
Linking BDD-Based Symbolic Evaluation to Interactive Theorem-Proving�

Jeffrey J. Joyce
Carl-Johan H. Seger

Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T 1Z2 Canada

Abstract – A novel approach to formal hardware verification re-
sults from the combination of symbolic trajectory evaluation and
interactive theorem-proving. From symbolic trajectory evalua-
tion we inherit a high degree of automation and accurate mod-
els of circuit behaviour and timing. From interactive theorem-
proving we gain access to powerful mathematical tools such as
induction and abstraction. We have prototyped a hybrid tool and
used this tool to obtain verification results that could not be easily
obtained with previously published techniques.

1. Introduction

Designing complex digital systems in VLSI technology usually
involves working at several levels of abstraction, ranging from
very high level behavioral specifications down to physical lay-
out. One of the main difficulties in this process is to verify
the consistency of the different levels of abstraction. Simula-
tion is often used as the main tool for “checking” the consis-
tency. Despite major simulation efforts, serious design errors
often remain undetected. Consequently, there has been a grow-
ing interest in using formal methods to verify the correctness
of designs. There are several approaches to formal hardware
verification: theorem-proving, state machine analysis, and sym-
bolic simulation to mention a few [11]. These methods all have
strengths and weaknesses. In this paper we will illustrate how
theorem-proving can be rigorously linked with symbolic sim-
ulation to gain a verification methodology that draws on the
strengths of each approach. In particular, we have developed a
novel approach to formal hardware verification which extends
BDD-based symbolic simulation techniques with more general-
purpose reasoning tools such as abstraction and mathematical
induction. The result is a hybrid approach to formal hardware
verification that offers considerable promise in bridging the cur-
rent gap between conventional verification techniques, such as
switch-level simulation, and more esoteric formal techniques.
We have implemented a prototype tool for our hybrid approach
and used this tool to derive verification results that would be
difficult to achieve with previously published techniques.

�This paper will appear in the Proceedings of the 30th Design Automation
Conference tobepublishedbythe IEEE.Copyright to thispaperhasbeentransferred
to the ACM. This research was supported by operating grants OGPO 109688
and OGPO 046196 from the Natural Sciences Research Council of Canada, by
research contract 92-DJ-295 from the Semiconductor Research Corporation, and
by fellowships from the Advanced Systems Institute.

Our hybrid approach can be seen as the latest step in a chain of
evolution which began with the development of circuit models
for switch-level simulation in the early 1980’s [2]. Switch-level
simulation is a commonly used verification technique supported
by a number of commercial tools. The next step in this evo-
lutionary chain was the development of symbolic switch-level
simulation in the mid 1980’s [3]. This symbolic approach to
switch-level simulation is supported by tools such as the COS-
MOS system from Carnegie-Mellon University [4]. Symbolic
simulation can be seen as an extension of ordinary switch-level
simulation where node values may be treated symbolically, that
is, variables may be used to represent node values instead of
constants such asT andF. A symbolic simulator can be used to
verify assertions about the state of a circuit that results from a
given sequenceof inputs – for instance, to show that the value of
a particular output node is accurately described by a formula pa-
rameterized by a set of variables representing input values. Next
in this evolutionary development was an extension to symbolic
simulation that made it possible to verify assertions about state
trajectories, that is, sequences of states rather just single states.
In addition to treating node values symbolically, symbolic tra-
jectory evaluation provides a rigorous technique for verifying
temporal relationships between these node values. Recent ver-
sions of both COSMOS and a related system called Voss [12]
from the University of British Columbia provide support for
symbolic trajectory evaluation. Finally, our hybrid approach, as
the latest step in this evolutionary chain, extends symbolic tra-
jectory evaluation with a set of general-purpose reasoning tools.
We have implemented a prototype software tool for our hybrid
approach by means of an interface between the Voss system and
an interactive theorem-prover called HOL from the University
of Cambridge [10].

As an extension of symbolic trajectory evaluation, our hybrid
approach has inherited the following strengths:

� In contrast to other formal approaches which often involve
the use of over-simplified models, verification results ob-
tained by means of our hybrid approachare basedon models
of circuit behaviour and timing which are widely used in
conventional CAD.

� Unlike several other approaches to formal hardware verifi-
cation which require extensive re-training before anyuseful
results can be achieved, there is a relatively smooth learn-
ing curve which allows a novice to start using our hybrid

Page 1



approachas a form of conventional switch-level simulation
and then gradually acquire increasingly levels of expertise
in the use of more esoteric techniques.

Our hybrid approachextendssymbolic trajectory evaluationwith
the addition of more general-purpose reasoning tools such as
abstraction and mathematical induction. With these additions,
our hybrid approach acquires several new strengths including:

� Verification results obtained by means of symbolic trajec-
tory evaluation can be formally related to higher levels
of abstraction including the formal specification of mixed
software/hardware systems.

� It provides a rigorous framework for combining results
obtained by symbolic trajectory evaluation to yield verifi-
cation results that, as a whole, would exceed the capacity
of symbolic trajectory evaluation.

� We have a rigorous framework for developing mathemati-
cally sound interfaces between symbolic trajectory evalu-
ation and conventional (as well as experimental) hardware
description languages.

The motivation for combining symbolic trajectory evaluation
with general-purpose reasoning tools is illustrated by the limi-
tations of symbolic trajectory evaluation in verifying the design
of a 32-bit multiplier. At best, BDD-based symbolic trajectory
evaluation can be used to achieve a partial result expressed by
a set of verification conditions. While these verification con-
ditions collectively imply that a 32-bit multiplier actually does
multiplication, this inference must be done informally outside
the framework of symbolic trajectory evaluation. Any attempt
to achieve a complete result by verifying an assertion expressed
directly in terms of multiplication would exceed the capacity of
BDD-basedsymbolic trajectory evaluation [7]. With the addition
of general-purpose reasoning tools, our hybrid approach allows
us to to complete a correctness proof for the multiplier within
a rigorous framework by formally proving that the verification
results obtained by symbolic trajectory evaluation logically im-
ply that the multiplier really does multiplication. The use of
general-purpose reasoning tools such as mathematical induction
and abstraction are essential for this result.

The remaining sections of this paper describes the main ele-
ments of our hybrid approach and its applications. Section 2
outlines the role of symbolic trajectory evaluation in our hybrid
approach. In Section 3 we explain how we extend our ability
to verify circuits using symbolic trajectory evaluation with the
more general-purpose reasoning tools by embedding symbolic
trajectory evaluation inside the logic of an interactive theorem-
prover. Section4 describes infrastructure that we havedeveloped
to increase the usability of our hybrid approach. We present an
example in Section 5 to illustrate the advantagesof our hybrid ap-
proach. Finally, a summary of our work and outline of our plans
for future development of this work are given in the Section 6.

2. Symbolic Trajectory Evaluation

Our prototype implementation of a hybrid verification tool in-
cludes the implementation of a symbolic trajectory evaluator
called Voss. The Voss system can be used to verify assertions of
the form,

FSM fsm (assumptions,conclusions)

where fsm denotes a finite-state machine and the pair
(assumptions,conclusions) expresses a relationship
over the trajectories of this finite-state machine. The finite-
state machine denoted byfsm is specified by a set of next-state
functions accessed by the Voss system from an external file.
This finite-state machine is a behavioural model of a digital
circuit which can be automatically generated from a transistor
netlist by a separate tool called Anamos [4] or from a gate
netlist in Silos format [15]. The parametersassumptions
andconclusions each denotes a list of atomic constraints. If
the above assertion is true for the finite-state machine denoted
by fsm, then any trajectory of this finite-state machine which
satisfies all of the atomic constraints in theassumptions list
must also satisfy all of the constraints in theconclusions list.
Each atomic constraint is a 5-tuples of the form(b,n,v,s,f)
which, for a given trajectory, denotes the constraint that “if the
Boolean expressionb is true then the node named byn has the
valuev in all states of the trajectory from the start states up to
but not including the final statef”.

To give a very simple example, the assertion,

FSM inverter (
[(T,‘input‘,F,0,1)],
[(T,‘output‘,T,1,2)])

expresses a relationship between the input and output node
of an inverter where the output value is delayed by one time
unit. We have used the constantsT andF to denote node val-
ues. The verification of this assertion can be viewed as just
an instance of ordinary switch-level simulation. The assump-
tion constraint(T,‘input‘,F,0,1) causes the input node
of the inverter to be set toLO while the conclusion constraint
(T,‘output‘,T,1,2) checks that the output node becomes
HI after the elapsed of one time unit. A slightly more sophisti-
cated approach is illustrated by the assertion,

FSM inverter (
[(T,‘input‘,v,0,1)],
[(T,‘output‘,~v,1,2)])

where the constantsF andT have been replaced by the symbolic
expressionsv and~v. The use of a variable for this purpose can
be viewed as an instance of symbolic simulation. In this case,
the assertion includes the possibility that the initial value of the
input node isT in addition to the possibility that it isF.

It may appear that the temporal scope of the above assertion
is limited to the first two instants of discrete time – that is, “if
the input at time 0 isv, then the output at time 1 will be~v.”
However, the temporal scope of this assertion actually extends
infinitely along every trajectory of the finite-state machine. This
is because the automatic verification procedure considers every
state of the finite-state machine to be a possible initial state of the
machine. At any point along any trajectory, the current state cor-
responds to the initial state of some other trajectory. Therefore,
verification that some property holds for every possible initial
finite sub-sequence of states implies that the property holds for
all finite sub-sequences (not just initial sub-sequences) of every
trajectory. Because the temporal scope of the above assertion
extends infinitely along every trajectory, the assertion can be ac-
curately interpreted to express the property that “for all timest,

Page 2



if the value of the input node of the inverter isv, then the value
of the output node at timet+1 will be ~v”.

The specification language acceptedby the Voss system includes
a number of built-in constants and functions – for example, a set
of built-in Boolean constants and operators includingT (true),F
(false),^ (conjunction),_ (disjunction) and~ (negation). The
Voss system also allows a number of constructs commonly found
in functional programming languages such as Lisp and ML to be
used to express assertions. For example, the assertion,

let xor (n,m) = (n ^ ~m) _ (~n ^ m) in
let sum (a,b,cin) = xor (xor (a,b),c) in
let cout (a,b,cin) =

(a ^ b) _ (a ^ c) _ (b ^ c) in
let assumptions =

[(T,‘a‘,a,0,20);
(T,‘b‘,b,0,20);
(T,‘cin‘,cin,0,20)] in

let conclusions =
[(T,‘sum‘,sum (a,b,cin),10,20);
(T,‘cout‘,cout (a,b,cin),10,20)] in

FSM fulladder (assumptions,conclusions)

illustrates the use of a nested sequence oflet-expressions to
express a correctness property for the design of a full adder. The
assumption part of the above assertions specifies the constraint
that the three inputs nodes,‘a‘, ‘b‘ and‘cin‘ have con-
stant values denoted by the variablesa, b andcin from time
0 until time 20. The conclusion part specifies the constraint
that the output nodes‘sum‘ and‘cout‘ will have the con-
stant values denoted by the variablessum (a,b,cin) and
cout (a,b,cin) respectively. The notational convenience
of using alet-expression to define thexor function allows us
to express this property in a relatively succinct manner.

With the expressive power of these functional programming lan-
guage constructs, it is possible to write down assertions of con-
siderable complexity and use the Voss system to automatically
verify these assertions with respect to a finite-state machine de-
rived from the design of a digital circuit. We have used Voss in
this manner to automatically verify several non-trivial designs
including a 32-bit version of the Tamarack-3 microprocessor [9]
and a 32-bit wide 4 stage pipelined integer unit with a dual-ported
register file with 32 general purpose registers [1].

3. Linking Voss to an Interactive Theorem-Prover

Our prototype implementation of a hybrid verification tool is
based on an interface between the Voss system and an interac-
tive theorem-prover called HOL [10]. This interface is more
than thead hoc translation of output from one verification tool
into input for another verification tool. A considerable amount
of our development effort has focused on the establishment of
a “mathematical interface” between symbolic trajectory evalua-
tion and interactive theorem-proving as a sound foundation for
the development of a tool interface. This paper focuses on the
tool interface since the details of the mathematical interface are
beyond the scope of our discussion here; details of the math-
ematical interface may be found in a technical report [13] that
presents a more theoretical view of our hybrid approachto formal

hardware verification.

The cornerstone of our hybrid approach is the definition of several
new predicates in the HOL system which establish a mathemat-
ical link between the specification language of the Voss system
and the specification language of the HOL system. This includes
the formal definition of the predicateFSM mentioned in the pre-
vious section. In HOL jargon, the establishment of this link can
be described as a “semantic embedding” of Voss within higher-
order logic (the specification language of the HOL system). The
establishment of this mathematical link causes the specification
languageof Voss to becomea subsetof the specification language
of the HOL system.

In addition to this minor extension of the HOL specification lan-
guage to include Voss assertions, we extend the set of built-in
proof procedures of the HOL system with a new proof proce-
dure based on symbolic trajectory evaluation. This new proof
procedure is implemented as a remote function call to the Voss
system which is run as a child process of the HOL system. This
new proof procedure, calledVOSS_TAC, is invoked with a sin-
gle argument – namely, a Voss assertion expressed as a term
of higher-order logic. The assertion is passed directly to the
Voss system which uses symbolic trajectory evaluation to decide
whether the assertion is true. If the assertion is successfully ver-
ified, the resultT (“true”) is returned to the HOL system and the
assertion is transformed into a theorem.

Once an assertion has been verified by symbolic trajectory eval-
uation and transformed into a HOL theorem, this verification
result may be used by the more general-purpose reasoning tools
of the HOL system to derive additional verification results. For
example, reasoning tools such as mathematical induction and
abstraction might be used to combine a set of verification results
obtained by means ofVOSS_TAC into a single verification re-
sult. These tools might also be used to derive a more abstract
verification result – for example, the specification of a software
function in a mixed hardware/software system – from lower level
verification results obtained by means ofVOSS_TAC.

The extent to which these additional proof procedures are used
depends on the expertise of the user. A novice user will prob-
ably begin by only using our hybrid verification tool as a sym-
bolic simulator. A slightly more advanced user can use our tool
for symbolic trajectory evaluation to verify assertions about the
temporal relationships between states. Gradually a user may
begin using other HOL proof procedures besidesVOSS_TAC.
At this skill level, a user should already be capable of using
VOSS_TAC to achieve useful verification results. Therefore, in-
teractive theorem-proving skills can be gradually acquired while
useful work is being done with just symbolic trajectory evalua-
tion.

4. Proof Infrastructure

In the development of our hybrid approach we have spent con-
siderable effort on the developmentof proof infrastructure which
increases the usability of our approach. In particular, our efforts
to date have focused on the development of three main kinds of
infrastructure:

� a library of arithmetic and logical operations on bitvectors,

Page 3



� a very simple, experimental language called HCL for writ-
ing more succinct specifications, and

� general proof procedures for common verification tasks in
the HOL-Voss system.

4.1. Arithmetic and Logical Operations

Correctness assertions about hardware designs frequently in-
volves assertions expressed in terms of arithmetic and logical
relationships. To provide support for these kinds of specifica-
tions, we have developeda library of arithmetic and logical oper-
ations on bit-vectors. For example, this library includes the infix
operationbvplus that forms the result of adding two vectors of
Boolean values. This operation could be used, for instance, to
specify the correctness property that the output value of a 32-bit
adder, denoted by the variablesum, corresponds to the result of
applying the operationbvplus to the values of the two input
vectors denoted by the variablesa andb. The operationsized
is used here to truncate or pad the result of thebvplus to make
it into a 32-bit vector.

sum = (sized 32 (a bvplus b))

All of the arithmetic and logical operations in this library are
formally defined as functions in the specification language of
the HOL system. This is important because it allows us to
formally validate these definitions. In particular, we have used
the HOL system to formally derive correctness properties for
these bitvector operations with respect to an interpretation of
bitvectors (as a little-endian unsigned binary representation) and
the standard notion of arithmetic based on Peano’s axioms. For
example, we have used the HOL system to prove the theorem,

8a b. (bv2num (a bvplus b)) =
((bv2num a) + (bv2num b))

wherebv2num is an abstraction function that converts a vector
of Boolean values into a natural number. The above theorem
establishes a rigorous correspondence between the bit vector
operationbvplus and+ where+ is an arithmetic operation
defined on natural numbers. There are two important points to
make here. First, the library of bitvector functions is developed
only once and the correctness proofs, carried out in the HOL
system, are only done once. Secondly, since the Voss system
will in fact use the same definitions during its execution, there is
a very rigorous link between the arithmetic relations used in the
HOL system to describe the specificationand the actual bitvector
versions used by the Voss system.

4.2. HCL - Higher-level Constraint Language

Earlier examples in this paper have shown how assertions
can be expressed in terms of lists of 5-tuples of the form
(b,n,v,s,f). As shown previously with the example spec-
ification of the fulladder in Section 2, various constructs in the
specification language such aslet-expressions can be used to
make assertions more succinct. However, in general, the use of
5-tuples to write down assertions, even with the help of various
built-in language constructs, is far too cumbersome.

An elegant solution to this problem is to use the expressivepower
of the specification language to introduce a user-defined specifi-

cation language that can be “compiled” into the 5-tuple format
required by VOSS to perform symbolic trajectory evaluation.
This approach involves four main steps. First, the syntax of the
user-defined specification language is introduced as a new data
type in the underlying logical framework of the HOL system.
Secondly, we define a compiler function that compiles the user-
defined specification language into the 5-tuple format. Thirdly,
we formally specify the semantics of the user-defined specifica-
tion language. The fourth and final step is to formally prove that
the definition of the compiler function is correct with respect to
the formal semantics of this language.

We have demonstrated this approach with the development of
a very simple, experimental language called HCL. This user-
defined language consists of a number of constructs for speci-
fying waveforms – that is, for specifying temporal relationships
between nodesandvectors of nodes. For example, HCL includes
the infix operatoris (isv) for expressingthe instantaneouscon-
straint that a particular node (vector of nodes) is equal to some
Boolean value (vector of Boolean values). Another infix HCL
operator,during, is used to express the temporal constraint that
an instantaneousconstraint holds during some specified interval.
The HCL operatorand can be used to combine temporal con-
straints. The following fragment of HCL, which appears again
in Section 5, specifies the constraint that the node denoted by
phi is false from time 0 until time 100 and then true until time
200. This fragment also specifies the constraint that two node
vectors, denoted by the constantsNa andNb, are equal to the 16-
bit, little-endian, unsigned binary representation of two natural
numbers,a andb, from time 80 until time 200.

(((phi is F) during (0,100)) and
((phi is T) during (100,200)) and
((Na isv (sized 16 (num2bv a)))
during (80,200)) and

((Nb isv (sized 16 (num2bv b)))
during (80,200)))

After introducing the syntax of HCL as a new data type in
the HOL logic, we formally defined a compiling function
CompileHCL as a mapping from HCL to the 5-tuple format
required for symbolic trajectory evaluation. For instance, the
above fragment of HCL is mapped byCompileHCL to a list
of thirty-four 5-tuples. Next, we defined a semantics function
SemanticsHCL as a mapping from HCL to a predicate on
trajectories of finite-state machines. The final step in this de-
velopment was to prove that the definition ofCompileHCL
is correct with respect to the semantics of HCL as given by
SemanticsHCL. Intuitively, this result states that the set of tra-
jectories that satisfies a given HCL specification in terms of its
formally defined semantics is identical to the set of trajectories
that satisfies the set of 5-tuples that results whenCompileHCL
is applied to that particular HCL specification. The definitions of
CompileHCL andSemanticsHCL along with a precise state-
ment of the compiler correctness result may be found in a more
theoretical presentation of our work [13].

There are several important points to emphasize here. First, the
compiler function,CompileHCL, is defined in the HOL system.
This allows us to reason about this definition – in particular, to
show that it is correct with respect to the formal semantics of
HCL. Secondly, the HOL definitions ofCompileHCL is used

Page 4



directly by the Voss system to compile HCL specifications into
the 5-tuple format. Our approach does not allow the possibility
of mistakes that might occur in the hand-translation of a compiler
specification into an implementation of the compiler specifica-
tion. Thirdly, the task of formally verifying the compiler function
definition needs to be done only once. Once this task has been
completed, this correctness result becomespart of the supporting
infrastructure of our hybrid approach. This correctness result is
required whenverification results obtained by meansof symbolic
trajectory evaluation are combined at higher levels. Fourthly, we
note that the compiler correctness exercise is valuable in itself.
In the course of verifying the definition ofCompileHCL, we
actually encountered a bug in the definitions of the compiler
functions; consequently we feel the exercise was well worth the
effort. Finally, we emphasize that this development of HCL is
not intended to be yet-another hardware specification language.
Instead, HCL is intended mainly to serve as an illustration of how
a mathematically sound link can be developed between a spec-
ification language and the HOL-Voss system. Although HCL
is a very simple language, we expect that it may be possible to
use these same principles to develop a HOL-Voss interface for a
more sophisticated hardware specification language – assuming
that the language has a rigorously defined semantics.

4.3. General Proof Infrastructure

Finally, much of the work we have done is aimed at develop-
ing re-usable proof procedures that are commonly encountered
during a typical HOL-Voss proof. It is interesting to note that
many of the result in this set of proof procedures generalizes in-
formal reasoning carried out manually before. Since all of these
results have been formally proven in the HOL system the level
of confidence is significantly increased.

5. An Example

In this section we illustrate the advantages of our two-
level verification system in achieving verification results that
would be difficult or impossible to achieve using either
an approach based exclusively on theorem-proving or an
approach based exclusively on symbolic trajectory evalua-
tion. Our example is based on a Domino CMOS circuit
with two 16-bit inputs,[‘a.0‘;‘a.1‘;: : :;‘a.15‘] and
[‘b.0‘;‘b.1‘;: : :;‘b.15‘], and one output bit‘out‘.
The circuit design uses quite complex electrical phenomena and
critical timing; this means that a rather sophisticatedswitch-level
and delay model is needed to explain the operation of the circuit.
The circuit is intended to compare the number presentedon input
a with the number presented on inputb, both viewed as 16-bit,
little-endian, unsigned binary representations, and produce an
outputT if and only if a > b andb > 0. Since we would like to
minimize the semantic gap between this intuitive notion of what
we believe the circuit is supposed to do and the formal specifi-
cation for the circuit, we require that the specification should be
stated in terms of an arithmetic relation rather than a relation on
bitvectors.

Clearly, the desired verification result cannot be achieved using
symbolic trajectory evaluation exclusively since symbolic tra-
jectory evaluation can only be used to directly verify assertions

expressed in terms of bitvector operations – not arithmetic rela-
tions. As for a theorem-proving approach, it is possible, in princi-
ple, that this verification result could be achieved exclusively by
means of interactive theorem-proving techniques. However, we
are extremely doubtful that this result could be actually achieved
in practice because there has never been a convincing demon-
stration of the ability of theorem-proving techniques to deal with
complex electrical phenomena and timing behaviour for a non-
trivial circuit.

With our hybrid approach, we have the best of both worlds.
From symbolic trajectory evaluation our approach inherits ac-
curate models of circuit behaviour and timing. From interactive
theorem-proving we gain accessto the ability to formally relate a
bitvector level specification of this circuit to more abstract spec-
ification expressed in terms of an arithmetic relation. For these
reasons, this particular verification problem is an excellent illus-
tration of the unique advantages of the HOL-Voss system. We
have used the HOL-Voss system to formally derive the following
theorem which expresses the desired verification result for the
“a > b> 0” circuit.
let phi = ‘phi‘ in
let Na = node_vec 16 ‘a‘ in
let Nb = node_vec 16 ‘b‘ in
let out = ‘out‘ in
forall a b::(0,65535).
let assumptions =
CompileHCL (
((phi is F) during (0,100)) and
((phi is T) during (100,200)) and
((Na isv (sized 16 (num2bv a)))
during (80,200)) and
((Nb isv (sized 16 (num2bv b)))
during (80,200))) in

let conclusions =
CompileHCL (
(out is (a > b ^ b > 0))
during (160,200)) in

FSM agrb16 (assumptions,conclusions)

The above theorem states the “a> b> 0” circuit, as represented
by the constantagrb16, correctly compares the two 16-bit in-
puts for all input values between 0 and 65,535. The correctness
property is expressed explicitly in terms of> – an arithmetic
operation rather than an operation on bitvectors. The HOL-Voss
proof script (a sequence of commands called “tactics”) required
to generate a proof of the above theorem consists of only four
very routine user-interaction steps. Execution of this proof script
takes about half a minute on a NeXT Station (25MHz 68040
processor with 20M). Most of this time is in fact spent load-
ing the necessary libraries. If this same result could ever be
achieved exclusively by means of interactive theorem-proving
(which would surprise us), we speculate that our four line proof
script might compare to hundreds (and probably thousands) of
user-interaction steps requiring hundreds of person-hours of in-
teraction with the theorem-prover.

For the purposes of illustration, the above specification of the
“a > b> 0” circuit only usesa small amount of the infrastructure
that we have developed for HOL-Voss. With more extensive use
of this infrastructure, it is possible to write more sophisticated

Page 5



specifications of this circuit in a form that is more convenient
for combining with other verification results – however, these
details lie beyond the scope of this paper.

In addition to the example described here, we have used HOL-
Voss to verify several other circuits including a BCD (Binary
Coded Decimal) converter and an8-bit version of the Tamarack-3
microprocessor [9].

6. Related Work, Conclusions and Future Work

We believe that this work represents one of the first successful
attempts to rigorously combine two different approaches to for-
mal hardware verification. We are aware of previously published
work done at IMEC in Belgium [8] on multi-level verification
which shares a common goal with our approach in exporting
verification results obtained by BDD-based methods to higher
level verification tools. Distinguishing features of our approach
include our emphasison the establishmentof a mathematical link
between BDD-based methods and the underlying logical frame-
work of higher level verification tools. Also, the two-level ver-
ification tool described in [8] relies heavily on a specific design
methodology in order to automate much of the proof obligations.
Our goal is to develop a very general tool in which the integrity
of the proof is of major importance.

Our short-term development efforts will concentrate on the de-
velopment of more infrastructure to increase the usability of our
approach. Our goal is to minimize the amount of interactive
theorem-proving expertise required to achieve significant veri-
fications results. Our current implementation of HOL-Voss is
presented to the user as an extension of the HOL system where
symbolic trajectory evaluation is made available as an additional
proof procedure calledVOSS_TAC. We are now considering a
new approach where HOL-Voss might be split into two separate
tools. One of these tools would be an extension to the HOL sys-
tem intended for use by theorem-proving experts for developing
infrastructure such as interfaces to new specification languages.
The second tool would be an extension to the Voss system in-
tended for use by CAD designers for verifying circuit designs.
In this “front-room, back-room” paradigm, infrastructure devel-
oped by the theorem-proving experts using the first tool would
be used to enhance the functionality of the second tool.

In summary, we believe that our hybrid approach offers consid-
erable promise as a practical verification methodology that could
bridge the current gap between conventional CAD practice and
formal hardware verification techniques that have evolved over
the past 10-15 years. We also believe that our hybrid approach
will serve as a prototypical model of how other verification tech-
niques can be combined – for instance, the combination of model-
checking and interactive theorem-proving.

References

[1] D. Beatty, R.E. Bryant, and C-J. Seger, “Formal Hardware
Verification by Symbolic Ternary Trajectory Evaluation”,
IEEE ACM Design Automation Conference,San Francisco,
CA, June 1991.

[2] R.E. Bryant, “A Switch-Level Model and Simulator for

MOS Digital Systems,”IEEE Trans. on Computers Vol. C-
33, No. 2, February, 1984, pp. 160–177.

[3] R.E. Bryant, “Symbolic Verification of MOS Circuits”,
1985 Chapel Hill Conferenceon VLSI, May, 1985, pp. 419-
438.

[4] R.E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Shef-
fler, “COSMOS: A Compiled Simulator for MOS Circuits”,
24th Design Automation Conference, June 1987, pp. 9-16.

[5] R.E. Bryant, “Graph-Based Algorithms for Boolean Func-
tion Manipulation”IEEE Transactions on Computers, Vol.
C-35, No. 8, December 1986, pp. 677–691.

[6] R.E. Bryant, and C-J. Seger, “Formal Verification of Dig-
ital Circuits Using Symbolic Ternary System Models”, in
Computer-Aided Verification ’90, Procs. of a DIMACS
Workshop, American Mathematical Society, 1990, pages
121-146.

[7] R.E. Bryant, “On the Complexity of VLSI Implementations
and Graph Representations of Boolean Functions with Ap-
plications to Integer Multiplication”,IEEE Transactionson
Computers, Vol. C-40, No. 2, February 1991.

[8] M. Genoe, L. Claesen, E. Verlind, F. Proesmans, and H.
De Man, Illustration of the SFG-Tracing Multi-Level Be-
havioural Verification Methodology, by the Correctness
Proof of a High to Low SynthesisApplication in Cathedral-
II, Proc. IEEE International Conf. on Computer Design:
VLSI in Computers and Processors, ICCD’91, Oct. 14-16,
1991, Cambridge, MA.

[9] J. Joyce,Multi-Level Verification of Microprocessor-Based
Systems, Ph.D. Thesis, Computer Laboratory, Cambridge
University, December 1989. Report No. 195, Computer
Laboratory, Cambridge University, May 1990.

[10] M.J.C. Gordon et al.,The HOL System Description,
Cambridge Research Centre, SRI International, Suite 23,
Miller’s Yard, Cambridge CB2 1RQ, England.

[11] C-J. Seger, “An Introduction to Formal Hardware Verifi-
cation”, Technical Report 92-13, Department of Computer
Science, University of British Columbia, June 1992.

[12] C-J. Seger, “TheVossVerification System—User’sGuide”,
in preparation.

[13] C-J. Seger and J. J. Joyce, “A Mathematically Precise Two-
Level Formal Verification Methodology”, Report 92-34,
Department of Computer Science, University of British
Columbia, December 1992.

[14] C-J. Seger and R. E. Bryant, “Formal Verification of Dig-
ital Circuits by Symbolic Evaluation of Partially-Ordered
Trajectories”, in preparation.

[15] Silos II—Logic and Fault Simulator: User’s manual,
SIMUCAD, Palo Alto, 1988.

Page 6


