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Abstract

Vision allows one to react to rapid changes in the surrounding environment. The abil-

ity of animals to control their eye movements and follow a moving target has always

been a focus in biological research. The biological control system that governs the eye

movements is known as the oculomotor control system. Generally, the control of eye

movements to follow a moving visual target is known as gaze control.

The primary goal of motion tracking is to keep an object of interest, generally known

as the visual target, in the view of the observer at all time. Tracking can be driven

by changes perceived from the real world. One obvious change introduced by a moving

object is the change in its location, which can be described in terms of displacement. In

this project, we will show that by using stereo disparity and optical 
ow, two signi�cant

types of displacements, as the major source of directing signals in a robotic gaze control

system, we can determine where the moving object is located and perform the tracking

duty, without recognizing what the object is.

The recent advances in computer hardware, exempli�ed by our Datacube MaxVideo

200 system and a network of Transputers, make it possible to perform image processing

operations at video rates, and to implement real-time systems with input images obtained

from video cameras. The main purposes of this project are to establish some simple

control theories to monitor changes perceived in the real world, and to apply such theories

in the implementation of a real-time three-dimensional motion tracking system on a

binocular camera head system installed in the Laboratory for Computational Intelligence

(LCI) at the Department of Computer Science of the University of British Columbia

(UBC).

The control scheme of our motion tracking system is based on the Perception-Reasoning-

Action (PRA) regime. We will describe an approach of using an active monitoring process

together with a process for accumulating temporal data to allow di�erent hardware

components running at di�erent rates to communicate and cooperate in a real-time

system working on real world data. We will also describe a cancellation method to

reduce the unstable e�ects of background optical 
ow generated from ego-motion, and

create a \pop-out" e�ect in the motion �eld to ease the burden of target selection. The

results of various experiments conducted, and the di�culties of tracking without any

knowledge of the world and the objects will also be discussed.
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Chapter 1

Introduction

Vision allows one to react to rapid changes in the surrounding environment. Cues for

animals to notice such changes are mostly visual. One obvious change introduced by any

moving object is the change in its location with respect to other stationary objects in

the environment, where such change can usually be described in terms of displacement,

the di�erence in locations.

It has always been a main focus in research to examine animals' abilities to perceive

the changes incurred by moving objects and to react to those changes simultaneously. A

particularly interesting area is the ability of animals to control their eye movements and

follow a moving target. The biological control system that governs the eye movements is

known as the oculomotor control system. Within such control system, the two signi�cant

types of eye movements are saccade and vergence. The saccadic, or gaze shifting, system

enables the observer to transfer �xation rapidly from one visual target to another, while

the vergence system allows the observer to adjust the angle between the eyes so that

both eyes are directed at the same point. The control of eye movements to follow a

moving visual target is generally known as gaze control.

1
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Functionally, gaze control allows one to change the direction of gaze from one position

to another, and consequently, one can maintain gaze on a chosen target, or in other words,

�xate a moving object in the visual system. One can, as a result, gather additional

information about such object for further analyses and tasks such as recognition and

learning. The cooperation of gaze shifting, gaze holding, and vergence thus allows the

task of motion tracking to be performed.

With recent developments in sensors, parallel processors, and special purpose im-

age processing hardware, it is now possible [Little et al., 1991] to attempt to build

robotic devices that can simulate an animal's ability to visually track an object mov-

ing in three-dimensional space [Ferrier, 1992] [Christensen, 1992] [Jenkin et al., 1992]

[Pahlavan and Eklundh, 1992] [Crowley et al., 1992] [Pretlove and Parker, 1992]. The

main purposes of this project are to establish some simple control theories to monitor

changes perceived in the real world, and to apply such theories in the implementation of

a real-time three-dimensional motion tracking system on a binocular camera head system

installed in the Laboratory for Computational Intelligence (LCI) at the Department of

Computer Science of the University of British Columbia (UBC). The primary goal of

this tracking system is to center the image of the object of interest, in this case being

an object in motion, as quickly as possible. Such passive motion tracking system must

be comprised of a module to detect moving objects, a module to select the visual target,

and a module to respond in the form of gaze shifting and verging the binocular head. It

is also our interest to investigate how di�erent systems, namely, the Datacube MaxVideo

system and a network of Transputers, which run at di�erent rates, can communicate and

cooperate in real-time.

The detection of moving objects in a scene is di�cult when the observer is also in

motion, because the dominant motion is usually generated by the moving observer, which

leads to a complex pattern of displacements. It is necessary that the system be able to
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determine objects moving with respect to the stationary environment, rather than with

respect to the observer. Some segmentation process must occur to separate the apparent

motion, or ego-motion, caused by the moving observer, from the motion incurred by

the moving objects. The control system is required to stabilize gaze against ego-motion

while tracking the moving target.

The whole system, described in this report, will follow the Perception-Reasoning-

Action (PRA) framework, but with very little representation of the world, or even the

observer. Real-time performance is necessary for a real-behaving system [Nelson, 1991].

There is a delay between the time at which some visual observation is made and the time

at which the control command based on the observation is computed. To minimize such

delays with our limited computational resources, we need to focus on the minimum pos-

sible and non-trivial set of visual information necessary to achieve the purpose of motion

tracking. The system has to be designed so that responses can be made appropriately

and timely in the unpredictable environment, and that it can keep up with the pace of

the world.

Researchers have reported that humans have several interacting control systems that

stabilize gaze against ego-motion and follow moving targets, but failed to identify the

necessary visual cues that should be used in a robotic gaze control system for motion

tracking [Ballard and Brown, 1992]. In this project, we show that by using stereo dis-

parity and optical 
ow, the two signi�cant sources of displacement measures, as primary

visual cues in the robotic gaze control system, we can determine where the moving object

is located and perform the tracking duty, without recognizing what the object is. We

can easily �xate on a 3D location while ignoring the distracting surrounding motion by

integrating stereo with optical 
ow. In theory, the vergence system can provide the gaze

control system with extremely useful input for �ltering purposes, and for reducing the

volume of space to be considered.
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Several researchers have recently been implementing some gaze control systems with

encouraging results [Brown, 1989] [Coombs, 1992], and have demonstrated that special

purpose hardware are required to perform complicated computation in real-time. As

an alternative to using the existing techniques for motion tracking and replicating the

work that has already been done, it is our intention to build a system which makes

good use of our current specialized hardware, and to carefully allocate resources so that

other types of computations can be performed at the same time. It is our belief that if

we can continuously monitor the changes in the environment accessible to the cameras,

we should be able achieve our objectives and compute displacements using a simple

correlation matching technique, assuming that such technique can produce reliable and

dense data.

Our system uses optical 
ow and stereo disparity for tracking by panning, tilting,

and verging the robot head. An active monitoring process along with the optical 
ow

accumulation processes form our perception system. The reasoning system consists of a

cancellation process to eliminate the unstable e�ects of the background optical 
ow. A

segmentation process is used to partition the 
ow �eld into connected components, and

allows the visual target to be selected.

Chapter 2 of this thesis describes the research related to the �eld of motion tracking.

The work done on uncovering the mystery behind humans' ability to track moving objects

is discussed. Related work on motion detection and integration of stereo and optical 
ow

will be described. Other robotic gaze control systems developed at various research sites,

particularly at the University of Rochester, are also discussed.

Chapter 3 describes the PRA model, control theories, and techniques used in this

project. The various assumptions made in designing the system will be described.

Chapter 4 contains detailed descriptions about the implementation of our motion
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tracking system, in terms of both hardware and software.

Chapter 5 presents the evaluation of our motion tracking system. The performance,

drawbacks, and various problems will be discussed. We will describe the di�erent exper-

iments that have been carried out, and will also compare our motion tracking system

with other types of tracking systems implemented elsewhere.

The conclusions and directions of future work will be followed in Chapter 6.



Chapter 2

Background and Related Work

2.1 The Biological Oculomotor Control System

Researchers have spent considerable amount of e�ort investigating on the ability of ani-

mals, particularly humans, to visually track moving objects. The control system respon-

sible for such trackings directs the eyes to move rapidly to follow a visual target and to

stabilize the images of such target on the retina in spite of relative movements between

the target and the observer.

The rapid eye movements are known as saccades. During these movements, both

eyes rotate in same direction. It has been reported that animals do not see well during

saccadic movements, and that the oculomotor control system may become unresponsive

to stimulus during these movements. Therefore, the oculomotor control system will

attempt to make the duration of each movement as small as possible [Robinson, 1968].

A separate system known as the smooth pursuit system, which responds to target

velocity regardless of target position, operates independently with the saccadic system for

6
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stabilizing images on the retina. It is worth noting that the saccadic system is a sampled

control system, whereas smooth pursuit is continuous. Researchers have discovered that

saccadic movements are made in response to a large burst of tension suddenly applied

and suddenly removed, while smooth pursuit movements are created by smaller smoothly

applied forces.

Humans possess two eyes mainly to perceive depth in the surrounding environment.

Stereo disparity serves as a great visual cue to recognizing objects at di�erent depth,

and allowing the tracking of objects moving in three-dimensional space. With objects

moving near to or far away from the observer, his eyes must make equal movements

but in opposite directions, governed by the vergence system, in order to keep the

target image focused and centered on the retina. When the eyes rotate nasally the

movement is called convergence, and when they rotate temporally1 it is referred to as

divergence. It seems clear that a di�erent control system is responsible for vergence

movements. Vergence movements allow humans to register an object on the fovea (the

central, high-resolution region of the retina) of each eye, so that the greatest possible

amount of information about the object can be extracted. Experiments have shown that

such system appears to be continuous with a very low gain integrator, which makes it the

slowest of all the oculomotor subsystems [Robinson, 1968]. It has also been reported that

the disparity vergence system is not only sensitive to the amount of disparity between

the left and right retinal images, but also to the rate at which this disparity changes

[Krishnan and Stark, 1977].

It is considered that all changes of �xation are made entirely by mixtures of pure

saccadic movements and pure vergence movements; that is, the two systems operate

independently, and it has been observed that they cooperate in a very complex way.

1An anatomical term, meaning towards the temples or the sides of the forehead.
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Based on experimental results on stimulations of the brain, voluntary saccades originate

in the frontal eye �elds, involuntary saccades and smooth pursuit movements in the

occipital eye �elds, and vergence movements in areas 19 and 22 of the brain. The

intersampling interval for saccadic movements is 200 milliseconds, and the time delay is

of the order of 150 to 200 milliseconds in the disparity vergence system.

2.2 Detection of Moving Objects

Detection of moving objects from a stationary observer is easy, as the di�erence of

two frames in an image sequence will show the direction and magnitude of the object's

motion. A more interesting and di�cult problem is to detect moving objects from a

moving observer, in most cases being an electronically controlled camera. Being able

to �nd out how much an object has moved with respect to the stationary environment,

rather than with respect to the observer, is the key to determining whether or not the

object is in motion while the observer is moving.

The dominant motion in the motion �eld is usually generated by the moving camera,

if one assumes that the moving object is much smaller than the background environment

in the �eld of view of the camera. The central idea to identify a moving object involves

segmentation of the motion �eld based on consistency of the pixel values, e.g. the optical


ow vectors of a 
ow image, into separate components. Some robust segmentation

algorithms have been presented, such as the one reported in [Adiv, 1985], where the 
ow

�eld is partitioned into consistent segments, and independently moving rigid objects

can be analysed. A main interest in recent research is to identify which components

correspond to moving objects, and which portions of the motion �eld are caused by the

moving observer, with or without knowing the ego-motion parameters.
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Gibson makes an interesting observation that the 
ow vectors due to all stationary

components intersect at the focus of expansion (FOE) [Gibson, 1979]. Moving objects

have their individual FOE, usually di�erent from the FOE due to the stationary compo-

nent. Jain describes how an ego-motion polar transform of the dynamic scenes acquired

by a translating observer can make moving objects easily distinguishable from stationary

ones [Jain, 1984]. However, such technique requires intensive computation for the trans-

formation and the recovery of the FOEs, and is rather ine�cient to use in any real-time

system.

Thompson and Pong describe the principles of detecting moving objects under various

circumstances [Thompson and Pong, 1987], but leave an open question on how to apply

such theories in practice. Di�erent assumptions are made under di�erent situations, and

various detection algorithms are developed. In particular, situations where the camera

motion, either a translation or a rotation, is known or unknown are examined. Point-

based, edge-based, and region-based techniques which relied on knowing the FOE are

applied, and the techniques have been shown to be quite robust against noise. They

further state that no method for detecting moving objects will be e�ective if it depends

on knowing precise values of optical 
ow. However, it is clear that the e�ectiveness of any

reliable technique is directly proportional to the preciseness of the input data. Moving

objects can be incorrectly identi�ed if the input data is not reliable, and thus the motion

detection process becomes impractical.

Another observation made during these studies is that if an object is being tracked,

its optical 
ow is zero [Thompson and Pong, 1987]. This phenomenon can be seen in the

ideal situation where an observer is actively tracking a moving object, and knows ahead

how far the object will move courtesy of a prediction system, so that the optical 
ow

of such moving target being followed is e�ectively zero. But this observation cannot be

made easily in a motion tracking system when the motion parameters of the camera is a
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function of how far the object has moved in a certain time interval. In other words, if we

have a passive system whose actions are triggered by changes that are occuring in the real

world, then it is unlikely that the passive system can maintain the tracking operation on a

moving object without non-zero optical 
ow input. However, the observation still holds if

one is to consider that the optical 
ow of the moving object produced is the displacement

of such object with respect to the image plane before the motion has started and after

the motion is completed.

Some subspace methods and center-surround motion operators for recovering ob-

server translation [Heeger et al., 1991] and a least squares method to solve the bright-

ness change constraint equation for the motion parameters in the case of known depth

[Peleg and Rom, 1990] have been introduced. These methods, however, may not be suit-

able to apply in a real-time system due to the fact that the motion parameters must

be recovered before di�erent components can be identi�ed and that extensive amount of

computation are usually required.

The work by Nelson addresses the problem of identifying independently moving ob-

jects from a moving sensor [Nelson, 1990]. Two methods are discussed, one making use of

the information about the motion of the observer, and the other using knowledge about

how certain types of independently moving objects move. The implementations that

run in real-time on a parallel pipelined image processing system are described. The �rst

method, called constraint ray �ltering, is based on the idea that in any rigid environment,

the projected motion of any point is constrained to lie on a one dimensional locus in the

velocity space whose parameters depend only on the observer motion and the location of

the image point. An independently moving object can be detected because its projected

velocity is unlikely to fall on this locus. The restriction is that observer's motion has to

be known prior to the computation. The second method, known as the animate motion

method, uses the idea that the observer's motion is generally slow and smooth, whereas
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the apparent motions of independently moving objects are comparatively changing more

rapidly. The limitation of this method is that it is insensitive to smoothly moving ob-

jects. These methods are in general quite resistant to noise, and can make use of motion

information of low accuracy. Both methods have been successfully implemented on the

Datacube MaxVideo system, and an update rate of 10 Hertz is achieved. Our system is

like Nelson's since it combines motion, real-time processing, and known parameters of

the observer's motion.

Some researchers have recently said that it is easier to detect tracking signals in active

visual following than in passive tracking, as motion blur emphasizes the signal of target

over the background [Coombs and Brown, 1992].

2.3 Integrating Stereo and Optical Flow

Stereoscopic motion analysis combines stereo data and motion data computed from the

binocular images sequence. It relies on the dynamics of the scene. Stereoscopic image

analysis usually requires images to be taken from the same scene at the same time

from two parallel viewing points lying on a horizontal line. Matching techniques have

been developed to compute stereo disparities from the left and right images pair, as

in [Marr and Poggio, 1976] [Drumheller and Poggio, 1986] [Fua, 1991], so that the 3D

locations of the image points can be recovered providing that the geometry of the stereo

cameras con�guration is given. Real motion in the 3D world projects to 2D images to

produce apparent motion in the image plane known as optical 
ow. A simple correlation

method can be used to compute optical 
ow, the 2D motion vector. A reliable coarse-to-

�ne matching technique has been developed in [Anandan, 1989]. Some simple, e�cient,

and robust parallel motion and stereo algorithms, as presented in [Bultho� et al., 1989]
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[Little and Gillett, 1990], can also be used.

The 3D motion vector for each image point can therefore be computed using both

stereo and optical 
ow information. The 3D motion parameters, with respect to a world

coordinate system, can then be recovered for a corresponding group with consistent

motion vectors.

Previous work in combining stereo and optical 
ow was mostly aimed to either solve

the correspondence problem [Waxman and Duncan, 1986], or to recover the motion in

depth parameters [Balasubramanyam and Snyder, 1988]. Stereo data provides absolute

depth information as additional constraints. These constraints will likely reduce the

computation needed as compared to the situation where the motion parameters are

to be determined without the depth, even though it has been shown that information

about depth, structure, and motion of objects relative to the observer can be determined

from optical 
ow alone. Numerous experiments have also con�rmed that a binocular

camera system provides a more robust sensing mechanism while operating under realistic

conditions. Some work on extracting 3D motion and structural data illustrates that

it makes more sense to work in 3D but at the cost of being very sensitive to noise

[Zhang and Faugeras, 1992].

2.4 Active Vision, Behavioral Vision, Animate Vi-

sion, and Passive Vision

An important idea in current computer vision research is that the vision process is

dynamic rather than static [Clark and Ferrier, 1988] [Ballard and Brown, 1992]. As a

result of various work done by di�erent research groups, several coherent themes have

emerged. The use of active sensing to continuously gather information has received
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considerable attention. Issues on how to react to the rapid changes perceived and how

to control the visual sensors have been the main foci in most studies.

Active vision, as considered by most researchers, refers to the process of making a

vision problem that is ill-posed into a well-posed one, or in other words, converting an

underdetermined problem into an overdetermined one by changing the parameters of

the visual observer. The two common tasks of any active vision system are to �gure

out where to look next, and to carry out the motion that will let one look there. The

class of active vision algorithms shares the idea of using an observer actively providing

constraints that can simplify computation of image features, and help eliminating am-

biguities. Active vision algorithms can be more robust than static algorithms, and are

often computationally e�cient since irrelevant information is ignored, so that the process

for �nding a solution is easier and the results are more reliable.

In recent years, research at the University of Rochester has re
ected the theme that

understanding the phenomenon of intelligence and discovering how to produce an arti�-

cial one must proceed in the context of behaviour [Nelson, 1991]. Behavioral approach to

AI, vision in particular, has received considerable attention as it is observed that most

ideas for machine intelligence are inspired by the abilities of animals, particularly hu-

mans. One important strategy that has been used is to throw out as much information

as quickly as possible, since the total quantity of information contained in a visual signal

often exceeds the capacity that any system can handle. The vision system has to keep up

with the pace of the world, and it does not compute all things at all time, but only what

it needs at a certain time. As a result, the amount of representation that is required may

be drastically reduced, thus freeing up the valuable limited computational resources.

To emphasize the focus on the human-like aspects of vision and control schemes,

the term animate vision was introduced. Animate vision is a framework for sequential
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decision making, gaze control, and visual learning [Ballard and Brown, 1992]. As stated

in the report, the interactionist approach is based on the idea that the world and the

perceiver should participate jointly in computation, and that neither is complete without

the other. For instance, the world can be viewed as an external memory, where gaze

control positions the eyes appropriately at the point of application to allow decisions to

be made.

Prediction and perhaps learning are the most important ingredients that distinguish

active systems from passive ones. If the goal of an active vision system is to track a

moving object, it may have to �rst actively explore the environment to look for a speci�c

target to follow, with or without recognition. A prediction engine will cooperatively

command the observer to track the target, in addition to the signals returned by the

motion detector. The behaviour of the visual target learned through such active sensing

helps to strengthen the reliability of the responses made in the unpredictable environ-

ment. In passive systems, however, the observer's motion is solely the reaction to the

changes perceived. The importance of this type of reactive responses is captured by

Brooks' subsumption architecture, and his idea of using very little representation when

behaviours are taken to be the fundamental primitives [Brooks, 1987].

2.5 Gaze Control

Humans have several interacting control systems that stabilize gaze against ego-motion

and follow moving targets. Recent research in gaze control mechanisms has been mostly

to replicate this important behaviour in a real-time computer controlled environment.

Due to the fact that the processing is inevitably computationally intensive, parallel

computer systems and specialized image processing hardware are needed. However,
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the strategies used for gaze control must be cooperative with the hardware and e�cient

enough so that the system can interact with the world and has active control over its own

state in a timely and consistent manner. Gaze control is made up of two subproblems:

gaze holding and gaze shifting. The main concern is with gaze holding, the operation of

maintaining �xation on a moving object with the cameras on a moving platform.

There are a few reasons why we need gaze control. Functionally, we want to change

the direction of gaze from one position to another, and to �xate an object to minimize

motion blur. Being able to �xate an object allows the observer to gather more information

for further analyses. In theory, it has been pointed out that the object of interest

should be kept at the center of the images to obtain higher precision, and that the

greatest amount of information can be extracted. In addition, segmentation is known

to be a problem as it is di�cult to separate an object from the background in a scene

without recognition, but it is hard to recognize the object without separating it from

the background. Gaze control can help to solve this \chicken-and-egg" problem by

separating a moving object from background without recognition, based on the idea

that stabilizing one point in the scene that is moving relative to the observer induces

target \pop-out" due to motion blur induced in the non-stabilized parts of the scene

[Ballard and Brown, 1992].

The three types of controls which are common and necessary in a robotic camera

head, or Eye-Head, system are panning, tilting, and verging.

Panning refers to the process of rotating the inter-camera baseline about a vertical axis.

The pan motor thus will move the head in the horizontal direction.

Tilting refers to the process of rotating the inter-camera baseline about a horizontal

axis. The tilt motor will be responsible for vertical motions.
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Vergence is the process of adjusting the angle between the eyes, or cameras, so that

both eyes are directed at the same world point. It is an antisymmetric rotation of

each camera about a vertical axis.

With these three degrees of freedom, one can theoretically place the intersection of the

optical axes of the two cameras anywhere in the three dimensional volume about the

head.

2.5.1 Real-time Binocular Gaze Holding System at Rochester

David Coombs and his colleagues have successfully designed and implemented a gaze

holding system on a binocular camera head system at the University of Rochester

[Coombs, 1992]. Their work has focussed on the problem of using visual cues alone

to hold gaze from a moving platform on an object moving in three dimensions. The sys-

tem implemented on the Rochester head demonstrates that gaze holding can be achieved

prior to object recognition, assuming smooth object motion. The vergence and pursuit

systems perform complementary functions in the sense that the pursuit system centers

the target, and the vergence system converges on it. Interestingly, the vergence system

minimizes the disparity on the target being foveated, and the pursuit system requires

that the target be properly verged before it can locate it and center it on the coordinate

system.

The vergence system estimates vergence error based on stereo disparity. Disparity

is measured with a cepstral �lter. The cepstrum of a signal is the Fourier transform of

the log of its power spectrum, and the power spectrum is just the Fourier transform

of the autocorrelation function of the signal [Olson and Coombs, 1991]. The disparity

estimator will report the disparity that bests accounts for the shift between the images,
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in this case being the tallest peak in the spectrum. The control system will then generate

smooth eye movements to correct the vergence error.

The pursuit system attempts to keep the visual target centered in the cameras' im-

ages, assuming that the vergence system can keep the cameras verged on such target.

The visual target will be the object that is both near the center of the current image

and in the region called horopter, which is the 3D locus of points with zero disparity

at the current vergence angle. The core of this subsystem is the Zero-Disparity Filter

(ZDF) [Coombs and Brown, 1992]. This �lter does not measure disparity, but it locates

the portions of the images that have zero stereo disparity. It is a non-linear image �lter

which suppresses features with non-zero disparity, and can be implemented in the real-

time system using the total mask correlation method [Coombs, 1992]. The windowed

output of this �lter will be the input to the pursuit system, which guides the cameras to

pan and tilt so that the object, with zero disparity, will be centered on the image.

Various control techniques have also been implemented to generate smooth camera

movements. In particular, the ����
 predictor, a linear Kalman �lter, is used to smooth

the verging angles, and to smooth and interpolate the target positional signal, assuming

that the target signal has uniform acceleration [Coombs, 1992]. The ����
 predictor

is also used to predict delayed signals, which can lead to more accurate tracking.

Delay can cause a system to be unstable. The two major factors causing delays are

computation and transmission. Researchers at the University of Rochester have used

Smith prediction and multiple Kalman �lters to cope with delays, and the results have

been satisfactory.



Chapter 3

Proposed Techniques and Control

Theories

3.1 Objectives, Purposes, and Assumptions

The main objectives of this project are to establish some simple control theories to

monitor and to react to changes perceived in the real world, and to apply such theories

in the implementation of a three-dimensional motion tracking system on the robot head

installed in LCI. The con�guration of this LCI binocular camera head system will be

described in the next chapter. The primary goal of our tracking, or gaze control, system

is to center the image of the object of interest as quickly as possible. Such a passive

motion tracking system must be comprised of a module to detect moving objects, a

module to select the visual target, and a module to respond in the form of gaze shifting

and verging the binocular head.

Displacement is perhaps the most explicit and direct form of measurement to rep-

18
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resent the change in locations of an object that appears in the images input through a

camera. Optical Flow is the motion displacement which allows the determination of

how far the object has moved, usually during a short time interval. Stereo Disparity is

the displacement measure which shows the di�erence in the relative locations of a point

registered in the left and the right stereo images grabbed at the same time. It is worth

noting that stereo disparity is inversely proportional to the depth measured with respect

to the cameras. Our goal is to �nd out how to make appropriate use of optical 
ow

and stereo disparity to perform tracking in a real world situation, and to stabilize the

cameras' movement.

It is also our interest to investigate how di�erent computer systems, namely, the

Datacube MaxVideo system and a Transputer network, which run at di�erent rates, can

communicate and cooperate in a real-time environment. The motion tracking system has

to be designed so that responses can be made correctly and timely in the unpredictable

environment, and that it can keep up with the pace of the world. The demonstration

systems implemented in this project to illustrate our theories are quite simple, but they

do form, in our opinion, the basis of more sophisticated motion tracking systems.

Our control theories are designed to be as general as possible, but it is inevitable that

assumptions have to be made as there are many uncertainties and exceptions which are

very di�cult to handle without using special or complicated procedures. The following

is the list of assumptions that we will undertake in our theories:

1. Much of the vision research to date is concerned with rigid objects, since non-rigid

objects are very di�cult to handle without prior knowledge about their behaviour.

Therefore, to keep this project tractable, we will assume that we are only dealing

with the motion of rigid objects.

2. We will assume that displacement measures are being returned continuously in
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a frame-by-frame manner. This mechanism is analogus to the natural ability of

humans to detect changes caused by a moving object in the way that the changes

can be seen in a continuous fashion.

3. The technique used in measuring displacements is fast and accurate, and that

dense and reliable integer valued stereo disparity and optical 
ow values are always

produced.

4. The camera geometry is known. In particular, the focal length and the baseline

separation of the stereo cameras used should be provided.

5. We will assume that the motion of any object is slow , and smooth enough to work

with. This assumption reveals the fact that every system has its limits, and it is

unreasonable to expect our motion tracking system to work in all scenarios, such

as following a high-speed bullet.

6. The motion of the observer will also assume to be slow, and smooth. This allows

the measuring technique to work on a smaller range of possible matches.

7. The motion tracking system is expected to be run on some special purpose image

processing hardware and a multi-computer system, so that the control procedures

can be designed to take advantage of the powerful computational resources.

8. We assume that the motion parameters of the observer are known in the entire

system, or available upon request.

9. For the sake of simplicity and ease of illustration of our ideas, we assume that

optical 
ow is computed from the viewpoint of only one camera, presumably the

left camera.

10. We will not have any other speci�c knowledge of the objects we are dealing with.
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3.2 Perception-Reasoning-Action Control Scheme

The perception-reasoning-action (PRA) control loop is commonly used in traditional AI

problem solving techniques. In this control strategy, three subsystems are generally used:

the perception system provides input to the reasoning system, and the task to be

performed by the action system depends on the output of the reasoning system (see

�gure 3.1). PRA loop is interesting and popular due to the fact that it is a fundamental

concept which is easy to understand. It even resembles one of the ways humans solve

problems. In the human visual system, the visual input is often analysed without con-

scious attention before we proceed with our actions. This phenomenon can easily be

found in many of our activities such as driving a car, playing video games, or visually

following a 
ying plane.

Perception

Observed
Changes

Reasoning

Task to be
performed

Action

Figure 3.1: PRA Communication
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Our control theories will follow the PRA framework. Changes in the environment

will be observed from a pair of stereo cameras by the perception system. The reasoning

system will process the changes represented by optical 
ow vectors and stereo disparities,

�nd out the new location of the moving target, and provide information for the action

system to track the target by physically moving the robot head. Although the data


ow appears to be sequential within the loop, the three subsystems are actually parallel

processes running concurrently. For example, the perception process will continue to

monitor the changes while the reasoning processes are busy analysing the data. Other

processes can be actively communicating with one another at the same time.

3.2.1 Perception

The role of the perception system is to pay attention to the changes in the environment.

Changes can be computed and returned as an image in minimal time by powerful image

processing hardware. As a result, a continuous 
ow of these images will be produced

for further processing. In consideration of the delays that are coupled with the com-

putation in the reasoning process, special control procedures are needed to ensure that

these images would not be lost and that all data would be available when the reasoning

process needs the data. We introduce the idea of using an active monitor and an ac-

cumulation process to keep track of those data provided by the optical 
ow images. As

a consequence, we are observing the world and monitoring the changes in a continuous

fashion, without any representation of the world, the objects1, and even the observer.

Besides, the perception system does not play an active role in passing data to the rea-

soning system once they are available. In fact, the transfer of data is demand driven,

1We are referring to special structural representation for recognizing objects. It should be obvious

that optical 
ow vectors represent the locations and sizes of the moving objects, but not the shape,

color, or other recognizable features.
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but the perception of changes is always active.

The perception system is composed of three subsystems, each being a parallel process

communicating with the other process through message passing (see �gure 3.2).

Correlation

Process

Active Optical Flow

Accumulation

Processes

Optical Flow

constantly monitoring

  for new data from

      the correlation

      process

Optical Flow

and Stereo

Disparity

Monitor

Figure 3.2: The Perception System

3.2.1.1 Computing Optical Flow and Stereo Disparity

Our control strategies rely on the assumption that reliable displacement measures can

be produced rapidly. It is anticipated that the displacements computation would be

performed on high-speed computers, so that results are available at a reasonable rate. A

simple correlation technique, such as the sum of squared di�erences (SSD) or the sum

of absolute values of di�erences (SAD) algorithm, can be used e�ectively because the

range of motion is expected to be small with the slow moving objects, and the range of

disparity is not expected to be large in one dimensional space. Some correlation matching

techniques have been shown to be capable of producing dense 
ow maps at an acceptable
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level of accuracy [Fua, 1991] [Anandan, 1989] [Barron et al., 1992].

Correlation should be performed on the whole image. For every point of the image,

an array of correlation scores can be computed by taking a �xed window in the �rst

image, and a shifting window in the second. The pixel that has the best match is the

one with the optimal correlation score, most likely the minimum number if SSD is used.

A veri�cation process can be used to ensure that data returned is reliable, providing

that any extra computation would not seriously degrade the overall performance and

response time.

It should be pointed out that the more frequently the optical 
ow image is returned,

the more changes the perception system should be able to capture from the real world.

This observation can be made when trying to compare the absolute changes captured

by x frames versus 2x frames returned by the matching operations at a �xed time inter-

val. Given the fact that the size of the correlation window will not change during such

operations, the 2x frames sequence should contain more accurate information about the

motion of the moving objects.

3.2.1.2 An Active Monitor

Our design of the motion tracking system has taken into consideration that di�erent

programs running on di�erent architectures have to communicate and cooperate in real-

time. In the likelihood that the processes for computing and returning optical 
ow and

stereo disparity will be running on some special purpose image processing hardware,

other programs, possibly running on di�erent platforms or con�gurations, attempting

to work on such returned data should employ a process responsible solely for receiving

the data. This frame grabbing process, which we denote as the active monitor, waits for

data to come in, and keeps track of the data until it has been properly stored for later
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retrieval by the reasoning system. This observing or monitoring process is termed active

since it is an independent process which has the initiative to grab a frame whenever it

is available without having to wait for instructions to do so.

This particular observing process is simple but plays an extremely important role in

synchronizing the communication and uniting the di�erent modules. Optical 
ow and

stereo disparity images will be pumped out continuously regardless of whether or not

the reasoning system is prepared to process the data. It is extremely important that

this observing process be executed at a rate no slower than the rate the displacement

measures are being pumped out, or otherwise, the loss of any data frame might greatly

contribute to the inaccuracies of the overall system. This is especially critical since we

accumulate displacements over several frames.

3.2.1.3 Optical Flow Accumulation

When using parallel processes running on some multi-rate systems to perform motion

tracking, there is usually no guarantee that a recipient process, in most cases being a pro-

cess in the reasoning system, can be freed to receive and work on the displacement data

once they become available through the production of the correlation system. However,

it is unacceptable, in a real-time system, for any process to block itself without carrying

on with its own duties simply because some recipient processes are in busy states and

are not ready for the data. The active monitor provides the perception system an oppor-

tunity of paying attention to all displacement data produced by the correlation system

during one cycle of the PRA loop. Such data must then be properly stored and managed

so that it can still be accessible at the appropriate time.

The two di�erent types of displacement measures used in this motion tracking system

have di�erent characteristics. Optical 
ow can be considered as temporal data as it
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represents how and how much an object has moved within a certain time period. A

sequence of optical 
ow images can thus provide the motion path over a lengthy period of

time. Stereo disparity gives the observer an idea of how close an object is at a particular

time instant. Although one can in general detect moving things from a sequence of

stereo disparity images, extra e�ort for matching is required, and is usually not desirable

if optical 
ow is already present.

Knowing the fact that optical 
ow vectors represent changes in locations over time,

we suggest adopting the idea of accumulating optical 
ow vectors for storing such changes

in order to make them accessible for later uses. The accumulation is basically simple

vector addition, and it works as follows:

Let OF Px

t0;t1
be the optical 
ow vector representing the change of location of a point

Px from time t0 to time t1.

Similarly, OF Px

t1;t2
, OF Px

t2;t3
, ..., etc, will be available as time goes on.

We can compute the absolute change of location of such point Px from time t0 to

time t3 by adding the three vectors OF Px

t0;t1
, OF Px

t1;t2
, and OF

Px

t2;t3
, i.e.,

OF

Px

t0;t3
= OF

Px

t0;t1
+OF

Px

t1;t2
+OF

Px

t2;t3

In general, (referring to �gure 3.3)

OF

P

t0;tn
= OF

P

t0;t1
+OF

P

t1;t2
+ :::+OF

P

tn�1;tn

It should be pointed out that several of these accumulation processes can operate

concurrently on di�erent parts of the 
ow �eld, so that time delays due to accumulation

can be minimized.

As a result of accumulation of optical 
ow vectors, the absolute changes in 2D loca-

tions of the moving objects during one cycle of the PRA loop can be safely stored until
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OF 0,1

OF 1,2 OF n-1,n

OF 0,n

Figure 3.3: Optical Flow Accumulation

such data is demanded by the reasoning system. Stereo disparity data does not require

any special procedure to manage, as we are only interested in knowing the depth of an

object at a particular time instant. The 3D motion path of a moving object can easily

be constructed even if we pay attention to the depth only at the beginning and ending

of one PRA cycle.

By adapting these simple ideas of using an active monitor and the accumulation of

data, our motion tracking system with di�erent modules running on various computer

systems can communicate without having to worry about the timing and synchronization

problem. In addition, simple but reliable correlation matching techniques can be used

instead of complicatedmatching procedures. The determination of optical 
ow and stereo

disparity will be a continuous process, instead of being demand driven, i.e., matching is

performed automatically at all time, as opposed to having the matching process activated

by the reasoning system for request of data.
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3.2.2 Reasoning

The main objectives of the reasoning2 system are to analyse the accumulated optical 
ow

data along with stereo disparities, and to pick out the object to be tracked. The input to

this reasoning system is obviously the displacement measures provided by the perception

system. Data will be available on request in this interactive parallel environment (see

�gure 3.4).

Perception Reasoning

data request

accumulated optical flow

and stereo disparity

Figure 3.4: Data Transmission between the Perception and Reasoning Systems

Three procedures are used in our design to select the visual target to follow. The

background optical 
ow caused by the motion of the robot head will be taken care of by a

cancellation process. The revised accumulated optical 
ow will be used by a segmentation

process to �nd the di�erent connected components. The object of interest can be chosen

among these components as either the region with the largest area, the region with the

highest velocity, the region which is closest to the camera with a reasonable size, or

various combinations of the above.

2One might argue that there isn't much reasoning, as in logical reasoning, involved in this motion

tracking system. The term \reason" used here is in the context of attempting to generate some proofs

to justify the actions to be performed, and hence it is more than just simple perception.
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3.2.2.1 Cancelling Background Optical Flow Caused by Ego-Motion

During each cycle of the PRA loop, the reasoning system is responsible for analysing the

accumulated optical 
ow produced by the perception system before instructing the action

system to move the robot head. During such time delays of processing the displacement

data and moving the head, objects will continue to move in the real world and the

accumulation of optical 
ow will continue to operate as a separate parallel process. Not

only does such accumulation record the changes caused by moving objects, it also records

the background optical 
ow caused by the moving robot head.

The dominant motion in the motion �eld is usually generated by the moving cameras,

if one assumes that the moving object is much smaller than the background environment

in the �eld of view of the cameras. The background optical 
ow caused by ego-motion

makes the job of detecting moving objects much tougher than with stationary cameras.

The background 
ow perceived obviously travels in the opposite direction of the moving

cameras. In theory, the whole scene with respect to the cameras will shift during the

cameras movement, regardless of whether or not there is any moving object in view, but

with the expection that objects moving in the exact same speed and direction with the

cameras will appear stationary in the image sequence.

The magnitude of the background optical 
ow is a function of depth with respect

to the cameras and the ego-motion parameters. Closer objects appear to have a larger

background 
ow than farther objects. This phenomenon certainly leads to an extremely

complex pattern of 
ow �eld for analysis. To compensate for such apparent motion of

the background caused by camera motion, we suggest using a method of cancellation to

reduce the e�ect of the background 
ow with the aid of stereo disparity, and the known

motion parameters of the cameras.

As part of the initialization process of our motion tracking system, a table of depth to
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ow value mapping �gures will be established. This special mapping table can be indexed

by stereo disparity, and it contains how much background optical 
ow is expected to be

perceived if the cameras move in one degree in certain direction at a particular depth

value, for instance, one degree of panning to the right with stereo disparity of +2 may

generate a -3 
ow value. Separate entries for panning and tilting motions are required.

This table can be constructed using the following simple procedure. Assuming that

all the depth values the correlation system can handle are represented by objects that

are within the reach of the cameras. We also assume that all objects will be stationary

during this process of initialization. For each disparity value within the correlation range,

we �rst �nd out a representing point in the image that has the particular disparity value,

or depth, as the reference point for determining the motion displacement. The next step

is to move the cameras at a known but small angle, and then perform correlation on the

images taken before and after such movement. Several repeating moves with di�erent

move angles may be required in order to get better approximations of the mapping values.

Given the facts that we know how much the cameras have moved during one cycle,

and that we have access to the stereo disparity data before and after such cameras'

movement, we are able to �rst determine the depth of any point in the motion �eld, and

then compute the expected background 
ow for that point using the special mapping

table.

Cancellation is therefore a simple procedure of subtracting the expected background


ow from the motion �eld. In the ideal situation, expected background 
ow should be

equal to the apparent motion perceived during the accumulation process. However, this

is not always the case as time delays for both accumulation and correlation fail to ensure

that the accumulated optical 
ow would contain the exact changes that have occurred

in the real world. Also, any round-o� error in computation is always a factor causing



Chapter 3. Proposed Techniques and Control Theories 31

such inequality. Nevertheless, cancellation creates a \pop-out" e�ect in the sense that

although the background optical 
ow cannot be eliminated completely, its unstablized

e�ect should be drastically reduced. In other words, the optical 
ow incurred by any

moving object should be signi�cantly larger than the background 
ow after cancella-

tion. As a result, the revised accumulated optical 
ow �eld should re
ect the correct3

displacements that the moving objects really caused.

3.2.2.2 Segmenting the Optical Flow Field into Connected Components

The next step of the analyses is to segment the revised accumulated optical 
ow �eld

into various connected components. A common de�nition of an object encountered in a

segmentation algorithm is that it is a set of tokens with the same kinematic parameters

[Zhang and Faugeras, 1992]. By applying such concept to our system, an object can

be a set of connected points with the same or extremely close optical 
ow features. A

connected component can therefore be interpreted as the group of motion vectors that

corresponds to an independently moving object in the scene.

Optical 
ow based segmentation methods have all the drawbacks associated with the

computation of optical 
ow. It is our hope that the correlation errors can be minimized

by the smooth motion constraint. Any segmentation algorithm which is fast and reliable

can be employed in our motion tracking system.

Adiv's approach for segmentation �rst partitions the 
ow �eld into connected seg-

ments, and then groups the segments under the hypothesis that they are induced by a

single, rigidly moving object [Adiv, 1985]. Such technique has been shown to be rela-

tively reliable, but the extensive computation involved makes it an undesirable candidate

for use in a real-time system. Similarly, Jain's technique for segmentation [Jain, 1984],

3Or an extremely close approximation.
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which is based on consistency of the focus of expansion, also requires large amount of

computation.

A simple labelling or tagging algorithm based on 4-connectedness on a 2D plane has

been used in our implementation to partition the 
ow �eld using optical 
ow features.

Such algorithm will be described in the next chapter. A region is 4-connected if every 2

pixels can be joined by a sequence of pixels using only up, down, left, or right moves.

Optical 
ow vectors corresponding to a moving object may not be equivalent due

to the reason4 that structural di�erences of the surfaces of an object cause the vectors

to vary slighty, or that noise in the images or errors in correlation matching contribute

to the inaccuracies of the vectors. In either case, thresholds ought to be used in the

segmentation process to ensure that vectors should be grouped together if their features

match to a certain degree. Such features, for determining whether or not a vector should

belong to a region, must be unique or have strong potentials in classifying the 
ow vectors.

The magnitude and direction of a vector are good candidates for de�ning connectedness

in any vector segmentation algorithm. Two vectors can be de�ned to belong in the same

region if the di�erences of their magnitudes and directions are less than some pre-de�ned

thresholds.

The output of this segmentation process is a list of connected components, each

being described by its location, size, magnitude of the average 
ow, average disparity,

and possibly other symbolic descriptions. A selection procedure is then required to pick

out one of these components as the visual target.

4Another well-known cause is the aperture problem, that is, the image data may not be su�cient to

determine the optical 
ow to more than just a linear collection of velocities.
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3.2.2.3 Picking the Visual Target

The input to this procedure are the connected components computed by the segmenta-

tion process, and the stereo disparities produced by the perception system. No object

recognition or any other features extraction process has been or will be used. This selec-

tion procedure must work on what is given as quickly as possible, so that responses can

be made in real-time. Such procedure must also take into consideration that multiple

moving objects can present at the same time, and there have to be some criteria for

picking a speci�c one out.

There are several options as to which connected component should be picked as the

visual target. Some of these options are:

� picking the region with the largest area

� picking the region with the highest average velocity

� picking the region which is closest to the camera

� using a combination of the above suggestions

Picking the region with the largest area without paying any attention to the velocities

is perhaps the most unstable method. It has been pointed out that the cancellation of

background optical 
ow does not guarantee to zero out all background 
ow because of

round-o� errors and errors in correlation matching. The largest connected component

can be the region containing the remains of all the background optical 
ow vectors, and

this is de�nitely not a target we are looking for.

One obvious choice for eliminating the picking of such background region is to pick

the region with the highest average velocity. This idea is inspired by the \pop-out"
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e�ect caused by cancellation. Although it is likely that the background region would

never get picked, noise is the major factor why this method is not robust, as the region

with highest average velocity can be one that is created by noise or errors.

More constraints will undoubtedly make the selection task much easier. Using stereo

disparities will give the connected components a three-dimensional look. In other words,

these components will be further segmented or layered in the new dimension (see �gure

3.5).

The 2D look of the motion field The 3D look of the motion field

Figure 3.5: The Two-Dimensional and Three-Dimensional Looks of the Optical Flow

Field

Picking the region which is closest to the cameras is not a bad idea, if one considers

that the motion tracking system is one that should always be alert to attackers. However,

noise is again a big factor in disabling this method to work to its full potential.

A slightly di�erent idea is to pick the region which is closest to the zero-disparity

surface imaginatively created by the two cameras [Olson and Coombs, 1991]. If our

goal of motion tracking is to simply follow the moving object by panning, tilting, and
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also verging the robot head, then this is probably one of the better selection methods.

However, only regions with a reasonable size should be picked, if we want to eliminate

the noise problem, but it is rather di�cult to de�ne such condition based on what is

given. It is also an open question as to whether or not velocity should be a factor in this

selection method.

Since we are assuming that the system has no knowledge about any moving object,

perceptual grouping, the property of human visual perception to perceive discrete blobs

moving together as a single object, cannot be modelled in our motion tracking system.

Such de�ciency is certainly a big factor causing errors in the location of an object during

tracking, in the case where the motion �eld corresponding to the rigid and contiguous

visual target is split into several pieces because part of such object is being occluded.

Some model-based region growing techniques, e.g., [Shio and Sklansky, 1991], have been

presented to solve such problem, but it is beyond the capacity of our system for the

reason that object models must be used.

Picking the right region to track is perhaps a more di�cult and ambiguous task

than initially imagined. It certainly relies heavily on how the motion tracking system is

de�ned to behave, and since there are many di�erent ideas that can be explored, there is

de�nitely no single solution which would work in all scenarios. Perhaps experimentation

can provide some guidelines as to how a con�dence measure can be computed to decide

which method is best and more robust to use.

3.2.3 Action

The primary goal of the action system is to respond to the locations change of the objects

in the world by gaze shifting and verging the robot head. It should be pointed out that

both gaze shifts and vergence movements are rotational motions with respect to certain
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axes of the robot head.

The reasoning system provides information as to which region should be picked as the

visual target. A reference point should be retrieved from such region so that the motion

parameters for the robot head can be computed. The centroid of the target region is

possibly the best reference point, and is also relatively easy to calculate if the labelling

procedure of the reasoning system can collect some additional statistical data.

Computing the motion parameters for the robot head is a process of converting a


ow value to a gaze shifting command, and converting a disparity value to a vergence

movement command. The conversion an inverse process to the computation of the

expected background 
ow in the perception system. The special mapping table created

during the initialization procedures can be used here for computing how much the head

should pan and tilt. Knowing the depth of the region of interest, and how much its

centroid is o�seted from the center of the image, it is quite easy to work out the pan and

tilt parameters using the mapping table. Finding out how much to verge requires the

knowledge of the focal length of the cameras. A simple geometric equation, based on the

con�guration of the robot head, can be used to compute the vergence angle adjustment

which will drive both cameras to point at the centroid of the visual target. More details

on computing the motion parameters will be presented in next chapter.

Although the reasoning and action systems are established to be parallel processes,

they are perhaps not intended to be concurrent or independent. The reasoning system

should wait until the action system �nishes moving the robot head before working on the

next set of accumulated optical 
ow data (see �gure 3.6). This way, the accumulation in

the perception system can take in account how much apparent 
ow has been caused by

the action system, and allows the cancellation process in the reasoning system to work

with better approximations.
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Reasoning Action

signal to continue operation

after the action has been

performed

Instruction for tasks to

be performed

Figure 3.6: Communication between the Reasoning and Action Systems

The movement carried out by the robot head should be slow and smooth, so that

the correlation system can generate less mismatches due to the fact that only a limited

range of displacement measures is being focussed on.

By following this simple set of control strategies, we should be able to allow our

passive motion tracking system to center the image of the object of interest in real-time.

3.3 Discussion of a Prediction System

Prediction is the key to stability of interacting closed-loop control systems with time

delays [Brown, 1989]. Time delays are usually caused by interactions among di�erent

control systems, processes of acquiring real data, and computations performed on such

data. For any real-time system to be successful in simulating or exhibiting realistic

behaviour found in biological systems, it is often necessary that the response time of

such system be as minimal as possible.

Our proposed control scheme is aimed to function as a passive motion tracking sys-

tem. It is certainly our hope that by using powerful computer equipment, the response

time during each PRA loop can be minimized to an acceptable level of operation. How-
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ever, in practice, such assumption usually leads to unexpected breakdowns in unforeseen

circumstances. In order to keep up with the pace of the world on a regular basis, a

prediction module can assist the operation of the motion tracking system by indicating

what are to be expected in future states.

A prediction module, possibly composed of a Kalman �lter as used in [Singh, 1991]

or [Matthies et al., 1988], can undoubtedly enhance performance by compensating to

the time delays in computation and communication. Based on our smooth movement

constraint on both the moving objects and the moving observer, we can deduce that

velocity changes will also be slow and smooth. This observation can be used as a key to

predicting how far the objects are expected to move away from their current positions

while the reasoning system is analysing the perceived data. Under this framework, the

prediction module outputs the estimated destinations of the moving objects based on

their current velocities, and the velocities changes previously undergone respectively.

The application of prediction in motion tracking involves having a mediator process

taken into consideration, for the visual target, both the estimated distance to be travelled

by such object during time delays, and the actual change in locations of the object

computed from the perceived data. Such process will then be responsible to compute a

corrective measure to drive the robot head to track such target. This is obviously a vast

improvement to a passive system.

Prediction allows a motion tracking system to look ahead to the future states, and

also allows the robot head to move ahead to the destination during time delays. That is,

the robot head will still be moving along with the object while data is being analysed.

This control scheme however contradicts somehow with the concept of being passive and

responsive. There are certainly many open questions, which require in-depth investiga-

tion, concerning the feasibility and methodology of applying such a prediction module to
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our proposed control scheme of motion tracking. As a result, prediction is not included as

part of our current study of designing and implementing a gaze control system. However,

it is clearly one area which needs to be explored in future studies.



Chapter 4

Implementation

4.1 Overview

This chapter describes the implementation of a real-time motion tracking system based

on the control theories presented in the previous chapter. The general hardware setup

for the LCI robot head will be described. Di�erent programs running on the Datacube

hardware and on the Transputer network will also be discussed in detail in this chapter.

The evaluation of our motion tracking system, the analyses and results of di�erent

experiments, and some suggested improvements will be presented in the next chapter of

this thesis.

4.2 Hardware Con�guration for the LCI Robot Head

This section describes the hardware con�guration of the binocular camera head system

installed in the Laboratory for Computational Intelligence (LCI) at UBC. The system

40



Chapter 4. Implementation 41

consists of a robot head, or otherwise known as the Eye-Head, and a special purpose

image processing system together with a multicomputer system, both being connected

to a host computer (see �gure 4.1).

Correlation is done on a Datacube MaxVideo-200 system, which has a pipelined

architecture. Digitizing of images of size 512 by 480 on the MaxVideo system can be

performed at video rate, i.e., the rate of 30 frames a second. Processing then proceeds

at 60 frames per second. Processing smaller images takes correspondingly less time. The

Datacube system is attached to the VME bus of the host workstation.

A network of T-800 Transputers running at 25MHz is also connected to the VME

bus of the host, a Sun SPARCstation 2 with 32 MB RAM. Each Transputer processor

has at least 2 MB RAM attached, with some special nodes, such as the frame grabber,

containing more memory. Each Transputer can be connected to another Transputer

through one of its four links by a custom-built Crossbar switch. The bi-directional link

is capable of transferring data at a speed of 20 megabits per second, which is roughly

twice the Ethernet data transfer rate. The Transputer network can share data with the

Datacube system via a MaxTran node, a special node consisting of a Transputer, a frame

bu�er, and a link to the MaxVideo board. More details on the Datacube hardware and

the Transputer network used in LCI can be found in [Little et al., 1991].

The LCI Robot Head contains a pair of Sony XC-77RR CCD monochrome cameras

mounted on a motorized platform. The focal length of the camera is 8.5 mm. Two

Cosmicar lenses, with manual focus and aperture control, are used. The cameras are

mounted on the platform approximately 20 cm apart. The output of the cameras can

be grabbed by either the Datacube system or a frame grabbing node in the Transputer

network, allowing more 
exibility in designing the image processing routines.

The robot head (see �gure 4.2) made by Zebra Robotics can be electronically con-
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A network
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Figure 4.1: Hardware Con�guration of the LCI Robot Head System
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Figure 4.2: The LCI Robot Head
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trolled to pan, tilt, and verge with respect to some axes (refer to �gure 4.3). The pan

axis has a 4:1 spur gear reduction ratio, while the tilt axis has a 3:1 bevel gear reduction

ratio. The pan and tilt axes are coupled, in that one revolution of the pan axis will cause

a one-third revolution of the tilt axis. The verge axis is driven by a 20 threads per inch

lead screw. Pittman motors are used, with each motor being connected to an HP encoder

board. The motor ampli�ers are driven by a digital-to-analog converter controlled by a

Transputer in the network. The encoder boards are linked to a special Transputer node,

and therefore the head motion can be controlled by software.

Tilt

Pan

Convergence

Divergence

Figure 4.3: Various Motions of the Robot Head

The pan axis supports motion ranging from roughly -150 degrees to +150 degrees.

The motion range for the tilt axis is -90 degrees to +65 degrees. The vergence angle of

a binocular system is the angle between the optic axes of its cameras. The maximum

vergence angle allowed is roughly 20 degrees. The velocities of the head motions can be

controlled by adjusting parameters during the head initialization process. The maximum

velocity of the head is approximately 120 degrees per second (dps) for panning, 150 dps

for tilting, and 15 dps for verging.
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4.3 Software Description

As suggested by our control theories, both the Datacube hardware and the Transputer

network will be used in our implementation of the motion tracking system. The role of

the datacube program is to compute optical 
ow and stereo disparity repeatedly, and

to return the data in a continuous 
ow of images. These images are put into the frame

bu�ers of the MaxTran node, allowing a Transputer process to access the data. Programs

running on the Transputer network will be responsible for storing and analysing the

displacement data, and for controlling the motion of the robot head.

Figure 4.4 shows the software design of the overall system. It also depicts the ar-

rangement and relationships of the di�erent software components implemented, along

with a brief description of the data 
ow in the network of Transputer programs. A circle

in the �gure denotes a Transputer node loaded with a program with a speci�c name, and

the number enclosed in the circle identi�es the particular Transputer node used for the

program. An arrow indicates the direction of the data 
ow from one Transputer node to

another. Data is being transferred via message passing in the Trollius operating system

running on the Transputers. The functionalities and purposes of each program written

will be described in detail in the following sections.

4.3.1 The Datacube Program

A datacube program has been written by Stewart Kingdon, one of our LCI sta�, to

compute optical 
ow and stereo disparity using the Datacube MaxVideo hardware. The

input images are grabbed from the pair of stereo cameras. The images are taken at 30

frames per second; we only use one �eld of the frame. The images are 512x240, our

Sony cameras average successive odd and even pairs so that we do not have missing data
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in the vertical direction. We smooth with a Gaussian before subsampling to 128x120

[Little et al., 1991]. An output image of size 128x512 is returned with the following four

subframes, which are in order: optical 
ow, stereo disparity, edges (zero-crossings of the

Laplacian of Gaussian), and Laplacian of Gaussian images (see �gure 4.5). Each of these

subframes has a default size of 128x128, which can be scaled to a lower resolution of

64x64 if needed. The output can be displayed on a TV monitor, in which di�erent colors

are chosen to represent di�erent optical 
ow values, and stereo disparities.

Optical
Flow Disparity

Stereo Edges r
2G

Figure 4.5: The Four Subframes in the Output Image of the Datacube Program

The range of motion to be considered is speci�ed in an input data �le to the datacube

program. The common range of motion used is [-2, +2] for vertical 
ow and [-3, +3]

for horizontal 
ow, and the range for stereo disparity to be considered is usually [-13,

+13]. The input data �le also contains some encoders used by the datacube program for

releasing the displacement data. Encoders are used so that only one optical 
ow image

can be returned with both horizontal and vertical 
ow at every pixel of the image. Any

program that requires access to optical 
ow or stereo disparity can read the particular

data �le used by the datacube program, and decode the encoded result. The data �le

also contains information of the color used for each optical 
ow or stereo disparity data

value. The datacube program is capable of returning about 10 128x512 output images

per second with the input range of motion and disparity mentioned above.

Simple sum of absolute values of di�erences (SAD) correlation technique is used in
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measuring optical 
ow and stereo disparity. A 7x7 correlation window is used in the

computation. Only the correlation range speci�ed in the input data �le will be consid-

ered. If there is no good match because of insu�cient information, then no correlation

result at that particular point will be returned.

4.3.2 The Transputer Programs

Trollius 2.1 operating system is used in our implementation of the motion tracking system

described as follows. Trollius is a programming environment designed for distributed

memory multicomputers [The Ohio State University, 1991]. The environment includes

an operating system, a user interface, a C compiler, and some libraries for C. A boot

schema, which speci�es the identi�ers and types of nodes, and their interconnections, is

required to set up the topology of the Transputer network. The current interconnection

of any two Transputers follow the regulation that link 0 connects to link 1, and link 2

connects to link 3. Programs written in C can be loaded onto the nodes after the booting

process has completed.

Various programs (refer to �gure 4.4) running in parallel have been written by the

author of this thesis to model our PRA control theories. The displacement data is �rst

handled by a G.R.S. program, which is responsible for grabbing the displacement data

returned by the datacube program, rearranging the data if necessary (e.g., resample),

and sending them to other processes. The optical 
ow accumulation (O.F.A.) program

will keep the optical 
ow in some pre-allocated storages, and send out the accumulated

data when requested by a process in the reasoning system. The Tag program will be

responsible to make such a request and to segment the accumulated optical 
ow into

di�erent connected components. The Front program acts as the commander of the

reasoning system to lead the data 
ow and to request that the accumulated optical
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ow be segmented. A decision process in the front program will select the visual target

from the connected components, and allows another procedure to compute the motion

parameters for the robot head. Such motion parameters, or motor commands, will be sent

to the Back program, which in turns instructs the robot head to move by sending signals

to the encoder boards, and to the digital-to-analog board. A special Stop program has

been written to send a quit signal to both the front and G.R.S. programs, requesting

that the ongoing operations be terminated.

4.3.2.1 The G.R.S. Server

The Grab-Rearrange-Send server acts as the active monitor of the perception system

responsible for dealing with the displacement data being pumped out from the datacube

program. This server is aimed to run on the MaxTran node so that data can be accessed

directly from the frame bu�ers. The data received in the frame bu�er will be the image

containing the four subframes as described in a previous section.

The grabbing process will constantly check for new data to arrive, and immediately

rearrange the new data if necessary. The rearrangement includes the possibility of re-

sampling the data to a lower resolution in order to speed up the response time. This

is certainly an optional service of the G.R.S. server, and should not be used unless it

is absolutely necessary. It should be noted that resampling of data is preferred to be

performed by the datacube program before the correlation process, so that displace-

ments show the measurements with respect to the image size after resampling, rather

than before resampling. Such ordering of events is crucial in later processes in which

o�seting errors might seriously a�ect any result, if resampling is done to the images after

displacements have been measured with respect to the higher resolution image size.

The �nal step is to send displacement data to the optical 
ow accumulators. Data is
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sent between two Transputer nodes via the message passing mechanism in the Trollius

operating system.

The G.R.S. server runs as a continuous loop, actively repeating the grabbing, re-

arranging, and sending operations without requiring any instruction from any parent

process. It is, however, alert to a quit signal indicating when such operations should

stop. The server is intended to run at a rate no slower than the displacement data is

being returned, and therefore, the workload of the server is assigned to be as minimal

as possible. It is necessary that the grabbing process be able to attend to all images.

However, it is anticipated that a single accumulation process may not be able to handle

the amount of data due to the time delays of processing, and as a result, a number of

optical 
ow accumulators, each responsible for processing a portion of the image, should

be employed to speed up the operations.

4.3.2.2 The Optical Flow Accumulator

In our current implementation, we elect to use three optical 
ow accumulators running

on three separate Transputers at the same time. On our previous attempts to accumulate

optical 
ow with only a single accumulator, images were lost because the accumulator

could not execute fast enough to manage all data.

Each of the three accumulators in the current system is responsible for processing

only one-third of the original optical 
ow image. The accumulation process is a separate

looping process actively working to manage the incoming data. The so-called foreground

process of the program is the one waiting for signals expressing the need for accumulated

optical 
ow. Two bu�ers are required for accumulation because one would not want to

block the accumulation process when there is a need to send data. As a consequence,

the two bu�ers will alternate their roles from time to time, one responsible to store
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accumulated optical 
ow data, and the other being used by the process attempting to

send data over to a recipient process on another Transputer.

Optical 
ow accumulation, as we described before, is merely simple vector addition.

The encoded optical 
ow data contained in the output of the datacube program will be

decoded into separate horizontal and vertical 
ow values, before they are being added

to the existing 
ow data. The actual accumulation works by �rst looking at the 
ow

values at the current pixel location, and then retracting the 
ow values at the position

where the current 
ow values direct to, and �nally adding these retrieved 
ow values to

the current 
ow values.

For instance, suppose we are trying to update the 
ow value of pixel (x; y). Assume

that

h flow0;i(x; y) = h

v flow0;i(x; y) = v

at time i. Then,

h flow0;i+1(x; y) = h+ h flowi;i+1(x+h; y+v)

v flow0;i+1(x; y) = v + v flowi;i+1(x+h; y+v)

where (i; i+1) denotes the new optical 
ow image.

The accumulation program is built so that an image is completely processed before

the next one is being attended to. This means that the image sending process of the

G.R.S. server will be temporarily blocked if the accumulation process is not really for

the data. The idea of queuing up images on this receiving end will not work, as once

the accumulation process falls behind the pace, it will not be able to catch up with the

real-data. Therefore, downsizing the images will be a more logical choice in this real-time

system, when time constraint is a major factor in performance.



Chapter 4. Implementation 52

Another common route to speed up response time, or to avoid image loss, is to

add more accumulators. This is the perfect solution in terms of utilizing resources and

maximizing the amount of data to be processed. Unfortunately, we are unable plug in

more optical 
ow accumulators to the current structure of the Transputer network, since

there are only 4 links connected to a single Transputer. It is possible to add in a layer of

optical 
ow transmitters, and therefore, allows more accumulators to work at the same

time. However, the time used for transferring data will increase signi�cantly, and it will

not likely help to speed up the operations by a signi�cant factor.

4.3.2.3 The Tag Program

The tag program is responsible for segmenting the accumulated optical 
ow into di�erent

connected components. The segmentation process is activated by the need of the front

program for picking a visual target. The number of tag programs, or workers, is equiv-

alent to the number of optical 
ow accumulators, in which each tag worker is paired up

with a particular accumulator at all time. The front program will broadcast a request

signal to all tag workers for connected components. Upon receipt of such signal, each tag

worker will request the accumulated optical 
ow be sent over by its respective coupled

accumulator, and then transfer the accumulated data to the segmentation process.

Based on our control theories, a cancellation process is used to reduce the unstable

e�ect of the background optical 
ow caused by ego-motion, before the segmentation

process can work on partitioning the 
ow �eld. Such cancellation process is integrated

into the segmentation process in our implementation, in the way that whenever the


ow values of a pixel are retreived from the 
ow �eld, the expected background 
ow

computed for such pixel will be subtracted from the 
ow values, resulting in a revised

pair of horizontal and vertical accumulated optical 
ow.
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The expected background 
ow values for each pixel is, in theory, calculated by mul-

tiplying the ego-motion parameters with the mapping values corresponding to the depth

of such pixel. A special mapping table, indexed by stereo disparity, is recommended

for use with the cancellation procedure. However, in our current implementation of the

motion tracking system, average mapping values, one for vertical motion and another

for horizontal, are used instead of a special table. This approach is adapted because of

the di�culty of establishing a reference point for each depth, without knowing for sure

that such a point will exist when the cameras are pointing at a random direction during

initialization. It is also our belief that since cancellation will not completely zero out

the background optical 
ow due to round o� errors and correlation errors, using average

numbers are as good in approximation and creation of \pop-out" e�ects as using a com-

plete table, whose entries are also subject to contain errors due to the use of correlation

matching. As a result, the initialization process will move the head in a certain degree

on each axis, and compute how much optical 
ow has been incurred, assuming that the

whole scene is stationary. Such procedure will be repeated a number of times, using

di�erent degrees of motion, before the average mapping values are derived.

We implement the segmentation process using a labelling algorithm. The magnitude

and direction of a vector are used as basic features for de�ning connectedness in our algo-

rithm. Two vectors will be loosely de�ned to belong to the same region, or match, if the

di�erences of their magnitudes and directions are less than some pre-de�ned thresholds.

The labelling algorithm works as follows:

For each vector v at position (x; y), its features are �rst compared with the

features of the region containing vector v1 at position (x; y� 1). If both

features match, then vector v should belong to such connected component,

and share the same tag (or label) with vector v1. A checking procedure is

required to �nd out if the region containing vector v2 at position (x�1; y) has
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matching features with the region containing vector v. If it is the case that

they match but do not share a common tag, i.e., the two regions have disjoint

lists of tags, then a merging process will be used to group the two regions

together so that both regions are combined into one connected component.

If the features of v do not match with the features of the region containing

vector v1, then the features of the region containing vector v2 will be compared

with the features of vector v. If they match, then vector v belongs to such

region and share the same tag with vector v2. Otherwise, vector v belongs to

a brand new region of its own, and will be assigned a new tag.

If either vector v1 or v2 does not exist because v is at the boundary line, then

no comparison will be performed. The algorithm continues until all vectors

in the 
ow �eld are grouped into some connected components. It should be

obvious that a connected component can consist of numerous tags, but each

tag can only belong to one unique region.

Consider the optical 
ow �eld in �gure 4.6 as an example. Assume that the
labelling process scans the �eld from left to right and from top to bottom. The
vector at position (4,3) starts a new connected component with tag number
1. Vectors (5,3) and (6,3) belong to the same region and are assigned the
same tag number since they have similar features with vector (4,3). The
vector at position (9,3) creates a new region with a di�erent tag number as
there is no 
ow value at positions (9,2) and (8,3). This particular region will
be merged to the initial connected component after the vector at position
(9,4) has been analysed. This is due to the fact that vectors (9,3), (9,4),
and (8,3) have similar features and should belong to the same region. As a
result, the initial connected component expands and its tag list also grows.
Similar procedures are applied to vectors (4,5), (3,6), and (2,8). The vector
at position (9,8) begins a new region since its features do not match with
those already examined. In this example, the labelling process �nishes with
two separate connected components, one with 39 vectors and containing �ve
tags, and the other with just 5 vectors and using only one tag.

The de�nition of connectedness should also include stereo disparity as a constraint
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Figure 4.6: An Example Optical Flow Field and the Result Returned by the Labelling

Algorithm

if we are to create a motion tracking system which works in three dimensions, i.e., to

pan, tilt, and verge at the same time. It is still an open question, however, as to how

the depth constraint �ts into the algorithm, as we try to avoid running into situations

where the 
ow �eld is overly divided into di�erent connected components. This situation

arises if the constraints used are too �rm, and that we may end up losing the target quite

easily. Similarly, if the constraints are too 
exible or loose, the whole 
ow �eld may not

be partitioned at all, and thus the segmentation process becomes useless. It should be

obvious that the e�ects of any constraint are based on the values of the thresholds used,

and it is our hope that subsequent experimentations can provide some useful and reliable

thresholds for the system.

During the segmentation process, a number of statistical data will be collected for

later computation. Particularly, the number of pixels in each region, and those that
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correspond only to horizontal motion, or vertical motion, will be keep tracked of. The

minimum and maximum boundary values of each component are useful in future pro-

cesses such as merging and determining the rough positions of the region. The various

sums of vertical optical 
ow, horizontal optical 
ow, and stereo disparity within each

connected component are computed. A stereo disparity histogram is constructed to de-

termine the depth of a region in a later procedure. Other useful data for computing the

centroid of a region are also collected in this segmentation process.

4.3.2.4 The Front Program

This Transputer program can be regarded as the main controller of the activities carried

out by the reasoning system. The tag program plays a passive role in the operations

of the system by waiting for signals to start up the segmentation process. This front

program has an active loop requesting that the connected components be sent over by

the tag workers, and deciding which of those components should be used as the target

to be tracked.

Upon receipt of the connected components, a selection procedure will decide which

region is the right or best one to follow. As discussed already in the previous chapter,

this is a rather ambiguous task which really depends on how the motion tracking system

is de�ned to behave. Based on the observation that if an object is being followed in

three-dimensional space, its disparity should be close to zero, and its centroid should

be fairly close to the center of the image if the motion of such object is relatively slow.

Using such ideas as the selection criteria will at least ensure that once the target is

being followed, the system will likely continue to track its motion. However, it does

not address the initial objective of having our motion tracking system paying attention

to multiple moving objects. In order to shift attention to other moving objects, there
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have to be some conditions, such as it is more important to pay attention to the closest

object or the largest moving region is more interesting, to override the zero-disparity

criteria. However, doing so may cause the robot head to move aimlessly on noisy images.

Di�erent selection routines have been written to pick out a connected component, using

the data collected by the segmentation process. Only testings can demonstrate which

method is the better behaving one.

The front program is also responsible to compute the centroid of the chosen target.

The centroid (xc; yc) can be calculated by the following equations:

xc =

P
xi

n

yc =

P
yi

n

where xi and yi are x and y positions of a point belonging to the region, and n is the

number of points in the region.

The centroid will be taken as the representative point of the region to be tracked

when computing the motion parameters of the robot head. The motion parameters,

once computed, will be passed on to the back program for action.

4.3.2.5 The Back Program

The only responsibility of the back program is to move the robot head, according to the

motion parameters received. Signals will be sent over to the digital-to-analog converter

board and the encoder boards to drive the various motors. The low-level controlling

routines, and some inverse kinematics functions have been provided by Rod Barman,

one of our friendly LCI sta�. The details of such procedures are beyond the scope of this

thesis.
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It should be re-iterated that the head motion must be slow and smooth in order to

allow our control theories and correlation matching technique to function properly. The

velocity and acceleration of the robot head can be adjusted to a suitable level during the

head initialization process. Once the head has moved to its destination, a completion

signal will be sent back to the front program, indicating that processing can be continued

for the next set of data.

4.4 Computing the Motion Parameters of the Robot

Head

4.4.1 Panning and Tilting

Once the centroid of the visual target has been computed, the pan and tilt motion

parameters of the robot head can easily be determined. The goal of tracking is to keep

the region of interest at the center of the stereo images. Finding out how much the

centroid has moved away from the center of an image is an easy task. Such di�erences

can be simply converted, using the average mapping values, to the degrees of motion that

the robot head should undertake to follow the moving region. However, the centroid of

the region identi�es the location of the object before the motion, rather than after the

motion. This is due to the fact that our optical 
ow accumulation process adds new


ow values to the origin of the 
ow. That is, the coordinate system of the accumulated

optical 
ow image is the one used in the �rst image frame of the motion sequence, and

the optical 
ow values point to the destinations of the respective points at the end of

the sequence. As a result, the pan motion parameter should also take into consideration

the average horizontal optical 
ow of the region, and the tilt motion parameter should
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be computed also using the average vertical 
ow value of the region. The expected

background optical 
ow previously subtracted from the 
ow �eld should be added back

to the average 
ow values, so that the pan and tilt motion parameters reveal the true

displacements of the target object with respect to the robot head after its motion rather

than before its motion.

The formulae used are:

�pan =
xc �

w

2
+ haverage + hbackground

maphorizontal

�tilt =
yc �

w

2
+ vaverage + vbackground

mapvertical

where �pan is the pan motion parameter, �tilt is the tilt motion parameter, and w is the

size of the image, assuming that the width and the height of the image is the same.

The resulting motion parameters, which are measured in radians, direct the robot

head to move to a new location, and the cameras will still be looking at the object being

tracked, if the total response time of the motion tracking system is compatible with the

speed of the moving object.

4.4.2 Verging

Vergence movement is a coupled motion of the two cameras wherein the cameras rotate

in opposite directions. Determining the verge motion parameter requires understanding

of the geometry of using stereo cameras, and their image planes. Referring to �gure 4.7,

the two stereo cameras can be verged inward or outward. The two image planes are

therefore not necessarily coplanar, but the optical axes of the cameras should still lie in

the same plane.

In the diagrams, cv denotes the current verge angle with both cameras pointing at
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Figure 4.7: The Geometry of Using Stereo Cameras
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point p, and nv denotes the new verge angle if the cameras are to direct attention to

point q. The disparity � of an image point p is de�ned to be:

� = xr � xl (4:1)

where xr is the location of the pixel found on the right image plane, and xl is the location

with respect to the left image plane.

Let us assume that the motion tracking system can react fast enough to follow the

moving object, so that the object always appears close to the center between the stereo

cameras.

Based on the symmetrical movement of our stereo cameras on the motorized platform,

we can assume that the centroid, being close to the center between the two cameras, is

symmetrically displaced from the center of the image plane, so

d =
1

2
w � xr = xl �

1

2
w

as can be seen from the diagrams, and therefore

xl + xr = w (4:2)

where w is the size of horizontal dimension of the image plane.

The point that the two optical axes intersect is usually referred to as the vergence

point, which has zero disparity. For points that are closer to the cameras than the

vergence point, their disparities are always less than zero, and for any point which is

farther away from the cameras than the vergence point, the disparity is always greater

than zero.

Figure 4.8 expands the view of the right image plane as introduced in �gure 4.7.

When the cameras verge, the image planes will follow. By simple geometry, we are

able to identify the values of the angles as labelled. The angle �verge represents the degree
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of vergence movement required in order to change the total vergence angle from cv to

nv. From the diagram, we can observe that

1

2
�verge =

1

2
nv �

1

2
cv if � < 0

1

2
�verge =

1

2
cv �

1

2
nv if � > 0

and f is the focal length of the cameras.

The goal here is to compute �verge based on the disparity on the region to be tracked.

We know that

tan

�
1

2
�verge

�
=

d

f

where

d =
1

2
w � xr if � < 0

d = xr �

1

2
w if � > 0
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Given that f is known, we need to retrieve xr from disparity �. From equation 4.1, we

know that

xr = � + xl

and from equation 4.2, we know that

xl = w � xr

Therefore, we can derive that

xr =
� + w

2

and

tan

�
1

2
�verge

�
=

1

2
w �

�+w

2

f

if � < 0

tan

�
1

2
�verge

�
=

�+w

2
�

1

2
w

f

if � > 0

Finally,

�verge = 2 � arctan

 
�1

2
�

f

!
if � < 0

�verge = 2 � arctan

 
1

2
�

f

!
if � > 0

The direction of �verge is based on the the sign of �. As a result, we end up with only

one equation:

�
verge

= 2� arctan

0
B@
1
2
�

f

1
CA

The focal length f should be measured in unit of pixels. A CCD camera calibration

process [Beyer, 1992] is technically required to perform such measurement; similar work

is currently in progress. The value of f that we use in our experiments is obtained from

a trial-and-error method.
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We should re-iterate that our derivation of �verge relies heavily on the assumption

that the reference point we are focussing on lies on the center plane between the stereo

cameras. This is a fair assumption if the motion tracking system can center the region of

interest as quickly as possible, and thus allows the derivation to come up with a reliable

estimate of how much vergence movement is required.



Chapter 5

Evaluation and Discussion

This chapter presents the evaluation of our motion tracking system implemented as de-

scribed in the previous chapter. Several experiments have been performed to demonstrate

what can be done and what cannot be done by our motion tracking system. We will �nd

out as to what extent our system is able to operate satisfactorily, and will discuss the

problems which we have encountered in our experiments.

We will attempt to �nd solutions to the questions being brought up in previous

discussions, as well as some issues which have to be addressed in future research. We

will brie
y compare our motion tracking system with other di�erent types of systems

implemented elsewhere. We will suggest and describe some ideas to improve our current

system in the next chapter.

65
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5.1 Evaluation and Performance of our Motion Track-

ing System

The performance and usefulness of a real-time motion tracking system can be measured

in terms of the following parameters:

� the amount and size of data that can be handled

� the update rate, and response time

� robustness, i.e., accuracy and stability

� the computational resource required

� the maximum speed of a moving object that can be followed

� the maximum velocity of the robot head that is allowed

� the amount of data that can be produced, perhaps for use by some other programs

at the same time

The datacube program works on gray-scaled images input from the stereo cameras,

with the ranges for correlation speci�ed in an input data �le. In the experiments that we

have carried out, we generally use the correlation range [-3, +3] for horizontal motion, [-2,

+2] for vertical motion, and [-13, +13] for stereo. Each subframe of the 128x512 output

image is selected to be of the default size 128x128. The datacube program reports an

output rate of approximately 10 new images per second based on this con�guration. It

should be noted that the datacube output is being updated at video rate, i.e., 30 Hz, but

new data is available at the rate of 10 Hz. Experimentation reveals that our Transputer

processes cannot perform their duties in real-time with the processing of the 128x128
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optical 
ow images. It is therefore necessary that these output images be scaled down

to a lower resolution. If rescaling of the optical 
ow and stereo subframes to the size

of 64x64 is being performed by the frame grabbing Transputer process, then the active

monitoring process cannot execute at a rate compatible with the datacube program's

output rate, and as a result, the optical 
ow accumulators can only pay attention to

about 95% of the output data.

Allowing the datacube program to rescale the output subframes to the size 64x64

will also get us only 10 new images per second, for the reason that the output image will

still remain to be of size 128x512 but each of the four subframes is of size 64x64. Even

though we are unable to speed up the output rate, rescaling being done on the Datacube

hardware is still the favorable option because the o�seting errors of resampling, such as

round-o� errors, after correlation will be eliminated. In addition, it appears that less

noise is being generated in the lower resolution output. However, since the size of the

input gray scaled images will remain unchanged, smaller image size for correlation means

that smaller motion will not be noticed as often. For example, if the input horizontal

image size is 512, then 4 pixels of horizontal movement will translate to 1 pixel of dis-

placement in the 128 pixels wide output image, but 8 pixels of horizontal movement is

required for the 64 pixels wide output image to record a pixel of displacement. Never-

theless, since there is less work to be done by the frame grabbing Transputer process,

the active monitoring process and the optical 
ow accumulators can consequently attend

to all output images returned at the rate of 10 Hz.

The various response time of the di�erent Transputer programs usually depend on

the nature and the goals of the experiments, and will be reported along with the results

of the di�erent experiments explained below.
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We assume that the speed of any moving object and the robot head is slow and

smooth when establishing our control theories. With the correlation ranges for motion

used as mentioned above, our correlation process can produce reliable matches for an

object moving with a speed at most 1.2 metres per second approximately, if the object

is 2 metres away from the cameras. Moving objects that are farther away from the

cameras can be supported at a slightly higher velocity. Objects that are moving faster

than the speed limit cause unreliable correlation output, as can be instantly observed

from the di�erent color patches appearing on the TV monitor. Currently, we allow our

robot head to pan or tilt with a maximum speed of roughly 15 degrees per second, so

that the background velocities generated are always within the correlation ranges of the

datacube program. These upper bounds for velocities are in general determined using

the trial-and-error method.

5.1.1 Experiments, and What Can Be Done

Through experiments, we can show what our current system is able to achieve, study

the advantages and disadvantages of our approach to motion tracking, and motivate new

ideas for future improvements.

5.1.1.1 Detection of Moving Objects when Robot Head is Not Moving

Before we allow our robot head to track, we �rst have to con�rm that the correlation sys-

tem is returning usable data, the perception system is working properly in accumulating

optical 
ow, and the reasoning system is able to segment the 
ow �eld and pick out the

target. Therefore, our �rst and the easiest experiment is to simply detect the locations

of a moving object in view over time without following it. This way, we can analyse the
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output of the reasoning system without being distracted by the cameras' motion.

The experiment is conducted with a person walking into the view of the cameras from

the left side, and slowly moving to the right, and then walking back to the left and exit

from view. It should be noted that for the purpose of easy veri�cation of results, only

one moving object is present in the image sequence.

The datacube program outputs the displacement data at a rate of 10 Hz. The active

monitoring process is able to notice all output images, and the optical 
ow accumulators

can attend to all the 64x64 optical 
ow images returned.

Not surprisingly, the tag programs can correctly segment the moving region from the

stationary background, and the front program correctly reports that an object can be

seen moving from the middle left to the right of the image and then back to the top left

by monitoring the centroid and the boundary of the moving blob (see �gure 5.1). In this

experiment, we pick the largest motion blob as our visual target, and it appears to be

working very nicely with slow moving objects. Each PRA iteration takes an average of

1.38 seconds to complete.

This experiment gives us the con�dence that our perception system is functioning

properly, and that we are able to detect and identify the locations of a moving object,

although there is no background optical 
ow generated by the stationary cameras.

5.1.1.2 The Vergence Only Experiment

The second experiment that we have carried out is to control the vergence movement

for �xation without panning or tilting the robot head. This experiment is conducted

with a person walking towards and away from the stereo cameras, while keeping himself

or herself close to the center of the images at all time. The input disparity range for
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Figure 5.1: Results of the Motion Detection Experiment
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correlation is [-13, +13], and the datacube program is pumping out images of 64x64

subframes 10 times a second. Only stereo data is required for this experiment, as we

have already derived an equation for verging the cameras based on only disparity. It

should be pointed out that the optical 
ow accumulators and the segmentation processes

are not required for managing any data in this experiment. Stereo disparity images are

transmitted directly from the frame grabbing server to the front program for processing.

For the sake of simplicity, we are only analysing data in the center 16x16 window in the

stereo disparity image at one time.

The system is able to verge on the target, in the middle of the images, extremely

quickly with a rate of approximately 10 moves1 per second, and quite accurately with

dense and reliable stereo data input. It is observed that the system is fairly stable when

the object is stationary, that is, the cameras can �xate on the un-moved target with only

minor vergence movements due to round-o� errors and noise. On the other hand, if the

correlation process fails to return reliable and dense data, for instance, when the person

standing in front of the cameras is wearing a white shirt with no texture, then it is no

surprise that the robot head will frequently lose control and oscillate back and forth in

a ridiculous and random fashion.

What we have learned from this experiment is that it is extremely easy to control the

robot head with the type of data that does not have to be accumulated. In this case, we

are not interested in how stereo changes over time, but only interested in how close an

object is at a particular time instant. The performance of the tracking system certainly

relies heavily on the accuracy of input data, especially in this experiment, where we

do not interpolate the data of several stereo disparity images to obtain more accurate

estimates of depth for tracking.

1When the reasoning system decides not to wait for the action system to �nish the robot head's

movement before continuing its processing.
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5.1.1.3 Panning and Tilting without Verging

In this experiment, we allow our system to track an object moving in 3D by panning and

tilting the robot head. In short, we will call this experiment the \pan-tilt" experiment.

We are using the same input con�guration for the datacube program as in the other

experiments. From the previous motion detection experiment, we know that our system

can correctly locate moving objects when there is no head movement. The goals of this

experiment are to �nd out if we can correctly and reliably detect moving objects while

the robot head is moving, and to examine the robustness of the overall system. The

results collected will be analysed and further examined in the later discussions of the

e�ectiveness and problems with our background optical 
ow cancellation method, the

segmentation process, and the di�erent selection algorithms.

The three optical 
ow accumulators, each responsible for dealing with one-third of

the received data, can handle all the 64x64 optical 
ow images available at the rate

of roughly 10 Hz. Our perception system will continuously add up the 
ow vectors

regardless of whether or not the robot head is moving. The accumulated optical 
ow

vectors are transferred to the segmentation processes of the tag programs on request.

Each of the three segmentation processes will logically be responsible to work on one-

third of the 
ow �eld. Such processes require an average of 0.85 second to complete the

segmentation and statistical data collection duties. The connected components will then

be passed on to the front program, which selects the visual target for the robot head to

track.

The PRA loop will not repeat itself until the robot head has �nished moving to a new

location. The average time for executing one PRA loop is 1.8 seconds, which includes the

time for the massive data being transferred among the Transputer processes, the time for

messages being displayed by the di�erent Transputer programs intended to report the
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status of execution, and the time for waiting the robot head to complete its movement.

As a side note, it should be pointed out that printing too many messages from the

Trollius operating environment back to the terminals on the Sun host will signi�cantly

increase the overall response time.

We have tested our motion tracking system on the simplest case scenario where there

is only one object moving slowly in front of a textured background environment. We

should point out that the background is not arti�cial , that is, the background is the

usual cluttered laboratory environment. It is not especially arranged to have su�cient

texture. The responses of the system have been fairly consistent, in that the robot

head has been able to follow the moving object most of the time. The output of the

segmentation process does indicate that our system can separate the moving object from

the background even when the robot head is allowed to move, given that our background

scene has purposely been designed to contain rich textural patterns so that the correlation

output is dense with minimalmismatches. However, the system exhibits slightly di�erent

behaviour, as expected, in the passive following of the moving object, depending on the

selection method used for picking out the visual target.

If the moving object occupies at least half of the image, then using the largest area

selection method will enable the robot head to successfully track the moving object at

most time, except that when the object slows down or attempts to change its direction,

the correlation process will fail to detect consistent optical 
ow within the expected

region, and the system will eventually lose track of the target due to the background

optical 
ow that cannot be completely eliminated. However, we have observed that our

system can easily recover from false alarms and \re-track" the moving object once the

robot head has stopped moving.

If the closest area selection method is used to pick out the target object, then the
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stability of tracking the moving target will rely extremely heavily on the precison of

optical 
ow computation, for the reason that without recognition, we are forced to use

optical 
ow vectors to access stereo data for retrieving disparity values of the object.

Round-o� errors and noise are the major factors that we are generally getting poor

performance with this technique, although it has been shown to be capable of following

an object moving at a slow and constant speed. It has been observed that the background

optical 
ow, however, has little e�ect on selecting the closest object as target.

Experimenting with multiple moving objects demonstrates that there are still a lot

of problems remaining to be solved. One of the biggest questions is when the motion

tracking system should shift attention to track another moving object. Depending on

how the motion tracking system is de�ned to behave, there is certainly no single solution

which will work perfectly in all situations.

The results of this pan-tilt experiment have revealed a number of problems with our

current implementation, which will be discussed in details in the following sections. Our

current motion tracking system is frankly far from being robust or stable. It is our hope

to speed up the response time to at most 1 second per PRA loop. That is, we would

like the robot head to make at least one move per second. This will de�nitely be a vast

improvement to the current near-real-time performance.

5.1.2 De�ciencies, Problems, and What Cannot Be Done

5.1.2.1 Rigid Objects Assumption

The e�ciency and reliability of a control systemmust take into consideration what it fails

to accomplish, either expectedly or unexpectedly. We have described the assumptions

which are made in connection to the limitations of our system. Speci�cally, we have
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assumed that we are dealing only with rigid moving objects, which will retain their

shapes and structures throughout the period of being tracked. Non-rigid objects in

general will not cause a great deal of di�culties for our system, except that changes in

the rigidity of an object will be regarded as changes in locations by our reasoning system,

which has no knowledge about any one speci�c object it is dealing with.

5.1.2.2 Disadvantages and Problems of Using Correlation Matching

The engine for detecting motion is correlation matching. As we have explained previously,

a correlation range has to be selected for the matching operation. Due to the nature that

this range is usually quite small as we desire to obtain fast output, we assume that objects

are moving at a speed smooth and slow enough so that the matching operation can return

reliable estimates for displacements. If an object is moving too fast according to the

correlation range de�ned, then the correlation output will be inconsistent and extremely

unreliable, and is undoubtedly unusable and impossible for the segmentation process to

come up with a good description for driving the robot head to continue tracking. In

other words, if correlation fails, then the tracking operation may immediately behave

abnormally and unexpectedly.

The output of correlation is often corrupted by noise, mostly caused by quantization

errors on edges, and sometimes the 
ickering of 
uorescent lighting. The preciseness

of the correlation output is inversely proportional to the resolution size of the images.

Given the fact that images have been subsampled from the input size 512 to 64 for

correlation, the �ne details have been softened, and thus quantization errors increase

with the coarser features in the images. The e�ect of noise visualizes as small motion

patches on optical 
ow images that are frequently misinterpreted as moving objects. As

a preventive measure against the distracting e�ect of noise, we decide to track objects
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only of a reasonable size by de�nition2. In other words, small connected components

will be eliminated, and as a result, our motion tracking system is unable to track small

moving objects, i.e., objects of sizes which are below the threshold de�ned for �ltering

out the small motion patches assumed to be produced by noise. This implementation

error is inevitable in the attempt to stabilize motions of the robot head based on noisy

input data.

In addition, the disparities of a moving object are retrieved from using optical 
ow

vectors. Any error in correlation matching will seriously degrade the accuracy of access-

ing the stereo data, and thus handicap any other processes which rely on using stereo

disparities for processing, such as the closest region selection method.

Correlation errors have also directly caused problems in the segmentation process.

The accumulated correlation errors in the optical 
ow accumulation processes will not

necessary cancel out, and this leads to an inconsistent and noisy 
ow �eld to be used in

segmentation.

5.1.2.3 Problems with Background Optical Flow Cancellation

The background optical 
ow cancellation process is used with the assumption that the

correlation process is capable of producing reliable matches at every point in the image.

Unfortunately, this is not always the case when using real world data. As can be seen

from our pan-tilt experiment, the background scene contains rich textural information

for correlation. If it is the case that the robot head is moving but no optical 
ow is

produced for the stationary background, for instance, the cameras are looking at a white

wall, then our cancellation process will still attempt to subtract the expected background


ow from everywhere of the 
ow �eld, not knowing that the correlation process has failed

2Possibly greater than 2% of the image size.
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to return useful data. As a result, the motion tracking system will mistakenly identify

the compensated motion 
ow �eld as moving objects, thus creating chaos and confusion

for the selection routine.

5.1.2.4 Reliance on Connectedness

The e�ectiveness of our control theories relies heavily not only on the reliability of the

correlation output, but also on the fact that the 
ow �eld generated by a moving ob-

ject must appear to be contiguous. As we have no knowledge about any object, we

are required to make the assumption that each connected component produced by the

segmentation process corresponds to an individually moving object, which has no rela-

tion with any other moving object in view. The motion �eld corresponding to a rigid

visual target may be split into several unconnected blobs if part of the target is being

occluded. This leads to inaccuracies in tracking as the centroid of the target is computed

from a partial motion �eld corresponding to that target. There is no simple solution to

grouping unconnected motion blobs together without acquiring the service of an object

recognition process similar to the one reported in [Lowe, 1987], which is mainly based

on perceptual organization. Therefore, it is unavoidable for our motion tracking system

to make such a mistake in computing the centroid.

On the other hand, two objects moving together with the same motion parameters

may cause similar optical 
ow, and may be grouped into one single partition if their

corresponding motion patches are connected in the optical 
ow images. It is possible

to separate perceptually the two objects using stereo disparity if they are located at

di�erent depths. However, if this fails, and without any further information about the

objects, then the single partition will be interpreted as one moving object by our motion

tracking system.
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5.1.2.5 Panning, Tilting, and Verging Simultaneously

Our current motion tracking system does not fully support the panning, tilting, and

verging motions simultaneously at this time. The background optical 
ow cancellation

process in our current system only deals with optical 
ow generated by the panning

and tilting motions. Another cancellation process will be required to handle optical 
ow

generated by the vergence motion separately, if we are to allow our robot head to move

in all three axes at the same time to �xate a 3D location. It is rather easy to implement

this additional cancellation process; however, it is our intention at this moment to study

thoroughly the current setup, and to re�ne the control theories and implementation for

better performance, before we proceed on to handling more complicated experiments.

The additional cancellation process for vergence can perhaps be implemented using

the framework of the current cancellation process. It can also be based on the observation

that optical 
ow generated from the right camera should in theory cancel out the optical


ow generated from the left camera. The latter idea requires optical 
ow to be computed

also from the point of view of the right camera.

Being able to verge while tracking allows us to use the zero-disparity feature to factor

out the target object to be followed. We will certainly experiment with this idea once

we have a more stable system.

5.1.2.6 Other Minor Issues

As for all motion tracking systems ever implemented, it should be obvious that if an

object moves out of the range limit of the robot head, i.e., the object is out of reach,

then it is impossible to continue the tracking operations on such object.

There are some other minor issues surrounding the performance of our motion track-
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ing system, which deserve some attention, but are often ignored since they are in general

not expected to have serious impact as compared to other issues that have already been

or will be discussed. If we intend to increase the robustness of our system in every aspect,

then much e�ort would be required on examining these issues in details.

For instance, we may need to investigate the e�ects on correlation matching when

adjusting the focal length, aperture, shutter speed, gamma �lters, and other control-

lable features of the stereo cameras. A CCD camera calibration process [Beyer, 1992]

[Healey and Kondepudy, 1992] should be employed to estimate and eliminate noise in

order to obtain more precise data. Backlash of the robot head often generates faulty

input data. Applying more weight to the pan and tilt axes may help to eliminate the

backlash e�ect, but it is still unknown if such action will slow down the head motion.

However, we will soon be moving to a new robot head with signi�cantly less backlash.

We may also need to adjust the parameters of the inverse kinematics equations in

order to obtain smoother head movements. We should also �nd out ways to speed up

the data transfer rate between two Transputer nodes within the Trollius environment or

any other operating system we may use in future.

5.2 Additional Discussion

5.2.1 The Dumb Motion Trackers versus Our Motion Tracker

The absolute simplest tracking system is one that attempts to �nd some features, e.g., a

white dot on a black background, on a single image to follow, without even computing for

motion. Such system is undoubtedly useless when dealing with real world data. Another

simple tracker can be made by sensing something moving by taking the di�erence of two
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images grabbed at di�erent time, creating a binary image by thresholding the di�erences,

and then �nding the centroid for tracking. Although the system is fast, it is very di�cult,

if not impossible, to deal with noise or multiple objects. Computing displacements for

motion using correlation matching, for example, will logically be the next option, if one

wants to handle multiple moving objects.

The simplest motion tracking system is perhaps one that will observe the world only

when the robot head is not moving, �nd out what is to be tracked, and then move the

robot head without paying any attention to the changes in the world. The stop-and-look

mechanism used in these systems excludes the idea of imaging while moving, and the

use of sequential operations is extremely easy to implement and manage. Although this

simple control system can be characterized as being a motion tracking system, it is one

that is neither e�cient nor robust. This system cannot continue to detect changes to any

object while data is being analysed and the head is being moved to a new location. This

would imply that the system can only act on a limited set of knowledge of the world,

and the fact that grabbing an image should be a relatively fast operation as compared

to data processing, the limited set of knowledge represents a very small proportion of

changes that have occurred. It should be obvious that this system will experience great

di�culty in following any target in a reliable and consistent manner with discrete and

discontinuous input. For instance, there is no guarantee that the system can always grab

the images that will identify the object generating the largest motion while the head is

moving. Using assumptions or previous results de�nitely will not help much in �lling

for the missing information. We consider the idea of blindfolding oneself while in a busy

states as a dumb behaviour, and in the extreme case unacceptable for use in a real-time

system where responses are expected to re
ect changes that are supposed to be smooth

and steady.

The de�cencies of not being attentive to the world at all time motivate our use of
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parallel processes, which have already been described in our control theories. Our idea

is to continuously monitor the changes in the world so that we know exactly what had

happened while our reasoning processes were busy working on something else.

5.2.2 Thresholding in Segmentation

Our goal of segmentation is to divide the optical 
ow �eld into separate connected com-

ponents, each of which has a consistent set of optical 
ow values. Segmentation is known

to be an interesting but hard problem, as reported by many researchers using di�erent

techniques [Jain, 1984] [Adiv, 1985] [Yamamoto, 1990] [Boult and Brown, 1991]. It is

particularly di�cult in our case when time constraint is a big factor preventing the use

of sophisticated and complicated methods, which are usually time consuming.

The input to our segmentation process is accumulated integer valued optical 
ow. The

threshold values unfortunately depend on the number of images used, as the error range

of the round-o� errors grows awkwardly and undesirably larger with more optical 
ow

images being accumulated. Accumulated round-o� errors is a major source of problems

causing us to use relatively large threshold values in order to prevent the 
ow �eld to be

overly divided into tiny motion patches. Correlation errors and noise also greatly a�ect

the performance of our segmentation process.

Currently, we are using the magnitude of a vector as a criterion for determining

connectedness, with the corresponding threshold set at 5 pixels. Smaller thresholds

often misled the system to believe that the moving object is small in size, but in fact the

object may be as large as one-third of the image size. Larger thresholds, on the other

hand, generate the inverse e�ect of loosening the constraints for connectedness, but in

general, cause less troubles for losing track of the target.
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5.2.3 The Selection Methods

The problems we have with the background optical 
ow cancellation process have slowed

down our investigation on the e�ectiveness of the di�erent selection methods for picking

out the visual target. As can be seen from our pan-tilt experiment, the largest region

technique have already provided us a good starting point to work with, if we can somehow

apply tricks to remove the background region by examining the bounding box of the

moving region.

Some work is underway to �nd out how to make appropriate use of the \pop-out"

e�ect created by the cancellation process. In theory, the magnitude of the background

optical 
ow after cancellation should be signi�cantly smaller than other moving objects.

A selection method attempting to pick out the object that has the largest motion, a

reasonable size, and a disparity value close to zero if vergence is also used in tracking,

can perhaps exhibit stable behaviour if data is reliable to begin with.

5.2.4 Robustness versus Speed Tradeo�

The robustness and speed tradeo� problem exists in almost all real-time applications. If

we want our motion tracking system to be robust, then huge amount of processing time

is usually required for extensive computation. However, the robustness of a real-time

system often depends on the response time and its ability to catch up with the pace of

the real world. In order to speed up the response time, we usually need to cut down on

the amount of computation, but that will undoubtedly decrease robustness, given that

the computational resource is normally limited!

Knowing that it is di�cult to have a system which is both extremely fast and robust,

we need to value our goals and select the appropriate and proper behaviour to suit our
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objectives. We would not want a motion tracking system which spends an enormous

amount of time \thinking" before responding. Such system would unlikely be classi�ed

as functioning in real-time. In other words, it is our belief that preciseness is in general

less important than speed in a real-time system, considering the fact that the system can

have many future chances for recovering and correcting any erroneous response made.

We should point out that a response made by the motion tracking system is the

reaction to changes that have occurred while the system was busy working on the previous

set of data. It would be wise to have a system which responds in a timely fashion, so

that it would not fall behind seriously by analysing \out-dated" data. The faster the

system can respond, the less the world has changed. Also, there will be less round-o�

errors and noise being accumulated with a faster responding system. Slow responding

motion tracking systems can lose track of the target extremely easily, as objects may

move out of the views of the cameras before they have been noticed.

5.2.5 Comparisons with Other Motion Tracking Systems

In this section, we will brie
y comment on the di�erences between our current motion

tracking system and some other di�erent types of systems implemented elsewhere.

Following the largest moving object is a popular choice in motion tracking. A simple

one camera motion tracking system has been implemented to pick the second largest

moving area as target, assuming that the dominant motion to always be the motion

of the background [Wood�ll and Zabih, 1992]. Such system is running on a 16 kilo-

processor Connection Machine; the tracking algorithm is sequential, and it is currently

dealing with only one object. It is our opinion that there is no guarantee the background

motion is always the largest in magnitude or in size. Our system takes the approach

of attempting to cancel out the background motion, or at least minimizing its e�ect
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causing it to be the least signi�cant motion, i.e., all moving objects should have 
ow

values larger than background motion after cancellation. Eventually, we will pick the

target based primarily on the magnitude of motion, instead of the size of the region.

Coombs' approach [Coombs, 1992], as already discussed in Chapter 2, is to �rst verge

the cameras and then use a Zero-Disparity Filter to pick out the target. Their system

is quite robust and has good performance with a prediction module. It is not clear,

however, how such system can deal with multiple objects, or to shift attention. The

approach taken at the University of Rochester is to throw away, or �lter out, irrelevant

data or useless information as quickly as possible. Our datacube program produces stereo

data, so it would be simple to implement ZDF in our system; we have decided to attack

a more di�cult problem, using motion data. Our current system uses more output data,

and therefore, has a much better record of the motion paths of all moving objects in

view for further analyses.

An attentive control system [Clark and Ferrier, 1988] has been implemented to track

features. As described in their report, shifts in focus of attention is accomplished by

using a saliency map and by altering of feedback gains applied to the visual feedback

paths in the position and velocity control loops of the binocular camera system. Since

we do not have any knowledge about any object we are dealing with, our system simply

uses motion �eld to drive attentional processing.

The KTH Head has 13 degrees of freedom and 15 di�erent motors, simulating the

essential degrees of freedom in mammalians [Pahlavan et al., 1992]. Their current work

suggests the integration of low-level ocular processes for �xation, and the use of coopera-

tive vergence-focussing to assist the matching process. It is di�cult for us to experiment

with their ideas and the focussing algorithm, as our current LCI head does not have

motorized focus control or zoom lenses.
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Conclusions and Future Directions

6.1 Concluding Remarks

The primary goal of motion tracking is to keep an object of interest, generally known

as the visual target, in the view of the observer at all time. One of our objectives in

this project is to implement a simple gaze control system on our robotic camera head

system to demonstrate that we can �nd out where an object is without knowing what

the object is. Our decision of not having, in our system, any particular knowledge about

any object prevents the use of a feature-based object recognition process for tracking.

As an alternative, tracking can be driven by changes perceived from the real world, and

in this project, we have chosen to use displacements as the major source of directing

signals.

In this thesis, we have described a set of control theories to track a moving object in

real-time with a three degrees of freedom robot head. The recent advances in computer

hardware, exempli�ed by our Datacube MaxVideo 200 system and a network of Trans-

85
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puters, make it possible for researchers to perform image processing operations at video

rates, and to implement real-time systems with input images obtained from video cam-

eras. We have taken advantages of our powerful equipment at LCI, and have developed a

passive motion tracking system which reacts to changes in the surrounding environment

by panning, tilting, and verging the robot head.

The control scheme of our motion tracking system is based on the Perception-Reasoning-

Action regime. Our idea is to use parallel processes, which communicatewith one another

via message passing, to actively monitor changes in the environment, to process displace-

ments and select the visual target, and to control the movements of the robot head. The

amount of data to be processed and the amount of computation have been designed to

be as minimal as possible, so that the system can react to the changes perceived in a

timely manner, and can keep up with the pace of the world.

We have described an elegant approach of using an active monitoring process together

with a process for accumulating temporal data to allow di�erent hardware components

running at di�erent rates to communicate and cooperate in a real-time system working

on real world data. We have no control on changes in the real world, and therefore, there

should be no delay to the processes producing data to re
ect such changes, even when

some other processes are in busy states. The stream of output data can be stored and

grouped together for the busy processes to retrieve at a later time.

We have also described a cancellation method to reduce the unstable e�ects of back-

ground optical 
ow generated from ego-motion, and create a \pop-out" e�ect in the mo-

tion �eld in the sense that after cancellation, the motions of the moving objects should

be signi�cantly larger than the background motion. A simple segmentation process has

been developed to partition the motion �eld into separate connected components based

on the consistency of optical 
ow vectors; each component is interpreted as a moving
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object. A few selection routines have been implemented to pick out a target. No single

selection method is su�cient to be applied in all situations. The one to be used really

depends on how the motion tracking system is de�ned to behave.

The problem of tracking moving objects using only displacements has shown to be

di�cult and challenging. The results of various experiments provide us with an insight of

the di�culties of tracking without any knowledge of the world and the objects. Round-o�

errors, quantization errors, and correlation errors have seriously a�ected the performance

and degraded the robustness of our motion tracking system. Nevertheless, we are able

to track a moving person by panning and tilting the robot head in approximately 1.8

seconds, and �xate an object by verging the stereo cameras at a rate of roughly 10 moves

per second.

The system we have described in this thesis can assist other vision tasks, such as

object recognition, by always keeping the object of interest in view for studying. The

motion path of the object being tracked can easily be recorded, and may allow a motion

path based object recognition system to be developed.

The central assertion of this thesis is that we can track an object prior to such object

is being identi�ed. Displacement has proven to be an important cue for tracking. It is

arguable as to whether or not optical 
ow and stereo disparity can be classi�ed as primary

visual cues. Nevertheless, they provide the su�cient information for our motion tracking

system to follow an object moving in the three-dimensional space that is accessible to

the cameras.
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6.2 Future Work and Possible Improvements

There are a number of items and ideas on our list for improving the performance and

for expanding the functionalities of our current motion tracking system. The following

list also covers areas which we have to address in future research.

� We should include prediction in future versions of our motion tracking system. A

prediction process, as we have already described, allows us to move the robot head

even when some reasoning process is busy analysing data. A Kalman �lter can

be used to implement the prediction process. The control theories will have to be

revised to accommodate the idea of parallelizing the operations in the reasoning and

action systems. The prediction process can be very simple, as it is only concerned

with the centroid of the target.

� We need to improve the correlation technique used in the datacube program so that

the displacement output is more reliable. Neighboring displacement values should

be examined when there is a need to resolve ambiguities. We should consider

returning the con�dence measures within the correlation process to the Transputer

processes, so that displacements can be better managed on the receiving end.

� Knowing that the correlation process will not guarantee reliable data at all time.

We should �nd out ways to make use of the edges and Laplacian of Gaussian images

returned by our datacube program, so that more information can be available to

the segmentation process. Techniques such as those used in [Poggio et al., 1988]

[Gamble and Poggio, 1987] can perhaps be applied to our system.

� We need sub-pixel accuracy for displacements in order to help eliminating the

problem of round-o� errors and quantization errors being grossly built up in the
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accumulation processes. This will help the background optical 
ow cancellation

process to work to its potential. However, it is unclear how sub-pixel accuracy can

be obtained or represented in our current implementation.

� One idea to cut down the amount of computation and to speed up the response time

signi�cantly is to use previously computed data to assist the picking of the visual

target, as we already have the expectation of where the target will end up. The

computation of stereo disparity can be performed on a demand or feedback basis,

so that the current problem of accessing stereo data using optical 
ow vectors as

guides can be eliminated.

� Experiments have shown that correlation matching performed on 128x128 images

can return better and more consistent optical 
ow. We should �nd out ways to

make the datacube program return 64x64 output images, but allow the correlation

process to work on images with larger resolutions for better matches.

� Some work has already been started on optimizing the Transputer programs.

Speci�cally, we want to discover routes to cut down the response time, and to

speed up the two-way data transfer rate among the Transputer processes being

executed on di�erent Transputer nodes. We may need to upgrade the operating

system running on the Transputer nodes, or use faster hardware, for example,

Texas Instrument TMS320C40 processors.

� The current LCI robot head will be upgraded to use gears and motors that have

signi�cantly less backlash.

� If we can create the special stereo mapping table for background optical 
ow can-

cellation using a separate camera calibration process, then we may use the vergence

angle for indexing the special table if all three axes can move simultaneously, and

thus allows a better approximation of the expected background 
ow to be used.
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� We need a more robust segmentation algorithm, which probably require more con-

straints for partitioning the optical 
ow �eld. The prediction process may be able

to provide useful data for �ltering out areas which are unlikely to contain the target

being followed, so that the overall response time can be reduced.

� There are a few advantages for computing optical 
ow from the view points of both

cameras, as opposed to the current setup of using just the left camera.

{ The two sets of optical 
ow data provide more information to allow a consis-

tency displacement check.

{ We can implement the additional cancellation process for vergence, so that we

can pan, tilt, and verge the robot head at the same time. In theory, optical


ow due to vergence from the left and from the right cameras should cancel

out.

{ More importantly, we can process true three-dimensional data. Optical 
ow

from the left camera and the right camera, together with stereo disparity,

enable us to establish a �eld of 3D motion vectors. This allows the segmen-

tation process to work with a more consistent and informative 
ow �eld. In

addition, we can compute the 3D motion parameters of the moving objects

for better analyses. Unfortunately, it is very unlikely that these features will

be implemented in the real-time system at this moment, since the extra com-

putation will be extremely time consuming. In any case, they are certainly

worth looking into in the future.
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