
The use of conflicts in searching Bayesian networks
(Including Prolog Code)

David Poole

Technical Report 93-14
May 1993

Department of Computer Science,
University of British Columbia,

6356 Agricultural Road,
Vancouver, B.C., Canada V6T 1Z2

Telephone: (604) 822-3061
Fax: (604)822-5485

This technical report contains a paper to be presented at the Ninth Con
ference on Uncertainty in Artificial Intelligence, Washington, D.C.,
July 1993 together with an appendix that gives a listing of the Prolog
code that is referred to in the paper.

1

-

The use of conflicts in searching Bayesian networks

David Poole•
Department of Computer Science,
University of British Columbia,

Vancouver, B.C., Canada V6T 1Z2
poole@cs.ubc.ca

Abstract

This paper discusses how conflicts (as used by
the consistency-based diagnosis community) can
be adapted to be used in a search-based algorithm
for computing prior and posterior probabilities
in discrete Bayesian Networks. This is an "any
time" algorithm, that at any stage can estimate the
probabilities and give an error bound. Whereas
the most popular Bayesian net algorithms exploit
the structure of the network for efficiency, we ex
ploit probability distributions for efficiency; this
algorithm is most suited to the case with extreme
probabilities. This paper presents a solution to
the inefficiencies found in naive algorithms, and
shows how the tools of the consistency-based
diagnosis community (namely conflicts) can be
used effectively to improve the efficiency. Em
pirical results with networks having tens of thou
sands of nodes are presented.

1 Introduction

There have been two, previously disparate, communities
working on model-based diagnosis. The first is in the UAI
community, where Bayesian networks have become the rep
resentation of choice for modelling. The second is the
community built on logic-based notions of diagnosis, and
is typified by the use of consistency-based diagnosis [Gene
sereth, 1984; Reiter, 1987; de Kleer and Williams, 1987;
de Kleer et al., 1990].

The basis of consistency based diagnosis is the use of
the conflict [Reiter, 1987; de Kleer and Williams, 1987;
de Kleeretal., 1990]. A conflict is a set of assumptions, the
conjunction of which is inconsistent with the observations
and the system description. The model-based diagnosis
community has recently seen the need for the use of proba
bilities in reducing the combinatorial explosion in the num
ber of logical possibilities [de Kleer and Williams, 1987;
de Kleer, 1991]. This brings their work closer to that of
the uncertainty community. The efficiency of these algo
rithms, and the other issues faced by this community (e.g.,

• Scholar, Canadian Institute for Advanced Research

the use of abstraction [Genesereth, 1984]) mean that their
work cannot be ignored by the uncertainty community.

This paper provides a general purpose search-based tech
nique for computing posterior probabilities in arbitrarily
structured discrete1 Bayesian networks. I~ is intended to be
used for the case where there are extreme probabilities (see
[Poole, 1993]). This paper shows how a major problem
of practical efficiency can be solved by the use of a proba
bilistic analogue of the 'conflict' used in consistency-based
diagnosis.

The main contributions of this paper are:

1. For the Bayesian net community, this paper provides a
new search-based mechanism for computing probabil
ities in discrete Bayesian networks, that has practical
significance for networks with extreme probabilities
(i.e., each conditional probability is close to one or
zero). This has been tested for networks with tens of
thousands of nodes.

2. For the model-based diagnosis community, this pa
per provides a new representation for problems that is
more general and more natural than previous represen
tations. The algorithm gives a way to determine the
accuracy of probability estimates.

3. It provides a way to bring the model-based diagno
sis and probabilistic diagnosis communities together,
with a common set of problems, and a common set of
solutions.

Implementations of Bayesian networks have been placed
into three classes [Pearl, 1988; Henrion, 1990]:

1. Exact methods that exploit the structure of the network
to allow efficient propagation of evidence [Pearl, 1988;
Lauritzen and Spiegelhalter, 1988; Jensen et al., 1990].

2. Stochastic simulation methods that give estimates of
probabilities by generating samples of instantiations
of the network (e.g., [Henrion, 1988; Pearl, 1987]).

3. Search-based approximation techniques that search
through a space of possible values to estimate proba
bilities (e.g., [Henrion, 1991; D' Ambrosio, 1992]).

1 All of the variables have a finite set of possible values. We
do not consider variables with an infinite set of possible values.

The method presented in this paper falls into the last class.
While the efficient ex.act melhods exploit aspects of the net
work structure, we instead exploit extreme probabilities to
gain efficiency. The exact methods work well for sparse
networks (e.g., are linear for singly-connected networlc.s
[Pearl, 1988]), but become inefficient when the networks
become less sparse. They do not take the distributions into
account. The method in this paper uses no information
on the structure of the network, ·but rather has a niche for
classes of problems where there are "nonna.lity"2 condi
tions that dominate lhe probability tables (see Section 3).
The algorithm is efficient for these classes of problems,
but becomes very inefficient as the distributions become
less extreme (see [Poole, 1993] for a detailed average-case
complexity analysis of the simple version of the algorithm
presented here (without conflicts)). Tb.is algorithm should
thus be seen as having an orthogonal niche to the algorithms
that exploit the structure for efficiency.

2 Background

A Bayesian network [Pearl, 1988] is a graphical represen
tation of (in)dependence amongst random variables. A
Bayesian network is a directed acyclic graph whe1-e the
nodes represent random variables. If there is an arc from
variable B to variable A, Bis said to be a parent of A. The
independence assumption of a Bayesian network says that
each variable is independent of its non-descendents given
its parents.

Suppose we have a Bayesian network with random vari
ables X,, ... Xn. The parents of X; are written as Ilx, =
(X;1 , • • •, X;.

1
). Suppose vals(X;) is the set of possible

values of random variable X; .

Associated with the Bayesian network are conditional prob
ability tables which gives the conditional probabilities of
the values of X, depending on the values of its parents
Ilx . This consists of, for each v; E vals(Xj) and
vi, E valB(X.1), probabilities of the form

P(X; = v; jX;1 = v; 1 /\ • • • /\ X; •. = v,. .)
t I

For any probability distribution, we can compute a joint
distribution by

n

P(X1, · · · ,Xn) = IT P(Xdilx,).
i=l

This is often given as the formal definition of a Bayesian
network.

We call an assignment of values to all the variables a pos
sible world, and write 'w I= Xi = v;' if X; is assigned
value Vi in world w. Let .Q be the set of all possible worlds.
The truth value of a formula (made up of assignments of

1This shouldnot be confused with "normal" as used for Gaus
sian distributions. We conside1· sys1ems that have normal operat
ing conditions and only rarely deviate from this normality (i .c., we
are assuming abnom1ality [McCarthy, 1986] is rare). As we are
only considering discrete variables, there should be no confusion.

values to variables and the standard logical connectives)
in a possible world is determined using the standard truth
tables.

3 Searching possible worlds

For a finite number of variables with a finite number of
values, we can compute the probabilities directly, by enu
merating tJ1e possible wodds. This is however computa
tionally expensive as there are exponentially many of these
(the product of the sizes of the domains of the variables).

The idea behind the search method presented in this paper
can be obtained by considering the questions:

• Can we estimate the probabilities by only enumerating
a few of the possible worlds?

• How can we enumerate just a few of the most probable
possible worlds?

• Can we estimate the error in our probabilities?

• How can we make this search efficient?

This paper sets out to answer these questions, for the case
where the distribution is given in 1enns of Bayesian net
works.

3.1 Ordering the variables

The first thing we do is to impose a total ordering on the
variab]es that is consistent wilh the ordering of the Bayesian
network. We index the random variables X,, ... Xn so that
the parents of a node have a lower index than the node. This
can always be done as the nodes in a Bayesian network
fonn a partial ordering. lf the parents of X; are Ilx, =
(X;,, • • • , X;41), the total ordering preserves i; < i.

The reason that we are interested in this ordering is that we
can determine the probability of any formula given just the
predecessors of the variables in the total ordering (as the
parents of variables are amongst !heir predecessors).

3.2 Search Tree

We are now in a position to determine a search tree for
Bayesian networks3•

Definition 3.1 A partial description is a tuple of values
{v,, · · ·, Vj} where each v; is an element of the domain of
variable X;.

The search tree has nodes labelled with partial descriptions,
and is defined as follows:

• The root of the tree is labelled with the empty tuple {}
(where j = 0).

3This search tree is ilie same as lhe probabiliiy tree of (Howard
and Matheson, 1981] and corresponds to the semantic trees used
in U,eorem proving [Chang and Lee, 1973, Section 4.4}, but with
random variables instead of complemem.ary literals.

Q:={()};
W:={};
While Q -:/- {} do

choose and remove (v1, ···,vi} from Q;
ifj = n

then W :=W U {(vi,···, Vj}}
else Q := Q U {(v1, • • ·, Vj, v} : v E vals(Xj+l)}

Figure 1: Basic search algorithm

• The children of node labelled with (v1, • • • , v;} are
the nodes labelled with (v1, · · · , v;, v} for each v E
vals(XJ+1). In other words, the children of a node
correspond to the possible values of the next variable
in the total ordering.

• The leaves of the tree are tuples of the form
(vi,•••, vn}- These correspond to possible worlds.

Tuple (v1, • • • , vi} corresponds to the variable assignment
X1 = V1 I\·•• I\ Xj = Vj-

We associate a probability with each node in the tree. The
probabiJity of the node labelled with (vi,··• ,v;} is the
probability of the corresponding proposition which is

P(X1 = V1 /\ • • • I\ Xj = Vj)
i

= II P(Xi = vilXi1 = vi1 " ••• "xii. =vii.) . .
i=l

This is easy to compute as, by the ordering of the variables,
all of the ancestors of every node have a value in the partial
description.

The following lemma can be trivially proved, and is the
basis for the search algorithm.

Lemma 3.2 The probability of a node is equal to the sum
of the probabilities of the leaves that are descendents of the
node.

This lemma lets us bound the probabilities of possible
worlds by only generating a few of the possible worlds
and placing bounds on the sizes of the possible worlds we
have not generated.

3.3 Searching the Search Tree

To implement the computation of probabilities, we carry
out a search on the search tree, and generate some of the
most likely possible worlds. Figure 1 gives a generic search
algorithm that can be varied by changing which element is
chosen from the queue. There are many different search
methods that can be used [Pearl, 1984].

The idea of the algorithm is that there is a priority queue
Q of nodes. We remove one node at any time, either it is
a total description (i.e., where j = n) in which case it is
added to W, the set of generated worlds, or else its children
are added to the queue.

Note that each partial description can only be generated
once. There is no need to check for multiple paths or loops
in the search. This simplifies the search, in that we do
not need to keep track of a CLOSED list or check whether
nodes are already on the OPEN list (Qin Figure 1) {Pearl,
1984].

No matter which element is chosen from the queue at each
time, this algorithm halts and when it halts W is the set of
all tuples corresponding to possible worlds.

4 &timating the Probabilities

If we let the above algorithm run to completion we have an
exponential algorithm for enumerating the possibl.e worlds
that can be used for computing the prior probability of any
proposition or conjunction of propositions. This is not,
however, the point of this algorithm. The idea is that we
want to stop the algorithm part way through, and use the set
of possible worlds generated to estimate the probabilities
we need.

We use W, at the start of an iteration of the while loop, as
an approximation to the set of all possible worlds. This can
be done irrespective of the search strategy used.

4.1 Prior Probabilities

Suppose we want to compute P(g). At any stage (at the
start of the while loop), the possible worlds can be divided
into those that are in W and those that will be generated
fromQ.

P(g) = L P(w)
wEO/\wl=g

= CrwF, P(w))

+ C to be gene.£ from q,wF, P(w))
We can easily compute the first of these sums, and can
bound the second. The second sum is greater than zero
and is less than the sum of the probabilities of the partial
descriptions on the queue (using Lemma 3.2). This means
that we can bound the probabilities of a proposition based
on enumeratingjust some of the possible worlds. Let

Lemma4.1

P g -w- L P(w)
wEWl\wl=g

Pq = LP(t)
teQ

As the computation progresses, the probability mass in I.he
queue PQ approaches zero and we get a better refinements
on the value of P(g). Note that Pq is monotonically non
increasing through the Joop (i.e PQ stays the same or gets
smaller through the loop). This thus forms the basis of an
"anytime" algorithm for Bayesian networks.

4.2 Posterior Probabilities · · · ·

The above analysis was for finding the prior probability
of any proposition. If we want to compute the posterior
probability of some g given some observations obs, we can
use the definition of conditional probability, and use

P(I b)
= P(g A obs)

9 0 8
P(obs)

Given estimates of P(g A obs) and P(obs), (namely Pf.vl\obs
and Pf,;"), it can be proved (Poole, 1993] that. P(globs) has
the following bound:

Theorem4.2
puAObs pfl/\OblS + P,

w < P(globs) < w Q
PfJ8 +Pq - - P~t11 +Pq

If we choose the midpoint as an estimate, the maximum
error is

! (pf:oba + PQ _ P{',,,"ob•)
2 pf,ja + PQ P~~,. + PQ

PQ
= 2(Pfj"' + Pq)

What is interesting about this is that the error is independent
of g. Thus when we are generating possible worlds for some
observation, and want to have posterior estimates within
some error, we can generate the required possible worlds
independently of the proposition that we want to compute
the prnbability of.

S Discussion

5.1 Refinements to the Search Algorithm

There are a number of refinements that can be carried out
to the algorithm of Figure I, independently of the search
strategy. Some of these are straightforward, and work well.
The most straightforward refinements are:

11 If we know our query and the conditioning variables,
we can prune those variables that cannot affect the an
swers. We can prune any variables that are d-separatcd
from the query variables by the observations [Pearl,
1988]. We can prune any variable that is not an an
cestor of the observations or the query. The above
two pruning steps can be done repeatedly [Baker and
l3oult, 1990]

• If we are trying to determine the value of P(et), we
can slop enumerating the partial descriptions once it

can be determined whether a is true in that partial
description. When conditioning on our observations
we can prune any partial description that is inconsistent
with the observations.

• Another alternative is an iterative-deepening search
[Korf, 1985]. As we are not concerned with finding
the most likely possible world, but a set of most likely
worlds, we can carry out depth-bounded de_pth-first
searches (not generating nodes whose probability is
below a threshold), without worrying too much about
decreasing the threshold to the maximum value it could
obtain.

5.2 Extreme Probabilities

The improvements to the search algorithm below assume
we have extreme probabilities. This means that for each
variable X, and for each instantiation of the parents of Xi,
there is one value v, for which

P(X, = v, 1xi1 = vi1 A ... Ax, •• = vi.,)

has a probability dose to one (and so the conditional prob
abilities of the other values for Xi are all close to zero).

Definition 5.1 Variable Xi is normal in possible world ()J

if P(Xi = v,IX i1 = Vi1 A··· A X ; • . = v; • .) ~ 1 where
w I= X; = Vi and w t= X,·; = ;i; for O < j $ k; .
Otherwise we say Xi is a fault in possible world w.

See [Poole, 1993] for a more detailed discussion of the use
of extreme probabilities, and why these extreme probabili
ties guarantee convergence of the seal'ch.

6 A Diagnosis Example

In this section we describe bow the search procedure can
be applied to a simple circuit diagnosis pmblem (as in [de
Kleer, 1991]), from which we can learn what problems
arise. The translation of the circuit into a Bayesi_an network
will follow that of Pearl [l 988, Section 5.4].

The circuit is a sequence of a one-bit adders, cascaded to
form a multiple-bit adder4.

6.1 Representation

Figure 2 shows a one bit adder. Figure 3 shows the corre
sponding Bayesian network.

In this Bayesian network the random variable out-a.2 is a
binary random variable that has two values on meaning that

•·mere is ac~ually an efficient algorithm for such an example
using a clique hypcrtree reprcseni.ation [Lnurilzen nnd Spicgclhal
ter, 1988; Jensen et al., 1990). This exploits the local nnturc of
lhc propagation, which we do not exploit. These would not work
so well when the structure cannot be cxploi1ed as well as for the
cascaded adders, for example, if we add co the circuit another cir
cuit LO find the parity of the resulting bits. We chose this example
a.<, it is simple to extend to large systems and also because ii was
u_~ in [de Kleer, 1991).

..

il __ _ xi

i2 -,,-+---/

1-----V-
Figure 2: I bit adder

Figure 3: Bayesian network for a I bit adder

a2ok i3 out-xl out-a2
on off

ok on on 1 0
ok on off 0 I
ok off on 0 I
ok off off 0 I
stuck! - - I 0
stuck0 - - 0 I

Figure 4: Conditional probability table for variable out-a2.

a2ok
ok I stuck 1 I stuck0
0.99999 I 0.000005 I 0.000005

Figure 5: Conditional probability table for variable a2ok.

the output of gate a2 is on, and off meaning the output of
the gate a2 is off. The random variable a2ok has three
values: ok meaning that the gate a2 is working correctly,
stuck I meaning the gate a2 is broken, and always has on
and stuck0 meaning the gate a2 is broken, and always has
off.

The value of out-a2 depends on the values of three other
variables, i3, out-x 1, and a2ok. The values for the variable
out-a2 follow the table in Figure 4. The tables for the other
outputs of gates is similar.

The value of a2ok does not depend on any other variables.
The values for the variable follow the table in Figure 5.5

The tables for the status of other gates is similar.

These one~bit adders can be cascaded for form multiple bit
adders. This is done in the circuit by connecting the output
of gate o 1 in one adder to input i3 of the following adder.
In the Bayesian network, this is done· by having multiple
instances of the network for the one-bit adder with the value
of i3 depending on the variable out-o 1 for the previous
instance of the adder. The table for the probabilities is
given in figure 6. The value of the output of gate x2 of bit
k, is called the output of bit k; the value of the output of ol
is called the carry.

6.2 Computation

Suppose we apply the algorithm of Figure 1 to our cascaded
adder example with the partial description with the highest
prior probability chosen each time through the loop. First
the world with all gates being ok is generated followed
by the worlds with single faults. Most of these can be
pruned quickly (see Section 5.1). Then the double stuck
at faults are generated, etc. The probability in the queue
converges very quickly [Poole, 1993). Each of the elements
of the queue can be characterized by what errors are in the

5The numbers are purely made up. It may seem as though
these probabilities are very extreme, but a 1000 bit adder (with
5000 components), is only 95% reliable, if all of the gates are as
reliable as that given in this table.

out-olk-1 i3A,
on off

on I 0
off 0 1

Figure 6: Conditional probability table for input 3 of adder
k.

partial description. We typically only generate the partial
descriptions with only a few of the errors.

This is essentially the candidnte generator phase of [de
Kleer, 1991). From this candidate generation, we can com
pute all of the probabilities that we need to.

To see what computational problem arises, consider a 1000-
bit adder. Suppose all the inputs are zero, and all outputs,
except bit k, are zero, and bit k outputs one (this example
is from [de Kleer, 1991]). Fork > 1 there are five most
likely possible worlds (that correspond to x2okk = stuck l,
x l okk = stuck 1, o 1 okk-1 = .~tuck 1 a2okk- I = stuck 1,
and alok,.,_ 1 = stitckl). We first choose the most Hkely
values of all variables (i.e., the ok state for all of the status
nodes). When we get to the output of bit k, which is pre
dicted to be zero, we find that our prediction is inconsistent
with the observations. At this stage, we prune the search
and consider the single-fault possible worlds. For each bit
after bit k, we have already assigned a single fault (to ac
count for the en-or in bit k), thus for each of these gates, we
only consider the ok state. For all of the gates before bit
k, we consider each of the failure states. When generating
worlds with just single faults, there is no point in trying each
of the failure states for the gates before bit k - l as each of
these failure states will have to be combined wilh another
failure state to account for the error. We would like to not
consider faults that we know will have to be combined with
other faults until we need Lo (when considering double fault
worlds these may have to be considered). Leaming what
we can about expectation failure and using this infonnation
for pruning the search is the idea behind the use of conflicts.

7 Search Strategy and Conflicts

The above example assumed a simple search strategy. We
can carry out various search strategies, to enumerate the'.
most likely possible worlds. Here we present one that
incorporates an analogous notion of conflict to that used
in consist.ency-based diagnostic community [de Kleer and
Williams, 1987; Reiter, 1987; de Kleer et al., 1990].

We carry out a multiplicative version6 of A• search [Pearl,
1984] by choosing the node m from the queue with the
highest value of /(m) = g(m) x h(m). Here g(m) is the

6Tois is llll instance of z· where, instead of adding lhe costs
and choosing the minimum we multiply and choose lhe maximum.
This can be transfonncd into a more traditional A• algorithm by
Ulking the negative of tJ1c logarilhrns of the probabilities. We do
not do this explicitly as we wam the probabilities to add afLer I.he
search.

probability of the corresponding proposition:

g((v1,·" ,v;))
= P(X1 = V1 I\ • · · I\ X; = Vj)

i
= IT P(X; = v;jX;, = v;1 /\ • • • /\ X;., = v;.,)

= P(X; = v;IX;, = v;1 I\•·· I\ X;~. = v;t.) , ,
xg((v1,···,v;-1})

TI1e heuristic function h((v1 · • · , v;}) is the product of the
maximum probabilities that can be obtained by variables
Xi+I · · · X n (for any values of the predecessors of these
variables). Initially, these can be computed by a linear scan
(from X n to X 1) keeping a table of the maximum products.
We use a notion of conflicts to refine the heuristic function
as computation progresses. This is defined in terms of
nonnality (Section 5.2), and is closest to that of [Reiter,
1987].

Definition 7.1 Given an observation o, a conflict is a set C
of random variables such that there is no possible world in
which o is true and all elements of Care nonnal. In other
words, if o is true, one of the elements of C is a fault (and
so has probability close to zero, no matter what values are
assigned to variable outside of C).

Associated with a conflict is a maximum probabiUty which
is an upper bound on the prior probability of any assignment
of values to variables in the conflict that is consistent with
the observation.

Two conflicts are independent if there is no single variable
that can account for both conflicts. That is, C1 and C2 are
independent if in all possible worlds in which the observa
tion is true there are at least two faults, one in C1 and one
in C2. This happens, for example, if the conflicts have no
variables in common.

Example 7.l In our example of Section 6, with all inputs
zero, and bit 50 having output one and all other outputs
being zero, there is one minimal conflict, namely:
{out-x2so, x2okso, i3so, out-ol49, olok49, out-al49,
alok49, i2.i9, out-a249, a2ok49, out-x l49, x lok49, il49, i249,
out-xlso, xlokso, ilso, i2so}.

A conflict corresponds to a set of nonnal values that cannot
consistently coincide given the observation. Conflicts dis
covered in the search can be used to prune the search earlier
than it could be pruned without the conflict. There are a
number of issues to be discussed:

1. How can conflicts be used by the search algorithm?

2. How can conflicts be discovered?

3. How does the use of conflicts affect the estimation of
probabilities?

4. How much does the use of conflicts save in search
time?

5. In practice, how often can we detect a small set of
variables that form a conflict?

In this paper we answer all but the last of these questions.
The last question we cannot answer until we have built
many more systems for many diverse applications.

7.1 Refining the heuristic function

We can use a conflict to update the heuristic function. In
particular a conflict can change the bound on the probability
that the rest of the variables can take on.

The simplest idea is that h ((v1, • • • , vi}) is the product of
the maximum probabilities of the independent conflicts that
involve only variables after variable X, 7.

A discovered conflict updates the heuristic function for all
the variables before (in the total variable ordering) the con
flict. The heuristic function evolves as computation pro
gresses and conflicts are found.

7 .2 Finding conflicts

We would like a way to extract conflicts from expectation
failures in our search. By the nature of the search, we first
consider the most likely values of variables. We only want
to consider faults that are forced upon us by conflicts.

Suppose that in the current partial description variable Xi
is assigned a value Vi and it has been observed that X; = o
where o 'I Vi. We say that the value Vi is predicted, and
we have a failure of expectation. We would like to extract
a conflict from the current partial description.

We want to extract conflicts as fast as possible, and do not
necessarily want to build the whole infrastructure of our
diagnosis system around finding conflicts (as does de Kleer
[1991]). We would like to extract the conflicts from the
expectation failure directly. We are not particularly con
cerned about finding minimal conflicts8• Whether these are
reasonable design goals, or achievable in practice remains
to be seen.

A set of variables C is a counter to Xi = o if there is
no possible world in which every variable in C is normal
and X; = o. A counter to a conjunction of assignments to
variables is defined analogously.

To generate a counter to Xi = o, we consider each tuple

(Vi1 , • • • , v;.,) of values to the parents such that P(Xi =
o)Xi, = Vi1 A··· A Xi • . =vi •.):::::: I. A counter to Xi= o
must contain a counte~ to ea~h of these conjunctions of
assignments of values to the parents of Xi.

The idea of the algorithm extract..counter that finds coun
ters is that we recursively find counters of these assignments
to the parents, union them, add Xi and return this set as a
counter to xi = o.

The problem is how to find the counter to the conjunction,

7 A more sophisticated version may count conflicts that contain
variables before X;, (and do not include X;) as long as they are
assigned normal values in (u1, • • • , u;) . We have only tested the
simpler idea.

8Correctness does not depend on a conflict being minimal.

without doing lots of search. This is where the extraction
from the failure of an expectation comes into play. For
each conjunction, there was a conjunct whose negation was
predicted in the current partial description (otherwise Xi
would have been predicted to have value o). We use the
procedure recursively to extract a counter to that assignment
from the current partial description.

The procedure extract...counter(Xi, o, 6) where Xi is a
variable, o is a value and 6 is a partial description such
that Xi = o is not true in 6, is defined as follows. Sup-

pose the parents of Xi are (Xi., • • • , X; •;) . Consider

each tuple (v;1, • • • , vi•;) of values to the parents such

that P(X ; = olXi1 = Vi1 A • • • A xi. = Vi •.) :::::: 1.
Cboose9 i ; such that X ;J 'I 11;J in the c~rrent p.:ruai de
scription (i.e. X ;J = t1;J is not predicted). Recursively
call extract...counter(X;i , v,; 6). This returns the set of
variables all of which cannot be normal if X ;J = v;r 1l1e
value returned for extract ..count er(X ; o 6) is then

{ X;} U LJ extract...counter(Xi;, Vi;, 6)
P(X; = olX;I = Vi1 A··· A xi •. =Vi •.):::::: 1

and 6 F X;; 'I vi/ '

So when we have a failure of expectation caused by the
observation Xi = o, then extract...counter(Xi, o, 6) will
return a conflict.

N.B. sometimes extract...counter may fail to find a co·unter
if 6 contains a fault that produces the expectation failure.
In this case we cannot extract a conflict that is independent
of the conflict that forced the fault in 6.

7.3 Estimating probabilities

Naive use of the above procedure gives error estimates that
are too large. The problem is that there are quite large
probabilities on the queue that are not chosen because of
their heuristic values. Thus the value of Pq is much larger
than we may expect.

Suppose m is an element on the queue, that is not chosen
because/ (m) = g(m) x .h(m) is too low. Although the set
of pos'sible world rooted at m has probability g(m), most of
these are impossible if there is a conflict. We know at least
(1 - h(m)) of the weighted sum of these possible worlds
must be inconsistent with the observations (by the definition
of h). This we should only count f(m) = g(m) x h(m)
as part of Pq, rather than g(m). This can then be used to
estimate probabilities, and gives a much better accuracy.

7.4 Experimental Results

The experiments we carried out were limited to understand
ing the behaviour of the algorithm on cascaded n-bit adder

9 Any choice will lead to a conflict. A bad choice may lead
to a non-minimal conflict. Our experiments were with a greedy
algorithm that chooses the first one found. There is a tradeoff
between the computational effort in finding minimal conflicts,
and the extra pruning that minimal conflicts allow.

I error bit 2 1 25 1 50 1 15 1 100 1

run time (no conflicts) 14 56 188 408 718
run time (with conflicts) 16 13 10 7 4

Figure 7: Running time as a function of error bit in a 100-bit
adder. ·

bits 100 500 1000 2000 3000
2ates 500 2500 5000 10000 15000
nodes 1300 6500 13000 26000 39000
run time 10 46 92 183 275

Figure 8: Running time as a function of size of multiple-bit
adder.

example, with aU inputs zero aod all output bits being zero,
except for the output of bit k (i.e., the value of x2i-) which
had value one. Note that an n-bit adder has 5n gates and
corresponds to a Bayesian network with 13n nodes. We ran
the program using a bounded depth-first search (pruning the
depth-first search when the /-value gets below a threshold),
generating the 5 most likely possible worlds.

All times are based on a SICStus Prolog program running
on a NeXTstation. All times are in seconds. The code is
available from the author.

The main problem with the search algorithm without con
flicts, for our example, was how the runtime depended on
the bit k that was faulty. Figure 7 shows how .run time
depends on the bH chosen for the program with no con
flicts and for the program with conflicts. This was for the
100-bit adder (Bayesian network with 1300 nodes). The
difference in times for error bit 2 indicates the overhead iu
using conflicts (as conflicts for this case gives us nothing).

Consider how the program runs: we pursue one world until
bH k. then pursue 5 worlds separately from bits k lo n. Thus
we may estimate the time as proportional 10 k + 5(n. - k).
This fits the experimental results extremely well.

The second experiment was with the asymptotic behaviour
as the size of the network was increased. Figure 8 shows
the run-time for finding the 5 most likely possible worlds,
as a function of circuit size. In each of these the error bit
was the middle bit of the circuit (i.e., k = I). This was
chosen as it is the average time over all of the error bits (see
Figure 7). Note the linear time that was predicted by the
k + 5(n - k) fonnula.

Finally, the results from double errors, are very similar. For
a JOO-bit adder, with ones observed at bits 30 and 70, the
program took 34 seconds to find the 25 most likely possible
worlds.

8 Comparison with other systems

The branch and bound search is very similar to the candidate
enumeration of de Kleer's focusing mechanism [de Kleer,

1991]. We have considered a purely probabilistic version of
de Kleer's conflicts. We have extended the language to be
for Bayesian networks, rather than for the more restricted
and less well-defined language that de Kleer uses. We also
can bound the errors in our probabilistic estimates, which
de KJeer cannot do. One of the features of our work is that
finding minimal conflicts is not essential to ~e correctness
of the program, but only to the efficiency. Thus we can
explore the idea of saving time by finding useful, but non
minimal conflicts quickJy;

Sbimony and Cbamiak [1990], Poole [1992a] and
D' Ambrosio [1992) have proposed back-chaining search al
gorithms for Bayesian networks. None of these are nearly
as efficient as the one presented here. Even if we con
sider finding the single most non:nal world, the algorithm
here corresponds to forward chaining on definite clauses
(see [Poole, 1992b]), which can be done in linear time,
but backward chaining has 10 search and takes potentially
exponential time.

This paper should be seen as a dual to the TOP-N algo
rithm of Hennon [1991]. We have a different niche. We
take no account of the noisy-OR distribution that Henrion
concentrates on.

This paper deliberately takes the extreme position of seeing
how far we can get when we exploit the distributions and
not the structure of the network. Hopefully tbis can shed
light on the algorithms that use both the structure and the
distribution 10 gain efficiency (e.g., [D'Ambrosio, 1992]).

9 Conclusion

This paper has considered a simple search strategy for com
puting prior and posterior probabilities in Bayesian net
works. This uses a variation on A• search, and uses a
notion of 'conflict' to refine the heuristic function. One of
the aims of this work is to bring together the model-based
diagnosis community (e.g., [de KJeer, 1991]) and the un
certainty in AI community, with a common set of problems
and tools.

In some sense this is preliminary work. We have not tested
this beyond the single example. It is not clear how easy it
will be in other examples to find conflicts without searching
for counters, nor bow much the use of conflicts can save
us. The use of counters seems to be very different to ex
ploitation of structure in other algorithms, but there may be
some, as yet undiscovered, relationship there.

Acknowledgements

Thanks to Craig Boutilier, Nevin Zhang, Runping Qi and
Michael Horsch for valuable comments on this paper. This
research was supported under NSERC grant OGPOO44 l 21,
and under Project B5 of the Institute for Robotics and In
telligent Systems.

References

[Baker and Boult, 1990] M. Baker and T.E. Boult. Prun
ing Bayesian networks for efficient computation. In
Proc. Sixth Conf. on Uncertainty in Artificial Intelli
gence, pages 257-264, Cambridge, Mass., 1990.

[Chang and Lee, 1973] C-L Chang and R. C-T Lee. Sym
bolic Logical and Mechanical Theorem Proving. Aca
demic Press, New York, 1973.

[D'Ambrosio, 1992] B. D'Ambrosio. Real-time value
driven diagnosis. In Proc. Third International Workshop
on the Principles of Diagnosis, pages 86-95, Rosario,
Washington, October 1992.

[de Kleer and Williams, 1987] J. de Kleer and B. C.
Williams. Diagnosing multiple faults. Artificial Intel~
ligence, 32(1):97-130, April 1987.

[de Kleeretal., 1990] J. de Kleer, A. K. Mackworth, and
R. Reiter. Characterizing diagnoses. In Proc. 8th Na
tional Conference on Artificial Intelligence, pages 324-
330, Boston, July 1990.

[de Kleer, 1991] J. de Kleer. Focusing on probable diag
noses. In Proc. 9th National Conference on Artificial
Intelligence, pages 842-848, Anahiem, Cal., July 1991.

[Genesereth, 1984] M. R. Genesereth. The use of design
descriptions in automated diagnosis. Artificial Intelli
gence, 24(1-3):411-436, December 1984.

[Henrion, 1988] M. Henrion. Propagating uncertainty in
Bayesian networks by probabilistic logic sampling. In J.
F. Lemmer and L. N. Kanai, editor, Uncertainty in Ar
tificial Intelligence 2, pages 149-163. Elsevier Science
Publishers B.V., 1988.

[Henrion, 1990] M. Henrion. An introduction to algo
rithms for inference in belief nets. In M. Henrion, et
al., editor, Uncertainty in Artificial Intelligence 5, pages
129-138. North Holland, 1990.

[Henrion, 1991] M. Henrion. Search-based methods to
bound diagnostic probabilities in very large belief net
works. In Proc. Seventh Conj. on Uncertainty in Arti
ficial Intelligence, pages 142-150, Los Angeles, Cal.,
July 1991.

[Howard and Matheson, 1981] R. A. Howard and J. E.
Matheson. Influence diagrams. In R. A. Howard and
J. Matheson, editors, The Principles and Applications of
Decision Analysis, pages 720-762. Strategic Decisions
Group, CA, 1981.

[Jensen et al., 1990] F. V. Jensen,S. L. Lauritzen,and K. G.
Olesen. Bayesian updating in causal probabilistic net
works by local computations. Computational Statistics
Quaterly, 4:269-282, 1990.

[Korf, 1985] K. E. Korf. Depth-first iterative deepening:
an optimal admissable tree search. Artificial Intelligence,
27(1):97-109, September 1985.

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and
D. J. Spiegelhalter. Local computations with proba
bilities on graphical structures and their application to
expert systems. Journal of the Royal Statistical Society,
Series B, 50(2):157-224, 1988.

[McCarthy, 1986] J. McCarthy. Applications of circum
scription to formalizing common-sense knowledge. Ar
tificial Intelligence, 28(1):89-116, February 1986.

[Pearl, 1984] J. Pearl. Heuristics. Addison-Wesley, Read
ing, MA, 1984.

[Pearl, 1987] J. Pearl. Evidential reasoning using stochas
tic simulation of causal models. Artificial Intelligence,
32(2):245-257, May 1987.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelli
gent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

[Poole, 1992a] D. Poole. Logic programming, abduction
and probability. In International Conference on Fifth
Generation Computer Systems (FGCS-92), pages 530-
538, Tokyo, June 1992.

[Poole, 1992b] D. Poole. Probabilistic Hom abduction and
Bayesian networks. Technical Report 92-20, Department
of Computer Science, University of British Columbia,
August 1992. To appear,Artificial Intelligence 1993.

[Poole, 1993] D. Poole. Average-case analysis of a search
algorithm for estimating prior and posterior probabili
ties in Bayesian networks with extreme probabilities. In
Proc. 13th International Joint Conj. on Artificial Intelli
gence, pages??-??, Chambery, France, August 1993.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57-95, April
1987.

[Shimony and Chamiak, 1990] S. E. Shimony and E. Char
niak. A new algorithm for finding MAP assignments to
belief networks. In Proc. Sixth Conf. on Uncertainty in
Artificial Intelligence, pages 98-103, Cambridge, Mass.,
July 1990.

The use of conflicts in searching Bayesian
networks

David Poole
Department of Computer Science,

University of British Columbia,
Vancouver, B.C., Canada V6T 1Z2

poole@cs.ubc.ca
telephone: (604) 822 6254; fax: (604) 822 5485

May 19, 1993

A A Prolog Implementation

This code implements a bottom-up depth-first depth-bounded search to find the most
likely possible worlds that are consistent with the observations. Here we exploit the
pattern-matching of Prolog, without utilizing the declarative nature or the search of the
Language. All of the code here is deterministic; this program does not backtrack. This
is done here by the use of the Prolog cut (!). N.B. we could also write a program that
uses Prolog search (and no cuts) to do the depth-first search. This was not done as the
following code is more efficient (by our tests), and can be more directly translated into
committed-choice parallel logic programming languages or more traditional languages
such as Lisp.

A.1 Network Representation

The Bayesian network is described using the relations:

nextvar(Il, 12) means that variable 12 is the next variable after 11 in the total order
of variables. The first (dummy) variable is init. prevvar(I2, 11) is the inverse of
nextvar (needed because Prolog is not a real logic programming language).

vals(I, VI) is true if VI is the list of variables of variable J.

parents(!, A, F) is true if F is the set of values of parents of variable I, given the list
A of values of the ancestors of I in reverse order (i.e, the first element of the list
is the value of the variable before V).

prob(E, F, P) is true if proposition E given parents F has probability P. That is if
p(EIF) = P. A proposition Eis written as an equality Variable = Value.

observed(E) is true if proposition E of the form Variable= Value is observed.

miniscule(P) is true if P is below the threshold for searching in the depth-bounded
search.

interesting(E) is true if proposition E of the form Variable= Value is an interesting
value to print out when printing possible worlds.

A.2 Search Procedure

A possible world is represented as pw(P, Vs) which represents the possible world with
values given by the list Vs and probability P. Vs is the list of the values of the variables
in reverse order.

The found possible worlds that are consistent with the observations are represented
as wf(IM, FM, MW, FND) where IM is the mass of the possible worlds pruned by
inconsistency, FM is the sum of the probabilities of the possible worlds found (these
are all consistent with the observations) MW is the mass of pruned miniscule worlds
and FND is a list of these worlds.

The state of the computation is represented as the tuple

state(D, H, C)

where

D is the worlds found so far.

H is the heuristic function to be used.

C is the conflict set.

The top level procedure is to search through the values Vis of variable I and all
subsequent variables:

chain(!, Vis, VAs,PAs,S0,S1)

where

I is the current variable;

Vis is the list remaining values of I to test,

VAs is the list of the values of the ancestors of I (in reverse order, i.e., the first element
of the list is the value of the immediate predecessor of I);

PAs = P(VAs)

SO is the state before.

SJ is the state after.

N.B. the first clause is when we are backtracking to a previous variable. In this case
the heuristic function should be updated, if I is a pivot variable.

*I
chain(I, [] ,_,_,state(D,HO,C) ,state(D,Hi,C)) · -

hpivot(I,C,P), ! ,
Hi is HO*P.

chain(_, [] , _, _, S, S) : - ! .
chain(I,Vls,VAs,PAs,SO,Si) ·

parents(I,VAs,Parents),
remove_max(I,Parents,Vi,VIs,VRs,PVi),
Pi is PAs*PVi, ! ,
test(I,Vi,Pi,VRs,VAs,PAs,SO,Si).

remove_max(I, Parents, Vmax, VIs, VRs, Pmax)

is true if Vmax is the element of VIs such that P(J = Vmaxl Parents) - Pmax is
maximal. VRs is the remaining elements of VIs once Vmax is removed.

*I
remove_max(I,Parents,Vi, [Vi],[] ,MaxProb) ·-

prob(I=Vi,Parents,MaxProb),!.
remove_max(I,Parents,VMax,[VilVIs] ,VRs~MaxProb) ·

prob(I=Vi,Parents,PVi),
remove_max(I,Parents,V2,Vls,V2Rs,PV2),
(PVi > PV2 -> VMax=V1, MaxProb=PV1, VRs=VIs

; VMax=V2, MaxProb=PV2, VRs=[VilV2Rs]
) .

The procedure test is to test one of the values of the variable being tested, to add
it to the collection of inconsistent values, elements that remain on the (pseudo) queue
or recurse to find all of the possible worlds that are its descendents.

test(!, V1, P1, VIs, VAs, PAs, SO, Si)

is true when

I is the current variable;

VJ is a possible value for variable J;

Pl is the probability I having value V and all other variables having values given by
· VAs. -- - .. -

Vls is the list remaining values of I to test (after VJ),

VAs is the list of the values of the ancestors of I (in reverse order, i.e., the first element
of the list is the value of the immediate predecessor of I);

PAs = P(VAs) ;

SO is the state before.

S1 is the state after.

*I
test(I,V1,P1,VIs,VAs,PAs,state(wf(IMO,FM,MW,FND),HO,CO),S2) ·-

inconsis_obs (I=V1), ! ,

(miniscule(P1*HO) -> CO=C1
; expand_conflict_set(I,VAs,CO,C1)),
IM1 is IMO+ P1,
chain(I,VIs,VAs,PAs,state(wf(IM1,FM,MW,FND),HO,C1),S2).

test(I,_,P1,VIs,VAs,PAs,state(wf(IMO,FM,MWO,FND),HO,CO),S2) ·
miniscule(P1*HO), !,
MW1 is MWO+P1*HO,
IM1 is IMO+P1*(1-HO),
chain(I,VIs,VAs,PAs,state(wf(IM1,FM,MW1,FND),HO,CO),S2).

test(I,V1,P1,VIs,VAs,PAs,state(DO,HO,CO),S2) ·
nextvar(I, !1), ! ,
(hpivot(I1,CO,PP) -> H1 is HO/PP
; H1=HO),
vals(I1,VI1), !,
chain(I1, VI1, [V1 I VAs], P1, state(DO ,H1, CO) ,S1), ! ,
chain(I,VIs,VAs,PAs,S1,S2).

test(I,V1,P1,VIs,VAs,PAs,state(wf(IMO,FM,MW,FND),HO,CO),S1) ·
FM1 is FM+P1, ! ,
chain(I,VIs,VAs,PAs,

state(wf(IMO,FM1,MW,[pw(P1,[V1IVAs])IFND]),HO,CO),S1) . .

inconsis_obs(E) is true if proposition Eis inconsistent with the observations (it may
have probability zero, and not be caught by this test; this means directly contradicted
by the observation, independently of the background knowledge stated as probabilities).

*I
inconsis_obs(I=V) : -

observed(I=VO),

\+ V=VO.

A.3 Conflict Sets

A conflict set is a list of conflicts. Each conflict is represented as

conftict(MProb, Least Var, Max Var, Conflict)

where Conflict is the set of variables that are in conflict. Least Var is the least (in
the total ordering of the variables) variable in the conflict. Max Var is the largest (in
the total ordering of the variables) variable in the conflict. MProb is a bound on the
maximum probability that an assignment of values to variables in the conflict can take.

expand_confticLset(I, VAs, CO, Cl)

where I is a variabl whose value is unexpected given ancestor's values VAs, expands
the conflict set from CO to C 1 .

N .B. we have to make sure that each variable is only in one conflict (otherwise
the conflicts are not independent and we cannot multiple the heuristic values of the
conflicts). This is the role of the first clause.

*I
expand_conflict_set(I,_,CO,CO) :-

inconflict(I,CO),!.
expand_conflict_set(I,VAs,CO,C1) :

observed(I=Vobs),
extract_counter(I,Vobs,VAs,CO,[],C,O,MP,I,LV),
(MP=1 -> C1=CO ,writeln(['Conflict rejected: ',I=Vobs])
; Cl= [conflict(MP,LV,I,C)ICO],
writeln(['*** Conflict found: ',CJ),
writeln(['*** Heuristic value= ',MP,'; Minvar=',LV,'; Maxvar =',I])).

The following us used to test the case where there are no conflicts.

expand_conflict_set(_,_,CO,CO).

hpivot(I, CS, P) is true if/ is the least variable in a conflict in CS. P is the heuristic
value of the conflict. Analogously, upivot(I, CS, P) is true if/ is the largest variable
in a conflict in CS, with probability P.

*I
hpivot(I,CS,P) :-

member(conflict(P,I,_,_),CS).
upivot(I,CS,P) :-

member(conflict(P,_,I,_),CS).

inconflict(I, CS) is true if variable J is in a conflict in conflict set CS.

*' inconflict(I,CS) :-
member(conflict(_,_,_,C),CS), member(I,C), ! .

A.4 Finding Conflicts

extracLcounter(I, Vobs, VAs, PCon, CO, Cl, PO, Pl, LVO, LVl)

is true if I = Vobs is unexpected given ancestor values VAs and so the conflict grows
from CO to Cl. PO is the initial, and Pl the final value of the upper bound of the
maximum probability that can be obtained by anything that does not include this
conflict. LVl is the least variable in the conflict. PCon is the list of previously found
conflicts.

*' extract_counter(I,Vobs,VAs,PCon,CO, [IIC1] ,PO,P2,LVO,LV1) ·-
parents(I,VAs,ParI),
prob(I=Vobs,ParI,CP),
max(PO,CP,P1),
allof(Pars,(prob(I=Vobs,Pars,P),P>0.9),Likepars),
counter_parents(I,Likepars,VAs,PCon,CO,C1,P1,P2,LVO,LV1).

counter_parents(I, Likepars, VAs, PCon, CO, Cl, PO, Pl, LVO, LVl)

is true if Likepars is the list of parent assignments that are likely and could have
produced the observed value. This results in conflict CJ - CO.

*' counter_parents(_,_,_,_,L,L,P,1,LV,LV) :- P> 0.9, !.
counter_parents(_,(],_,_,L,L,P,P,LV,LV).
counter_parents(I,[ParlR],VAs,PCon,CO,C2,PO,P2,LVO,LV2) ·-

parents(I,Anc,Par),
find_mismatch(I,Anc,VAs,PCon,CO,C1,PO,P1,LVO,LV1),
counter_parents(I,R,VAs,PCon,C1,C2,P1,P2,LV1,LV2).

find_mismatch(I, Anc, VAs, PCon, CO, Cl, PO, Pl, LVO, LV1)

is true if VAs is the list of variables that correspond to the first mismatch between
expected and found values. This results in conflict Cl - CO. N.B. other (perhaps
smaller) conflicts can be found by choosing other mismatches other than the first
found.

*I
find_mismatch(init;~.~,_,CO,C0,_,1,I,I) :- ! .
find_mismatch(_,_,_,_,CO,C0,1,1,I,I) :- !.
find_mismatch(I, [AIP], [A IVs] ,PCon,CO,C1,PO,P1,I,LV1) ·- ! ,

prevvar(I, 11),
find_mismatch(I1,P,Vs,PCon,CO,C1,PO,P1,I1,LV1).

find_mismatch(I,[AIP],[AIVs] ,PCon,CO,C1,PO,P1,LVO,LV1) · - ! ,
prevvar(I, 11),
find_mismatch(I1,P,Vs,PCon,CO,C1,PO,P1,LVO,LV1).

find_mismatch(I,_,_,PCon,CO,C0,_,1,_,I) :-
inconflict(I,PCon),!.

find_mismatch(I, [A I_],[_ IVs], PCon, CO, C1, PO, P1, I ,LV1) · -
prevvar(I, 11),
extract_counter(I1,A,Vs,PCon,CO,C1,PO,P1,I1,LV1).

find_mismatch(I, [Al_], LI Vs] ,PCon,CO,C1,PO,P1,LVO,LV1) ·
prevvar(I, 11),
extract_counter(I1,A,Vs,PCon,CO,C1,PO,P1,LVO,LV1).

A.5 Information Seeking

make_worlds(Wlds) searches and returns all the consistent worlds with probability
above the threshold.

*I
make_worlds(Wlds) :-

nextvar(init,IO),
vals(IO,VIO),
chain(IO,VIO, [] ,1,state(wf(0,0,0,[]),1,[]),state(Wlds,_,_)).

To start the search for the possible worlds, you call start.

*I
start ·-

statistics(runtime,_),
make_worlds(wf(IM,Pfnd,MW,Fnd)),
statistics(runtime, [_,T]),
writeln(['Runtime: ', T,' msec. ']),
Qmass is 1-IM-Pfnd,
writeln(['Prob found= ',Pfnd]),
writeln(['Inconsistency mass=', IM]),
writeln(['Pruned mass =',MW]),
writeln(['Queue Mass= ',Qmass]),

Err is Qmass / (2 * (Pfnd+Qmass)),
writeln(['Error in posterior estimation= ',Err]),
print_worlds(Pfnd,Qmass,Fnd,_).

print_worlds(_,_, [] ,0).
print_worlds(Pfnd,Qmass,[pw(P,Vs)IR],N) ·

print_worlds(Pfnd,Qmass,R,N1), ! ,
N is N1+1,
writeln(['World #',NJ),
writeln([' Prior Probability= ',P]),
LB is P / (Pfnd + Qmass),
UB is P / Pfnd,
WL i.. eln([' Posterior Probability= [',LB,',',UB,']']),
writeln([' Interesting Values:']),!,
print_vals(Vs,_).

print_vals([] ,init).
print_vals([V1IR],NV) ·

print_vals(R,V),
nextvar(V,NV),
(interesting(NV=V1) -> writeln(['

/*

',NV=V1]) true) .

A.6 Representation of a one thousand bit adder

The following represents a 100 bit cascaded ripple adder. See Section A for a description
of the relations used.

*I
nextvar(init,i1(1)).
nextvar(i1(N),i2(N)).
nextvar(i2(N),i3(N)).
nextvar(i3(N),x1ok(N)).
nextvar(x1ok(N),x1(N)).
nextvar(x1(N),x2ok(N)).
nextvar(x2ok(N),x2(N)).
nextvar(x2(N),a1ok(N)).
nextvar(a1ok(N),a1(N)).
nextvar(a1(N),a2ok(N)).
nextvar(a2ok(N),a2(N)).
nextvar(a2(N),o1ok(N)).
nextvar(o1ok(N),o1(N)).

nextvar(o1 (N). ii (Ni)) · -
N < 100,
Ni is N+1.

prevvar(i1(N1) ,o1(N)) ·
N1>1, ! •
N is N1-1.

prevvar(V1,V2) :- nextvar(V2,V1), ! .

vals(i1(_), [on,off]).
vals(i2(_),[on,off]).
vals(i3(_),[on,off]).
vals(x1ok(_), [ok,stuck1,stuck0]).
vals(x1(_), [on.off]).
vals(x2ok(_), [ok,stuck1,stuck0]).
vals(x2(_),[on,off]).
vals(a1ok(_),[ok,stuck1,stuck0]).
vals(a1(_), [on.off]).
vals(a2ok(_), [ok,stuck1,stuck0]).
vals(a2(_), [on,off]).
vals(o1ok(_), [ok,stuck1,stuck0]).
vals(o1(_),[on,off]).

parents(i1(_),_,[]).
parents(i2(_),_, []).
parents(i3(1),_, []).
parents(i3(_),(_,_,Vo11_],[Vo1]).
parents(x1ok(_),_,[]).
parents(x1(_), [X1ok,_,Vi2,Vi1I_],

[X1ok, Vi2, Vii]).
parents(x2ok(_),_,[]).
parents(x2(_), [X2ok,Vx1,_,Vi3I_],

[X2ok, Vx1, Vi3]) .
parents(a1ok(_),_,(]).
parents(ai(_), [A1ok,_,_,_,_,_,Vi2,Vi1I_],

[A1ok, Vi2, Vii]).
parents(a2ok(_),_, []).
parents(a2(_),[A2ok,_,_,_,_,Vx1,_,Vi3I_],

[A2ok, Vx1, Vi3]) .
parents(o1ok(_),_, []).
parents(o1(_), [01ok,Va2,_,Va11_].

[01ok, Va2, Val]) .

prob(i1C)=on, [] ,0). · ··
prob(il(_)=off,O,1).
prob(i2(_)=on,[],0).
prob(i2(_)=off,[],1).
prob(i3(1)=on,[],0).
prob(i3(1)=off, [],1).
prob(i3(_)=V, [V] ,1).
prob(i3(_)=on, [off],0).
prob(i3(_)=off, [on],0).

prob(x1ok(_)=V,O,P) ·-
prob_ok(V,P).

prob_ok(ok,0.99999).
prob_ok(stuckl,0.000005).
prob_ok(stuck0,0.000005).

prob(xl(_)=V,Par,Prob) :-
prob_xorgate(V,Par,Prob).

prob(x2ok(_)=V,[],P) :
prob_ok(V,P).

prob(x2(_)=V,Par,Prob) :
prob_xorgate(V,Par,Prob).

prob(a1ok(_)=V,[],P) :
prob_ok(V,P).

prob(a1(_)=V,Par,Prob) :
prob_andgate(V,Par,Prob).

prob(a2ok(_)=V,[],P) :
prob_ok(V,P).

prob(a2(_)=V,Par,Prob) :
prob_andgate(V,Par,Prob).

prob(o1ok(_)=V,O,P) :
prob_ok(V,P).

prob(o1(_)=V,Par,Prob) :-
prob_orgate(V,Par,Prob).

prob_xorgate(on, [ok,on,on],0).
prob_xorgate(off,[ok,on,on],1).
prob_xorgate(on,[ok,on,off],1).
prob_xorgate(off,[ok,on,off],0).
prob_xorgate(on,[ok,off,on],1).
prob_xorgate(off,[ok,off,on] ,0).

prob_xorgate(on,[ok,off,off] ,0).
prob_xorgate(off,[ok,off,off],1).
prob_xorgate(on,[stuck1,_,_] ,1).
prob_xorgate(off,[stuck1,_,_],0).
prob_xorgate(on, [stuck0,_,_] ,0).
prob_xorgate(off,[stuck0,_,_] ,1).

prob_andgate(on, [ok,on,on],1).
prob_andgate(off, [ok,on,on],0).
prob_andgate(on, [ok,on,off],0).
prob_andgate(off,[ok,on,off] ,1).
prob_andgate(on, [ok,off,_],0).
prob_andgate(off,[ok,off,_],1).
prob_andgate(on, [stuck!,_,_] ,1).
prob_andgate(off, [stuck1,_,_] ,0).
prob_andgate(on, [stuck0,_,_] ,0).
prob_andgate(off,[stuck0,_,_],1).

prob_orgate(on,[ok,on,_],1).
prob_orgate(off,[ok,on,_] ,0).
prob_orgate(on,[ok,off,on],1).
prob_orgate(off,[ok,off,on],0).
prob_orgate(on, [ok,off,off],0).
prob_orgate(off, [ok,off,off] ,1).
prob_orgate(on,[stuck1,_,_] ,1).
prob_orgate(off, [stuck!,_,_] ,0).
prob_orgate(on, [stuck0,_,_],0).
prob_orgate(off,[stuck0,_,_],1).

% observed(x2(N)=off) :- N =\= 30, N=\=70.
% observed(x2(30)=on).
% observed(x2(70)=on).

observed(x2(N)=off) :- N =\= 50.
observed(x2(50)=on).

interesting(_=stuck1).
interesting(_=stuck0).

miniscule(P) :-
¼ P < 0.00000000001. % appropriate bound for double errors
P < 0.000001. ¼ appropriate bound for single errors

/ I

B Auxiliary Definitions

member(X, L) is true if X is a member of list L.

*I
member(X, [XI_]).
member(X,[_IL]) ·

member(X,L).

min(A, B, C) is true if C is the minimum of A and B.

*I
min(A,B,A) ·- A =< B.
min(A,B,B) ·-A> B.
I*

max(A, B, C) is true if C is the maximum of A and B.

*I
max(A,B,A) ·-A>= B.
max(A,B,B) ·-A< B.
I*

newindex(N) returns a new value for N each time it is called.

*I
:- dynamic previndex/1.
previndex(O).

nevindex(I1) :-
retract(previndex(I)),
I1 is I+1,
assert(previndex(I1)).

accumulate(Goal, !nit, Prev, Ace, Next, Result) accumulates information for each
success of Goal. Init is the start. Ace is a predicate that shows how to derive Next
accumulation from Prev accumulation. Result is the final accumulation.

*I
accumulate(G,I,P,CN,N,Res) ·-

nevindex(Ind),
accumulate(Ind,G,I,P,CN,N,Res).

accumulate(Ind,G,I,P,CN,N,_) ·
assert(result(Ind,I)),
G,
retract(result(Ind,P)),
CN,
assert(result(Ind,N)),
fail.

accumulate(Ind,_,_,_,_,_,Res) ·
retract(result(Ind,Res)).

:- dynamic p/1.
p(3).
p(5).
p(7).

p(1).

,

¼? accumulate(p(X),O,P,N is P+X,N,Res).
¼? accumulate(p(X),1,P,N is P*X,N,Res).
¼ ? accumulate (p(X), [] , P, N= [XI P] , N, Res);
¼? accumulate(p(X),L-L,P1-P2,P2=[XIP] ,P1-P,Res-[]) .
I*

allof(X, G, Res) is true if Res is the list of X such that G succeeds.

*I
allof(X,G,Res) :-

accumulate(G,L-L,P1-[XIP] ,true,P1-P,Res-[]).
¼? allof(X,p(X),L).
¼? allof(together(X,Y),append(_, [X,YI_], [a,b,c,d]),L).
%---------
!*

writeln(L) is true if L is a list of items to be written on a line, followed by a newline.

*I
writeln([]) :- nl.
writeln([HIT]) ·- write(H), writeln(T).
I*

*/

