels k = 0; 1; : : : ; b� 1 in turn.

In phase k, the networks at level k will each begin operation with at most d0=2 requests

at each of the n=2k vertices in each of Ik and Jk. First the broker will operate according

to its protocol (using O(1) steps). We shall see later that this will reduce the number of

vertices in each of Ik and Jk that still have requests to at most n=128 � 2k.
Then the compactor will operate according to its protocol for a rounds (using O(a)

steps), where a = 4+d(b+1) log4(2d0)e. This will advance most of the requests at vertices

in Ik to vertices in Ik+1, with each vertex in Ik+1 receiving at most d0=2 requests. Con-

currently the mirror-image compactor will operate according to its protocol for a rounds

(using O(a) steps) to advance most of the requests at vertices in Jk to vertices in Jk+1,

with each vertex in Jk+1 receiving at most d0=2 requests. At the end of these a rounds at

most d0=2 requests at each of at most n=4a2k vertices in each of Ik and Jk will remain.

These requests that do not advance will be abandoned. Part 1.1 has b phases, each using

O(a) steps, and thus uses a total of O(ab) = O((log log n)2) steps in all.

The total number of requests abandoned in all of I0 [ � � � [ Ib�1 is at most

X

0�k�b�1

nd0=4
a2k2 � nd0=4

a =m:
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The same bound applies to the requests abandoned in all of J0 [ � � � [Jb�1. This gives the
desired bound on the number of pairs of abandoned requests.

It remains to verify that the broker protocol in phase k reduces the number of vertices

in each of Ik and Jk that still have requests to at most n=128 � 2k. If the numbers of

requests in Ik and Jk were equal, the broker protocol would reduce the numbers of vertices

that still have requests to at most n=256 � 2k. The numbers of requests may not be equal,

because the numbers of requests abandoned on the input and output sides may not be

equal, but the imbalance can be at most m � n=256 � 2k, and thus can contribute at most

another n=256 � 2k vertices, for a total of n=128 � 2k.
Part 1.2 of the protocol will itself be divided into three parts, Part 1.2.1, Part 1.2.2

and Part 1.2.3. During Part 1.2.1, some vertices will be marked as \active". At the outset,

the vertices in I0 and J0 at which requests were abandoned during Part 1.1 will be marked

as active. For k = 0; 1; : : : ; b � 1, after the active vertices in Ik and Jk have been marked,

all vertices in Ik+1 and Jk+1 at which requests were abandoned during part 1.1, or which

are adjacent to an active vertex in Ik or Jk are marked as active. Since there are at most

m abandoned requests, and since each vertex in Ik or Jk has just d0 neighbors in Ik+1 or

Jk+1, there will be at most mdk0 � n=128 � 2k marked vertices in each of Ik and Jk.

During Part 1.2.2, each of the compactors will operate according to its protocol (using

O(log(mdk0)) = O(log n) steps) to assign to each marked vertex at level k a set of d0=2

adjacent vertices at level k +1 so that each marked vertex at level k+1 is the assignee of

at most d0=2 vertices on level k.

During Part 1.2.3, edge-disjoint routes will be traced from each vertex at which a

request was abandoned during Part 1.1 to a vertex in Ib or Jb. This is accomplished by

considering the levels k = 0; 1; : : : ; b�1 in turn, using the assignments found in Part 1.2.2.

In this way all requests that are have not been satis�ed through brokers are advanced to

Ib and Jb, with at most d0 requests per vertex (d0=2 from each of Parts 1.1 and 1.2.3), so

that these request can be satis�ed through � in Part 2.

Adding the contributions from the various parts, we �nd that the entire routing pro-

tocol has latency O(logn). It remains to verify that the action is O(n). The components

in the brokers and in the network � each act only O(1) times during the protocol, so

these networks contribute to the action in proportion to their sizes, which sum to O(n).

In the compactors, the number of components that act decreases geometrically at each

round; thus these subnetworks also contribute in proportion to their sizes, which also sum

to O(n). It follows that the entire protocol has action O(n), which complete the proof of

Theorem 1.
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6. Other Applications

The techniques used in this paper are applicable to several other problems concerning

circuit- and packet-switching. To describe these applications, it will be helpful to review

the ways in which expanders are used for such problems. For the purposes of this review,

we may identify four \grades" of expansion that are used in various applications.

Grade 0: Su�ciently small sets must be expanded by some �xed factor exceeding 1. An

example is provided by ordinary superconcentrators (see Gabber and Galil [8]).

Grade 1: Su�ciently small sets must be expanded by some �xed factor exceeding c > 1,

where c is a threshold that depends on the application. An example is provided by ordinary

packet-routers (see Upfal [19]).

Grade 2: Su�ciently small sets must be expanded by some factor exceeding c
p
d, where c

is a constant that depends on the application, and d is the degree of the graph. Examples

are the original token distribution networks (see Peleg and Upfal [15]) and the current

self-routing non-blocking networks (see Arora, Leighton and Maggs [6]).

Grade 3: Su�ciently small sets must be expanded by some factor exceeding cd, where

c > 1=2 is a constant that depends on the application, and d is the degree of the graph.

Examples are fault-tolerant packet-routing networks (see Leighton and Maggs [11]) and

the original self-routing non-blocking networks (see Arora, Leighton and Maggs [5]).

The di�erences among these grades is best appreciated by considering the sources of

the expanders used. Once upon a time, random graphs were the only source of expanders,

and they were used for all grades. The earliest line of work on explicit constructions

for expanders, starting with Margulis [13], progressing through Gabber and Galil [8] and

culminating with Jimbo and Maruoka [10], yields expanders of grades 0 and 1. These

constructions are now based on elementary algebraic arguments.

The introduction of Ramanujan graphs, in the works of Lubotzky, Phillips and Sar-

nak [12] and Margulis [14], brought explicit constructions for grade 2 expanders, but the

mathematics required to establish the properties of these graphs lies much deeper. No

explicit constructions have yet been found for expanders of grade 3.

Our original construction for self-routing superconcentrators required grade 3 ex-

panders, and thus was not explicit. This requirement was lightened, over the course of

research, through grade 2 expanders to the present requirement for grade 0 expanders, and

can thus be met with elementary constructions. The techniques we have used to achieve

this lightening are applicable to at least three other problems that currently require grade
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2 or 3 expanders, lightening their requirements to grade 0. Speci�cally, we can adapt

the constructions of Leighton and Maggs [11] for fault-tolerant packet-routing networks

and of Arora, Leighton and Maggs [6] for self-routing non-blocking networks to use any

construction for regular expanders, and we can adapt the token-distribution algorithm of

Peleg and Upfal to work on any regular expander. (Broder, Frieze, Shamir and Peleg [70]

have also given token-distribution algorithms that work on any expander, using techniques

related to, but slightly di�erent from, compression.) These additional applications give us

con�dence that the techniques introduced in this paper will have broad use for circuit- and

packet-switching problems.
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