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Abstract

Standard stabilization techniques for higher index DAEs often involve elim-

ination of the algebraic solution components. This may not work well if there

are singularity points where the constraints Jacobian matrix becomes rank-

de�cient. This paper proposes instead a sequential regularization method

(SRM) { a functional iteration procedure for solving problems with isolated

singularities which have smooth di�erential solution components.

For linear index-2 DAEs we consider both initial and boundary value prob-

lems. The convergence of the SRM is described and proved in detail. Various

aspects of the subsequent numerical discretization of the regularized problems

are discussed as well and some numerical veri�cations are carried out.
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1 Introduction

Recently more and more attention has been paid to the study of di�erential-algebraic

equations (DAEs). Such equations arise in a variety of applications and can be di�-

cult to solve when they have a higher index (index greater than one; cf. [9]). Higher

index DAEs are ill-posed, especially when the index is greater than two [6], and a

straightforward discretization generally does not work well. An alternative treatment

is the use of index reduction methods, whose essence is the repeated di�erentiation

of the constraint equations until a well-posed problem (index-1 DAEs or ODEs) is

obtained. But repeated index reduction by direct di�erentiation leads to instabil-

ity for numerical integrations (i.e. drift-o� | the error in the original constraint

grows). Hence, stabilized index reduction methods were proposed to overcome the

di�culty. A popular stabilization technique was introduced �rst in the computa-

tion of constrained multibody systems by Baumgarte [7]. See [3] for corresponding

improvements and additional techniques. However, for problems with constraint sin-

gularities (e.g. where some rows of the constraint Jacobian matrix become linearly

dependent at some points), Bayo and Avello [8] indicate that Baumgarte's technique

may not work. Another approach is the so-called regularization of DAEs where a

small perturbation term (measured by a small positive parameter �) is added to the

original DAE (see, e.g., [11, 14, 13, 12]). The regularized problem usually is a singu-

lar perturbation problem and the DAE becomes the reduced problem of the singular

perturbation problem. In the present paper, we propose a new regularization method

which we call sequential regularization method (SRM). A motivation for this method

comes from current research [8, 16] on simulation of the dynamics of constrained me-

chanical systems. We will show that our method works well for initial and boundary

value problems with smooth solutions, with and without the presence of constraint

singularities.

A singularity in the constraints (or in the algebraic solution components) of a DAE

may cause various phenomena to occur, including impasse points [17] and bifurcations.

In this paper, however, we assume that the solution sought is smooth in the passage

through isolated singularity points, and concentrate on the linear index-2 case.

The sequential regularization method is actually a functional iteration procedure

in which the di�erence between the exact solution of a DAE and the corresponding

iterate becomes O(�m) in magnitude at the mth iteration, at least away from the

starting value of the independent variable (which we shall call 'time'). Hence,

� unlike usual regularization, in the limit of the iteration we get the exact solution

away from the starting time,

� the perturbation parameter � does not have to be chosen very small, so the

regularized problems can be less sti� and/or more stable.
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As in [6], we consider a linear (or linearized) model problem

x
(�) =

�X
j=1

Ajx
(j�1) +By + q; (1.1a)

0 = Cx+ r; (1.1b)

where Aj, B and C are su�ciently smooth functions of t; 0 � t � tf , Aj(t) 2

Rnx�nx ; j = 1; � � � ; �, B(t) 2 Rnx�ny , C(t) 2 Rny�nx , ny � nx and CB is nonsingular

(the DAE has index � + 1) except at several isolated points of t. For simplicity

of exposition, let us say that there is one singularity point t�; 0 < t� < tf . The

inhomogeneities are q(t) 2 Rnx and r(t) 2 Rny . We are only interested in the case

where (1.1) has a smooth solution for x. So, furthermore, we assume the following:

H1: the projector P = B(CB)�1C is su�ciently smooth, where we de�ne

P
(j)(t�) = lim

t!t�

(B(CB)�1C)(j)(t):

H2: The inhomogeneity r(t) satis�es r 2 S; where

S = fw(t) 2 Rny : there exists a smooth function z(t) s.t. Cz = wg:

We note that H2 is necessary for (1.1) to have a smooth solution for x and that

H1 and H2 are satis�ed automatically if CB is nonsingular for each t. On the other

hand, neither B(CB)�1 nor (CB)�1C alone are smooth near a singularity in general.

Also, we note that a linearized form of the Euler-Lagrange equations which govern

the motion of mechanical systems with holonomic constraints is in the form (1.1) with

� = 2. Two types of singular constraints (i.e. with vanishing rows or with some rows

linearly dependent at some points) mentioned in [1] both satisfy H1.

In this paper, we concentrate on the index-2 case, i.e. (1.1) with � = 1. For

higher index cases we assume that a stable reduction to index-2 has been performed.

We consider both initial and boundary value problems. In x2, we brie
y discuss the

conditioning of the problem with singularities. In x3, the main section of this paper,

we describe the sequential regularization method and estimate its error. In x4, we

consider some discretization and implementation issues for both initial and bound-

ary value problems. Finally, several numerical examples demonstrate our theoretical

results.

This paper opens up a few avenues for extension which we plan to take up with

shortly. Besides the obvious desire to extend our results to nonlinear and to higher

index problems, a fuller analysis complementing the results of x4 is under way and

will be reported elsewhere.
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2 Problem Conditioning and Baumgarte stabi-

lization

We rewrite (1.1) with � = 1 as

x
0 = Ax+By + q; (2.1a)

0 = Cx+ r; (2.1b)

and consider this DAE subject to nx � ny boundary conditions

B0x(0) +B1x(tf) = � : (2:2)

These boundary conditions are assumed to be such that they yield a unique solution

for the ODE (2.1a) on the manifold given by (2.1b). In particular, assuming for a

moment that no singularities occur, if we were to replace (2.1b) by its di�erentiated

form

0 = Cx
0 + C

0
x+ r

0
; (2.3a)

C(0)x(0) + r(0) = 0; (2.3b)

and use (2.3a) in (2.1a) to eliminate y and obtain nx ODEs for x, then the boundary

value problem for x with (2.2) and (2.3b) speci�ed has a unique solution. In the

initial value case B1 = 0, this means that (2.2) and (2.3b) can be solved uniquely for

x(0). We will give a more precise assumption in Lemma 2.1 below.

Similarly to [5] and to the method of pseudo upper triangular decomposition

(PUTD) described in [1] (x10.6; a di�erence is that we do pivoting to interchange the

row with singularity of lowest order to the current row when all the other rows vanish

at some singular point), there exists a smooth matrix function R(t) 2 R(nx�ny)�nx ,

which has full row rank and satis�es

RB = 0; for each t; 0 � t � tf ;

where R can be taken to have orthonormal rows.

As in [5, 6], de�ne the new variable

u = Rx; 0 � t � tf : (2:4)

Then, using (2.1b), the inverse transformation is given by

x = Su�B(CB)�1r; (2:5)

where

S = (I �B(CB)�1C)RT = (I � P )RT
:
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By the assumptions in x1, this transformation is well-de�ned. Di�erentiating (2.4)

and using (2.1a) and (2.5) we obtain the essential underlying ODE (EUODE):

u
0 = (RA+R

0)Su� (RA+R
0)B(CB)�1r +Rq: (2:6)

Hence the underlying problem of (2.6) is

u
0 = (RA+R

0)Su+ f; (2.7a)

B0S(0)u(0) +B1S(tf)u(tf) = �1: (2.7b)

We assume

H3: The boundary value problem (2.7) is stable, i.e. there exists a moderate-size

constant K such that

kuk � K(kfk+ j�1j);

where kuk = maxtfju(t)j; 0 � t � tfg.

Similarly to Theorem 2.2 of [5], we can get

Lemma 2.1 Let the DAE (2.1) have smooth coe�cients, and assume that H1 and

H2 hold. If the EUODE (2.6) with the boundary conditions (2.7b) has a unique

solution, then there exists a unique solution for x of problem (2.1)-(2.2) which is

smooth. This implies a unique existence of a smooth By as well. Furthermore, if H3

holds then there is a constant K such that

kxk � K(kqk+ kB(CB)�1rk+ j�j);

kx
0
k � K(kqk+ kB(CB)�1rk+ k(B(CB)�1r)0k+ j�j):

The di�erence between the situation here and in the nonsingular case is that

here perturbation inhomogeneities r yield reasonably bounded perturbations in the

solution x only if they are (in general) from the subspace Range (C).

From (2.1a) and (2.5), we can write

y = (CB)�1C(x0 �Ax� q); t 2 [0; t�) [ (t�; tf ]; (2:8)

which could be unbounded at the singular point t� (whereas By is bounded). Note

that in (2.8) C could be replaced by any appropriate matrix G with the same size as

C, e.g. G can be BT .

Remark 2.1 If B has full rank for each t, then we get

(CB)�1C = (BT
B)�1BT

P:
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Hence, (CB)�1C is smooth. So, there exists a unique solution for y of problem (2.1)-

(2.2) which is smooth and can be expressed as (2.8) for each t. Furthermore, using

Lemma 2.1, we have in this case

kyk � K(kqk+ kB(CB)�1rk + k(B(CB)�1r)0k+ j�j): (2:9)

In the general case, however, we will have to consider By, rather than y alone, in the

theorems of the next section. 2

A Baumgarte stabilization applied to (2.1) consists in eliminating y according to

(2.3),(2.8), and stabilizing. This gives the ODE

x
0 = (I �B(CB)�1C)(Ax+ q)�B(CB)�1(C 0

x+ r
0)� �

�1
B(CB)�1(Cx+ r) (2:10)

where � > 0 is a parameter (cf. [7, 3]). If there are no singularities then it follows from

the analysis in [6] that ifH3 holds then the boundary value problem (2.10),(2.2),(2.3b)

is also stable. In other words, the \initial value stabilization" works also for the

boundary value case, because the new modes introduced by replacing (2.1b) with

(2.3a) are separable and decaying, in agreement with the additional initial conditions

(2.3b).

However, in the singular case (2.10) may not work because the terms B(CB)�1C 0

and B(CB)�1r0 are in general unbounded. Therefore, we develop in the next section

an iterative method which builds up an approximation to By and x that avoids going

through unbounded quantities.

3 Sequential Regularization Methods

Consider the following regularization for the DAE (2.1),

�x
0 +BE(Cx+ r) = �Ax+ �By+ �q; (3:1)

where E 2 Rny�ny is chosen such that BEC is symmetric positive semi-de�nite. For

example, we can choose, relying on Assumptions H1 and H2, E = (CB)�1(hence,

BEC = P ). Using the fact that, for two matrices M 2 Rm�n and N 2 Rn�m, MN

and NM have the same nonzero eigenvalues, we have

Re�i(P ) = 1 > 0; i = 1; � � � ; ny; �i(P ) = 0; i = ny + 1; � � � ; nx: (3:2)

Also, E = (CB)T could be a good choice in some circumstances. If CB is symmetric

positive semi-de�nite (as in the case of mechanical systems) then it is possible to

choose E = I, or the more typical regularization E = (CB+ �I)�1, with � > 0 small.

The ODE (3.1) is subject to the boundary conditions (2.2),(2.3b). This boundary

value problem has a unique solution if y is given. We denote the exact solution of

(2.1)-(2.2) by xe, ye. Obviously, if we take y = ye in (3.1) then this problem has the

same solution as (2.1)-(2.2).
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Because we do not know ye in advance we propose, motivated by [8], the following

iterative algorithm for solving (3.1): For s = 1; 2; : : : , solve the ODE problem

xs
0 = Axs +Bys + q (3:3)

where

ys = ys�1 �
1

�
E(Cxs + r); (3:4)

subject to the same boundary conditions (2.2) and (2.3b). Note that y0(t) is a given

initial iterate and that � > 0 is the regularization parameter.

We call this algorithm a sequential regularization method (SRM). Note that xs(t)

and ys(t) are de�ned on the entire interval [0; tf ] for each s. Also, in practice we

multiply (3.4) by B and keep track only of the approximations Bys to the bounded

function By. If y is desired (at times other than t�) then it can be easily retrieved

from By in a post-processing step.

Remark 3.1 A penalty method for (2.1) in the initial value case ( cf. [16, 12]) reads

( using our notation ):

x
0 = Ax+By + q; (3.5a)

y = �
1

�
E(Cx+ r); (3.5b)

where � > 0 must be small. The regularized problem (3.5) is just like one iteration

of (3.3) with y0(t) � 0 and E = I and B = C
T in [16] or E = (CB)�1 in [12]. From

(3.5b) and (2.3b), we have y(0) = 0. Hence, if ye(0) 6= 0, the method (3.4) will not

yield a good approximation for ye near t = 0. In the method (3.3)-(3.4) proposed

here, we can choose

y0(0) = ye(0);

where ye(0) can be calculated from (2.1)

ye(0) = �(C(0)B(0))�1((C 0(0) + C(0)A(0))xe(0) + C(0)q(0) + r
0(0)):

2

Remark 3.2 In [16] the authors also indicated that the penalty procedure (3.5)

has some drawbacks, e.g. once an error is committed in computing y, there is no

compensation scheme by which the drifting of the numerical solution can be corrected.

The proposed iteration (3.3),(3.4) could be such a compensation scheme since the

drift of Cx+ r would decrease as the iteration proceeds. In [16] a so-called staggered
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statilization procedure is introduced for initial value problems with B = C
T . They

�rst di�erentiate (3.5b) with E = I to obtain

y
0 = �

1

�
(Cx0 + C

0
x+ r

0): (3:6)

Then, they obtain Cx
0 from (3.5a) and substitute it into (3.6) to yield

�y
0 + CBy = �(CA+ C

0)x� Cq � r
0
: (3:7)

The initial value for y could be the exact value. This procedure does work better for

the case where CB is nonsingular if we choose � to be small. But if CB is singular

at t�, or more precisely, if B is rank-de�cient at t�, this procedure may not work well

since y could be unbounded as shown in (2.8). Moreover, the poor accuracy of y will

also e�ect the accuracy of x. A similar idea appears in [12] with E = (CB)�1, and

their treatment may not work well for problems with constraint singularities either.

2

Now we estimate the error of the sequential regularization method (3.3)-(3.4). We

make the following assumption on the initial iterate y0:

H4: y0(0) = ye(0); y
0

0(0) = y
0

e
(0); : : : ; y

(M)
0 (0) = y

(M)
e

(0);

where M is an integer. Set M = �1 if y0(0) 6= ye(0).

For initial value problems we may calculate ye
(i)(0); i = 0; 1; : : : in advance by

using the ODE and its derivatives. For boundary value problem we set M = �1 since

we don't know ye(0) beforehand.

Choosing E = (CB)�1, we rewrite (3.4) as

Bys = Bys�1 �
1

�
B(CB)�1(Cxs + r); (3:8)

We give the following lemma before the main theorem of this section.

Lemma 3.1 Let u, v be the solution of

u
0 = (RA+R

0)Su+ S1v + f1; (3.9a)

�v
0 + 
v = �S2u+ �S3v + f2; (3.9b)

B0S(0)u(0) +B1S(tf)u(tf) = � � S4v(0)� S5v(tf); v(0) = v0; (3.9c)

where all coe�cients are su�ciently smooth, � = 1 or � = �, 
 is a positive constant

and H3 holds. Then, for � appropriately small or 
 appropriately large, we have the

following stability inequality

kuk � K(kf1k+ kf2k+ j�j+ jv0j);

kvk � K(�kf1k+ kf2k+ j�j+ jv0j);

where K is a positive constant.
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Proof: Let v = (v1; � � � ; vny)
T . From (3.9b), we easily have

jvij �
�



kS2kkuk+

�



kS3kkvk+

1



kf2k+ jv0j; i = 1; � � � ; ny

Hence, taking the maximum of the left hand side for 1 � i � ny and choosing small

� or large 
 appropriately such that �kS3k < 
, we get

kvk �
�


 � �kS3k
kS2kkuk+

kf2k+ 
jv0j


 � �kS3k
: (3:10)

By using H3, from (3.9a), there exists a positive constant K1 such that

kuk � K1(kS1kkvk+ kf1k+ j�j+ jS4jjv(0)j+ jS5jjv(tfj)

� K1((kS1k+ jS5j)kvk+ kf1k+ j�j+ jS4jjv0j)

�
K1�(kS1k+ jS5j)kS2k


 � �kS3k
kuk+

K1(kS1k+ jS5j)(kf2k+ 
jv0j)


 � �kS3k
+K1(kf1k+j�j+jS4jjv0j):

Hence, by choosing smaller � or larger 
 such that K1�(kS1k+jS5j)kS2k

��kS3k

< 1, the stability

inequality for u follows. Now the stability inequality for v follows from that for u and

(3.10). 2

We are now ready to state the main theorem of this paper.

Theorem 3.1 Let the DAE (2.1) have su�ciently smooth coe�cients, and assume

that H1, H2, H3 and H4 hold. Then, for the solution of iteration (3.3),(3.8), we

have the following error estimates:

xs(t)� xe(t) = O(�s) +O(�M+2
ps(t=�)e

�t=�);

Bys(t)�Bye(t) = O(�s) +O(�M+1
ps(t=�)e

�t=�);

for 0 � t � tf and s � 1. Here ps(� ) � 0 if s �M+1; otherwise ps(� ) is a polynomial

of degree s �M � 2 with generic positive coe�cients and jps(0)j = j(By0)
(M+1)(0)�

(Bye)
(M+1)(0)j.

Proof: Let us = Rxs and ws = Pxs. Similarly to (2.5), we have

xs = Sus + ws: (3:11)

Furthermore, using (3.3) we obtain

u
0

s
= (RA+R

0)Sus + (RA+R
0)ws +Rq; (3.12a)

�w
0

s
+ ws = �(PA+ P

0)Sus + �(PA+ P
0)ws + �Bys�1 (3.12b)

+ �Pq �B(CB)�1r;
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subject to

B0S(0)us(0) +B1S(tf)us(tf ) = � �B0ws(0)�B1ws(tf); (3.13a)

ws(0) = �B(0)(C(0)B(0))�1r(0): (3.13b)

The iteration (3.8) for By becomes

Bys = Bys�1 �
1

�
(ws +B(CB)�1r): (3:14)

The proof proceeds along familiar lines of singular perturbation analysis. Accord-

ing to [18, 19] we can construct the asymptotic expansion of ws and us sequentially for

s = 1; 2; : : :, where we use Lemma 3.1 to estimate the remainders. Then, using (3.14)

and (3.11), we get the asymptotic expansion of Bys and xs respectively. Note that

in these expansions the �rst terms are exactly xe and Bye. This process eventually

yields the proof of the theorem. 2

To provide a better feeling about the sequential regularization method we give in

the appendix a detailed proof for the initial value case with no layers, s � M + 1.

In that proof, the construction of the asymptotic expansion is directly for x and By.

Moreover, the construction method we apply is somewhat di�erent from [18, 19] and

more relevant to the concept of DAEs.

Next, we consider the following sequential regularization: The same ODE (3.3)

is solved successively under the same boundary conditions as before, but with the

update

ys = ys�1 �
1

�
E(�1(Cxs + r)0 + �2(Cxs + r)): (3:15)

When considering the initial value problem with E = I and B = C
T , this corre-

sponds to Algorithm ALF1 of [8] for constrained mechanical systems (although they

do it for the corresponding index-3 case) derived by a penalty-augmented Lagrangian

formulation. Bayo and Avello indicate that in multibody dynamics simulation they

have used Algorithm ALF1 very successfully and that it has turned out to be very

e�cient and accurate. However, they have also noted that under repetitive singular

conditions this algorithm may lead to unstable behaviour . For our index-2 case (2.1),

it appears to be impossible to choose a matrix E such that problem (3.3),(3.15) is

always stable, even if we assume B = C
T . A numerical example in x5 will verify such

instability phenomena even for the case of one singular point. However, for the case

where constraints are without singularities, (3.15) is preferable to (3.4). In particular,

(3.15) yields an ODE problem for xs which is essentially not a singular perturbation

problem. Take E = (CB)�1 as before and rewrite (3.15) as

Bys = Bys�1 �
1

�
BE(�1(Cxs + r)0 + �2(Cxs + r)): (3:16)

Then we give the following error estimation for (3.3), (3.16):
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Theorem 3.2 Let the DAE (2.1) have su�ciently smooth coe�cients, and assume

that C has full rank and that H1,H2 and H3 hold. Then for the solution of the

iteration procedure (3.3), (3.16) with �1 6= 0, we have the following error estimations:

xs � xe = O(�s);

Bys �Bye = O(�s)

for 0 � t � tf and s = 1; 2; : : :. Note that no boundary layer terms appear here even

for M = �1 in H4!

Proof: Denote us = Rxs and vs = Cxs. Hence

xs = Sus + Fvs; (3:17)

where S = (I � P )RT and F = B(CB)�1 = PC
T (CCT )�1 are both su�ciently

smooth. From (3.3),(3.16), we get

u
0

s
= (RA+R

0)Sus + (RA+R
0)Fvs +Rq;

(�+ �1)v
0

s
+ �2vs = �(C 0 + CA)Sus + �(C 0 + CA)Fvs+ �CBys�1 + �Cq � �1r

0
� �2r;

with the corresponding boundary conditions, and

Bys = Bys�1 �
1

�
B(CB)�1(�1(vs + r)0 + �2(vs + r)):

Repeating the procedure of the proof of Theorem 3.1 and using Lemma 3.1 again to

estimate the remainder of the asymptotic expansion, we obtain

us � ue = O(�s);

vs � ve = O(�s);

Bys �Bye = O(�s);

where ue = Rxe; ve = Cxe = �r. Hence, using (3.17) and xe = Sue+Fve, we obtain

xs � xe = S(us � ue) + F (vs � ve) = O(�s):

2

4 Discretization and implementation issues

The SRM iteration (3.3),(3.4) (or (3.3),(3.8)) yields a sequence of ODE problems

which are to be solved numerically. Multiplying (3.4) by B and inserting into (3.3),

the ODE problem to be solved at the sth iteration is written as the singular-singularly-

perturbed problem (see [19, 15])

�x
0

s
= �BECxs + �Axs + fs (4.1a)

B0xs(0) +B1xs(tf) = �; C(0)xs(0) + r(0) = 0 (4.1b)
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where fs(t) is a known inhomogeneity,

fs = �BEr+ �(Bys�1 + q) (4:2)

We consider a �nite di�erence (or collocation) discretization of (4.1) on a mesh

� : 0 = t0 < t1 < : : : < tN = tf

hi = ti � ti�1; h = max
1�i�N

hi:

and denote by xs
i
, ys

i
the corresponding approximations of xs(ti), ys(ti), resp. We now

have essentially two small, positive parameters to choose: � and h. We assume that

h is chosen small enough so that the EUODE problem (2.7) may be considered as

nonsti� and that the problem coe�cients are su�ciently smooth. For the remaining

treatment we consider initial and boundary value problems separately.

4.1 Boundary value problem (BVP)

In the BVP case the situation is the familiar one, much like the iterative solution

of a nonlinear boundary value ODE using quasilinearization (see, e.g., [4]). Each

of the linear boundary value ODEs (4.1) is discretized on a mesh � using, say, a

symmetric �nite di�erence scheme or some other method. If h � � then we expect,

as h ! 0, convergence to the solution of ( 4.1) and our theory then applies for the

entire numerical algorithm.

For instance, suppose we use collocation at k Gaussian points per mesh interval

(k = 1 yields the midpoint di�erence scheme). Denote the collocation points by

tij : ti�1 < ti1 < : : : < tik < ti

and require that (3.3), (3.8) hold for the collocation solution at the collocation points.

With By
0
ij
= By0(tij) and x

s

ij
, ys

ij
denoting the collocation approximations of xs(tij),

ys(tij) resp., we let

By
s

ij
= Bys�1(tij)� �

�1
B(tij)E(tij)(C(tij)x

s

ij
+ r(tij)) (4:3)

and obtain the collocation approximations of (4.1), (4.2). The usual theory then

yields

x
s

i
� xs(ti) = O(h2k)

Further observing that (3.3) is satis�ed at the collocation points we obtain

By
s

ij
�Bys(tij) = O(hk+1)

(see, e.g., [4]). Combining with Theorem 3.1 this yields the error estimates

x
s

i
� xe(ti) = O(h2k + �

s) (4.4a)

By
s

ij
�Bye(tij) = O(hk+1 + �

s); j = 1; : : : ; k (4.4b)
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away from the initial layer, i.e., for ti � �.

A di�culty with the BVP case is that in general we do not know ye(0), hence

we expect y0(0) 6= ye(0), i.e. M = �1 in H4 and in Theorem 3.1. The two error

estimates (4.4) at ti = O(�) have to be appended, therefore, by the terms O(�e�ti=�)

and O(e�ti=�), respectively. This suggests that � should not be taken too large: we

must require

�� min(1; tf):

Once an accurate SRM solution, fx�
i
; B(ti)y

�

i
g say, for xe has been determined

outside the initial layer, though, it may be possible to obtain an accurate solution

everywhere by applying a few SRM iterations numerically solving (4.1a) ( changing

�BEC to BEC) subject to the terminal value

x(tf) = x
�

N
; (4:5)

and choosing By0 satisfying B(tf)y0(tf) = B(tf)y
�

N
. This procedure is feasible pro-

vided that the terminal value problem (4.1a),(4.5) is well-conditioned (which holds if

the terminal value problem for the EUODE (2.7a) is well-conditioned; however, this

is an additional condition to those of Lemma 2.1).

If the condition h � � is deemed too restrictive then it is possible instead to

consider taking �� hi for hi away from the initial layer (i.e. for all i s.t. ti�1 � �).

This situation has been analyzed for collocation at Gauss and Lobatto points in [2].

We recall brie
y that the error estimates (4.4) are replaced by

x
s

i
� xe(ti) = O(hk+l + �

s) (4.6a)

By
s

ij
�Bye(tij) = O(hk + �

s); j = 1; : : : ; k (4.6b)

for ti � �, where l = 1 if k is odd and an additional condition on the mesh holds

(see (3.13) in [2]), l = 0 otherwise. Note that the condition (2.25) in [2] is satis�ed

by the problem (4.1). Observe that the order in (4.6b) is one lower than in (4.4b),

essentially because the approximation for x(t) no longer has a smooth error.

4.2 Initial value problem (IVP)

For the IVP case where (4.1b) reduces to

x(0) = �x given (4:7)

we may, of course, proceed in the same way as for the BVP case. But now a few things

are easier. Firstly, for this case we can calculate Bye(0) and then choose By0 to be

exact at t = 0. In fact, as indicated earlier we can also do this for higher derivatives

of By at the initial value by repeated di�erentiation of (2.1). Such a preparation of

the initial iterate By0 allows removing the layer error terms (or the condition ti � �)

in the error estimates above.
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Secondly, one may use a more convenient di�erence scheme to integrate the IVP

(4.1a),(4.7). If the EUODE is su�ciently nonsti� to warrant use of a nonsi� inte-

gration method then this can be an attractive possibility here. Note, though, that

�hi=� must be in the absolute stability region of the method (see (3.12b)). Thus,

an explicit Runge-Kutta method of order p, for instance, may necessitate (at least)

p SRM iterations in order for the error in the estimates of Theorem 3.1 to be of the

same order as the error in the numerical approximation. Depending on the problem

one may prefer to choose � smaller and apply a sti� method like BDF or collocation

at Radau points (see, e.g., [10]). This again yields an advantage over the BVP case,

because these methods dampen errors, unlike the symmetric di�erence schemes. The

error estimates are the usual ones (cf. [10]). For instance, using collocation at k

Radau points (tik = ti; k = 1 yields backward Euler) we have

x
s

i
� xe(ti) = O(h2k�1 + �

s) (4.8a)

By
s

ij
�Bye(tij) = O(hk + �

s); j = 1; : : : ; k (4.8b)

for 1 � i � N .

Remark 4.1 The sti�ness introduced by the regularization is an IVP sti�ness even

in the BVP case { see the IVP for ws in (3.12b),(3.13b). It is therefore tempting, and

for many examples certainly useful, to apply a damping di�erence method such as

Radau collocation in the above BVP context as well. However, such a method may be

dangerous for a general use if the EUODE gives rise to trouble due to over-damping

(see, e.g., Example 10.10 in [4]). 2

The most important di�erence between the IVP and BVP cases is that the iterative

method described here does not appear to be necessarily optimal or even natural in

the IVP context, certainly not from the storage requirement point of view: Note that

the entire approximation of Bys�1 on [0; tf ] needs to be stored. The situation here

is similar to that encountered with other functional iteration methods like waveform

methods.

However, this di�culty can be resolved by rearranging the computation, assuming

that the number of the SRM iterations, m, is chosen in advance. Thus, at each time

step i, 1 � i � N , we calculate sequentially the quantities x1
i
; By

1
i
; x

2
i
; By

2
i
; : : : ; x

m

i
; By

m

i
.

To do this using a one-step scheme, say, we need only the corresponding quantities

locally, over the mesh subinterval [ti�1; ti), and By
0
i
. For the latter we may use, for

instance, y0
i
� ye(0), i.e. By

0
i
= B(ti)y

0
0; 0 � i � N . The storage requirements are

now independent of N and other typical IVP techniques such as local error control

may be applied as well.
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5 Numerical examples

We now present a few very simple examples to demonstrate our claims in the previous

sections. Throughout this section we use a constant step size h and set tf = 1. To

make life di�cult we choose h so that there is an i such that ti = t� (if there is

a singularity). In the implementation we monitor the size of the pivot in a Gauss

elimination procedure for CB and slightly perturb ti away from t� when needed. At

a given time t, we use 0
ex

0 to denote the maximum over all components of the error in

x
s while 0

ey
0 denotes the maximum over all components of the error in Bys. Similarly,

0
drift

0 denotes the maximum residual in the algebraic equations.

We �rst look at a boundary value problem.

Example 1

Consider the DAE (2.1) with

A =

�
�1 1

0 0

�
; B =

�
0

1 � 2t

�
; q =

�
� sin t

0

�

C = ( 1 � 2t 1 � 2t ) ; r = �(1� 2t)(e�t + sin t)

subject to

x1(1) + x2(0) = 1=e

The exact solution is xe = ( e�t sin t ), ye =
cos t
1�2t

. A singularity is located at t = 1=2,

where ye becomes in�nite while Bye stays bounded. We start computing with the

iterate y0(t) � 0.

In Tables 5.1 we list errors when using the midpoint scheme

x
s

i
� x

s

i�1

hi
= A

i�
1

2

x
s

i�
1

2

+By
s

i�
1

2

+ q
i�

1

2

By
s

i�
1

2

= By
s�1
i�

1

2

� �
�1
B
i�

1

2

E
i�

1

2

(C
i�

1

2

x
s

i�
1

2

+ r
i�

1

2

)

where xs
i�

1

2

=
xs
i
+xs

i�1

2 (but no such relation is necessary for ys). We apply this scheme

with hi = h = :01 for various values of �.

Since k = 1, 2k = k+1 = 2 and we expect similar 2nd order accuracy in ex and in

ey, except for the case �� h when the error order in By drops to 1. This is evident

in the error column for t = 1:0. Note also the O(�) improvement per SRM iteration

when this term dominates the error (i.e. when �
s
� h

2). Further experiments with

di�erent values of h verify the convergence orders of (4.4) and (4.6) for k = 1.

We note that the approximation for By at points within the initial layer is not

accurate. To get a better approximation within the initial layer ( i.e. near the initial

point t = 0), we solve a terminal value problem (4.1a), (4.5), as described in x4.1.
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Then we apply the SRM for the given problem with the improved values for By0. In

Table 5.2 we list the computed results after 3 iterations. They are obviously much

better than the comparable ones in Table 5.1.

2

Next we consider initial value problems.

Example 2

Consider the same DAE as for Example 1 with the same exact solution but with

initial values x1(0) = 1, x2(0) = 0 speci�ed. From these initial conditions we can

calculate y(0) = 1 in advance, and we choose the initial guess y0(t) � 1. Tables 5.3

and 5.4 display error results for � = :1 and h = :001 using the backward Euler and

the forward Euler schemes, respectively. As explained in x4.2 we �nd all iterates at

each step before proceeding to the next.

These tables show a signi�cant improvement with each SRM iteration and no

strong initial layer e�ect, as predicted by theory.

2

Example 3

Here we investigate the use of the modi�ed formula (3.16) instead of (3.8) in the

SRM. First, we solve the previous example numerically using (3.16). In Table 5.5 we

record error values at the singularity point t = :5 after 3 SRM iterations, starting

with y0(t) � 1 and using as before � = :1 and h = :001 (cf. Tables 5.3, 5.4).

From these results it is clear that the SRM with (3.16) does not work well when

�1 6= 0: large errors in By are obtained near the singularity and these adversely

a�fect the accuracy in x as well. However, the comparison changes when there is no

singularity in the constraints: We now replace the constraint in Example 2 by

x1 + x2 � e
�t
� sin t = 0

leaving everything else the same (including the singularity in B). In Table 5.6 we

record maximum errors in x and By over all mesh points (denote those 'exg' and

'eyg', respectively) for the starting iterates y0(t) � 1 and y0(t) � 0 (the latter does

not agree with the exact ye(0)).

The modi�ed method is seen to work better for problems without singularities.

2

The above calculations all agree with our theoretical results described in Sections

3 and 4. The �nal example below is designed to compare our method with that of

Park and Chiou [16] (i.e. (3.4) with E = I for an example with B = C
T and a smooth

y over the entire interval).

Example 4

16



Consider the DAE (2.1) with

A = 0; C = ( t� :5 t
2
� :25 ) ; B = C

T

where q(t) and r(t) are chosen such that the exact solution is x1 = x2 = y = e
t.

To try a wider range of values for �, we use the backward Euler scheme. We set

h = :001 and perform 4 SRM iterations with y0(t) � 1. This is compared to the

numerical solution of (3.5a),(3.7) [16] using the same discretization. The resulting

overall errors are listed in Table 5.7 and demonstrate the superiority of our approach.

2

6 Appendix

To provide a better feeling about the sequential regularization method we now give

a detailed proof of Theorem 3.1 for the initial value case with no layers, s � M + 1.

In this proof, the construction of the asymptotic expansion is directly for x and

By. Moreover, the construction method we apply is somewhat di�erent from [18, 19]

and more relevant to the concept of DAEs. For s > M + 1, additional initial layer

expansions have to be developed. However, the construction of these layer expansions

is precisely the same as in [18, 19] and so it is omitted here. In case that (2.2) are

initial conditions (i.e. B1 = 0) our assumptions imply that (2.2) together with (2.3b)

specify x(0), say

x(0) = �x (6:1)

At �rst, consider the case s = 1 of (3.3),(3.8):

�x
0

1 +B(CB)�1(Cx1 + r) = �Ax1 + �By0+ �q;

with the initial conditions (6.1). This is a singular-singularly-perturbed problem (see

[19, 15]). Let

x1 = x10 + �x11+ � � � + �
s
x1s + � � �

Comparing the coe�cients of like powers of �, we thus have

B(CB)�1Cx10 = �B(CB)�1r (6.2a)

B(CB)�1Cx11 = �x
0

10 +Ax10 +By0 + q; (6.2b)

B(CB)�1Cx1i = �x
0

1i�1 +Ax1i�1; 2 � i � s+ 1; (6.2c)

where (6.2a) satis�es (6.1) and (6.2b) and (6.2c) satisfy homogeneous initial condi-

tions corresponding to (6.1). Now, (6.2a) has in�nitely many solutions in general. To

realize the construction, we should choose x10 to satisfy (6.2a) and to ensure that the

solution of (6.2b) exists. We choose x10 to be the solution xe of problem (2.1)-(2.2),

i.e.

x
0

10 = Ax10+Bye + q; (6.3a)

0 = Cx10+ r; (6.3b)

B0x10(0) = �: (6.3c)
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So x10 = xe and (6.2b) has the following form

B(CB)�1Cx11 = B(y0 � ye): (6:4)

Now we choose x11 and a corresponding y01 to satisfy

x
0

11 = Ax11 +By01 (6.5a)

Cx11 = CB(y0 � ye); (6.5b)

B0x11(0) = 0: (6.5c)

Noting that Bye = x
0

e
�Axe � q is smooth, we have CB(y0� ye) 2 S. Hence, using

Lemma 2.1, there exists a smooth solution x11 of (6.5), and x11 satis�es (6.4). Indeed,

using (6.5b) and H4, we have C(0)x11(0) = 0, so x11(0) = 0. And, from (6.5b) again,

(CB)�1Cx11 = y0 � ye; for each t 2 [0; t�) [ (t�; tf ]:

That is,

B(CB)�1Cx11 = B(y0 � ye); t 2 [0; t�) [ (t�; tf ]: (6:6)

Taking the limit of (6.6), we thus get that x11 satis�es (6.4) for each t 2 [0; tf ].

Moreover, using H4, we have

y01(0) = y
0

01(0) = � � � = y
(s�1)
01 (0) = 0; s �M + 1:

Also we note that By01 is smooth.

Generally, supposing we have got x1i�1; By0i�1 and

y0i�1(0) = y
0

0i�1(0) = � � � = y
(s�i+1)
0i�1 (0) = 0

for i � 2, we choose x1i, y0i satisfying

x
0

1i = Ax1i +By0i;

Cx1i = �(CB)y0i�1;

B0x1i(0) = 0:

By the same argument as before, we obtain that x1i satis�es (6.2c) for 2 � i � s+1,

and

y0i(0) = y
0

0i(0) = � � � = y
(s�i)
0i (0) = 0; s �M + 1:

Also, By0i is smooth. Next we denote the asymptotic solution

�x1s+1 = x10 + �x11 + � � �+ �
s
x1s + �

s+1
x1s+1

and

z1s+1 = x1 � �x1s+1:
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Then

�z
0

1s+1 + Pz1s+1 = �Az1s+1 + �
s+2(�x01s+1 +Ax1s+1);

z1s+1(0) = 0

Let u1s+1 = Rz1s+1 and w1s+1 = Pz1s+1. Hence, we have (cf. (3.11))

z1s+1 = Su1s+1 + w1s+1

and

u
0

1s+1 = (RA+R
0)Su1s+1 + (RA +R

0)w1s+1 +O(�s+1);

�w
0

1s+1 + w1s+1 = �(PA+ P
0)Su1s+1 + �(PA+ P

0)w1s+1 +O(�s+2);

u1s+1(0) = 0; w1s+1(0) = 0:

Using Lemma 3.1, we get w1s+1 = O(�s+2) and u1s+1 = O(�s+1), i.e.

z1s+1 = O(�s+1):

Therefore,

x1 = x10 + �x11 + � � �+ �
s
x1s +O(�s+1): (6:7)

Noting x10 = xe, we thus obtain

x1 � xe = O(�): (6:8)

Then, by using (3.8),(6.7),(6.2),(6.3a) and (6.5a), it follows that

By1 = By0 �
1

�
B(CB)�1(Cx1 + r)

By1 = By0 �
1
�
(Px10 +B(CB)�1r + �Px11 + � � �+ �

s
Px1s +O(�s+1))

= Bye + �By01+ � � �+ �
s�1

By0s�1 +O(�s)
(6:9)

or

By1 �Bye = O(�): (6:10)

Now we look at the second itertation s = 2 of (3.3):

�x
0

2 +B(CB)�1(Cx2 + r) = �Ax2 + �By1+ �q;

with initial conditions (6.1). Let

x2 = x20 + �x21 + �
2
x22 + � � � :

Noting that (6.9) gives us a series expansion for By1 we obtain,

B(CB)�1Cx20 = �B(CB)�1r; (6.11a)

B(CB)�1Cx21 = �x
0

20 +Ax20+Bye + q; (6.11b)

B(CB)�1Cx2i = �x
0

2i�1 +Ax2i�1 +By1i�1; 2 � i � s+ 1 (6.11c)
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Again, (6.11a) satis�es initial conditions (6.1) and (6.11b) and (6.11c) satisfy the

corresponding homogenous ones. As the case of s = 1, we choose x20 = xe. We thus

have

B(CB)�1Cx21 = 0:

Then x21 is constructed to satisfy

x
0

21 = Ax21 +By11; (6.12a)

Cx21 = 0; (6.12b)

B0x21(0) = 0: (6.12c)

Obviously x21 = 0 since (6.12) is uniquely solvable for x21 by Lemma 2.1. In general,

similarly to the case of s = 1, we choose x2i satisfying

x
0

2i = Ax2i +By1i; (6.13a)

Cx2i = �(CB)(y0i�1 � y1i�1); (6.13b)

B0x2i(0) = 0: (6.13c)

for 2 � i � s+ 1. By applying Lemma 3.1 and the same argument as in the case of

s = 1 we get

x2 = xe + �x21 + �
2
x22 + � � � + �

s
x2s +O(�s+1) (6:14)

or

x2 � xe = O(�2): (6:15)

Then, using (3.8),(6.11),(6.12a),(6.13a), (6.14) and (6.9), we conclude

By2 = By1�
1

�
B(CB)�1(Cx2+ r) = Bye+ �

2
By12+ � � �+ �

s�1
By1s�1+O(�s) (6:16)

or

By2 �Bye = O(�2) (6:17)

We can repeat this procedure, and, by induction, conclude the results of the

theorem. 2
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� iteration error at ! t=.01 t=.1 t = .3 t=.5 t=1.0
1e-1 1 ex .38e-1 .35e-1 .56e-1 .52e-1 .39e-1

ey .96 .40 .14 .34e-1 .66e-1
drift .87e-2 .49e-1 .51e-1 .0 .61e-1

2 ex .92e-2 .37e-1 .89e-2 .65e-2 .72e-2
ey .91 .96e-2 .14 .34e-1 .65e-2
drift .90e-2 .32e-1 .61e-2 .0 .72e-2

3 ex .94e-2 .19e-1 .12e-1 .63e-2 .15e-2
ey .87 .20 .30e-1 .43e-1 .85e-3
drift .86e-2 .16e-1 .43e-2 .0 .74e-3

5e-2 1 ex .19e-1 .25e-1 .28e-1 .24e-1 .19e-1
ey .91 .15 .14 .25e-1 .32e-1
drift .86e-2 .34e-1 .19e-1 .0 .29e-1

2 ex .85e-2 .13e-1 .18e-2 .22e-2 .15e-2
ey .83 .15 .15e-1 .18e-2 .88e-3
drift .82e-2 .11e-1 .10e-3 .0 .16e-2

3 ex .76e-2 .80e-3 .17e-2 .23e-3 .10e-3
ey .75 .17 .25e-1 .16e-2 .28e-3
drift .74e-2 .75e-3 .43e-2 .0 .59e-4

1e-2 1 ex .38e-2 .60e-2 .53e-2 .44e-2 .38e-2
ey .67 .30e-2 .40e-2 .48e-2 .62e-2
drift .65e-2 .80e-2 .38e-2 .0 .55e-2

2 ex .45e-2 .10e-3 .88e-4 .77e-4 .64e-4
ey .45 .32e-3 .70e-4 .44e-4 .23e-4
drift .44e-2 .15e-4 .14e-4 .0 .68e-4

3 ex .30e-2 .55e-5 .52e-5 .59e-5 .11e-4
ey .30 .18e-2 .26e-4 .18e-4 .67e-5
drift .29e-2 .17e-5 .26e-5 .0 .56e-5

1e-3 1 ex .13e-2 .58e-3 .52e-3 .45e-3 .39e-3
ey .17 .47e-2 .41e-3 .49e-3 .62e-3
drift .17e-2 .79e-3 .38e-3 .0 .54e-3

2 ex .30e-3 .71e-4 .75e-5 .72e-5 .12e-4
ey .30e-1 .17e-1 .34e-4 .13e-4 .54e-5
drift .30e-3 .51e-4 .20e-5 .0 .65e-5

3 ex .65e-4 .15e-3 .70e-5 .70e-5 .12e-4
ey .70e-2 .33e-1 .12e-3 .14e-4 .56e-5
drift .69e-4 .11e-3 .21e-5 .0 .59e-5

1e-6 1 ex .21e-4 .92e-5 .14e-4 .18e-4 .24e-4
ey .27e-2 .27e-2 .27e-2 .27e-2 .26e-2
drift .26e-4 .19e-5 .27e-5 .0 .18e-4

2 ex .19e-4 .88e-5 .14e-4 .18e-4 .24e-4
ey .25e-2 .25e-2 .25e-2 .25e-2 .25e-2
drift .18e-5 .20e-5 .28e-5 .0 .24e-4

3 ex .19e-4 .88e-5 .14e-4 .18e-4 .24e-4
ey .25e-2 .25e-2 .25e-2 .25e-2 .25e-2
drift .24e-4 .19e-5 .28e-5 .0 .18e-4

Table 5.1: SRM errors for Example 1 using the midpoint scheme
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� error at ! t=.01 t=.1 t = .3 t=.5
1e-1 ex .62e-2 .54e-2 .39e-2 .28e-2

ey .48e-2 .45e-2 .44e-2 .54e-2
5e-2 ex .76e-3 .58e-3 .32e-3 .17e-3

ey .22e-2 .18e-2 .10e-2 .50e-3
1e-2 ex .57e-4 .49e-4 .35e-4 .26e-4

ey .10e-3 .85e-4 .52e-4 .32e-4
1e-3 ex .49e-4 .42e-4 .31e-4 .23e-4

ey .56e-4 .46e-4 .30e-4 .19e-4

Table 5.2: SRM errors for Example 1 using the shooting-back technique

iteration error at ! t=.001 t=.1 t = .3 t=.5 t=1.0
1 ex .20e-5 .72e-2 .37e-1 .63e-1 .11

ey .20e-2 .12 .15 .12 .59e-1
drift .15e-5 .60e-2 .16e-1 .76e-4 .15

2 ex .20e-5 .51e-2 .13e-1 .10e-1 .25e-2
ey .20e-2 .68e-1 .45e-2 .20e-1 .80e-2
drift .15e-5 .42e-2 .58e-2 .14e-4 .67e-2

3 ex .20e-5 .35e-2 .23e-2 .16e-2 .76e-3
ey .20e-2 .32e-1 .26e-1 .10e-1 .37e-2
drift .15e-5 .29e-2 .12e-2 .10e-5 .12e-2

Table 5.3: SRM errors for Example 2 using backward Euler

iteration error at ! t=.001 t=.1 t = .3 t=.5 t=1.0
1 ex .50e-6 .71e-2 .36e-1 .63e-1 .11

ey .20e-2 .12 .15 .12 .60e-1
drift .50e-6 .60e-2 .16e-1 .76e-4 .15

2 ex .50e-6 .51e-2 .12e-1 .10e-1 .44e-2
ey .20e-2 .68e-1 .41e-2 .20e-1 .70e-2
drift .50e-6 .42e-2 .58e-2 .14e-4 .67e-2

3 ex .50e-6 .35e-2 .43e-2 .18e-2 .98e-3
ey .20e-2 .32e-1 .26e-1 .97e-2 .46e-2
drift .50e-6 .29e-2 .12e-2 .11e-5 .12e-2

Table 5.4: SRM errors for Example 2 using forward Euler

(�1; �2) ! (0; 1) (h; 1) (1; 1)
method ex ey ex ey ex ey

backward Euler .16e-2 .10e-1 .80e-3 .20e+1 .15 .37e+3
forward Euler .18e-2 .96e-2 .25e-2 .18e+1 .64 .15e+4

Table 5.5: Errors near singularity using modi�ed formula (3.15)
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(�1; �2) ! (0; 1) (h; 1) (1; 1)
y0 method exg eyg exg eyg exg eyg
� 1 backward Euler .46e-2 .44e-1 .45e-2 .43e-1 .22e-3 .28e-3

forward Euler .45e-2 .44e-1 .44e-2 .43e-1 .19e-3 .23e-3
� 0 backward Euler .22e-1 .97 .22e-1 .94 .12e-3 .75e-3

forward Euler .22e-1 .97 .22e-1 .94 .19e-3 .75e-3

Table 5.6: Errors for problem without singularity using modi�ed formula (3.15)

� = 10�1 � = 10�3 � = 10�5

method exg eyg exg eyg exg eyg
SRM (4 itns.) .15e-2 .71e-2 .44e-4 .16e-2 .44e-4 .16e-2
Park & Chiou .12 .45 .42e-2 .85e-1 .38e-2 .29

Table 5.7: Method comparison for Example 4
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