
Tentative Prune-and-Search for Computing Fixed-Points

with Applications to Geometric Computation

David Kirkpatrick Jack Snoeyink�

Department of Computer Science

University of British Columbia

Abstract

Motivated by problems in computational geometry, we investigate the complexity of �nding

a �xed-point of the composition of two or three continuous functions that are de�ned piecewise.

We show that certain cases require nested binary search taking �(log2 n) time. Others can

be solved in logarithmic time by using a prune-and-search technique that may make tentative

discards and later revoke or certify them. This work �nds application in optimal subroutines

that compute approximations to convex polygons, dense packings, and Voronoi vertices for

Euclidean and polygonal distance functions.

1 Introduction

Several fundamental problems in computational geometry can be expressed as a search for special

k-tuple with one element drawn from each of k lists. Examples with k equal to 2 or 3 include

common tangents to two convex polygons, special chords in a polygon, and Voronoi vertices (circles

or polygons tangent to three given points or polygons). Many of these problems can be solved in a

natural way by nested binary search. Some can be solved more e�ciently by \prune-and-search."

In this paper, we study general search techniques in the framework of computing �xed-points of the

composition of functions, and then apply the results to geometric problems of computing chords,

separation, and Voronoi vertices.

The algorithmic technique known as \prune-and-search" answers a search problem by perform-

ing some computation and pruning the amount of input data by a constant fraction. Many (perhaps

most) prune-and-search algorithms, for example Megiddo's linear programming algorithm [12], per-

form computation on the entire input to discard a fraction. Nevertheless, computations such as

binary search and Overmars and van Leeuwen's common tangent algorithm [5, 14, 15] can be viewed

as prune-and-search algorithms that look at local information in O(1) time to discard a fraction

of the input. In section 2 we develop the tentative prune-and-search technique for searching k lists

when local information is insu�cient to determine which fraction to discard. This technique makes

tentative decisions that are later be certi�ed or revoked. By a potential function argument, we show

that when the technique is applicable, at most �(k logn) steps are required to search k lists, each

containing n elements.

�Both authors supported in part by NSERC Research Grants.

1

The possible complexities of searching for a special k tuple in a sequence of k lists are nicely

illustrated in section 3 by the problem of identifying a �xed-point of the composition of k monotone,

continuous functions, each de�ned piecewise on its domain. In section 3.1 we give the precise form of

the functions. In section 3.3 we show that these �xed-point problems can be solved in O(log2 n) steps

by nested binary search. There is a matching lower bound in certain cases where the �xed-point is

not necessarily unique. When monotonicity properties imply that there is a unique �xed-point, we

can use tentative prune-and-search to �nd it in O(logn) time for two functions (section 3.4) and

three functions (section 3.5).

Many basic problems in computational geometry that seek a special k tuple can be reduced

to �xed-point computations; we give several examples in section 4. In section 4.1 we sketch an

algorithm that uses �(logn) time to compute chords of a given length and direction in a convex

n-gon, answering a question posed by Mount [13]. This improves algorithms on approximating

convex polygons by rectangles [1, 17]. In section 4.2 we cast an old problem of computing the

separation distance between two disjoint convex polygons [4] as a �xed-point problem.

In subsection 4.3 we solve the inscribed triangle homothet problem: given a convex polygon P ,

�nd the largest homothet of a given triangle T that can be inscribed in P . (A homothet of T is a

scaled and translated copy of T .) This problem arises in the following manner in Kao and Mount's

algorithm [8] for computing generalized Voronoi diagrams. A convex polygon P that contains the

origin in its interior de�nes a convex distance function d : E2 � E2 ! R by

d(p; q) = lim supf� : �(q � p) 2 Pg:

The boundary of P is the set of unit vectors under d. To �nd the point equidistant from three

sites under the convex distance function de�ned by P one wants to scale P so it passes through

the three sites. If one instead �xes P and scales the triangle de�ned by the sites, one obtains the

\largest triangle homothet" problem.

Motivated by retraction-based motion planning, Levin and Sharir [10] extended Yap's algorithm

for computing the Voronoi diagram of n line segments [19] to compute Voronoi diagrams under

convex distance functions. When the distance function is de�ned by a m-gon (form constant), their

algorithm runs in O(n logn) time and O(n) space. (To be precise, it runs in O(n logN) time when

the segments are organized intoN connected polygons.) Linear factors ofm are hidden by the big-O

in both the space and time, however. Kao and Mount extend this algorithm to compute a compact

representation of the Voronoi that still supports optimal point location queries. Their representation

takes O(n) space, with no dependence on m, and can be computed in O(n logn log2m) time. Our

algorithm saves a logm factor by locating the Voronoi vertices more e�ciently.

In subsection 4.4, we compute Voronoi vertices: given three disjoint convex polygons, �nd the

points that are equidistant from all three (where distance is measured by the Euclidean metric).

With Michael McAllister [11], we use this as a primitive to compute an approximate Voronoi

diagram of convex objects. One can obtain a piecewise-linear diagram for retraction-based motion

planning whose complexity is linear in the number of objects.

Our motivating applications lead us to the study of �xed-point computations of functions de�ned

on the unit interval under a natural but simple model of function evaluation. We do not consider

2

here the complexity of �nding �xed-points in higher dimensions or under other models of function

evaluation. There is a large body of literature on such questions in mathematics and economics [2,

18].

2 General tentative prune-and-search

For our purposes, prune-and-search is a candidate elimination strategy, involving a collection of a k

lists, where k is a constant. A candidate is a k-tuple with one element (the local candidate) drawn

from each list. In the normal mode of operation the properties of a candidate k-tuple (including,

perhaps, neighbouring elements) make possible the elimination of all elements to one side of the

local candidate in one or more lists. Repeating this primitive step in a binary-searching fashion

guarantees that at least one candidate list is reduced to constant size after O(logn) steps, where n

denotes the maximum initial list size.

In the problems that we address in sections 3.5, 4.3 and 4.4, local properties of a candidate

tuple do not su�ce to eliminate a portion of any of the lists. Thus, we use a second mode, tentative

mode, in which we have tentatively discarded portions from the ends of each list with the assurance

that all the tentative discards made to at least one of the lists were correct.

We say that normal mode is viable under the following conditions.

� No list has a portion that has been tentatively discarded.

� We can choose middle elements from each list to form a candidate k-tuple.

� Properties of this k-tuple allow us either to discard from some list the half that is to one side

of the local candidate, or to switch to tentative mode by tentatively discarding half of each

list with the assurance that one of the discards is correct.

We say that tentative mode is viable if

� Every list has a portion that has been tentatively discarded.

� For any list L, we can choose a middle element of the remaining elements and, on all other

lists, choose the boundary between remaining and tentatively discarded elements to form a

candidate k-tuple.

� Properties of this k-tuple allow us either to permanently or tentatively discard the half of

what remains of L up to the local candidate, or to certify that all of the tentative discards

on one of the other lists are correct, to revoke all other tentative discards, and to return to

normal mode.

We use a potential function argument to prove that, by switching between the normal and tentative

modes as they become viable, we reduce some list to constant size after O(logn) steps.

Theorem 2.1 If one of the normal and tentative modes is always viable, then tentative prune and

search can reduce one of k lists of initial size n to a single element in O(k logn) steps.

Proof: For list A, let AT denote the number of elements tentatively discarded and AR denote

the elements remaining. De�ne the list potential �A = 2 logAR + 2(k� 1) log(AR + AT). The

global potential is the sum of list potentials, plus 2k � 1 in tentative mode:

� =

� X
L a list

�L

�
+ (2k � 1)(9LT > 0):

3

In normal mode, we either discard half of some list or else tentatively discard half of each

list and enter tentative mode. The former case decreases some list potential, and therefore �,

by 2k. The latter decreases each list potential by 2; entering tentative mode gives a net decrease

of 1.

In tentative mode, we consider the lists in round-robin order and either tentatively discard

half of the current list (a permanent discard is considered tentative for the analysis) or else

certify all tentative discards made to one list, revoke the rest, and return to normal mode. In

the former case � decreases by 2. In the latter case, suppose that the certi�ed list participated

in t tentative steps, including the �rst. Then the potential of the certi�ed list decreases by

2(k� 1)t. Each other list potential gains 2 for each tentative step that it participated in|since

the lists were considered in round robin order, this is at most 2(t+1) for each of the k� 1 lists.

Since we leave tentative mode, the net decrease in � is at least

2(k� 1)t+ (2k � 1)� 2(k � 1)(t+ 1) = (2k � 1)� 2(k � 1) = 1:

Because the potential � decreases from the initial potential � = O(k logn) by a constant at

each step, and � cannot be negative, the search can proceed at most O(k logn) steps.

3 Fixed-points of the composition of functions

In this section we study the complexity of �nding a �xed-point of the composition of k monotone,

continuous functions. We de�ne the problem for general k, but the cases that we use are primarily

k = 2 and k = 3. Depending on the character of the functions, a �xed-point either requires a nested

binary search or can be found by tentative prune and search. We are grateful to G�unter Rote for

suggesting a functional framework.

3.1 Preliminary de�nitions and results

All functions in section 3 are monotone, continuous functions that are de�ned on ordered sets that

have the topology of the closed real interval [0; 1]. We say that a set F forms a set of basic functions

if

� The functions in F can be evaluated in constant time, and

� A �xed-point of the composition of k functions in F with appropriate domains and ranges

can be computed in time that depends only on k.

The set of all linear functions is one example of a set of basic functions; usually the application

determines a natural set.

Suppose that F is a set of basic functions. We say that a function f :A! B is piecewise basic

if

� A = [a0; an] is partitioned into n basic intervals by a0 � a1 � � � � � an�1 � an,

� f is de�ned piecewise by functions fi: [ai�1; ai]! B from F .
We de�ne the complexity of a piecewise-basic function to be the number of intervals into which its

domain is partitioned: kfk = n.

4

When we are given a piecewise-basic function f , we assume that we are given the ordered list

a0; a1; : : : ; an in an array or balanced binary search tree and the individual functions f1; f2; : : : ; fn.

The ease of evaluating f(x) depends on whether we know the basic interval containing x:

Observation 3.1 If we know the basic interval [ai�1; ai] containing x then we can evaluate f(x) in

constant time. If we know only the list of interval boundaries then to evaluate f(x) takes �(log kfk)
time.

Proof: If we know that x 2 [ai�1; ai], then f(x) = fi(x), and we can evaluate this basic function

in constant time. We can determine an unknown basic interval by binary search. Any algorithm

that does not do at least a binary search can be defeated by an adversary.

In actuality, we will not need to evaluate basic functions. It will be su�cient to determine if

fi(x) is less than, equal to, or greater than y for a given x in the domain and y in the codomain

of f . Comparing f(x) and y also takes constant time if we know the basic function that applies

to x and logarithmic time if we do not. We do not stress this point in the present section, although

it will become important in section 4.

We are interested in the complexity of �nding �xed-points of compositions of functions that

are monotone, continuous, and piecewise basic. the mean value theorem establishes the existence

of a �xed-point. (Monotonicity is not required for a �xed-point to exist, but it makes our search

techniques easier and all our applications use monotone functions.)

Theorem 3.2 Let f :A! B be a monotone, continuous function with A and B having the topology

of the closed real interval [0; 1]. If A � f(A), then then f has a �xed-point in A.

Proof: The function g(x) = f(x) � x is continuous on A, because f is continuous, and has

di�erent signs at the endpoints of A, because f is monotone and onto A. By the mean value

theorem, g has a zero, which is a �xed-point of f in A.

3.2 Binary search for the �xed-point of one function

Suppose that f :A ! B is monotone, continuous, piecewise basic, and satis�es A � f(A). Then

theorem 3.2 says that f has a �xed-point. We can �nd one by an easy binary search.

Theorem 3.3 If f :A ! B is a monotone, continuous, piecewise-basic function, and A � f(A),

then we can compute a �xed-point of f in O(log kfk) steps.
Proof: Let n = kfk and let fa0; a1; : : : ; ang be the interval boundaries of the partition of A. We

can evaluate f(a0) and f(an) to verify that f is onto and determine if f is monotone increasing

or decreasing. We maintain an interval A0 = [alo; ahi] such that

A0 � f(A0)|by theorem 3.2, such an interval contains a �xed-point. Initially lo = 0 and

hi = n, so A0 = A.

Choose an index m halfway between lo and hi. We can evaluate f(am) = fm(am) in constant

time. If am � f(am) and f is monotone increasing, then set lo = m because f is onto [am; ahi].

If f is monotone decreasing, set hi = m instead. The cases for am > f(am) are the reverse.

Thus, after O(logn) function evaluations, we have reduced A = [alo; ahi] to an interval that

contains a �xed-point and is the domain for a single basic function fhi. We can then compute

the �xed-point of fhi.

5

3.3 Nested binary search and an
(log2 n) lower bound

If k functions f , g, : : : , h are monotone and continuous, then so is their composition F = h�� � ��g�f .
If, in addition, f , : : : , h are piecewise basic and F is onto its domain, then F has a �xed-point

that we can �nd by nested binary search|an outer search from theorem 3.3 and an inner search

to evaluate F . When F is monotone increasing and functions f through h each have complexity

kfk = n, we also prove a lower bound of
(k log2 n) search steps.

Theorem 3.4 Suppose that F , the composition of k monotone, continuous, piecewise-basic func-

tions, is onto its domain. One can compute a �xed-point of F using O(k2 logn) basic function

evaluations and O(k2 log2 n) search steps.

Proof:We maintain intervals Af , Ag, : : : , Ah of the domains of f , g, through h that can contain

a �xed-point, starting from the initial domains. We can reduce Af by half after choosing the

middle interval boundary am and testing if F (am) < am just as in theorem 3.3.

In order to evaluate F (am) = h(� � �g(f(am)) � � �), we use k� 1 binary searches according to

observation 3.1. This reduces Af to a single interval that contains a �xed-point after O(k logn)

basic function evaluations and O(k log2 n) search steps.

We then reduce Ag through Ah by the same technique|that is, we reduce Ag by looking

for a �xed-point of f � h � � � � � g:Ag ! Ag. When all domains have been reduced to single

intervals then we can �nd a �xed-point of the composition of the basic functions de�ned on

these intervals.

We can generalize a lower bound proof of Guibas et al. [6] to prove that
(k log2 n) search steps

may be required for a �xed-point problem. Let k be even and let n = m2 for an integer m. We

describe an adversary that chooses k monotone increasing, piecewise-linear functions over [0; 4n+1].

Each function has complexity n.

To disclose the piecewise basic of the ith function f i, the adversary must disclose the interval

boundaries fai0; ai1; : : : ; aing and the basic functions f i1; : : : ; f in. The adversary does so in response to
queries of the form, \For function f i, what is the jth basic function and its domain?" The response

would be (f ij ; [a
i
j�1; a

i
j]). We show that
(k log2 n) queries are required to determine which interval

of one of the domains contains a �xed-point.

The adversary chooses functions that are nearly identity. Initially, the �rst and last basic

functions for each i are de�ned as f i1: [0; 1] ! [�1; 0] with f i1(x) = x � 1 and f in: [4n � 1; 4n] !
[4n; 4n+ 1] with f in(x) = x+ 1.

For 1 � j < m the adversary de�nes f imj as the identity on [4mj�1; 4mj] for i even, and de�nes
f imj�m=2 as the identity on [4mj� 2m� 1; 4mj� 2m] for i odd. These de�ned basic functions form

the mortar in the \brick wall" pattern of �gure 1. We say that the brick of an unde�ned basic

function f ij is the set of unde�ned basic functions for f i that are not separated from f ij by a de�ned

basic function. If all functions in a brick are de�ned (and they will be de�ned to be identity

functions in most cases) then we say the brick is empty. Finally, we say that f ij is the last de�nable

function in brick B if f ij is an unde�ned basic function with at most one unde�ned function above

it in B and one below in B. Since basic functions are linear and f i is continuous, de�ning f ij will

implicitly de�ne the functions above and below and result in an empty brick.

6

The set of bricks in even functions (f i with

A B C AD

Figure 1: De�ning the basic functions in bricks

i even) with indices between m(j � 1) and mj,

or the set of bricks in odd functions with indices

between m(j� 1)�m=2 and mj�m=2, is called

a row of bricks. The adversary maintains a list

L of rows that contain a non-empty brick. Rows

appear in L in order of their lowest coordinate.

Initially, there are 2m rows, alternately coming

from even and odd functions.

Suppose that the adversary is queried for a

function f imu+v , with i even and 0 � u; v � m.

The adversary's strategy for answering has di�er-

ent cases depending on whether f imu+v is de�ned,

whether de�ning f imu+v will empty a brick, and whether there will be a non-empty brick left in the

row after de�ning f imu+v . (Odd functions will be treated similarly.)

1. If f imu+v is de�ned, then the adversary reports it.

2. If f imu+v is not the last de�nable function in its brick B, then the adversary de�nes f imu+v
and at most half of the unde�ned functions in B. If there are fewer unde�ned functions below

f imu+v than above in B, then the adversary de�nes f imu+w as the identity on [4mu + w �
1; 4mu+w] for all 1 � w � v. If there are fewer above than below, then the adversary de�nes

f imu+w as the identity on [4mu+ 3m+ w� 1; 4mu+ 3m+ w] for all v � w < m.

3. If f imu+v is the last de�nable function in B, but there is another non-empty brick in the

row containing B, then then the adversary de�nes the remaining functions in B as identity

functions with appropriate domains.

4. Otherwise, de�ning f imu+v will cause the B to become the last in a row of empty bricks. The

adversary checks the position of this row in the list of rows L. If the row of B is in the �rst half

of L, then the adversary de�nes all unde�ned functions in rows before and including the row

of B so that F (x) < x. For example, it de�nes f imu+v to map [4mu+ v� 1; 4mu+ 3m+ v] to

[4mu+v�1; 4mu+v]. Then it drops these rows from L because they no longer contain a non-

empty brick. If the row of B is in the second half of L, then the adversary de�nes all functions
in the row of B and after so that F (x) > x and drops these rows from L. For example, it

de�nes f imu+v to map [4mu+ v � 1; 4mu+ 3m+ v] to [4mu+ 3m+ v � 1; 4mu+ 3m+ v].

Theorem 3.5 There exist k monotone increasing functions of complexity n, given in piecewise

basic, such that
(k log2 n) search steps are required to �nd a �xed-point of their composition.

Proof: If the adversary uses the strategy described above, then the algorithm cannot know the

row containing the �xed-point until the adversary's list L has been reduced to a single row.

Reducing L requries
(k log2 n) queries as follows: to halve the size of L requires emptying k

bricks on a row, and to empty a brick requires
(log
p
n) =
(logn) queries. Since each brick

is independent, these bounds multiply.

7

Note that this lower bound argument can be applied to a mixture of monotone increasing

functions with an even number of monotone decreasing functions. When the number of monotone

decreasing functions is odd, the composition is monotone decreasing. For such compositions with

two or three functions we can beat the lower bound.

3.4 Prune-and-search for two functions

We can �nd a �xed-point of a composition of a decreasing and an increasing function in piecewise

basic by a prune-and-search algorithm|with a constant time test we can eliminate half of the

intervals of the domain of one of the functions.

Theorem 3.6 Suppose that we are given two functions in piecewise basic: f monotone decreasing

over the domain A and g monotone increasing over the domain B. If B � f(A) and A � g(B),

then we can determine a �xed-point of g � f in O(log kfk+ log kgk) steps.
Proof: The compositions g � f and f � g are onto their domains and thus have �xed-points by

theorem 3.2. For simplicity of notation, we assume that n = kfk = kgk and let fa0; a1; : : : ; ang
and fb0; b1; : : : ; bng be the partitions of the initial domains A and B, respectively. We maintain

intervals A0 � A and B0 � B that must contain a �xed-point. Initially, A0 = [a0; an] and

B0 = [b0; bn].

Choose middle boundaries am 2 A0 and bm 2 B0 and, in constant time, determine the

relationships between f(am) = fm(am) and bm, and between g(bm) and am.

We can think of the map g � f as a twisted ribbon from A
AA

f

B

g

0

1

0

1

Figure 2: Discarding half

of A0

to B followed by a straight ribbon back onto A. We can
ip

B and cycle A and B to obtain a con�guration with f(am) >

bm and g(bm) > am as depicted in �gure 2. (In formul�, this

transformation de�nes g0(x) = bn + b0 � f(x) and f 0(x) = g(bn +

b0 � x).) In this con�guration, we can discard the boundaries in

A0 that are less than am|for any a � am, we have f(a) � bm

and thus g(f(a)) � g(bm) > am. Therefore, we are not losing

�xed-points by discarding intervals before am.

We repeat this test until A0 or B0 is reduced to a basic interval. The corresponding basic

function can be evaluated in constant time whenever necessary, so the remaining domain can

be reduced to a basic interval by binary search according to theorem 3.3. Finally, a �xed-point

of the composition of two basic functions can be obtained in constant time.

3.5 Tentative prune-and-search for three functions

With three functions, local information may be insu�cient to identify an interval that can be

discarded. We turn to the tentative prune-and-search technique, described in section 2.

Suppose that we have f , g, and h, which are three monotone decreasing functions in piecewise

basic and onto their respective domains. Then the composition h � g � f is monotone decreasing

and onto its domain; it has a �xed-point by theorem 3.2. We maintain intervals A, B, and C of

the domains of f , g, and h that may contain a �xed point.

8

We use tentative prune-and-search to reduce one of intervals to a basic interval, after which we

can apply theorem 3.6. Lemmas 3.7 and 3.8 show that the normal and tentative modes are viable

by describing the computations for these modes.

A

f

B

g

C

h

A

A

f

B

g

C

h

A

0

1

0

1

0

1

0

1

Figure 3: Discards for inconsistent

and consistent comparisons

Lemma 3.7 If there are no tentative discards, then normal

mode is viable.

Proof:We must choose midpoints and either discard half

of some domain or tentatively discard half of every domain

while guaranteeing that one of the tentative discards is

correct. Let A, B, and C be intervals of the domains of

f , g, and h, respectively, that contain a �xed-point. The

initial intervals are the domains: A = [a0; an], B = [b0; bn],

and C = [c0; cn]. (We assume that each function has

complexity n.)

Choose middle points a 2 A, b 2 B and c 2 C and

evaluate the corresponding basic functions to determine

the relationships between f(a) and b, between g(b) and

c, and between h(c) and a. As depicted schematically in �gure 3, these comparisons can be

consistent (all greater or less than) or inconsistent (two one way and one the other). In the

inconsistent case, we can assume, without loss of generality, that f(a) > b, g(b) < c, and h(c) > a

as in �gure 3. But then, for any a0 2 A less than a, f(a0) > f(a) > b, so g(f(a0)) < g(b) < c,

and therefore h(g(f(a0))) > h(c) > a > a0. In words, there is no �xed-point less than a, and

half of A can be discarded. This would be a discard in normal mode.

In the consistent case, suppose without loss of generality that all relationships are \greater

than." Then the �xed-point con�guration can have at most one member less than the middle

points: If b0 < b then g(b0) > g(b) > c and f�1(b0) > f�1(b) > a, and similar arguments hold if

a0 < a or c0 < c. We can therefore tentatively discard the portions of A, B, and C below the

middle points and be assured that we are making a mistake on at most one domain. Once we

do so, we enter tentative mode.

In tentative mode, we re�ne one of the domains|introducing middle point b̂ 2 B, for example.

We then have four cases to consider, since b̂ could be introduced either above or below f(a), and

g(b̂) could be above or below c.

Lemma 3.8 After leaving normal mode, tentative mode is viable.

Proof: In tentative mode, we either discard or tentatively discard half of the domain under

consideration or we certify all tentative discards made to one of the domains and return to

normal mode.

Assume that we have entered the tentative mode with comparisons f(a) > b, g(b) > c, and

h(c) > a, as illustrated in �gure 3. Suppose that we re�ne the remaining part of B by locating

the middle point b̂. We have four cases to consider for the location of b̂.

Case 1: f(a) > b̂ and g(b̂) > c. All comparisons are consistent, with b̂ playing the role of b.

Therefore, we extend the tentative discard to b̂, assured by the argument of the lemma 3.7

9

that we have made a mistake on at most one domain.

Case 2: f(a) > b̂ and g(b̂) < c. The comparisons are inconsistent in the same way as in �gure 3.

Using the argument of lemma 3.7, we know that the portion of A that is less than a does

not contain a �xed-point. We can then certify the tentative discard made to that portion

of A, revoke all other tentative discards, and return to normal mode.

Case 3: f(a) < b̂ and g(b̂) > c. The comparisons are again inconsistent with two `>' and one `<'.

In this case, the tentative discard to the portion of C less than c is certi�ed and we return

to normal mode by revoking any other tentative discards.

Case 4: f(a) < b̂ and g(b̂) < c. The comparisons are inconsistent with two `<' and one `>'. In

this case the portion of B that is greater than b̂ can be (permanently) discarded.

From these lemmas and theorems 2.1 and 3.6 we derive theorem 3.9.

Theorem 3.9 Given piecewise-basic, monotone-decreasing, continuous functions f , g, and h that

are onto their respective domains, we can �nd a �xed-point of h�g�f in O(log kfk+log kgk+log khk)
steps.

Proof: Let n denote the maximum complexity of f , g, and h. Lemmas 3.7 and 3.8 show

the viability required by theorem 2.1, so in O(logn) steps we can reduce one domain to a

basic interval. We can then replace one function by a basic function that can be evaluated in

constant time. This reduces the problem to a �xed-point of two functions, which can be solved

in O(logn) additional steps.

We remark that tentative prune-and-search can also be used to obtain logarithmic-time algo-

rithms that do not �t into this functional framework. Examples include computing the common

tangents of separated polygons without using a speci�c separating line, computing the shortest seg-

ment that joins two convex polygons while avoiding two others [9], and computing a local minimum

or maximum for convex polygon width [16].

4 Geometric applications

In this section we give geometric applications of our �xed-point algorithms. We parameterize

convex, plane polygons and de�ne functions so that the con�guration we seek (chords, parallel

tangents, inscribed triangles, circular tangents) are �xed-points of the composition of our functions.

Recall that our �xed-point algorithms do not require that these functions be able to be evaluated|

we are free to pick any function, as long as the image of a given point in the domain can be

compared to a given point in the range.

4.1 Computing longest and speci�ed chords

Given a convex n-gon P , Mount [13], in his algorithm for computing double-lattice packings,

sought chords parallel to direction � that were half the length of the longest chord. We describe

a logarithmic-time algorithms for the longest chord parallel to � and parallel chords with speci-

�ed lengths. These algorithms improve the running time of algorithms that approximate convex

polygons by rectangles [1, 17].

10

Let us assume that � is vertical and polygon P is given by a hierarchical representation [3],

which here means that \middle points" of a polygonal chain and their tangents are available.

Hierarchical representations can be implemented by storing the vertices of P in order in an array

or storing vertices and tangents in a balanced binary search tree.

We characterize a longest chord in P and then show how to �nd one.

Lemma 4.1 The tangents to the endpoints of a longest vertical chord in a convex polygon P can

be chosen to be parallel.

Theorem 4.2 Given an hierarchical representation of a convex n-gon P , one can �nd the longest

chord parallel to a query segment in �(logn) steps.

Proof: Assume that the query is vertical. Break P (conceptually, at least) into above and

below monotone chains, A and B, by using binary search to �nd the leftmost and rightmost

vertices of P . Parameterize A and B by x-coordinate.

We now de�ne functions g : B ! R and f :A ! R piecewise on
a

b

gf0 1

Figure 4: De�ning

f and g

the edges of A and B so that g is monotone increasing, f is mono-

tone decreasing, kfk + kgk = n, and a �xed-point of g � f satis�es

lemma 4.1. The function g is simply the identity; for a point in B

with parameter b, the value g(b) = b is the parameter of the point

a 2 A on the same vertical line as b as in �gure 4. For a point a 2 A,

the value f(a) is the x-coordinate of a point b 2 B such that a and

b have parallel tangents. (This is not well-de�ned when a is a vertex

and not continuous when b is a vertex. We can avoid these problems

by making A and B smooth spline curves and taking the limit as these splines approach the

polygon. An alternative is to use the kinetic framework [7] to parameterize point/tangent pairs

as we will do in the next section.) Clearly, a �xed-point a 2 A such that g(f(a)) = a gives

points of A and B with the same x-coordinate and tangent slope.

It is easy to compare functions f and g at given points a 2 A and b 2 B without evaluating

them. To compare f(a) and b we compare slopes of tangents at a and b; to compare a and g(b) we

compare x-coordinates of a and b. Therefore, we can use theorem 3.6 to compute a �xed-point

in logarithmic time.

A polygonal version of the discard step of theorem 3.6 is illustrated
a

b
discard

p

Figure 5: Discard step

in �gure 5. Choose a 2 A and b 2 B and let p be the intersection of

the tangents at a and b. If the x-coordinate order is a:x < b:x < p:x,

then discard the portion of B to the right of b.

Next, we show how to compute a chord with a speci�ed direction

and length in logarithmic time.

Theorem 4.3 Given an hierarchical representation of a convex n-

gon P , one can �nd the at most two positions where translates of a

segment T are chords of P in �(logn) time.

Proof: Again, assume that the direction of T is vertical. Apply theorem 4.2 to make sure that

the longest chord parallel to T is longer than T , then cut the polygon P in two along the longest

chord and look for one translate of T in each piece.

11

Consider the piece with the longest chord on the left and split it into above and below chains

A and B by �nding the rightmost extreme point. If we would translate the chain A downward

by the length of T , then A and B intersect at the base of the speci�ed chord.

From lemma 4.1, we know that a pair of parallel tangents to P

a
b

f

g

0

0

1

1

Figure 6: Chains

A and B

touch the ends of the longest vertical chord of P . The slope of these

tangents separates the slopes of the chains A and B. By a skew trans-

formation, we can make the slopes of A negative and of B positive

without changing the x-coordinate of their intersection. The result is

shown in �gure 6.

Now, we are looking for the intersection of two chains that are both

x and y monotone. We parameterize A and B by x-coordinate and

de�ne g(b) as the identity and f(a) to be the x coordinate of the point

b 2 B with the same y coordinate as a 2 A. Thus, a �xed-point of g � f gives points of A and

B with the same x and y coordinates. Notice that f is monotone decreasing, g is monotone

increasing, and, if edges determine the basic functions, kfk+kgk = n. Because we can compare

function values with points by comparing the appropriate coordinates, we can �nd a �xed-point

in logarithmic time using the algorithm of theorem 3.6.

4.2 Computing separation of convex polygons

Edelsbrunner [4] gave a logarithmic-time algorithm for computing the Euclidean closest pair of

points on two disjoint, convex, n-sided polygons in the plane. Dobkin and Kirkpatrick [3] gave a

uni�ed framework using hierarchical representations. We show how to use �xed-points and also

how to extend the computation to Lp norms and convex distance functions.

We begin with some points that can help in parameterization.

Lemma 4.4 Given two disjoint, convex n-gons, A and B, in logarithmic time we can compute

points a0 2 A and b0 2 B that lie on the convex hull of A [B.

Proof: Choose arbitrary points a 2 A and b 2 B and compute the intersection of the line ab

with A and B by binary search. The extreme points of these intersections give the desired a0

and b0.

We look at the problem of �nding the smallest homothet of a closed convex set M that touches

A and B. We can characterize the smallest homothet by separating tangents.

Lemma 4.5 The smallest homothet of a closed convex set M that touches polygons A and B has

parallel tangents that separate A from M and B from M .

Theorem 4.6 Suppose that we have two disjoint, convex, n-sided polygons A and B, and a convex

set M , for which it takes TM time to compute the two tangents of a given slope. We can compute

the smallest homothet of M that touches A and B in O(TM log n) time.

Proof: Break A and B into polygonal chains at the points a0 and b0 given by lemma 4.4 and

parameterize them counterclockwise over, say, reals in [0; 1]. We can use the kinetic framework

proposed by Guibas, Ramshaw and Stol� [7] to parameterize point/tangent pairs as we traverse

a chain so that we can interchangeably use parameter values of points and tangents without

12

worrying about the fact that polygon vertices have many tangents and tangents to edges have

many points of tangency.

We further reduce A by computing the convex hull of A [fb0g|using binary search for the

tangents to A through b0|and keeping only the portion of A inside the hull. Similarly, we keep

only the portion of B inside the hull of B [fa0g. (This step could be avoided by complicating

the de�nitions the functions f and g in the next paragraph.) The points that we discard do

not have tangents that separate A and B, so lemma 4.5 says that they cannot be the contacts

with the smallest homothet of M . We are left with chains that have at most one tangent for

each slope.

We now de�ne two functions f :A ! R and g:B ! R with kfk +

a
b

g

f

0

1

1

0
M

Figure 7: Functions

for separation

kgk = n that are depicted in �gure 7. For b 2 B, let g(b) be the parameter

of a point a such that a and b have parallel tangents. Because we have

parameterized counterclockwise, g is monotone increasing. For a 2 A

we de�ne f(a) as follows. Let �a denote the tangent at a. Find the two

tangents to M that are parallel to �a and let � denote the ray that the

points of tangency on M determine such that if the tail of � is at a then

tangent �a separates � and A. Then shoot from a in the direction � and

let f(a) be the parameter of the point of B encountered. If the ray misses

B, then assign any value to f(a) that keeps f monotone decreasing.

By comparing the slopes of tangents at a 2 A and b 2 B, we can compare a with g(b) in

constant time. By �nding the tangents toM parallel to a 2 A and comparing the projections of

a and b in the direction of the ray �, we can compare f(a) with b in TM time. Thus, theorem 3.6

gives us a way to compute a �xed-point of g � f in O(TM logn) time. This �xed-point satis�es

the characterization lemma 4.5 and gives the contact points for the smallest homothet of M

that touches A and B.

Using the unit ball for the Lp norm, we obtain the shortest distance between two polygons.

Corollary 4.7 One can compute the Lp shortest distance between two disjoint, convex n-gons in

O(logn) time.

4.3 Inscribed triangle homothets

We can �nd a �xed-point of a composition of three functions to give a logarithmic-time algorithm

for the inscribed triangle homothet problem: Given a convex polygon P , compute points a0, b0 and

c0 on the boundary @(P) such that 4a0b0c0 is homothetic to a given triangle 4abc.
We begin by computing the homothet of 4abc that circumscribes P : we compute the tangents

parallel to the edges of 4abc in logarithmic time by binary search. We use the points of tangency

to delimit three chains, A, B and C, where the vertices a0, b0 and c0 must lie. We can obtain the

hierarchies for these three chains from the hierarchy for P . The chain A is monotone with respect

the directions
*
a0b0 and

*
a0c0; analogous statements hold for B and C.

Theorem 4.8 One can compute the homothet of 4abc that is inscribed in an n-gon P in �(logn)

time.

13

Proof: Parameterize the chains A, B, and C counterclockwise over [0; 1]. The function value

f(a0) is the parameter of the point where the ray from a in direction
*
ab intersects the chain B.

Given b0 2 B, we compare f(a0) and b0 in constant time by projecting a0 and b0 parallel to ab.

The function f :A! B is well-de�ned because B is monotone with respect to the direction
*
ab.

We de�ne g and h by shots along
*
bc and *ca, respectively. Each of these functions is continuous

and decreases monotonically.

We can �nd the �xed-point of a composition of basic functions in constant time: Given three

segments on which a0, b0, and c0 can lie, we represent each segment as a linear combination of

its endpoints. For example, segment A with endpoints a0 and a1 is A(s) = sa0 + (1 � s)a1.

There is a homothet 4a0b0c0 if the three simultaneous linear equations

A(s)�B(t)

a� b
=
B(t) � C(u)

b� c
=
C(u)� A(s)

c� a

have a solution with 0 � s; t; u � 1.

Therefore, theorem 3.9 says that we can �nd a �xed-point in logarithmic time.

The case that requires tentative prune-and-search is shown in

a

b c

a0

b0

c0

Figure 8: The case that

needs tentative discards

�gure 8. Local information is not su�cient to discard half of some

chain, but by discarding the clockwise portions of each chain we can

be assured of making at most one mistake.

Theorem 4.8 computes the largest homothet of T that is in-

scribed in P : all three vertices are on @(P). The largest homothet

of T that is contained in P may be larger if one of its edges is a

longest chord in P . These cases can be checked using the algorithm

of theorem 4.2.

Corollary 4.9 One can compute the largest homothet of a triangle

T in P using �(log n) time.

4.4 Computing Voronoi vertices

In this section, we give a logarithmic-time algorithm for the Voronoi vertex problem: given disjoint

convex polygons P , Q and R, determine the points in the plane that are equidistant from P , Q

and R. We assume that we are given representations of P , Q and R that allow access to middle

points and normals and that their total description has size O(n).

Theorem 4.10 The Voronoi vertex problem in the plane can be solved in O(logn) time by tentative

prune-and-search.

Proof: As the problem de�nition suggests, there may be more than one point (or none) satis-

fying the Voronoi vertex property. Straightforward preprocessing, involving the construction of

the closest pairs on the boundaries of each pair of polygons as well as pairwise outer common

tangents, allows us to restrict our attention to three convex chains, A, B and C, from P , Q and

R respectively, for which the Voronoi vertex problem has a unique solution.

Parameterize the chains A, B, and C clockwise over [0; 1]. (Counterclockwise, if viewed

from the outside of P , Q and R. The function value f(a0) is de�ned to be the parameter of the

14

point b0 2 B whose normal intersects the normal to A at a0 in a point q such that the lengths

a0q = b0q. (If a point has more than one normal, we choose one in a canonical fashion; e.g.,

furthest ccw.) Equivalently, the normal at a0 intersects the bisector of A and B at some point

q; the function value f(a0) is the parameter of the point of B closest to q. Functions g and h

are de�ned analogously.

We certainly do not know how to evaluate such func-

p

a

b
c

0

1

0

1

1

0

A

B
C

Figure 9: Normals at a, b, and c

tions e�ciently, but given a0 and b0 we can determine

whether f(a0) > b0: Simply compute the point p that is

the intersection of the normals at a0 and at b0 and de-

termine whether a0p < b0p. If so, then the normal at a0

intersects the bisector beyond p and f(a0) > b0 on B.

This case is illustrated in �gure 9.

Once again, we have de�ned continuous, monotone-

decreasing functions. The �xed-point of a composition of

basic functions|the disk tangent toA, B, and C|can be

determined by algebra when when edges containing a0 2
A, b0 2 B and c0 2 C are known. Thus, by theorem 3.9,

we can compute a Voronoi vertex in O(logn) time.

5 Conclusions

In this paper we have studied the complexity of computing �xed-points of compositions of functions

that are de�ned piecewise. This functional framework captures the complexity of several basic

problems in computational geometry, such as computing chords, separation, inscribe triangles, and

Voronoi vertices for disjoint convex polygons in the plane. From this study also comes a general

multiple-list search technique that we call tentative prune-and-search.

We are still exploring the generalizations and extensions of the algorithms to compute �xed-

points. Although all our applications used monotone functions, the correctness proofs for some

(and perhaps all) of the searches could be generalized to continuous (non-monotone) piecewise

basic functions. The most interesting extension would be to, in logarithmic time, compute a �xed-

point of the composition of more than three monotone, continuous functions when that composition

is monotone decreasing.

Acknowledgements

We thank David Mount for introducing us to the speci�ed chord and inscribed homothet problems

and thank G�unter Rote for suggesting a the functional framework for tentative discards involving

three lists. Thorsten Graf suggested the problem of separation under the Lp norm.

References

[1] H. Alt, J. Bl�omer, M. Godau, and H. Wagener. Approximation of convex polygons. In Seventeenth

ICALP, number 443 in LNCS, pages 703{716. Springer-Verlag, 1990.

[2] K. C. Border. Fixed point theorems with applications to economics and game theory. Cambridge

University Press, 1985.

15

[3] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra: A uni�ed

approach. In Seventeenth ICALP, number 443 in LNCS, pages 400{413. Springer-Verlag, 1990.

[4] H. Edelsbrunner. Computing the extreme distances between two convex polygons. J. Alg., 6:213{224,

1985.

[5] H. Edelsbrunner and H. Maurer. Finding extreme points in three dimensions and solving the post-o�ce

problem in the plane. Info. Proc. Let., pages 39{47, 1985.

[6] L. Guibas, J. Hershberger, and J. Snoeyink. Compact interval trees: A data structure for convex hulls.

Int. J. Comp. Geom. App., 1(1):1{22, 1991.

[7] L. Guibas, L. Ramshaw, and J. Stol�. A kinetic framework for computational geometry. In Proc. 24th

FOCS, pages 100{111, 1983.

[8] T. C. Kao and D. M. Mount. An algorithm for computing compacted Voronoi diagrams de�ned by

convex distance functions. In Proc. Third Can. Conf. Comp. Geom., pages 104{109, Simon Fraser

University, Vancouver, 1991.

[9] D. Kirkpatrick and J. Snoeyink. Computing constrained segments: Butter
y wingspans in logarithmic

time. In Proc. Fifth Can. Conf. Comp. Geom., pages 163{168, Waterloo, Canada, 1993.

[10] D. Leven and M. Sharir. Planning a purely translational motion for a convex polygonal object in two

dimensional space using generalized Voronoi diagrams. Disc. & Comp. Geom., 2:9{31, 1987.

[11] M. McAllister, D. Kirkpatrick, and J. Snoeyink. A compact piecewise-linear Voronoi diagram for convex

sites in the plane. Accepted to the FOCS, 1993.

[12] N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems. SIAM J.

Comp., 12:759{776, 1983.

[13] D. M. Mount. The densest double-lattice packing of a convex polygon. In J. E. Goodman, R. Pollack,

and W. Steiger, editors, Discrete and Computational Geometry: Papers from the DIMACS Special Year,

pages 245{262. American Mathematical Society, Providence, RI, 1991.

[14] M. Overmars and J. van Leeuwen. Maintenance of con�gurations in the plane. J. Comp. Sys. Sci.,

23:166{204, 1981.

[15] F. P. Preparata and M. I. Shamos. Computational Geometry|An Introduction. Springer-Verlag, New

York, 1985.

[16] G. Rote, C. Schwarz, and J. Snoeyink. Maintaining the approximate width of a set of points in the

plane. In Proc. Fifth Can. Conf. Comp. Geom., pages 258{263, Waterloo, Canada, 1993.

[17] O. Schwarzkopf, U. Fuchs, G. Rote, and E. Welzl. Approximation of convex �gures by pairs of rectangles.

In Proc. 7th Sympos. Theoret. Aspects Comput. Sci., volume 415 of Lecture Notes in Computer Science,

pages 240{249. Springer-Verlag, 1990.

[18] S. A. Vavasis. Complexity of �xed point computations. PhD thesis, Stanford University, 1989.

[19] C. K. Yap. An O(n logn) algorithm for the Voronoi diagram of a set of simple curve segments. Disc.

& Comp. Geom., 2:365{393, 1987.

16

