
A Compact Piecewise-Linear Voronoi Diagram

for Convex Sites in the Plane�

Michael McAllister David Kirkpatrick Jack Snoeyink

Department of Computer Science

University of British Columbia

Abstract

In the plane, the post-o�ce problem, which asks for the closest site to a query site, and

retraction motion planning, which asks for a one-dimensional retract of the free space of a

robot, are both classically solved by computing a Voronoi diagram. When the sites are k

disjoint convex sets, we give a compact representation of the Voronoi diagram, using O(k)

line segments, that is su�cient for logarithmic time post-o�ce location queries and motion

planning. If these sets are polygons with n total vertices given in standard representations, we

compute this diagram optimally in O(k logn) deterministic time for the Euclidean metric and in

O(k logn logm) deterministic time for the convex distance function de�ned by a convex m-gon.

1 Introduction

One of the earliest successes of computational geometry is the O(n logn) time computation of the

Voronoi diagram of n point sites in the plane, which is the partition of the plane into maximally

connected regions that have the same set of closest sites [29, 33]. Aurenhammer [2] has surveyed

the many applications and generalizations of the Voronoi diagram. In this paper we concentrate

on two classical applications|the post-o�ce problem and the \retraction" method for planning

translational motion|when the sites are k disjoint convex polygons with a total of n vertices.

1.1 The post-o�ce problem and retraction motion planning

The post-o�ce problem [33] asks how to preprocess a set of k sites in the plane to be able to

determine the closest site to a query point. When the sites are disjoint convex polygons with n total

sides, the Voronoi diagram has k faces bounded by O(n) segments of lines and parabolas [21, 24, 35].

Combined with a data structure for point location [14, 18, 31], it gives an O(n) space data structure

that answers queries in O(logn) time after O(n logn) preprocessing.

The retraction method for motion planning [1, 28, 32] uses the Voronoi diagram of the k sites

to determine if there exists a motion of the centre of a disk from an initial position p to a �nal

position q that does not cause the disk to intersect any site. Because edges of the Voronoi diagram

are equidistant from their two closest sites,maximum-clearance paths, which maximize the minimum

distance to an obstacle, can follow Voronoi edges. After O(n logn) preprocessing one can obtain

�This work has been supported by NSERC in the form of a Graduate Scholarship and two Research Grants.

1

an O(n) space data structure that can be used to determine, in O(logn) time, if motion from

p to q is possible and to construct a maximum-clearance path in time proportional to the path

complexity [30]. Furthermore, by generalizing the distance measure from the Euclidean metric to

a convex distance function, one can compute a retraction diagram for translating a convex object.

(We elaborate in section 2.3.)

Although the Voronoi diagram is optimal for both the post-o�ce problem and for retraction

motion planning for point sites, it can be excessively elaborate when the sites are polygons. If we

have k polygonal sites with a total of n vertices then the edges of the Voronoi diagram consist ofO(n)

segments of lines and parabolas. The post-o�ce problem then needs to search through parabolic

and straight-line segments to �nd the Voronoi cell of the query point. Meanwhile, retraction motion

planning on the Voronoi diagram dictates paths of line segments and parabolas to go between two

sites when, intuitively, we can pass between two polygons along some separating line. We would like

a simpler version of the Voronoi diagram that lets us solve the post-o�ce problem and retraction

motion planning for polygonal sites while avoiding the O(n) complexity of the Voronoi diagram.

In this paper we describe a compact approximation of the Voronoi diagram when the k sites

are disjoint convex polygons with n total vertices. Our compact diagram is composed of O(k) line

segments and is su�cient to solve the post-o�ce in O(logn) time and retraction motion planning

problems in O(log k) time. If the vertices of each site polygon are represented as ordered lists in

arrays or balanced search trees, we can compute the diagram deterministically in �(k logn) time

by a sweep algorithm, as shown in section 3.

Our compact diagram can also represent the generalized Voronoi diagram de�ned by a convex

distance function [9]. For k disjoint convex polygons with total complexity n and the distance

function induced by a convex m-gon, the Voronoi diagram can have �(n + km) complexity. Our

diagram with O(k) line segments can be computed in O(k log n logm) time and can answer post-

o�ce queries in O(logn + logm) time and motion planning queries on O(log k) time.

This diagram has several advantages besides its e�cient deterministic construction. First,

given the compact diagram, the true Voronoi diagram can be computed in time proportional to

its complexity (�(n) for the Euclidean and �(n+ km) for convex distance functions). Second, for

applications where knowing two candidates for the closest site (and not their distances) is su�cient,

one can discard the original sites (and distance function) and store only the O(k) segments of the

compact diagram. Retraction motion planning is one such application. Third, because the compact

diagram is entirely composed of line segments, computing, displaying, and traversing are easier

operations than on the Voronoi diagram. This is an advantage even if the k sites are line segments.

In the remainder of this section we compare our diagram to related work on the de�nition and

construction of (compact and generalized and abstract) Voronoi diagrams. For more detail, see

Aurenhammer's survey [2]. Section 2 describes the diagram and its application to the post-o�ce

problem and to retraction motion planning. Section 3 gives a deterministic construction based on

Fortune's sweep algorithm [15] as well as a randomized incremental construction with the same

expected time.

2

1.2 Related work on compact diagrams

There has been considerable recent interest in simpli�ed or compact representations of the Voronoi

and other retraction diagrams. Canny and Donald [7] de�ne a simpli�ed Voronoi diagram in d di-

mensions for retraction motion planning that has a lower algebraic complexity than the Euclidean

diagram. In the plane, they obtain a diagram with line segments, but the number of segments

depends on the complexity of the obstacles|on n rather than k|and the dependence may be su-

perlinear. Kao and Mount [17] consider the generalized Voronoi diagram, using a distance function

de�ned by a convex polygon with m sides. Even though the diagram may have �(n+km) complex-

ity, Kao and Mount show that a compact representation with space O(m+ n) can be computed in

O(n logn log2m) time such that post-o�ce queries take O(logn+ logm) time. If used for motion

planning, their approach would still generate a path of �(n+ km) complexity.

Sifrony [34] considers the motion of a �xed m-gon in the plane and computes an O(n)-sized

skeletonized retraction diagram for motion planning using approximately O(n logn log2m) time.

de Berg, Matou�sek, and Schwarzkopf [11], in independent work, have generalized these results to

higher dimensions and improved them to depend on k instead of n. In the plane, they compute

an O(k)-size skeletonized diagram in O(k log2(n+m)) time for moving a �xed m-gon in the plane.

Because these approaches depend on a �xed m-gon, they do not solve the post-o�ce problem for

convex distance functions.

1.3 The relation to the computation of abstract Voronoi diagrams

For those who are familiar with Klein's monograph [22], our compact diagram can be seen as an

instance of an abstract Voronoi diagram. Abstract Voronoi diagrams are de�ned only in terms of

bisectors of pairs of sites and are computed using primitives such as determining the ordering of

two points along a bisector and the ordering of three bisectors that pass through a common point.

Recent work [20] gives O(logn)-time subroutines for these primitives under the Euclidean metric.

In section 3.4, we obtain O(logn logm) subroutines under a convex distance function de�ned by

an m-gon.

There are three algorithmic paradigms that give optimal �(k log k) algorithms for the Voronoi

diagram of k point sites: divide and conquer [33], randomized incremental construction [16, 27], and

sweepline [15]; the �rst two have been adapted to compute abstract Voronoi diagrams [22, 23, 26],

but they do not directly give an optimal construction for our compact diagram. It is instructive to

investigate why not.

A divide and conquer algorithm merges pairs of Voronoi diagrams in linear time. In the process,

it computes as many as �(k log k) points equidistant from three sites; in the abstract setting, each

such point requires a subroutine call. For our compact representation of the Euclidean Voronoi

diagram, this would result in an �(k log k logn)-time algorithm. The randomized incremental

constructions [23, 26] compute an expected O(k) points equidistant from three sites, but evaluate

an expected �(k log k) \conicts." In our case, a conict involves a \spoke region," which is a

hexagonal region de�ned by two sites, and a new site. The conict occurs when at least one point

of the spoke region is closer to the new site than to either of the two sites that de�ne the spoke

region. Thus, the direct implementation takes �(k log k log n) expected time. Section 3.3 improves

3

the expected time by evaluating conicts for the leftmost point of the new site and updating the

diagram from this conict using a constant number of subroutine calls for each Voronoi vertex

created. Fortune's [15] sweep algorithm has not been adapted to the abstract setting. This is not

a surprise when one considers that abstract bisectors need not be monotone or have other properties

that permit a sweep. For convex distance functions, however, Fortune's sweep can be seen as the

computation of a dynamic Voronoi diagram whose sites are the sweep line and the swept portions

of objects. (His \parabolic front" is simply the boundary of the Voronoi cell of the sweep line.)

The Voronoi cells have a certain \star-shaped" property that allows the sweep algorithm to use

only O(k) subroutine calls in total to handle events.

2 De�nition of the compact diagram

We are able to de�ne our compact diagram for any convex distance function. In the next section,

we construct it by a general algorithm|only the subroutine for computing a point equidistant from

three or more polygons depends on the distance function. This generality necessitates some care

in the basic de�nitions to handle degenerate cases.

2.1 Geometric preliminaries

We begin by de�ning convex distance functions, spokes, bisectors, Voronoi cells, Voronoi vertices,

and Voronoi edges.

Minkowski showed that any convex set M whose interior contains the origin de�nes a convex

distance function dM (p; q). The distance from point p to q with respect toM is the amount thatM

must be scaled to include q� p; the distance function dM has a natural extension to sets A and B.

dM(p; q) = inff� � 0 : q � p 2 �Mg

dM(A;B) = inffdM(a; b) : a 2 A; b 2 Bg

In this paper, the sets M , A and B are always closed subsets of the Euclidean plane E2 so the

in�mum operations could be replaced by minimum operations.

Distance function dM need not induce a metric because it need not be symmetric: dM(p; q) need

not equal dM(q; p) if M is not centrally symmetric. It does, however, satisfy the triangle inequality

for points [8]: dM(p; q) + dM(q; r) � dM(p; r):

The points of the boundary ofM are precisely those at unit distance from the origin. Choosing

M to be the unit circle gives the Euclidean metric; choosing M to be the diamond de�ned by

four unit vectors in the axial directions gives the L1 or Manhattan metric. Thus, we can give a

geometric interpretation of the distance from a point p to a set A. Let MA
p denote the convex set

M scaled by dM (p; A) and translated to p. (See �gure 1.) That is, MA
p = dM(p; A)M + p.

Lemma 2.1 If M and A are closed convex sets and p 62 A then the boundaries of MA
p and A

intersect while their interiors are separated by a tangent line.

Proof: Suppose that the interiors of A and MA
p were not disjoint. Then we could �nd a point

a0 2 int(A) \ int(MA
p). Then the distance dM(p; a0) < dM(p; A), contradicting the de�nition of

dM(p; A).

4

On the other hand, there does exist an a0 2 A \MA
p because M and A are closed|the

boundaries @(A) and @(MA
p) intersect.

Since the interiors of A and MA
p are disjoint, they can be separated by a line `. Line ` must

pass through a0, making it tangent to A and MA
p .

Given a closed convex set A � E2 and two points p 2 E2 and

A

MA
p

a

p

Figure 1: MA
p and

spoke(p; A)

a 2 A, we say that pa is a �nite spoke and a is the attachment point

if dM (p; A) = dM(p; a). If p 2 A then the degenerate segment pp is a

spoke. Geometrically, pa is a spoke with p 62 A if MA
p and A intersect

at a as in �gure 1. The pair p and A de�ne a unique spoke except in

the degenerate situation where A andMA
p share a common line segment

on their boundaries. We de�ne spoke(p; A) to be the unique Euclidean

shortest spoke de�ned by p and A. We can also de�ne in�nite spokes,

which are the in�nite rays composed of all points p for which spoke(p; A) has the same attachment

point and direction.

We say that a set X 2 E2 is star-shaped with respect to A if A � X and every spoke spoke(p; A),

with p 2 X , is contained in X .

The bisector of two closed convex sets A and B un-

A

B

A

B

M

Figure 2: Euclidean and Manhattan

bisectors

der the distance function dM is usually de�ned as fp :

dM(p; A) = dM(p; B)g. The shaded region in �gure 2 il-

lustrates that the bisector is not always a curve under this

de�nition. When a boundary segment of MA
p is an outer

common tangent of A and B, then all points in the wedge

de�ned by rays from p directly away from the attachment

points of spoke(p; A) and spoke(p; B) are equidistant from

A and B with respect to dM().

We therefore base the de�nition of a bisector on an

oriented version of the setM that induces the convex distance function. Orient the boundary ofM

counterclockwise so that each line segment on the boundary of M becomes a directed edge. The

head of an edge is associated with the edge itself while the tail of an edge does not belong to the

edge. Consequently, every point on the boundary ofM belongs to exactly one directed edge. Under

this orientation, we de�ne the AB-bisector to be the set of points where dM(p; A) = dM(p; B) and

where spoke(p; A) and spoke(p; B) cross the boundary of MA
p along di�erent directed edges. This

de�nition is depicted in �gure 2. Note that this de�nition is consistent with perturbing M slightly

counter-clockwise.

Using the oriented interpretation for the boundary of M , lemma 2.2 relates homothets of M

whose centres lie on a common spoke. This relationship is then used to show that our de�nition

of an AB-bisector is a curve that separates the plane into two star-shaped regions in lemmas 2.3

and 2.4.

Lemma 2.2 If A is a closed convex set, p 62 A is a point in the plane, and q 6= p is a point along

spoke(p; A) then MA
q � MA

p . Furthermore, if spoke(p; A) does not exit MA
p at a vertex then the

boundaries of MA
q and MA

p intersect along a single directed edge of MA
p .

5

Proof: The point q lies on spoke(p; A) so spoke(q; A) shares the same attachment point to A

as spoke(p; A) and MA
q has the same point of tangency with A as MA

p . Since M is convex and

dM(q; A) < dM(p; A), q is inside MA
p and MA

q �MA
p .

Next, we show the boundary intersection property. The homothets MA
p and MA

q are repli-

cas of M , so their boundaries either intersect in a connected set or they intersect at two or

fewer points. Since both MA
p and MA

q are tangent to A at a common point (spoke(p; A) and

spoke(q; A) share an attachment point to A) and neither MA
p nor MA

q intersect the interior of

A, their boundaries cannot intersect at two distinct unconnected points.

Let b be a vertex ofMA
p that is shared with MA

q . The segment from b to p goes through the

centre of MA
p . Since M

A
q shares the vertex b with MA

p , this segment must also go through the

centre of MA
q . Therefore, spoke(p; A) exits M

A
p at a vertex. As a consequence, if spoke(p; A)

does not exit MA
p at a vertex then the boundaries of MA

p and MA
q can only intersect along a

single directed edge of MA
p since the intersection must remain connected and free of vertices.

Lemma 2.3 The AB-bisector is a continuous curve.

Proof: To see that the AB-bisector is a continuous curve, we note that each point p on the

bisector can be parameterized by the attachment point of spoke(p; A), breaking ties with the

angle of spoke(p; A), and the length of spoke(p; A). As we advance along the AB-bisector, the

attachment point either moves along the boundary of A in one direction (spokes to A cannot

cross other spokes to A since dM satis�es the triangle inequality) or the attachment point

remains the same. In the latter case, the angle of spoke(p; A) either changes monotonically

and continuously or remains �xed (when the bisector moves in the direction of spoke(p; A)) in

which case the length of spoke(p; A) changes monotonically.

Lemma 2.4 The AB-bisector bounds two sets|one star-shaped with respect to A and one star-

shaped with respect to B.

Proof: We prove that the region that contains A in the complement of the AB-bisector is

star-shaped with respect to A.

Let p be a point on the A side of the AB-bisector. Either MA
p does not touch B or MA

p =

MB
p where the attachment point of spoke(p; A) is the interior of a directed edge (not the head of

the edge) and MA
p is tangent to B along that same directed edge (p is not on the AB-bisector).

Let q 6= p be a point on spoke(p; A). According to lemma 2.2 we have MA
q � MA

p and

the boundaries of MA
q and MA

p intersect along a single directed edge (since p is not on the

AB-bisector). If MA
q does not touch B then dM(q; A) < dM(q; B) and q is on the A side of the

AB-bisector. Otherwise, MA
q is tangent to both A and B along a common directed edge, the

common intersection of the boundaries for MA
p and MA

q . Consequently, q does not lie on the

AB-bisector. Since the AB-bisector is a continuous curve (lemma 2.3) and spoke(p; A) does

not cross the bisector, the entire spoke lies on the A side of the AB-bisector and that side of

the AB-bisector is star-shaped with respect to A.

LetA = fA1; A2; : : : ; Akg be a collection of sites|convex sets in the plane with disjoint interiors.

The Voronoi cell of Ai is
T
i 6=j;1�j�kfthe Ai side of the AiAj -bisectorg. In the Euclidean metric,

6

this de�nition is equivalent to the de�nition fp : dM (p; Ai) < dM(p; Aj) for all j 6= ig; that is, all

points for which Ai is the unique closest site. We denote the Voronoi cell of Ai by CA(Ai).

Corollary 2.5 The Voronoi cell CA(Ai) is star-shaped with respect to Ai.

Proof: The Voronoi cell of Ai is the intersection of the star-shaped sets containing Ai that are

de�ned by the AiAj-bisectors for all j 6= i.

The boundary of the cell of Ai is composed of portions of bisectors with other sites. Where two

adjacent bisectors intersect we have a �nite Voronoi vertex, which is equidistant from Ai and the

other two sites de�ning the bisectors. Two adjacent bisectors may go o� to in�nity rather than

intersecting|we can consider them to intersect at a Voronoi vertex at in�nity. Later in the paper,

we refer to a spoke from the in�nite Voronoi vertex to Ai; the spoke is an in�nite ray from Ai to

the point at in�nity whose direction keeps the ray between the two bisectors. The portion of one

AiAj -bisector that appears between two Voronoi vertices is a Voronoi edge.

Corollary 2.6 By introducing spokes from the (�nite and in�nite) Voronoi vertices around the

boundary of the cell CA(Ai), one decomposes the cell into regions bounded by portions of a single

AiAj -bisector.

Proof: Because bisectors are bi-in�nite curves, any region of cell CA(Ai) that is bounded by

AiAj- and AiAk-bisectors either has a �nite Voronoi vertex where these bisectors cross or an

in�nite Voronoi vertex in the direction that they go o� to in�nity. The spokes from these

vertices to Ai are contained in the star-shaped cell CA(Ai).

2.2 A compact diagram for the post-o�ce problem

With the notation developed above it is easy to de�ne a

Figure 3: A compact diagram for

point location

diagram of O(k) line segments in which one can determine

two candidates for the closest neighbour of a query point.

Draw spokes from the (�nite and in�nite) Voronoi vertices

around the cell of Ai, as described in corollary 2.6 and shown

in �gure 3. Also, replace each Ai by its core, which is the

convex hull of the spoke attachment points around Ai. The

complement of the cores and spokes for all sites is a set of

connected spoke regions bounded by at most six segments:

two core segments and four spokes.

Theorem 2.7 By introducing O(k) segments, we partition

the plane into cores and spoke regions for which the closest

site is known to be among two candidates.

Proof: Points in the core of Ai are in Ai. The spokes incident on Ai partition the remainder

of the cell of Ai into regions bounded by a portion of the bisector of Ai and one other site. The

union of the regions that border the same portion of the AiAj -bisector form a hexagonal spoke

region that is contained in the union of the closures of the cells for Ai and Aj . Therefore Ai or

Aj is the closest neighbour for the points in this spoke region.

7

To establish the size, it is su�cient to prove that the number of spokes is O(k) because the

number of core polygon edges is equal to the number of spokes. We can form a planar graph on

the nodes fA1; A2; : : : ; Akg by connecting Ai with Aj by an edge that crosses the AiAj-bisector

and stays between the spokes. Because all faces of this graph (except perhaps the outermost)

have at least three vertices, Euler's relation implies that the graph has O(k) edges and faces.

If we process this diagram using any optimal point location structure [14, 18, 31] we can de-

termine the two candidates for the closest neighbour to a query point q in O(log k) time. We can

compute the distances to these two candidates by computing spokes from q to each of these candi-

dates. Section 3.4 shows that computing spokes takes O(logn) time when the distance function is

the Euclidean metric and O(logn + logm) time when it is speci�ed by a convex m-gon.

2.3 A compact diagram for retraction motion planning

The next lemma is the key to modifying the post-o�ce diagram for retraction motion planning:

Lemma 2.8 Distance to the convex sets A and B under a convex distance function dM is does not

have any local maxima along the AB-bisector.

Proof:

We show that the AB-bisector does not contain any local maxima.

BS

A

a

S

b
σ

B

σA

B

A

p

R

r

Figure 4: The

AB-bisector has no local

maxima.

Let r be a point on the AB-bisector, let �A be a separating

tangent of A and MA
r , and let �B be a separating tangent of B

and MB
r . Let a be the attachment point of spoke(r; A) and let b

be the attachment point of spoke(r; B).

Suppose that �A and �B intersect (if at all) in a region where

the points a, r, and b appear in counterclockwise order around the

boundary (see �gure 4). Then the region R between �A and �B

with b, r, a in counterclockwise order is unbounded. Moreover, the

boundary of R divides the AB-bisector into two connected parts:

one part within R and the other outside R.

Let p be a point on the AB-bisector in R. Since dM satis�es

the triangle inequality and, within R, tangent �A separates the

AB-bisector from A, we have dM(p; A) � dM(p; �A). Similarly, dM(p; B) � dM (p; �B). The

point p is on the AB-bisector, so we get dM(p; A) � max fdM(p; �A); dM(p; �B)g. Without

loss of generality, assume that dM(p; �A) � dM (p; �B).

Let SA be the points with distance dM(r; A) or less from �A, and let SB be the points with

distance dM(r; B) or less from �B. Since �A and �B are in�nite lines and M is convex, SA

and SB are strips parallel to �A and �B respectively. Since each side of the AB-bisector is

star-shaped with respect to A or B, the AB-bisector leaving r in R lies in the wedge formed by

extending spoke(r; A) and spoke(r; B) through r, and leaves either SA or SB unless �A and �B

are parallel. If �A and �B are not parallel then the point p on the AB-bisector exits SA, since

we assumed that dM (p; �A) � dM(p; �B). If �A and �B are parallel then dM(p; A) = dM(r; A).

In either case, dM(p; A) � dM(r; A) and the point r cannot be a local maximum point with

respect to distance to A along the AB-bisector.

8

The minimum distance along a Voronoi edge between two Voronoi vertices determines the

maximum size of a homothet of M that can translate along the Voronoi edge. Due to weak

unimodality, the minimum distance is attained either at a Voronoi vertex of the spoke region R or

at a point p 2 R on the AB-bisector for which the tangent between A and MA
p can be chosen to be

parallel to a tangent between B and MB
p (= MA

p). Let p be such a minimum point for the region

R. If p is a minimum point on the whole AB-bisector, let � be a tangent between A and MA
p that

has a parallel tangent between B and MB
p . Otherwise, let � be any common tangent between A

and MA
p . We de�ne a bottleneck segment for R to be a segment through p parallel to � . Under

the Euclidean metric, the bottleneck segment can be chosen as the perpendicular bisector of the

shortest segment joining A and B provided this shortest segment lies within the spoke region R.

In section 3.4 we describe the bottleneck(R) routine, which com-

A

B

Figure 5: A

bottleneck segment in

a spoke region

putes a bottleneck segment in O(logn) time in the Euclidean case and

O(logn logm) in the convex distance function case.

Lemma 2.9 A homothet of M can traverse a spoke region from Voronoi

vertex to Voronoi vertex along a Voronoi edge if and only if it can traverse

the spoke region via the bottleneck segment and incident spokes.

Proof: Let R be a spoke region formed by A and B. The Voronoi edge

that traversesR is a portion of the AB-bisector, which is equidistant to

A and B. If a homothet of M can traverse R along spokes, and across

the bottleneck edge of R, then it can traverse R using the Voronoi edge

that avoids A and B equally. Our main task is to show that a path

along a Voronoi edge has an equivalent path along spokes and a bottleneck segment without

compromising the clearance between the path and A or the path and B.

Suppose that we can traverse R along the Voronoi edge. The homothet ofM must not touch

either of sets A or B at the minimum points along the AB-bisector within R. We have two

cases, depending on whether this minimum point occurs inside spoke region R or at a Voronoi

vertex on the boundary of R.

If the minimum point occurs at p and p is a minimum point for the entire AB-bisector,

then �A is a common tangent between A and MA
p with a parallel common tangent �B between

B and MB
p (= MA

p) and the bottleneck segment passes through p and is parallel to �A The

homothet of M can traverse the bottleneck segment because it is separated from A and B by

�A and �B respectively. When the homothet reaches a spoke, it moves to the Voronoi vertex by

moving away from A or B, whichever is closer in dM distance and the distance to A exceeds

the distance to B only after we cross the Voronoi vertex (corollary 2.5). Thus it can traverse

the spoke region.

If the minimum point p for R is not a minimum point for the AB-bisector, then p is a

Voronoi vertex for the spoke region R and the bottleneck segment for R leaves p parallel to a

tangent �A between A and MA
p . A tangents �B between B and MB

p diverge from �A within

R since A, B, and M are convex. Therefore, moving a homothet of M along the bottleneck

segment increases the distance to �B and therefore to B, and the homothet remains separated

from A by �A. The homothet of M continues along the bottleneck segment until it reaches a

9

spoke of R and moves to the Voronoi vertex along the spoke as before.

If we store the minimum point and its spokes along with the bottleneck segment for each spoke

region, then we can determine how to move onto the retraction diagram without using of the

original polygon information.

Lemma 2.10 A homothet of M can move onto the retraction diagram from a free placement by

locating its initial spoke region and moving parallel to its bottleneck segment until it encounters the

spoke region boundary.

Proof: For a spoke region R adjacent to polygons A and B, suppose that we have stored a

minimum point p and the spokes spoke(p; A) and spoke(p; B). Given an initial free placement

of a homothet of M with origin at q, we move the homothet parallel to the bottleneck segment

and away from the minimum spokes spoke(p; A) and spoke(p; B). We will show that this

movement avoids collision with A and B, so the origin can reach a spoke that forms part of

the boundary of R. The origin can follow this spoke away from its closest site up to a Voronoi

vertex, which puts the homothet onto the retraction diagram.

Recall that there is a line � that is tangent toA at the attachment point of spoke(p; A) and is

parallel to the bottleneck segment. If the homothetM and A are separated by � , thenM cannot

hit A. If M intersects � then a line separating M and A must cross � and allow M to move

away from spoke(p; A). IfM and A are on the same side of � and the angle from spoke(p; A) to

the next spoke on the boundary of R is at most �, then the same argument applies. (The angle

condition is automatic for �nite spokes bounding R and can be obtained for in�nite spokes by

choosing an in�nite spoke with attachment point opposite that of spoke(p; A).)

Finally, by weighting each bottleneck segment by its minimum distance to a site, we compute

a maximum weight spanning tree of the compact diagram. We can process this tree [30] to answer

retraction motion planning queries and to compute paths that maximize the minimum clearance

to sites, where clearance is measured by the distance function dM .

Theorem 2.11 Using an O(k)-size data structure, one can determine in O(log k) time if there is

a translational motion that gets M from p to q avoiding the k convex obstacles. One can compute

a motion in time proportional to its complexity, which is O(k).

Proof: We can think of the retraction diagram as a weighted planar graph whose O(k) ver-

tices are the Voronoi vertices and whose O(k) edges represent paths that traverse a bottleneck

segment. The weight of an edge is the largest scale for a homothet of M that can use the

corresponding bottleneck segment. Rohnert [30] has shown that we can compute a maximal

spanning tree in this graph and process it so that we can determine in logarithmic time the

largest scale homothet that can traverse the diagram from a given initial point to a given �nal

point. We use lemma 2.10 to determine the initial and �nal nodes of the tree in O(logk) time.

3 Computing the compact Voronoi diagram

In section 3.1 we describe an algorithm based on Fortune's sweep [15] that computes the compact

Voronoi diagram under general position assumptions. Section 3.2 modi�es this algorithm to the de-

generate cases that the general position assumptions avoid. We describe a randomized incremental

10

construction algorithm whose expected execution time matches our worst-case deterministic time

bound in section 3.3. Both the sweep and randomised algorithms work for any convex distance

function, when given a subroutine to compute Voronoi vertices and their spokes. Section 3.4 de-

scribes the subroutines for the Euclidean metric and for the distance function de�ned by a convex

polygon M ; section 3.5 discusses lower bounds.

3.1 A deterministic sweep algorithm

The key information for the compact compact Voronoi diagram is the Voronoi vertices for the

set of polygons. Given the Voronoi vertices and the polygons that generate each vertex, we can

�nd the spokes to the nearest polygons, identify the spoke regions (by sorting the Voronoi vertices

around each polygon), and thus solve the post-o�ce problem. Once we know the spoke regions, we

can also �nd the bottleneck segments for solving retraction motion planning. Our algorithm �nds

the Voronoi vertices of the polygons and �nds the spokes from each Voronoi vertex to the nearest

polygons. For simplicity, we assume that the polygons are in general position. In particular, we

require that no polygon have a vertical edge, that no vertical line be tangent to two polygons, and

that no four polygons be tangent to one homothet of the convex distance function. Section 3.2

describes changes to the algorithm that handle degeneracies and eliminate the general position

assumptions.

Our algorithm sweeps a vertical line, called the sweepline, from left to

J

A

A

K

A

sweepline

Figure 6: The sweep

front and Voronoi

diagram left of the

sweepline

right across the Voronoi diagram of the polygons and �nds all Voronoi ver-

tices, much the same as Fortune's sweep algorithm [15]. As the sweepline

travels across the plane, we examine the Voronoi diagram de�ned by the

polygons (or parts of polygons) to the left of (or on) the sweepline, to-

gether with the sweepline itself. We detect all Voronoi vertices by observ-

ing the changes in the boundary of the Voronoi cell for the sweepline as

the sweepline moves. When the sweepline nears x = +1, all polygons|as

well as all Voronoi vertices of the the Voronoi diagram for the polygons|lie

to the left of the sweepline, so our sweep detects all Voronoi vertices. A

typical picture of the algorithm in mid-sweep is shown in �gure 6.

The boundary of the sweepline's Voronoi cell is called the sweep front

and consists of Voronoi edges between the sweepline and some polygons.

We denote a section J of the sweep front between the sweepline and a single

polygon A by JA and call JA a front arc. Figure 6 illustrates that one polygon (polygon A) may

have many front arcs associated with it at any one time (arcs JA and KA).

Two data structures underlie the sweep algorithm: a priority queue Q that schedules changes

in the sweep front, called events, and a threaded, balanced, binary tree T that stores the sweep

front.

The priority queue Q schedules events in the order that the sweepline will encounter them in its

sweep across the plane. The events correspond to points in the plane and are sorted in the schedule

by ascending x-coordinate. Events are added to the queue only if they appear to the right of the

sweepline's position at the time of insertion. Each scheduled event stores pointers to the polygon(s)

11

that generate it, and, as applicable, a Voronoi vertex of three polygons as well as the attachment

points of the spokes from this vertex to each of the generating polygons.

The threaded, balanced, binary tree T stores the sequence of front arcs along the sweep front.

The threading locates adjacent front arcs in logarithmic time while the balanced binary tree sup-

ports a logarithmic time binary search through the sweep front. Each tree node for a front arc

J stores a pointer to the polygon that generates J , pointers to any events in the schedule that J

has generated, and a spoke to the polygon that de�nes J that crosses J . Unlike previous sweep

algorithms for Voronoi diagrams, we neither store nor compute the curves that make up the front

arc J . Theorem 3.6 provides a means to search across the sweep front based on a spoke for each

front arc rather than on the intersection points of two front arcs; lemma 3.5 proves that such a

spoke exists in the queue Q for every front arc.

While the sweepline moves from left to right across the plane, the sweep front also moves across

the plane (lemma 3.1.) Lemma 3.2 shows that every Voronoi point for the Voronoi diagram of the

polygons appears along the sweep front, so our algorithm for the compact Voronoi can restrict itself

to watching the sweep front.

Lemma 3.1 Given a set of polygons P and two vertical sweeplines `1 and `2 at x = x1 and x = x2

respectively with x1 < x2, every point on the sweep front for `1 lies closer to some site P than to `2.

Proof: We assume that some polygon exists to the left of sweepline `1. Otherwise, the sweep

front for both `1 and `2 does not exist.

Let r be a point on the sweep front for `1 in V (P [f`1g) and let � be the spoke from r

to `1. Since our distance function is convex, and since x1 < x2, the spoke �
0 from r to `2 in

V (P [f`2g) is an extension of �.

Let P be the polygon that has r on the boundary of its Voronoi cell in V (P [f`1g). Then

the distance from r to `2 is strictly greater than from r to P since �0 extends �. Consequently,

the sweep front for `2 must intersect �0 to the right of r, and hence to the right of the sweep

front of `1 in V (P [f`1g).

Lemma 3.2 Every Voronoi vertex of V (P) eventually appears along the sweep front.

Proof: Let v be a Voronoi vertex of V (P) for the polygons P , Q, and R, and let ` be the

vertical sweepline. Since MP
v is convex, it has a rightmost point at x = x0. When ` is at

x = x0, it is tangent to M
P
v , so v must lie on the Voronoi edge of ` in V (P [f`g). Since ` is

tangent to MP
v at its rightmost point, v lies left of ` and is therefore on the sweep front.

Our sweep algorithm detects Voronoi vertices by observing changes in the order of front arcs

on the sweep front. Front arcs can change their order in two ways: a new front arc can appear

along the sweep front or some existing front arc can be removed from the sweep front. Notice that

two front arcs cannot exchange places along the sweep front since all polygons in the underlying

Voronoi diagram are disjoint. Lemma 3.3 shows that front arcs appear along the sweep front only

when a leftmost point of a polygon crosses the sweepline. We call such occurrences site events.

Lemma 3.4 shows that front arcs are removed from the sweep front precisely when a Voronoi vertex

crosses the sweep front. We denote these latter events as circle events.

12

Lemma 3.3 A front arc is created on the sweep front if and only if a site event occurs.

Proof: We start by showing that a site event creates a front arc.

When the leftmost point p of a polygon P is on the sweepline `, that point has a zero

distance to both ` and P and lies on the P`-bisector and on the boundary of `'s Voronoi cell.

Since point p is not on the right side of `, it belongs to the sweep front and a front arc generated

by P . Before P crosses `, polygon P cannot have a front arc, so p must belong to a new front

arc.

Next, we show that every new front arc is caused by a site event.

Let JP be a new front arc generated by polygon P . If no front arcs existed prior to JP then

there are no polygons left of (or on) the sweepline ` before the arrival of JP . Since JP is a

portion of the P`-bisector, arc JP can only be caused when polygon P �rst pierces `.

Otherwise, JP breaks an existing front arc KQ in the sweep front at the points p (upper)

and q (lower). Arc KQ is generated by polygon Q. The area between JP and the part of KQ

that was broken when JP appeared belongs to the Voronoi cell CP(P) for P in V (P) where

P is the set of all sites. Since CP(P) is star-shaped (corollary 2.5), some portion of P must

appear within the area A bounded by spoke(p;Q), spoke(p; `), spoke(q; Q), spoke(q; `), Q, and

`. Let r be any point within CP(P) that also lies inside the area A. Before JP appeared, point

r belonged to the Voronoi cell of the sweepline in V (P [f`g) since the point r is in a spoke

region bounded by Q and the sweepline and the front arc KQ cannot leave V (P)Q. Since ` is

an in�nite line, if the attachment point of spoke(r; P) lies left of or on ` then r is either on the

P`-bisector or on the P -side of the P`-bisector. In either of these cases, some portion of the

P`-bisector appears along the sweep front. So, before JP appeared, all the attachment points

to P for the points in A were to the right of the sweepline.

Let a be the attachment point to P of spoke(r; P). Consider what happens as the sweepline

crosses a if some portion of P already lies to the left of the sweepline. Once ` crosses a, the

point r becomes part of the sweep front or part of the interior of A; both cases imply that arc

JP then exists. Since P is convex, immediately prior to ` crossing a, ` cuts through P in a

neighbourhood of a and P\` is part of the sweep front. So, when ` crosses a, some portion of the

P`-bisector at a is on the sweep front and JP is an extension of that portion. This contradicts

the fact that KQ appears both above and below JP on the sweep front, so no portion of P

lies to the left of the sweepline. Consequently, arc JP only appears when the sweepline �rst

encounters P .

Lemma 3.4 A front arc is removed from the sweep front if and only if a Voronoi vertex equidistant

to three or more polygons crosses the sweep front.

Proof: We begin by showing that a front arc is removed from the sweep front when a Voronoi

vertex crosses the sweep front.

Let v be a Voronoi vertex between the polygons P , Q, and R that lies on the sweep front. We

assume that spoke(v; P) lies immediately counterclockwise from spoke(v; `) and spoke(v; R)

lies immediately clockwise from spoke(v; `) (see �gure 7).

13

The Voronoi cell for Q does not extend beyond spoke(v; P) and

R

P

Q

v

Figure 7: The front arc

for Q is removed at v.

spoke(v; R) since spoke(v; P) and spoke(v; R) lie completely in the

Voronoi cells for P and R, respectively. Any front arc generated

by Q that extends between the PQ-bisector and the QR-bisector

cannot pass the point v; the front arc must stay in Q's Voronoi cell.

Lemma 3.1 shows that the sweep front leaves v when ` moves right

of its current position, so the front arc generated by Q between the

PQ- and QR-bisectors disappears when v lies on the sweep front.

Next, we show that a largest homothet of the convex distance

function is tangent to three polygons and the sweepline when a front

arc is removed from the sweep front. The origin of the homothet is

a Voronoi vertex of the three polygons.

Let KQ be a front arc, generated by polygon Q, that is being

removed from the sweep front. The front arcs at either end of the

sweep front are in�nite and cannot be removed from the sweep front,

so arc KQ must have a front arc JP above and a front arc LR below

it on the sweep front. If KQ is a single point s, then point s belongs

to KQ as well as to JP and LR as endpoints. The polygons P and R must be distinct since the

Voronoi cell for P would otherwise surround the cell for Q, so the point s is a Voronoi vertex

for P , Q, and R.

Otherwise, the front arc KQ is a curve rather than a single point that is removed from the

sweep front at one instant. When the sweepline moves right, the sweep front KQ also moves

(lemma 3.1), though it must stay within the Voronoi cell for Q CP(Q) in V (P). Since KQ is

removed from the sweep front whenever the sweepline moves to the right, the cell CP(Q) does not

extend between KQ and the sweepline. The arc KQ must therefore be a Voronoi edge in V (P)

between Q and some polygonal site P , i.e. part of the PQ-bisector. However, KQ is also part of

the bisector between Q and the vertical sweepline. The site P must have a vertical line segment

on its boundary to match the Q`-bisector, contradicting the general position assumptions; the

front arc KQ can only be removed from the sweep front if it degenerates to a point �rst.

A summary of the sweep algorithm appears in �gure 8. After we specify the vertex(ABC)

subroutine, we present invariants for the data structures Q and T and show how the algorithm

treats each type of event to preserve these invariants. As a consequence of lemma 3.4, we conclude

that all Voronoi vertices are reported at the end of the sweep.

The subroutine vertex(ABC) accepts three sites and computes a �nite or in�nite Voronoi

vertex v where the Voronoi cells for sites A, B and C occur in counterclockwise order around v.

In the �nite case, this corresponds to the point p where MA
p = MB

p = MC
p . If there is no such

largest homothet of the distance function M then the point at in�nity is returned as the Voronoi

vertex of A, B, and C. The subroutine returns the vertex v, the rightmost point of MA
v , and a

spoke from v to each of A, B, and C (in the case where v is an in�nite vertex, the spokes to A,

B, and C extend to in�nity in a direction that keeps the spoke inside the Voronoi cells of A, B,

and C respectively). Section 3.4 discusses two implementation of this subroutine: one in O(logn)

14

Schedule a leftmost point of each polygon as site events

While the schedule is not empty do

Remove the next event p

if p is a new site event

Binary search the sweep front to find the arc J nearest p

Unschedule all circle events for the arc J

Split J into two front arcs

Create a new front arc for p

Schedule circle events for the new front arcs

otherwise, p is a circle event

Record the centre of p as a Voronoi vertex

Delete a front arc

Unschedule any circle events associated with the front arc

Schedule circle events coming from the disappearance of a front arc

endif

endwhile

Figure 8: Outline of the sweepline algorithm.

time under the Euclidean metric and the other in O(logn logm) time under the distance function

induced by an m-gon.

The priority queue Q changes the conceptually continuous sweep into a set of discrete steps; we

must ensure that all changes to the sweep front generate an event in Q. To identify all new front

arcs, all site events must appear in Q until the sweepline encounters them (lemma 3.3). Also, every

Voronoi vertex for three consecutive front arcs along the sweep front must appear in Q (lemma 3.4).

This latter condition implies that the tree T must always contain the correct order of the front arcs

along the sweep front. These restrictions dictate the invariants

� The tree T always contains the ordered list of sites that generate the front arcs on the sweep

front for the current position of the sweepline.

� The queue Q contains precisely one site event for each polygon that the sweepline has not

encountered and one circle event for each set of three consecutive front arcs. For the circle

event, if M 0 is the homothet of M that is tangent to the three polygons that de�ne the

consecutive front arcs, then the rightmost point of M 0 lies right of the sweepline.

The sweep algorithm begins by satisfying the invariants in the initial position of the sweepline.

One site event is added to Q for each polygon. Next, we initialise the tree T with the sites whose

leftmost x-coordinate equals the leftmost x-coordinate of the entire set of sites. The order of the

sites in T is that of their y-coordinates. We also remove the site events in Q for each of the sites

already in T . We then remove the event from the head of Q and process events until Q is empty.

When the sweepline encounters a site event at a point p, a new front arc J appears along the

sweep front (lemma 3.3). We begin by re-establishing our invariant on the sweep front stored in

the tree T . Theorem 3.6 describes a search to locate K the the front arc nearest the point p. We

add J to the sweep front, split K into arcs K0 (above J) and K00 (below J), and add the site that

generates J to T to satisfy the invariant on T . The changes to T create a reference to the site that

generated K both before and after the site that generates J within the site order of T .

15

Next, we update the schedule Q to reect the change in the sweep front. The site event for p was

removed from the schedule when we decided that we had a site event. The sweepline can encounter

the leftmost point of only one polygon at a time (since the polygons are in general position) so Q

contains precisely the required set of site events. Therefore, we only concern ourselves with the

circle events. The single circle event de�ned when front arc K was the middle of three consecutive

arcs must be removed from the schedule since adding arc J split arc K. The circle events where

K was the �rst or third arc in the sequence remain in the schedule since arcs K0 and K00 ful�ll the

role of K in those instances. Finally, if the sequence of front arcs was IKL before arc J divided

arc K, then we have three new sets of consecutive arcs to be added to the schedule as circle events:

vertex(IK0J), vertex(JK00L), and vertex(K0JK 00), the last of which is guaranteed to be a vertex

at in�nity.

In the search for the nearest front arc to a site event, we obtain information about each front

arc through a spoke that crosses it. Lemma 3.5 shows that such a spoke is always available either

in the priority queue Q or as a degenerate spoke.

Lemma 3.5 For each front arc KQ in the sweep front there exists a spoke to the polygon Q de�ning

KQ that intersects KQ.

Proof: Let KQ be a front arc generated by site Q, let JP be the front arc above KQ on the

sweep front, and let LR be the front arc below KQ on the sweep front. Arc JP is generated by

polygon P , and arc LR is generated by polygon R. Neither JP nor LR necessarily exists. There

are three con�gurations for KQ that we must consider:

� the sweepline has not crossed the rightmost point of Q

� KQ is the highest or lowest front arc on the sweep front

� a circle event for vertex(PQR) is in the queue Q

If the sweepline has not crossed the rightmost point of Q then the sweepline cuts through

Q and both the sweep front and KQ follow this cut inside Q. We have a degenerate spoke � at

any of the intersection points between the interior of Q and the sweepline.

If KQ is the highest or lowest front arc on the sweep front then the Voronoi cell for Q is

unbounded. If KQ is not the only front arc then an in�nite spoke perpendicular to the outer

tangent of Q and the generating site of KQ's sole neighbouring front arc remains within the

Voronoi cell for Q and crosses KQ. Otherwise, any in�nite spoke that attaches itself to Q and

goes to the right of Q crosses KQ.

If both front arcs JP and LR exist then there is a circle event for vertex(PQR) at the

vertex v is in the schedule Q. The vertex v may be at in�nity. The spoke(v;Q) lies between the

PQ and QR bisectors as does the front arc KQ. This spoke is computed at the same time as

vertex(PQR) and is stored in Q so it is available to the algorithm. Since the sweepline has not

encountered the circle event yet, vertex v lies to the right of the sweep front, and spoke(v;Q)

crosses KQ.

If we have a spoke that crosses a front arc, we are indirectly given a point along the front arc.

Theorem 3.6 uses this information to �nd the front arc nearest a site event.

16

Theorem 3.6 Given a point p on the sweepline, we can locate the nearest front arc to p under a

convex distance function by a binary search and one call to vertex().

Proof: The Voronoi cell for the sweepline is star-shaped (corollary 2.5), so the spokes from the

front arcs to the sweepline partition the sweepline into disjoint intervals. Finding the nearest

front arc to the point p is equivalent to �nding in which interval the point p lies.

We could perform a binary search for p based on the

J
P

scheduled
circle event

P
vM

P

q

v

sweepline

r
σ

u

γ

Figure 9: Spoke � crosses JP .

endpoints of the intervals; however, locating each interval

endpoints requires a call to vertex(). (The interval end-

point is the attachment point for the spoke from the ends

of two front arcs, which is the Voronoi vertex between the

sweepline and the polygons generating the front arcs.) In-

stead, we perform a binary search based on a representative

point for each interval. The resulting space between two rep-

resentative points spans exactly two intervals and contains

one interval endpoint. We compute that endpoint with one

call to the vertex() subroutine and determine which of the

two candidate intervals contains the point p.

What is the representative point in the interval for front

arc JP of site P? We derive the representative point from a

spoke that crosses JP . Let � be the spoke to P from lemma 3.5 that crosses JP and let q be

the attachment point of � to P (see �gure 9). If v is a point on � other than q, then let u be

the rightmost point of MP
v . Extend the line from q to u so that it crosses the sweepline; the

intersection point r is our representative point.

How do we know that the point r lies in the interval for JP on the sweepline? Point r is

the attachment point for the spoke from the intersection of � and JP to the sweepline. The

direction of a spoke to a vertical line is always the same; let be the line/spoke through r

in that direction, extending to the left of the sweepline. The triangle formed by r, q, and the

intersection point of � and is mathematically similar to, and shares a corner at q with, the

triangle formed by u, q, and v, so the former triangle is inscribed in a homothet M 0 of the

convex distance function that is tangent to both P and the sweepline. Being equidistant to P

and the sweepline, the centre of M 0 is on the front arc JP , and therefore on the intersection of

� and JP .

A circle event signals the removal of a front arc J from the sweep front and the existence of a

Voronoi vertex among polygons (lemma 3.4). As with the site event, we must alter the sweep front

T and the schedule Q to maintain our invariants. The change to the sweep front T is simple: the

circle event stores a pointer to the front arc J to be removed from the sweep front. The threaded

nature of T allows an e�cient removal operation.

Once arc J is removed from the sweep front, it can no longer play a role as one of three

consecutive front arcs along the sweep front for circle events. The circle events in Q where J

appears as either the �rst or last of three consecutive front arcs must be removed from Q. Also, the

neighbouring front arcs of J take J 's place as a �rst or last arc in sequences of three consecutive

17

front arcs. Suppose the sequence of front arcs around J , from top to bottom, is HIJKL, then we

remove the circle events corresponding to vertex(HIJ) and vertex(JKL) and replace them with

the circle events for vertex(HIK) and vertex(IKL) respectively. The sweep front did not change

anywhere else, so all other scheduled circle events remain valid.

When the sweepline reaches x = +1, all polygons are to its left. The Voronoi vertex topology

obtained for polygons left of the sweepline is precisely the topology for the Voronoi diagram of

all polygons. Our treatment of site events and circle events, along with the characterisations of

lemma 3.3 and lemma 3.4, culminate in the proof of theorem 3.7.

Theorem 3.7 The sweepline algorithm (outlined in �gure 8) correctly �nds all Voronoi vertices

and their order about each polygon for a convex distance function.

Before analysing the time complexity of our algorithm to �nd the compact Voronoi diagram, we

must establish the time required to perform operations on the schedule Q and the sweep front T .

Each data structure performs its operations in logarithmic-time of the structure size. Lemma 3.8

proves the sweep front maintains O(k) arcs and lemma 3.9 proves the schedule always has O(k)

events scheduled, so both data structures perform insertions and deletions in O(log k)-time.

Lemma 3.8 At most 2k � 1 arcs appear along the sweep front.

Proof: A new arc appears on the sweep front only when we encounter a site event (lemma 3.3).

While processing a site event, one new arc is added and an existing arc is split into two smaller

arcs if some arc already exists along the sweep front. Consequently, the �rst new site event

adds a single arc to the sweep front and every subsequent new site event adds at most two arcs

to the front. There are k new site events, one for each polygon, so the sweep front has size at

most 2k � 1.

Lemma 3.9 The schedule for the sweep algorithm contains at most 2k events at any moment.

Proof: The schedule contains two types of events: site events and circle events. If there are

s site events in the schedule, then k � s site events have been processed, producing at most

2(k� s)� 1 front arcs. Each consecutive triple of front arcs produces at most one circle event

in the schedule. Moreover, when one front arc JP is removed from the sweep front, all circle

events in the schedule that depend on JP are removed from the schedule. Consequently, the

schedule contains at most s + 2(k � s)� 1 = 2k � s � 1 events. Since 0 � s � k, no more than

2k events are in the schedule at any one time.

In conclusion, we show that our algorithm for �nding the compact Voronoi diagram requires

O(k(Tv+log k)) time for k polygons having a total of n vertices, where Tv denotes an upper bound

on the time required to complete one call to the vertex() subroutine. The algorithm handles

exactly k site events, one per polygon, and O(k) circle events since each circle event discovers one

Voronoi vertex and there are O(k) Voronoi vertices. We examine the processing time for each event

type separately.

When handling a site event, we perform a binary search through the O(k) arcs of the sweep front

and require O(log k) search steps to narrow our search to two candidate front arcs. Theorem 3.6

shows how each step of the binary search requires constant time to complete. Once we have two

18

candidate front arcs, we need O(Tv) operations to �nd the front arc being split and an additional

O(log k) time to insert the new front arc into the sweep front.We then calculate three Voronoi

vertices for the new arc in O(Tv) time and add them to the schedule in O(log k) time; we also

remove circle events that are no longer valid, in O(log k) time apiece. Each site event therefore

requires O(Tv + log k) time to complete.

The circle events are simpler to process than site events. We remove a front arc from the sweep

front in O(logk) time and remove at most two circle events from the schedule, again in O(log k)

time. Next, we compute two Voronoi vertices and insert them into the schedule as future circle

events in O(Tv + log k) time.

We sum the time required for each type of event to obtain the complexity of the algorithm. We

spend O(k(Tv + log k)) time processing site events, and we spend O(k(Tv + log k)) time on circle

events, yielding a total complexity of O(k(Tv + log k)).

Theorem 3.10 The compact Voronoi diagram for a set of k polygons with a total of n corners can

be computed in time O(k(Tv + log k)).

3.2 Degeneracies

The sweep algorithm of section 3.1 for the compact Voronoi diagram assumes that all the sites

are in general position to avoid degenerate cases. This section presents enhancements to the sweep

algorithm that makes the general position assumptions unnecessary. We describe the set of changes

to the algorithm before addressing each position assumption, the degeneracies that the assumption

avoided, and the manner in which the modi�ed algorithm handles the degeneracies.

Three changes to the sweep algorithm are su�cient to remove the general position assumptions:

one change to the priority queue data structure Q, one change to our handling of circle events, and

one clari�cation for scheduling site events.

First, to the priority queue Q we add keys that are secondary to the x-coordinate of the event.

The keys for Q, in order of precedence, are

1. x-coordinate of the event (in ascending order)

2. type of event (site events before circle events)

3. y-coordinate of the event (in descending order)

4. for circle events, the angle � as measured ccw from the sweepline's spoke to the second spoke

encountered ccw, 0 � � < 2� (in ascending order)

Second, we process multiple circle events together under special conditions. This change allows

us to recognize that a Voronoi vertex may be de�ned by more than three sites.

Third, we resolve an ambiguity when scheduling site events. If a site does not have a unique

leftmost vertex then we create a site event based on the highest of its leftmost vertices.

These three changes, along with some careful implementation in the rest of the sweep algorithm,

are su�cient to correctly handle all conditions that our general position assumption of section 3.1

precluded.

19

3.2.1 Assumptions related to site events

The only assumption that relates directly to individual sites, and consequently site events, is that

no site has any vertical edges. Vertical edges are problematic when they are the leftmost edge of a

polygonal site. When the sweepline crosses a vertical leftmost edge, the entire portion of the sweep

front that is closest to the vertical edge is part of the Voronoi diagram for the polygons. We must

recognize all Voronoi vertices along this portion of the sweep front, even as the sweep front jumps

to the sweepline at this same instant.

The degeneracy caused by vertical leftmost edges is solved by two of the

K

L

J

I

H

P

Figure 10: A

vertical edge for P

can produce many

Voronoi vertices.

changes to the sweep algorithm. First, the additional keys for the priority

queue Q enforce a nested-sweep tactic in the algorithm. While the sweepline

moves from left-to-right in the plane, whenever multiple events occur at a

common x-coordinate, the tertiary y-coordinate key processes events along

the sweepline from top to bottom, a vertical sweep. The intermediate key on

event types forces this vertical sweep to happen twice: once for site events

and a second time for circle events. We can imagine the �rst of the vertical

sweeps as discovering new circle events and the second sweep as handling the

circle events and advancing the sweep front.

The second change to the algorithm is to eliminate an ambiguity for

scheduling a site event. The additional rule ensures that the site event trig-

gers as high along the sweepline as possible by scheduling the highest leftmost

point for each site.

These two changes work together to locate all the Voronoi vertices asso-

ciated with the vertical edge. Let the vertical edge for site P be from point

u to point w where u is above w. Let the sequence of front arcs nearest edge (u; w) be generated

by polygons HIJKL (in order along the sweep front) as in �gure 10. When we encounter the site

event for P , a single front arc is inserted for point u as if point w had been perturbed to the right.

Suppose the new front arc divides the arc for site H . If there is a Voronoi vertex associated with

edge (u; w) then the front arc for u generates a circle event from vertex(PHI) to occur at the

sweepline's current position. When we process the circle event for vertex(PHI) after all other site

events are done, front arc for H is removed from the sweep front and we schedule a new circle event

for vertex(PIJ) since their three front arcs become consecutive. This circle event goes immedi-

ately to the top of Q. Processing this new circle event removes the front arc for I from the sweep

front and schedules yet another circle event for vertex(PJK). This ripple of removing front arcs

continues until the undiscovered Voronoi vertices are no longer associated with the edge (u; w).

The general position assumption that no two sites are tangent to a common vertical line indi-

rectly concerns site events. The degeneracy occurs only when these site events are the �rst of all

site events that occur|each event creates a single front arc and does not split any existing front

arc. This degeneracy is resolved when we initialise the sweep front with one front arc for each site

event at the same x-coordinate as the �rst site event. The front arcs are ordered consistently with

the sites along the sweepline.

20

3.2.2 Assumptions related to circle events

When more than three sites are tangent to a largest homothet of the convex distance function, the

origin of the homothet is a Voronoi vertex with degree greater than three. Without any changes to

the sweep algorithm, a Voronoi vertex of degree four would be split into two vertices of degree three,

where both vertices have two sites in common, are adjacent across a spoke region, and occur at the

same position in the plane. Post-processing of the Voronoi vertices could then merge the points

into one. However, the sweep algorithm itself can recognize Voronoi vertices of degree greater than

three.

Suppose that polygons P , Q, R, and S are tangent to a common ho-

P

Q

SR

Figure 11: A

Voronoi vertex of

degree four

mothet of the distance function, and suppose that the ccw order of these

polygons around the homothet are PQRS, starting from the attachment

point for the spoke to the sweepline from vertex(PQR). Then the sweep

front has the matching order of front arcs (in order from top to bottom)

and circle events vertex(PQR) and vertex(QRS) appear in the queue Q.

Again, two modi�cations to the sweep algorithm cooperate to solve

this problem. The events vertex(PQR) and vertex(QRS) have queue

keys identical in the �rst three components. Consequently, the two events

are grouped together in Q. The last key places vertex(PQR) ahead of

vertex(QRS) in the queue since Q precedes R ccw around the homothet.

Since we know that these two circle events are grouped together, we

can change our handling of circle events to remove both of them from the

queue Q at the same time. If we are handling a circle event for the Voronoi

vertex v, we can remove all the circle events that relate to v from the top

of Q. All these events appear at the top of the queue when the �rst event for v is removed. For

instance, in �gure 11 the circle event for vertex(PQR) will be immediately followed by the circle

event for vertex(QRS). We can remove all circle events from Q that relate to v, remove the front

arcs between the topmost front arc J and the lowest front arc K (the arcs generated by both Q

and R in the �gure) from the sweep front, and schedule new circle events as if there had been a

single front arc to remove from between J and K. The change recognises all the sites that generate

v at one instant rather than watch for coincident Voronoi vertices or edges of zero length between

Voronoi vertices.

The changes to the priority queue Q also resolves the degeneracy in which a circle event and

a site event occur at the same position. The priority queue schedules the site event �rst and an

additional circle event at the same position as the site event will be added to Q. All the circle

events at the same position as the site event are grouped within Q and are handled as one group

by our changes to the circle event processing.

3.3 A randomized incremental construction algorithm

In the introduction, we noted three techniques commonly used to compute Voronoi diagrams:

divide-and-conquer algorithms, sweep algorithms, and randomized incremental constructions. Sec-

tion 3 elaborated on a sweep algorithm to compute our compact Voronoi diagram; a divide-and-

21

conquer approach for this same diagram computes O(k log k) Voronoi vertices and therefore cannot

match the time complexity of the sweep algorithm. In this section, we detail a change to the

randomized incremental construction (RIC) of Boissonnat et al. [3] or the abstract Voronoi RIC of

Klein et al. [23] to compute our compact Voronoi diagram in an expected time that matches the

deterministic time of section 3.1's sweep algorithm. Throughout this section we assume that all

polygons are in general position, just as we did for the deterministic algorithm.

The RIC technique common to both Klein et al. and Boissonnat et al. hinges on the concept

of a conict between a polygon and a region. In the earlier RICs, conicts are often considered

between a polygon and a Voronoi cell. For the compact Voronoi, we consider conicts between a

polygon and spoke regions.

If P is a set of convex and disjoint polygons, recall that V (P) is the Voronoi diagram of the

polygons in P , and CP(Q) is the Voronoi cell for Q 2 P in V (P). A polygon R 62 P is said to

be in conict with a point p in the plane if p 2 CP[fRg(R). By extension, we say that polygon R

conicts with a spoke region A of V (P) if R conicts with some point of A.

The idea of the RIC is to introduce sites one at a time into the Voronoi diagram. The compact

Voronoi diagram is maintained for those sites already inserted. When we add a new site, we try to

modify the existing diagram rather than re-compute the diagram from scratch.

Two data structure have been used to support the insertion of a new site. The �rst data

structure is a conict graph [10, 25] that stores the conict relation between those sites not yet in

the incremental diagram and the regions of the incremental diagram. The second data structure

is a conict history DAG (directed acyclic graph) [5, 6, 4, 12]. We use the history DAG since it is

considered the more dynamic of the two approaches.

Each node of the DAG represents a spoke region that has

Figure 12: A polygon inserted into a

set of Voronoi cells.

been computed by the algorithm. If a node for spoke region

X has children nodes for spoke regions Y1, : : :, Yj , then X

was divided among regions Y1, : : :, Yj at some point in the

algorithm's progress, i.e. X �

S
1�i�j Yi and X \ Yi 6= �

for all i, 1 � i � j. Leaf nodes in the DAG represent the

regions in the current state of the algorithm.

The standard RIC [3] uses Voronoi cells rather than

spoke regions as the nodes in the conict history DAG.

The algorithm begins with the Voronoi diagram for a �xed

number of sites: for instance, it can begin with a single site

where the DAG consists of a single node representing the

entire plane. We call this �rst node of the DAG the root

of the DAG. To add a site P to the Voronoi diagram of a

set of sites P , the algorithm must identify the Voronoi cells in V (P) with which P conicts and

partition these cells to make up CP[fPg(P). It identi�es the Voronoi cells with which P conicts

by traversing the conict history DAG from the root. Polygon P conicts with a region R only if

P conicts with at least one parent of R in the DAG. Consequently, we can trace a set of conicts

through the DAG from the root to the current Voronoi cells. The process ends by dividing the

22

Voronoi cells with which P conicts, thus creating children in the DAG.

The expected running time for this RIC is O(k log k) for k point sites [3, 23]. Briey, the

algorithm is expected to compute O(k) Voronoi vertices as it adds the k sites. However, we expect

to encounter O(log i) conicts traverse the conict history DAG when i sites have been added.

Consequently, we expect to compute O(k log k) conicts.

When the sites for the Voronoi diagram are polygons rather than points, the expected number

of Voronoi vertices and conicts calculated by the RIC remains the same, within the big-O notation,

but the cost of computing both Voronoi vertices and conicts themselves increases from constant

time to O(Tv)-time, yielding an expected total complexity of O(kTv log k) as noted in [3], which is

worse than our O(k(Tv + log k))-time deterministic algorithm in the case of polygons.

Two modi�cations to the RIC allow us to improve its expected time complexity for polygonal

sites when computing the compact Voronoi. First, we use the spoke regions in the conict history

DAG rather than the Voronoi cells themselves. We also approximate

the spoke regions by joining the attachment points within each polygon,

Q

X X

X

X

X

X

X

Figure 13: Polygon Q

conicts with the

spoke regions marked

X.

as we did for point location in the post-o�ce problem of section 2.2; each

region of the DAG becomes a hexagon. These regions are much less com-

plex than the Voronoi cells of polygons, yet we still have only O(k) of

them.

Second, we observe that a polygon conicts with a set of spoke regions

whose underlying Voronoi edges form a tree. Consequently, a polygon

Q conicts with a set of spoke regions whose union is a connected set.

Provided that we can locate one spoke region in conict with Q e�ciently,

we can �nd all other conicting spoke regions with traversal techniques

across this connected region. A �rst spoke region with which Q conicts

can be found by tracing a single point of Q through the conict history

DAG.

We now apply these two changes to the standard RIC [3]. We begin

with the spoke regions for a �xed number of polygons in our conict history DAG. To add the

polygon Q to a set of polygons P we �nd those spoke regions of V (P) with which Q conicts. Since

each vertex of Q conicts with some spoke region of V (P), we trace the leftmost vertex of Q as a

single point through the conict history DAG and obtain one spoke region that conicts with Q

and place this spoke region in a set T . If the Voronoi cell for Q in V (P [fQg) extents across one

of the bounding spokes for the spoke region in T then Q conicts with the Voronoi vertex v that

de�nes the bounding spoke. The point v cannot remain a Voronoi vertex since the spoke from v

to one of its de�ning sites crosses the Voronoi cell of Q and contradicts the star-shaped property

of Voronoi cells (corollary 2.5). The algorithm extends the set T by repeatedly applying this fact:

if A is a spoke region already in T with a Voronoi vertex v then if Q conicts with v we add the

spoke regions incident with v to T .

How can we be sure that this traversal �nds all the spoke regions that Q conicts with? Let S

be the set of spoke regions with which Q conicts. Since the skeleton of T must form a connected

graph [23], If Q conicts with two spoke regions in S then the Voronoi cell for Q in V (P [fQg)

23

crosses a spoke boundary of each spoke region and, as previously discussed, Q must conict with a

Voronoi vertex for each region. Exploring the Voronoi vertices is therefore su�cient to �nd all the

spoke regions with which Q conicts.

The �nal task of the RIC is to update the con-

S

Q

R

Q

Q

(b)

A

uv

(a)

A

A

(c)

vu

Figure 14: The three possible ways for

polygon Q to conict with spoke region A.

Dotted lines indicate the new spoke regions

after Q has been inserted.

ict history DAG by partitioning each spoke region

with which Q conicts into new spoke regions. Let

Q conict with spoke region A, let u and v be the

Voronoi vertices that bound A, and let R and S

be the polygons that bound A. If Q conicts with

both u and v (�gure 14a) then CP[fQg(Q) cuts

completely through A, so A will be replaced in the

DAG by two spoke regions that include portions of

the neighbouring spoke regions of A (not necessar-

ily just immediate neighbours of A). If Q conicts

with neither u nor v (�gure 14b) then CP[fQg(Q)

is contained entirely within A. We compute the

two Voronoi vertices w and x between Q, R, and

S and partition A into four new spoke regions. Fi-

nally, assume Q conicts with v but not with ver-

tex u (�gure 14c). Then we compute the Voronoi

vertex of Q, R, and S that lies inside A and split A into three spoke regions, two of which merge

with the spoke regions that neighbour A at the vertex v (and possibly more spoke regions beyond

those immediate neighbours).

Theorem 3.11 The expected running time of the RIC on a set of polygons is O(k(log k+Tv+Ts))

where Tv is the time required to compute a Voronoi vertex and Ts is the time required to compute

a spoke from a point to a polygon.

Proof: The expected-time analysis of the RIC attributes the cost of the algorithm to two sources:

polygons and Voronoi vertices. The analysis attributes a cost to a polygon at the time it is

inserted into the diagram and attributes a cost to Voronoi vertices when the vertex is created

and when it is destroyed. Each of these events occurs only once per site or Voronoi vertex so the

sum of the allocated costs is the expected time of the algorithm.

We start with the costs that are attributed to the polygon. The �rst stage of the RIC algorithm

�nds one spoke region that conicts with the new polygon Q. The algorithm traces a single point

through the conict history DAG, so conict calculations with a spoke region take constant time.

Klein, Mehlhorn, and Meiser [23] show that a single point is expected to encounter O(log i)

conicts for the ith site, so we obtain our �rst conicting spoke region A in expected O(log k)-

time and add A to a list T of spoke regions with which Q conicts. Next, we test whether Q

conicts with the bounding Voronoi vertices of A by calculating the distance from each vertex

to Q (with a call to the spoke() subroutine) in O(Ts) time. For those vertices where Q conicts,

we add the incident spoke regions to T . A total cost of O(log k+Ts) is attributed to the polygon

Q.

24

The remaining costs of the algorithm, expanding the set T of spoke regions with which Q

conicts and updating the DAG, are attributed to the Voronoi vertices. Let v be a Voronoi

vertex of a spoke region in T where v has not been tested for a conict with Q yet. The cost of

extending T (or not extending) through the spoke regions incident to v comes from calculating

the spoke from v to Q. This O(Ts) cost is attributed to the other vertex of the spoke region. A

spoke region is added to T only when we have tested one of its Voronoi vertices and that vertex

vertex is to be removed. This completes the costs of �nding the tree T for one polygon Q.

When we partition the conicting spoke regions to update the history DAG, the O(Tv) cost

of computing new Voronoi vertices is associated with the vertex created, and the cost of adding

a spoke region to the conict history DAG is allocated to the Voronoi vertex of the new spoke

region that was created with the insertion of Q.

Since each Voronoi vertex with which Q conicts is deleted when we compute new spoke

regions, each Voronoi vertex has degree three, and each Voronoi vertex is \new" only once, each

Voronoi vertex receives a total cost of O(Ts + Tv).

In summary, as with Klein, Mehlhorn, and Meiser [23], the algorithm expects to compute O(k)

Voronoi vertices. These vertices receive a cost of O(Ts + Tv) each while each of the k polygons

receive an expected cost of O(log k+Ts). This gives a total expected time for the RIC algorithm

of O(k(logk + Tv + Ts)).

3.4 Implementing the subroutines

What remains is to implement the subroutines used in previous sections. We assume that the

vertices of the convex polygons involved are given in an array or balanced binary trees in the order

that they appear around the polygons. We also assume that each vertex knows (or can compute

in constant time) a line tangent to the polygon at that vertex. Since such representations allow

access to a \midpoint" of a chain in constant time, it is common and useful to view them as giving

hierarchical decompositions of the polygons into triangles [13, 20].

We consider the subroutines in order of di�culty for the Euclidean metric and for the distance

function de�ned by a convex m-gon M .

spoke(p; A) Given a point p and a convex polygon A, compute the spoke, which is the shortest

segment joining p to A. This is used to answer a post-o�ce query in section 2.2|it takes

O(logn) time under the Euclidean metric and O(logn + logm) time under the distance

function dM .

bottleneck(R) Given a spoke region R, incident to two convex polygons A and B, compute the

bottleneck segment used by the retraction motion planning diagram in section 2.3. This takes

O(logn) time under the Euclidean metric and O(logn logm) time under dM .

vertex(ABC) Given three sites, compute the Voronoi vertex where the cells of A, B and C occur

in counterclockwise (ccw) order. Return the spokes to the three sites and the location of the

circle event|the rightmost point of the homothet ofM that is tangent to A, B and C in ccw

order. This Voronoi vertex may be at in�nity, in which case in�nite spokes and an in�nite

circle event are returned. This subroutine is heavily used in the construction algorithms of

25

section 3.1. It also takes O(logn) time under the Euclidean metric and O(logn logm) time

under dM .

Since each of these subroutines depends only on the constant number of sites that it receives as

arguments, the variable n in this section could be replaced by nmax, the maximum number of

vertices on a polygon.

Some of our routines make use of Kirkpatrick and Snoeyink's tentative prune-and-search tech-

nique [20].

Theorem 3.12 (From [20]) Given f , g and h, which are continuous, monotone decreasing real

functions whose domains are partitions of the real line into k intervals, we can determine an interval

containing the �xed-point of the composition h�g �f using �(log k) tests of the form \is f(a) < b?"

This theorem is proved by inspecting a candidate triple of reals, one from each domain, and using

local information to discard half of one of the domains. For cases in which local information is

insu�cient, portions of the domain can be \tentatively" discarded with the assurance that the

algorithm does some correct work on every third step. An easy proof by potential function is

in [19] and the full version of [20].

We can use standard prune-and-search to compute spokes.

Lemma 3.13 spoke(p; A) can be computed in O(logn) time under the Euclidean metric and

O(logn+ logm) time under the distance function dM .

Proof: Under the Euclidean metric, the spoke is a normal to A that passes through p. This can

easily be found by binary search among the slopes of tangents to A.

Under the convex distance function dM , the attachment point is a point whereMA
p contacts A.

(Recall thatMA
p denotes a homothet ofM that has been scaled by dM(p; A) and translated to p.)

The set A andMA
p share a common tangent at their point of tangency, so we �nd the attachment

point of spoke(p; A) by locating points q and a on MA
p and A respectively that share parallel

tangents, and the ray from p through the point q intersects A at the point a. By precomputing

outer tangents between MA
p and A, we restrict our search to two polygonal chains that share a

single pair of parallel tangents that also satisfy the ray intersection property.

We select point a as the middle of the chain A

case a) case b)

centre
of M

centre
of M

A

a

a’
q

M
A

a’

a q

M

Figure 15: Half of either chain A or chain

M can be discarded.

and point q as the middle of the chain MA
p . We

assume that the tangent to A at a and the tangent

toM at q intersect on the right side of the line from

a to q; the opposite con�guration is handled with

a symmetric argument. Let a0 be the intersection

point of the ray from p to q with A. The tangent

to A at a0 and the tangent toM at q also intersect

(otherwise, we are done). We want to eliminate

part of A whose tangents always intersect the tan-

gent at q or eliminate part of MA
p whose tangents always intersect the tangent at a. If a0 is

clockwise (cw) of a (�gure 15a), then the ray from the centre ofM to any point counterclockwise

(ccw) of q will touch A cw of a0 and the tangent to M parallel to the tangent to A this new

contact point lies above q. Consequently, we can discard the half of MA
p that lies ccw of q.

26

Otherwise, point a0 is ccw of a (�gure 15b). For any point a00 cw of a on A, the point on M

whose tangent is parallel to the tangent at a00 lies above the point q and the ray from the centre

of M through this point intersects A ccw of the point a0. We can discard the points of A that

are cw of a. We can make at most O(logn+ logm) discards.

To test if a is cw or ccw of the point a0, we test if a is left (cw) or right (ccw) of the line from

p to q, without computing the point a. All the tests for the discards can therefore be done in

constant time, so the search terminates after O(logn+ logm) steps.

The bottleneck segment of a spoke region R bounded by portions of convex polygons A and B

can be determined once a point on the AB-bisector with minimum distance to A and B is known.

(Refer back to �gures 2 and 5.)

Lemma 3.14 The smallest homothet of M that touches convex polygons A and B can be computed

in O(logn) time when M is a circle and in O(logn logm) time when M is an convex m-gon.

Proof: Edelsbrunner [13] has shown how to compute the Euclidean shortest segment joining A

and B, which solves the problem when M is a circle.

When M is a convex polygon, the smallest homothet of M touches A and B at points with

parallel tangents. We restrict the search on A and B to the portions between the outer common

tangents. Inspect vertices with median indices, a 2 A and b 2 B, and their tangents �a and �b.

Place a homothet of M tangent to �a at a and tangent to �b by locating these tangencies in

O(logm) time. If M touches �b between �a \ �b and b, discard the half of B away from �a \ �b;

otherwise discard the half of A.

If the O(m) preprocessing on M is allowed, then we can compute the desired homothets in

O(logn + logm) additional time by tentative prune-and-search. In preprocessing, we merge the

slopes of tangents of M so that knowing one tangent of a given slope we can obtain the other in

constant time. Then we parameterize A and B counterclockwise and M clockwise. Then we de�ne

functions f :A ! B and g:B ! M so that the slope of tangents at a and f(a) and at b and g(b)

are the same, and we de�ne h:M ! A to send m 2 M to the point on A that intersects the line

through m and the point m0
2M with parallel tangent. A �xed point of the composition h � g � f

gives the smallest homothet. Note that we can determine in constant time, for given points a 2 A,

b 2 B, and m 2 M , whether f(a) < b, g(b) < m and h(m) < a by geometric tests. With O(m)

preprocessing ofM alone, we can compute a �xed point in O(logn+logm) time by theorem 3.12.

Computation of the Voronoi vertices is the most involved because one must deal with �nite and

in�nite vertices and degenerate cases.

Lemma 3.15 vertex(ABC) can be computed in O(logn) time under the Euclidean metric and

O(logn logm) time under the distance function dM .

Proof: We begin with the Euclidean case. Compute outer common tangents from A clockwise

(cw) to B and from B cw to C. If a portion of B appears cw between these tangents, then the

desired Voronoi vertex is in�nite and any normal to this exposed portion of B can be returned

as a spoke. Otherwise, the vertex is �nite. We clip A, B and C at their points of tangency and

consider only the polygonal chains that can be attachment points for spokes to vertex(ABC).

We parameterize these chains ccw and de�ne functions of the form f :A! B maps a 2 A to the

27

intersection of the normal to A at a with B. Again, theorem 3.12 allows us to compute a �xed

point and Voronoi vertex in O(logn) time. See Kirkpatrick and Snoeyink [20] for more detail.

For the convex distance function dM , we start with the same tangents, for example the tangent

from A cw to B. We compute where M can contact this tangent when M is separated from

A and B. Typically, this contact will be a vertex v of M ; then we compute the tangents on A

and B that are parallel to the edges cw and ccw of v, respectively. These tangencies determine

the attachment points of the in�nite spokes for the in�nite endpoint of the AB-bisector. The

direction of the endpoint and the spokes can be determined by placing a homothet ofM so these

two segments touch A and B and drawing the ray from v through the translated origin of the

homothet.

Again, if a portion of B appears cw between the attachment points on B, then the Voronoi

vertex is in�nite. Otherwise, we use the algorithm for the Euclidean case, with the modi�cation

that instead of de�ning f(a) in terms of the normal at a, we determine a placement of M that

is tangent to A at a and using the line through a and the reference point of M in place of the

normal. This line can be computed in O(logm) time, so theorem 3.12 gives us an O(logn logm)

time computation of the Voronoi vertex.

3.5 Precise upper and lower bounds

The O(k log n) and O(k logn logm) time bounds on the computation of the compact diagrams

under the Euclidean and dM distance functions, respectively, can be more accurately stated as

O(k(log k+log nmax)) and O(k(log k+log nmax logm)), where nmax denotes the maximum number

of vertices on a convex polygonal site. We can prove a matching lower bound to compute and verify

the Voronoi diagram under the Euclidean metric; for dM we can prove a lower bound of the form

(k(log k + log nmax + logm)).

Theorem 3.16 To compute the compact diagram under the Euclidean metric requires
(k(logk+

lognmax)) operations; under dM it requires
(k(log k + log nmax + logm)) operations.

Proof: Because one can recover the true Voronoi diagram from the compact diagram, the

(k log k) lower bound for the Voronoi diagram of points applies when n and m are small.

If the Voronoi vertices are given with the names of the objects that their spokes attach to,

then the actual attachment points must be found by binary search. Since the average number of

spokes incident to a site is small, the cost of locating the attachment points on the half of the

polygons that have at most six attachment points gives the rest of the lower bound.

It would be interesting to close the gap between the upper and lower complexity bounds for the

convex distance function dM .

4 Conclusions and Open Problems

We have given a piecewise-linear representation of the generalized Voronoi diagram of convex sites in

the plane that depends on the number of sites k and not on their complexity or on the complexity of

the distance function. We also compute the diagram by a general algorithm, where the dependence

on site and distance function complexity is restricted to subroutines that are called O(k) times. We

28

have begun implementation for the Euclidean metric and polygonal distance functions. Extensions

to sites and distance functions bounded by arcs or splines could be achieved by implementing

subroutines that compute tangents and Voronoi vertices.

Of greatest interest is the extension of these diagrams to higher dimensions, analogous to the

work of de Berg et al. [11]. The e�cient subroutines for computing Voronoi vertices and bottleneck

segments will not extend because there may be many local minima and maxima along a curve

equidistant from three objects. However, we believe that a piecewise-linear retraction diagram can

be identi�ed that does not depend on a polyhedron of a �xed scale.

Acknowledgments

We thank Stephan Meiser for discussions on the randomized incremental construction of our com-

pact diagrams.

References

[1] H. Alt and C. K. Yap. Algorithmic aspects of motion planning: a tutorial, part 2. Alg. Rev., 1(2):61{77, 1990.

[2] F. Aurenhammer. Voronoi diagrams|A survey of a fundamental geometric data structure. ACM Comp. Surveys,

23(3):345{405, 1991.

[3] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications of random sampling to

on-line algorithms in computational geometry. Discrete Comput. Geom., 8:51{71, 1992.

[4] J.-D. Boissonnat, O. Devillers, and M. Teillaud. A dynamic construction of higher-order Voronoi diagrams and

its randomized analysis. Report 1207, INRIA Sophia-Antipolis, Valbonne, France, 1990.

[5] J.-D. Boissonnat and M. Teillaud. A hierarchical representation of objects: the Delaunay tree. In Proc. 2nd

Annu. ACM Sympos. Comput. Geom., pages 260{268, 1986.

[6] J.-D. Boissonnat and M. Teillaud. On the randomized construction of the Delaunay tree. Report 1140, INRIA

Sophia-Antipolis, Valbonne, France, 1989.

[7] J. Canny and B. Donald. Simpli�ed Voronoi diagrams. Disc. & Comp. Geom., 3:219{236, 1988.

[8] J. W. S. Cassels. An Introduction to the Geometry of Numbers. Springer-Verlag, Berlin, 1959.

[9] L. P. Chew and R. L. Drysdale. Voronoi diagrams based on convex distance functions. In Proc. ACM Symp.

Comp. Geom., pages 235{244, 1985.

[10] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discrete

Comput. Geom., 4:387{421, 1989.

[11] M. de Berg, J. Matou�sek, and O. Schwarzkopf. Piecewise linear paths among convex obstacles. In Proc. 25th

Ann. ACM STOC, pages 505{514, 1993.

[12] O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangulation in logarithmic expected time

per operation. Comput. Geom. Theory Appl., 2(2):55{80, 1992.

[13] H. Edelsbrunner. Computing the extreme distances between two convex polygons. J. Alg., 6:213{224, 1985.

[14] H. Edelsbrunner, L. Guibas, and J. Stol�. Optimal point location in a monotone subdivision. SIAM J. Comp.,
15:317{340, 1986.

[15] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153{174, 1987.

[16] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi
diagrams. Algorithmica, 7:381{413, 1992.

[17] T. C. Kao and D. M. Mount. An algorithm for computing compacted Voronoi diagrams de�ned by convex

distance functions. In Proc. Third Can. Conf. Comp. Geom., pages 104{109, Simon Fraser University, Vancouver,

1991.

[18] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comp., 12:28{35, 1983.

29

[19] D. Kirkpatrick and J. Snoeyink. Computing constrained segments: Buttery wingspans in logarithmic time. In

Proc. Fifth Can. Conf. Comp. Geom., pages 163{168, Waterloo, Canada, 1993.

[20] D. Kirkpatrick and J. Snoeyink. Tentative prune-and-search for computing Voronoi vertices. In Proc. 9th Ann.

ACM Symp. Comp. Geom., pages 133{142, 1993.

[21] D. G. Kirkpatrick. E�cient computation of continuous skeletons. In Proc. 18th FOCS, pages 162{170, 1977.

[22] R. Klein. Concrete and Abstract Voronoi Diagrams. Number 400 in LNCS. Springer-Verlag, 1989.

[23] R. Klein, K. Mehlhorn, and S. Meiser. On the construction of abstract Voronoi diagrams, II. In Algorithms:

International Symposium Sigal 90, number 450 in LNCS, pages 138{151, 1990.

[24] D. Leven and M. Sharir. Planning a purely translational motion for a convex polygonal object in two dimensional

space using generalized Voronoi diagrams. Disc. & Comp. Geom., 2:9{31, 1987.

[25] K. Mehlhorn, S. Meiser, and C. �O'D�unlaing. On the construction of abstract Voronoi diagrams. Report A01/89,
Fachber. Inform., Univ. Saarlandes, Saarbr�ucken, West Germany, 1989.

[26] K. Mehlhorn, C. O'Dunlaing, and S. Meiser. Minimum vertex hulls for polyhedral domains. In STACS 90:

7th Annual Symposium on Theoretical Aspects of Computer Science, number 415 in LNCS, pages 126{137.

Springer-Verlag, 1990.

[27] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall,

Englewood Cli�s, N.J., 1993.

[28] C. O'Dunlaing and C. K. Yap. A \retraction" method for planning the motion of a disc. J. Alg., 6:104{111,

1985.

[29] F. P. Preparata and M. I. Shamos. Computational Geometry|An Introduction. Springer-Verlag, New York,

1985.

[30] H. Rohnert. Moving a disc between polygons. Algorithmica, 6:182{191, 1991.

[31] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. CACM, 29:669{679, 1986.

[32] J. T. Schwartz, M. Sharir, and J. Hopcroft, editors. Planning, Geometry, and Complexity of Robot Motion.

Ablex Series in Arti�cial Intelligence. Ablex, Norwood, New Jersey, 1987.

[33] M. I. Shamos and D. Hoey. Closest point problems. In Proc. 16th FOCS, pages 151{162, 1975.

[34] S. Sifrony. A real nearly linear algorithm for translating a convex polygon. Technical Report 479, NYU Courant

Inst. of Math. Sci., 1989.

[35] C. K. Yap. An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments. Disc. & Comp.

Geom., 2:365{393, 1987.

30

