A New Method for Influence Diagram Evaluation

by
Runping Qi and David Poole*

Technical Report 93-10
May 1993

Department of Computer Science
The University of British Columbia
Vancouver, B. C. V6T 172
Canada

email: qi@cs.ubc.ca, poole@cs.ubc.ca

*Scholar of Canadian Institute for Advanced Research

©1993 Runping Qi and David Poole



Abstract

As Influence diagrams become a popular representational tool for decision analysis, influ-
ence diagram evaluation attracts more and more research interests. In this article, we present
a new, two—phase method for influence diagram evaluation. In our method, an influence dia-
gram is first mapped into a decision graph and then the analysis is carried out by evaluating
the decision graph. Our method is more efficient than Howard and Matheson's two-phase
method beeause, among other reasons, the size of the decision graph generated by our method
from an influence diagram can be much smaller than that by Howard and Matheson's method
for the same influence diagram. Like those most recent algorithms reported in the literature.
our method can also exploit independence relationship among variables of decision problems.
and provides a clean interface between influence diagram evaluation and Bayesian net eval-
uation, thus, various well-established algorithms for Bayesian net evaluation can be used in
influence diagram evaluation. In this sense, our method is as efficient as those algorithms.
Furthermore, our method has a few unique merits. First, it can take advantage of asymmetric
processing in influence diagrain evaluation. Second, by using heuristic search techniques, it
provides an explicit mechanism for making use of heuristic information that may be available
in a domain~specific form. These additional merits make our method more effictent than the
current algorithins in general. Finally, by using decision graphs as an intermediate represen-
tation, the value of perfect information can be computed in a more efficient way.



1 Introduction

An influence diagram (Howard and Matheson 1984) is a graphical representation of decision
problems. In comparison with decision trees, influence diagrams are arguably more intuitive,
natural and compact.

The first method for influence diagram evaluation is Howard and Matheson’s two-phase
method. In this method, an influence diagram is first transformed into a decision tree and then the
analysis is carried out by evaluating the decision tree. This two—phase method was largely aban-
doned after Shachter showed an influence diagrams can be evaluated directly (Shachter 1986). All
of the recent algorithms for influence diagram evaluation (Cooper 1988, Zhang and Poole 1992h,
Shachter and Peot 1992, Zhang et al. 1993b) carry out the evaluation without a secondary repre-
sentation. One reason for abandoning the two-phase approach might be that people believe that
direct evaluation is more efficient.

However, all those algorithms that evaluate influence diagrams directly suffer from a common
shortcoming. That is they do not perform asymmetric processing (Shachter 1986). Another
weakness of these algorithms is that they fail to provide any explicit mechanism to make use of
domain dependent information (e.g. a heuristic function estimating the optimal expected values
of influence diagrams), even when it is available.

In this paper, we will show that the two-phase approach to influence diagram evaluation need
not be inefficient. The inefficiency of Howard and Matheson’s method is not due to the two-phase
approach. Rather, it is due to the way to generate the secondary representation. We will present a
two—-phase method for influence diagram evaluation. In our method, we map an influence diagram
into a decision graph (Qi 1993, Qi and Poole 1993) in such a way that an optimal solution graph
of the decision graph corresponds to an optimal strategy of the influence diagram. Thus, the
problem of computing an optimal strategy is reduced to the problem of searching for an optimal
solution graph of a decision graph, which can be accomplished by various algorithms (Qi 1993,
Qi and Poole 1993). The size of the decision graph generated by our method from an influence
diagram can be much smaller than that generated by Howard and Matheson’s method for the same
influence diagram. Like those most recent algorithins (Zhang and Poole 1992b, Zhang et al. 1993a,
Shachter and Peot 1992, Zhang 1993), our method can also exploit independence relationship
among variables of decision problems, and provides a clean interface between influence diagram
evaluation and Bayesian net evaluation, thus, various well-established algorithms for Bayesian net
evaluation can be used in influence diagram evaluation. In this sense, our method is essentially as
efficient as the one proposed by Zhang and Poole (Zhang and Poole 1992b), which rivals any other
algorithms in terms of efficiency (Zhang 1993). Furthermore, our method has a few additional
merits. First, it can take advantage of asymmetric processing in influence diagram evaluation.
Second, by using heuristic search techniques, it provides an explicit mechanism for making use of
heuristic information that may be available in a domain—-specific form. Finally, by using decision
graphs as an intermediate representation, the value of perfect information (Matheson 1990) can
be computed in a more efficient way (Zhang et al. 1993b).

The remainder of this paper is organized as follows. We introduce the basic concepts of
influence diagrams and influence diagram evaluation in the next section, and review the current
algorithms for influence diagram evaluation in Section 3. In Section 4, we point out why those
recent algorithms fail to perform asymmetric processing. In Section 5, we present our two—phase



method for the evaluation of influence diagram with a single value node. We first establish a
stochastic dynamic programming formulation for influence diagram evaluation and show that
the problem of influence diagram evaluation can be reduced to a decision graph search problem.
Then we point out how to exploit asymmetry in a decision problem for improving evaluation
efficiency. In Section 6, we extend our method to the influence diagrams with multiple value
nodes. Conclusions are given in Section 7.

2 Influence Diagrams

An influence diagram is a direct acyclic graph with three types of nodes: random nodes, decision
nodes and value nodes. Each random node represents a random variable whose value is determined
according to some probability distribution, and each decision node represents a decision variable
whose value is to be chosen by the decision maker. In this paper, we will use the term decision
(random) variables and decision (random) nodes interchangeably. The arcs into a random node,
called conditional arcs, indicate the probabilistic dependency of the random node. The arcs into a
decision node, called informational arcs, indicate the information available to the decision maker
at the time he must choose a value for the decision variable. The lack of an arc from a node a
to a decision node d means that the value of the variable @ is not known to the decision maker
when decision d is to be made.

An influence diagram is regular (Howard and Matheson 1984, Shachter 1986) if there is a direct
path containing all of the decision variables. Since the diagram is acyclic, such a path defines an
order for the decision nodes. This is the order in which the decisions are made. We refer to it
as the regularity order of the influence diagram. An influence diagram is “no—forgetting” if each
decision node d and its parents are also parents of those decision nodes which are descendents of
d (Howard and Matheson 1984, Shachter 1986). Intuitively, the “no—forgetting” property means
that a decision maker will remember all the information that was earlier available to him and
remember all the previous decisions he made. A regular and “no-forgetting” influence diagram
represents the decision maker’s view of the world.

We first consider the regular influence diagrams with exactly one value node. We come to the
more general influence diagrams in Section 6.

In a given influence diagram, let v be the value node, let D and C' denote the set of decision
nodes and the set of random nodes respectively. Suppose a — b is an arc in an influence diagram.
The node « is called a parent of node b, and node b is a child of node a. We will also use other
standard graph terminologies such as descendents and ancestors in this paper. Without loss of
generality, we assume that the value node in any influence diagram has no children.

For any node z,let m(x) denote the set of all parents of z in the diagram. Associated with
each node z is set ., which is the set of values the variable can take. This set is called the
frame of the variable. For any subset J C C'U D, let Q; = [[,¢; Q. Each random node z is
characterized by a conditional probability distribution, written P{z|r(z)}. For each o € 2, and
¢ € Qp(y) » the distribution specifies the conditional probability of event z = o, given x(z) = cl.
The value node is characterized by a function f, called the value function of the value node. The

'In this paper, for any variable set J and any element e € Q,, we use J = e to denote the set of assignments
which assign an element of e to the corresponding variable in J.
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value function is a mapping from Q.. to £, which is usually assumed to be the real domain
R.

Let D = {dy,...,d,} be the set of decision nodes of influence diagram 7. A strategy A for
the influence diagram is a collection of decision functions, A = (6;,83,...,6,), where function
6k, 1 < k < n, corresponds to decision node dj and is a mapping from Q. to Qg4 . Note
that the set .4, ) represents all the possible states of the information available to the decision
maker when he needs to choose a value for the decision variable dy ., and the set £y represents
all the possible choices for dy. Thus, a decision function prescribes a decision choice based on
the information available to the decision maker when the decision is to be made.

Given a strategy A = (61, 62,...,6,), each decision node d; can be regarded as a deterministic
random node whose probability distribution is given as follows:

[ iEde) = &
Pld; = z|n(d;) = c} = { 0 othefﬂzrise.

With the decision nodes treated this way, the influence diagram [/, together with a particular
strategy A, becomes a Bayesian net. We use [5 to denote the net and use Pa{-} to denote the
joint distribution determined by I .

Let Pa{m(v) = o}, for any o € Q,,), denote the probability for the event m(v) =0, in Ia.
The expected value of the value node w.r.t. strategy A, written Ea[v], is given by

Ealvl= Y. f(o)* Pa{r(v)=o} (1)

0€Qq(v)

Since we presently assume that v is the only value node of the influence diagram, Ea[v] is
actually the expected value of the influence diagram w.r.t. strategy A. The decision objective is
to find an optimal strategy maximizing the expected value. i.e. to find A°® such that

Epo[v) = max{Ea[v] | A is a strategy} (2)

The computational problem related to an influence diagram is to compute the optimal expected
value and an optimal strategy for the influence diagram. In this paper, we refer to this problem
as influence diagram evaluation.

As an example, consider the oil wildcatter problem from (Raiffa 1968). In the problem, an
oil wildcatter must decide whether to drill or not to drill an oil well on a particular site. He is
not certain whether the site is dry, wet or soaking. Before making this decision, he can either
order a test on the seismic structure or not. If he does, the test result will be available to him at
the time when he decides whether or not to drill. The profit depends on the cost of the test, the
amount of oil and the cost of drilling, which can be either low or medium or high.

An influence diagram representation of this problem is shown Fig. 1. In the diagram, boxes
are decision nodes, circles are random nodes and the diamond is the value node. T and D are
decision variables, corresponding to the test decision and the drill decision. 0, S, R and CD are
random variables, representing the amount of oil, the seismic structure, the test result, and the
cost of the drill, respectively.

Decision variables have the same frame consisting of two alternatives: yes and no. The frame
of random variable 0 has three values: dry, wet and soaking. The frame of random variable

n



Table 1: The function of the value node

T D o cD v T D o CD v
no | no e (] 0 yes | no dce || ki ] VR
no | yes dry 1| -40 yes | yes dry 1| -50
no | yes dry m | =50 yes | yes dry m | -60
no | yes dry h | =70 yes | yes dry h | -80
no | yes wat 1 80 yas | yes wet 1 70
no | yes et m TO0 yes | yes wet m 60
no | yes wat h 50 yes | yes wet h 40
no | yes | soaking 1| 230 yes | yes | soaking 1| 220
no | yes | soaking m | 220 yes | yes | soaking m [ 210
no | yes | scaking h | 200 yes | yes | soaking h | 190

Table 2: The conditional probability distributation of R

T S R | prob
no e nobs 1.0
no == | others 0
yes | =- nobs 0
yes | ns ns 1.0
yes | cs cs 1.0
yes | os os 1.0

S has three values: ns for no-structure, cs for close—structure and os for

1 for low, m for medium and h for high.

The value function of the value node and the probability distributions of the random variables

are given in Tables 1 — 5.

& &

open—structure. The
frame of random variable R has four values: ns for no-structure, cs for close-structure, os for
open—structure, and nobs for no observation. The frame of random variable CD has three values:

Figure 1: An influence diagram for the oil wildcatter’s problem




Table 3: The conditional probability distributation of CD

CD | prob
1 0.2
m 0.7
h 0.1

Table 4: The prior probability distributation of O

0 prob
dry 0.5
wet 0.3
soaking 0.2

Table 5: The conditional probability distributation of S

0 5 | prob
dry ns 0.6
cs 0.1
os 0.3
wet ns 0.3
cs 0.3
os 0.4
soaking | ns 0.1
cs 0.5
os 0.4




3 A Review of Methods for Influence Diagram Evaluation

3.1 Howard and Matheson’s two—phase method

[nfluence diagrams were first proposed as a representational tool for decision analysis (Miller et al.
1976, Howard and Matheson 1984). They served as a “front—end” for the automation of decision
making process. The actual analysis of a decision problem was carried out in two-phases. An
influence diagram is first transformed into a decision tree and then the decision tree is evaluated.

Howard and Matheson (Howard and Matheson 1984) discussed a way to transform a regular
and no-forgetting influence diagram into a decision tree. The transformation involves two steps.
An influence diagram is first transformed into a decision tree network and then a decision tree
can be constructed from the decision tree network by sequentially “expanding” variables in the
network. An influence diagram is a decision tree network if it is regular and no—forgetting, and
if all predecessors of each decision node are direct predecessors (parents) of the decision node
(Howard and Matheson 1984). The basic operation for transforming a regular, no-forgetting
influence diagram into a decision network is are reversal (Howard and Matheson 1984, Shachter
1956). '

The are reversal operation is illustrated as in Fig. 2. Suppose @ — b is an arc in an influence
diagram such that both @ and b are random nodes and there is no other directed path from
node a to node b, then, the direction of the arc can be reversed and both nodes inherit each
other’s parents. This operation is an application of Bayesian theorem. In Fig. 2, we begin
with conditional probability distributions P{bla,-} and P{al-}, and end up with conditional
probability distributions P{alb,-} and P{b|-}. Formally, we have:

P{b|$1y13} = ZP{G,bI:E,y,Z}= zp{b]aﬁ'az}*P{a‘lxay}
b b

P{ablz.y,z} _ P{bla,y,z}* P{alz,y}

P{ble,y,z} P{b|z,y, z} )

As an example, consider the influence diagram shown in Fig. 1. That influence diagram is regular
and no-forgetting, but is not a decision tree network, since node S and 0 are two predecessors of
node D but they are not parents of D. In order to transform that influence diagram into a decision
network, we can first reverse the arc 0 — S and then reverse the arc S — R. The resultant decision
network is shown in Fig. 3. In the course of this transformation, we have also to compute the
new conditional probability distributions for nodes 0 and S. More specifically, when we reverse
the arc 0 — S, we need to compute probability distributions P{0]S} and P{S} from probability
distributions P{S|0}, and P{0}; when we reverse the arc S — R, we need to compute probability
distributions P{RIT} and P{SIT, R} from probability distributions P{S} and P{RIT, S}.

A decision tree can be constructed from a decision tree network as follows. First, define an
order < over the set C'U D U {v} such that a < b if either b = v or there is a directed path
from a to b in the network or a is a decision node and there is no directed path from b to a
in the network. Then, construct a decision tree by considering variables one by one according to
the order. Each layer in the decision tree corresponds to a variable. For the decision network in
Fig. 3, we can obtain the following order:

P{alb,x,y,2} =



Figure 2: An illustration of arc reversal operation: reversing arca — b

CO—0

Figure 3: A decision tree network derived from the influence diagram for the oil wildcatter’s
problem



T<R<D<5S<0<CD=<V

Using Howard and Matheson’s notation (Howard and Matheson 1984), the decision tree for the
oil wildcatter problem is shown in Fig. 4. In the figure, boxes correspond to decision variables,
circles to random variables, and diamonds to the value node. This is a compact representation of
a full decision tree. A layer of the decision tree is indicated by the corresponding variable and its
possible values (alternatives). In the case of a random variable, its probability distribution is also
included in the layer. The full decision tree can be obtained by systematically expanding each
layer and adding necessary connections in the expanded graph. Fig. 5 shows a partial decision
tree resulting from the expansion of the first three layers of the compact representation.

{RIT} {8IR,T) {0|s} {coy

Figure 4: A compact representation of the decision tree derived for the oil wildcatter problem

yes
{RIT}
nobs n
ns Bio
yes
cs
ok e
{R|T}
no
yes
D
no

Figure 5: A partial decision tree after the expansion of the first three layers

The major problem of this approach is that the resultant decision tree tends to be very large
and involve much redundancy. The depth of the decision tree so obtained from an influence
diagram is equal to the number of the variables in the influence diagram. Thus, the size of the
decision tree is exponential in the number of the variables in the influence diagram.
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3.2 Methods for evaluating influence diagrams directly

The idea of evaluating influence diagrams directly was proposed in (Olmsted 1983). The first
complete algorithm for influence diagram evaluation was developed in (Shachter 1986).

3.2.1 Shachter’s algorithm

Shachter’s algorithm takes a reduction approach. For a given influence diagram, the algorithm
evaluates the influence diagram by applying a series of wvalue-preserving reductions. A value—
preserving reduction is an operation that can transform an influence diagram into another one
with the same optimal expected value.

Shachter identifies four basic value-preserving reductions, namely, barren node removal, ran-
dom node removal, decision node removal and are reversal. The arc reversal operation has heen
illustrated in the previous section. The other reductions are illustrated as follows.

Barren node removal. A node in an influence diagram is called barren node if it has no children
in the diagram. The barren node removal reduction states that any barren node which is not a
value node, can be removed together with their incoming arcs.

Random node removal. If the value node is the only child of a random node x in an influence
diagram, then the node z can be removed by conditional expectation. Afterwards, the value
node inherits all of the parents of node z. The reduction is illustrated in Fig. 6 where the value
function f’ of the value node v’ in the resultant influence diagram is given by:

f(a,b,c) = Z f(z,b,¢)* P{z|a,b}.

Decision node removal. A decision node is called a leaf decision node if it has no decision node
descendent. If a leaf decision node d has the value node v as its only child and 7(v) C {d}Un(d),
then the decision node can be removed by maximization. The reduction is illustrated in Fig. 7
where the value function f’ of the value node v’ in the resultant influence diagram is given by:

f'(b) = mazqf(d,b).

The maximizing operation also results in an optimal decision function § for the leaf decision node

through
8(b) = arg mazqf(d,b).

Note that the value node does not inherit any parents from the leaf decision node. Thus, some
of the parents of d may become barren nodes as a result of this reduction. In Fig. 7, node a
becomes a barren node. The arc from such a node to d represents information available to the
decision maker, but the information has no effects on the optimal expected value and the optimal
strategy of the influence diagram. We call this kind of arcs (such as ¢ — d in Fig. 7) trrelevant
arcs. Later, we will see that irrelevant arcs can be identified and removed at a pre-processing
step.

11
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Figure 6: Au illustration of random node removal: z is removed by expectation
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Figure 7: An illustration of decision node removal: d is removed by maximization

3.2.2 Other developments

After Shachter’s algorithm, research on influence diagram evaluation has advanced in the following
directions: exploiting structural independency, making use of Bayesian net evaluation methods,
and exploiting separability of the value function. In this section, we discuss the first two directions.
We will come to the third direction in Section 6.

As we have seen, during the evaluation of an influence diagram, some arcs to a decision node
may turn out to be irrelevant to the decision node. An interesting question is that, given an
influence diagram, can we identify which arcs are irrelevant in general? Shachter studied this
problem in (Shachter 1988, Shachter 1990) through examining the d-separation among nodes in
an influences diagram. Zhang and Poole (Zhang and Poole 1992b) recently gave a simple algorithm
to identify irrelevant arcs. This algorithm also removes all barren nodes resulting from removing
the irrelevant arcs. The resultant influence diagram is simpler than the original one in the sense
that it has fewer nodes and arcs.

Influence diagrams are closely related to Bayesian nets (Pearl 1988), which have been a very
active research area. A number of algorithims have been developed in the literature (Lauritzen and
Spiegelhalter 1988, Shachter et al. 1990, Zhang and Poole 1992a, Jensen et al. 1990, Pearl 1988) for
computing marginal probabilities and posterior probabilities in Bayesian nets. Thus, it is natural
to ask whether we can make use of these Bayesian net algorithms for influence diagram evaluation.
This problem is examined in (Shachter 1990, Shachter and Peot 1992, Cooper 1988, Zhang and
Poole 1992b, Ndilikilikesha 1991, Shenoy 1990, Shenoy 1991), and the answer is affirmative.

Recall that a decision function for decision node d in an influence diagram is a mapping
from €. to . It is observed in (Cooper 1988, Shachter 1990, Shachter and Peot 1992,
Zhang and Poole 1992b) that given a no—forgetting influence diagram, the optimal strategy can
be computed by sequentially computing the optimal decision functions for decision nodes, one at
a time, starting from the last one backwards. The computation of the optimal decision function

12



of a decision node is independent of those decision nodes which precede the decision node.

In (Cooper 1988), a recursive formula is given for computing the maximal expected values and
optimal policies of influence diagrams. To some extent, the formula serves as a bridge between
the evaluations of Bayesian nets and influence diagrams.

In (Shachter and Peot 1992), the problem of influence diagram evaluation is reduced to a series
of Bayesian net evaluations. To this end, the value node of an influence diagram is first replaced
with an “observed” probabilistic utility node »'. The frame of this utility node is {0,1}. The
probability distribution of »’ is defined by:

fmru: - frm'n

where f,i and f,.. are the smallest and the largest values of the value function V. Now,
suppose that the decision nodes in the influence diagram is ordered as dy,...,d, such that d, is
the last decision node, d,—y is the second last, etc. and d; is the first decision node. Then, the
optimal decision function 4, for the last decision node d,, can be computed as follows: for each
element e € Qr(q,,) ,

P{v' =1|r(v) =2} =

on(€) = arg mazqeq, P{d. = a,7(dy) = €lv’ = 1},

In general, the optimal decision function 6; of the decision node d; is computed after the optimal
decision functions 6;41 ..., 6, have been obtained. The decision nodes diyy, ..., d, are first
replaced with their corresponding deterministic random nodes in the influence diagram. The
decision function é; is then computed as follows: for each element ¢ € Q(q,),

5,;(6) = aryg '.rna:z:aegdl_ P{d,‘ = a,ﬂ'(d,-) = (?Iﬁg_,_], ...,(5,“ v" = 1}

Thus, the problem of influence diagram evaluation is reduced to problems of computing posterior
probabilities in Bayesian nets. In the same paper, Shachter and Peot pointed out that an influence
diagram can be converted into a cluster tree which is similar to the clique trees of Bayesian nets,
and the problem of evaluating the influence diagram is reduced to the problem of evaluating the
cluster tree. This approach was previously used by Shenoy for his valuation based systems (Shenoy
1990).

In (Zhang and Poole 1992b), an influence diagram is called stepwise solvable if its optimal
strategy can be computed by considering one decision node at a time. Zhang and Poole provide a
sufficient and necessary condition on the stepwise solvability of influence diagrams. The condition
is called stepwise-decomposability (Zhang and Poole 1992h).

Stepwise—decomposability is defined in terms of graph separation. Informally, an influence
diagram is stepwise decomposable if for each decision node, its parents divide the influence diagram
into two parts. In order to define the property formally, we need some notations and concepts.

We use nond(z) to denote the set of nodes which are not descendents of z in the influence
diagram. Thus, nond(d) N D is the set of decision nodes which are not descendents of node d.
For a node set Z,let 7(Z) = Uyezm(z) and n*(Z) = Z U w(Z).

The moral graph of a directed graph G is an undirected graph m((G) with the same node
set such that there is an edge between node z and node y in m(G) if and only if either there



is an arc # — y or y — x in (7, or there are two arcs (r,z) and (y,z) in (7. A node z is
m-separated from a node y by a node set Z in a directed graph G if every path between z and
y in the moral graph m((/) contains at least one node in set Z.

Let d be a decision node in (7, m((G) be the moral graph of ¢ and Gy be the undirected
graph obtained from m((¢) by removing all the nodes in w(d). The downstream Y, of d is the
set of all the nodes which are connected to d in Gy, with d excluded. The upstream X, of d
is the set of all the nodes that are not connected to d in iy

An influence diagram is stepwise decomposable if for each decision node d, and any node
& € m(nond(d)N D), {x}Unr(e) € XyUnr(d). Note that a no-forgetting influence diagram is
a stepwise decomposable influence diagram. The no-forgetting property is defined in terms of
information availability, while stepwise decomposability is defined in terms of graph separation.
In a stepwise decomposable influence diagram, an arc into a decision node indicates both infor-
mational availability and functional dependency. More precisely, for any decision node d and
any other node @ in a stepwise decomposable influence diagram, the presence of an arc a — d
implies that the value of variable a is available at the time when decision d is to be made, and
it is not known that the information is irrelevant to the decision. On the other hand, the absence
of an arc @ — d in an stepwise decomposable influence diagram implies that either the value of
variable « is not available at the time when decision d is to be made, or it is known that the
information is irrelevant to the decision. Thus, oue of the advantages of stepwise decomposability
over no-forgetting is that it allows the representation of the knowledge that a piece of informa-
tion carried by a (no-forgetting) informational arc to a decision node in an influence diagram is
irrelevant to the optimal decision function of the decision node. '

Like Shachter and Peot’s algorithm, Zhang and Poole’s algorithm also deals with one decision
node at a time. Unlike Shachter and Peot’s algorithm, Zhang and Poole’s algorithm takes a
reduction approach. Suppose node d is a leaf decision node of a stepwise decomposable influence
diagram I, then, 7(d) separates the influence diagram into two parts, namely a body and a tail.
The tail is a simple influence diagram with only one decision node (d). The body’s value node
is a new node whose value function is obtained by evaluating the tail. A reduction step w.r.t.
the decision node d reduces I to the body. The main computation involved in a reduction step,
however, is for evaluating the tail.

Since the tail is a simple influence diagram with only one decision node, its evaluation can be
directly reduced to a problem of computing posterior probabilities in a Bayesian net, as suggested
in (Shachter and Peot 1992, Zhang et al. 1993a). The result of the evaluation consists of two
parts: a function f’: Qr(q) — R, and an optimal decision function &y : 2, (q) — Qq for decision
node d. The function f" is used in the body as the value function of the value node.

A reduction step can be described as follows.

Input: [ — a stepwise decomposable influence diagram.

Output: I'— a new decomposable influence diagram, and
04— the optimal decision function of a leaf decision node d.

1. Identify a leaf decision node d, and divide the influence diagram into two parts:
a body and a tail.

14



2. Evaluate the tail to obtain a new value function f’ and an optimal decision é,
for decision node d.

3. Use f' as the value function of the value node in the body. Return the decision
function and the body.

It is proved in (Zhang and Poole 1992b) that this reduction is a value preserving reduction
and the resultant influence diagram is also stepwise decomposable if the original one is. Thus,
this reduction can be applied recursively till the optimal expected value of the original influence
diagram and an optimal decision function for each decision node are obtained. Here we can see
that Zhang and Poole’s algorithm and Shachter and Peot’s algorithm are somehow complementary.
A better algorithm can be readily obtained by combining them together. The combined algorithm
will use Zhang and Poole’s overall reduction framework and use Shachter and Peot’s algorithm

to evaluate the tail at each reduction step.

4 Some Common Weaknesses of the Previous Algorithms

One common weakness of the influence diagram evaluation algorithms we reviewed in the previous
section is that they fail to provide any explicit mechanism to make use of domain dependent infor-
mation (e.g. a heuristic function estimating the optimal expected values of influence diagrams),
even when it is available for some problems.

Another notable and common shortcoming of these algorithms is that they do not perform
asymmetric processing. This was also observed in (Shachter 1986).

In an influence diagram, all relations of variables are symmetric. Thus an influence diagram
corresponds to a symmetric decision tree. The asymmetric relations of variables in a decision
problem are extended into symietric ones by introducing artificial outcomes to the frames of
relevant variables. This may lead to significant inefficiency in evaluation when the asymmetry in
a decision problem is substantial.

For example, the oil wildcatter problem is asymmetric in the following two aspects: (1) if the
test decision is ‘no’, then no test result will be observed while if the test decision is ‘yes’, the test
result can have one value out of three possibilities; (2) if the drill decision is ‘no’, the profit will
be independent of the amount of oil and the cost of drilling.

Fung and Shachter made a first attempt to tackle the asymmetry issue. They proposed in
(Fung and Shachter 1990) a modified representation, called contingent influence diagrams, as a
tool to explicitly represent the asymmetric aspects of decision problems. However, it seems quite
hard to do so without compromising the elegance of influence diagrams in representing decision
problems.

In the next section, we present a new method to influence diagram evaluation. In our method,
all the representational advantages of influence diagrams are retained. The asymmetric aspects
can be recovered at evaluation time.

Before presenting our method, let us examine, by using an example, some of the previously
discussed algorithms again, to see how and why they fail to exploit asymmetry. Observe that a
common property of these algorithms is that they all compute the decision functions one by one



in the reverse order of the decision nodes (that is why we generally refer to them as reduction
methods).

For the oil wildcatter problem, Shachter’s algorithm will transform the original influence dia-
gram into the one shown in Fig. 8. At this time, in order to reduce decision variable D into the
value node, the following parameterized maximization operation is performed:

mazp{E[v|D, R, T]}

In performing the above operation, a maximization is done conditioned on each of the eight
elements in Qg gy . The result of this maximization is of two parts: a decision function ép for
variable D and a new value node. Both the decision function and the new value node are usually
represented as a table containing one entry for each element in 2, g, . However, as we know,
half of the elements in 7 gy (e.g., T=no, R=o) represent impossible events (their marginal
probabilities are zero). Therefore, the maximization conditioned on these events and the entries
corresponding to these events in the decision table for variable D waste computational resources.

For the same problem, both Zhang and Poole’s algorithm and Shachter and Peot’s recent al-
gorithm (Shachter and Peot 1992) will first compute the optimal decision function ép for decision
node D. Zhang and Poole’s algorithm does not specify a particular way for this computation.
Shachter and Peot’s algorithn computes the function as follows. For each element e € Q1 gy,
ép(e) is obtained by:

Sp(e) = arg mazeeay P{D = a,7(D) = ¢[v’ = 1}.

This algorithm computes ép(e) even when e represents an impossible event.

Figure 8: An intermediate influence for the oil wildcatter problem

This example shows that the problem with the current algorithms is that, for each decision
node d, they will perform a maximization operation conditioned on each element in Q4 , even
though the marginal probabilities of some elements are zero. The reason for this is that, at the
time to perform the maximization operations, the marginal probabilities of the elements in .4
are not computed yet. This problem arises from the fact that these algorithms compute the
decision functions in the reverse order of the decision nodes in the influence diagram.

5 A Search Oriented Algorithm

In this section, we present our method for influence diagram evaluation. We first formulate the in-
fluence diagram evaluation problem as a stochastic dynamic programming problem. Then we give
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a graphical depiction of the computational structure of the optimal expected value by mapping an
influence diagram into a decision graph. Finally, we point out how to avoid wasteful computation
in computing the optimal strategy, and propose a search oriented approach to influence diagram
evaluation.

5.1 Preliminaries

A decision node d directly precedes another decision node d' if d precedes d' and there is no
other decision node d” such that d precedes d” and d” precedes d’'. In a regular influence
diagram, a decision node can directly precede at most one decision node.

A decision node that is preceded by no other decision node is called a roof decision node.

Let I be a regular, stepwise influence diagram with a single value node v». Suppose the
decision nodes in [ are dy ..., d, in the regularity order, then, d, is the only root decision
node and d, is the only leaf decision node. For each k, | < k < n, d; directly precedes
diy1. For each k, 1 < k < n let I(dg,dgs+1) denote the subgraph consisting of di, w(dy)
and those non—-descendents of dj4y which are not m-separated from dy by m(dy). Procedurally,
[(dy, dgyy) can be obtained from [ as follows: (1) remove all nodes that are m-separated from
di. by w(dy), excluding the nodes in w(dy); (2) remove all the descendents of dyiq; (3) remove
all the arcs among the nodes in 7(dy) U {di} and assign uniform distribution to the root nodes?
in w(dy)U {ds}.

I(dg, dpyq) is called the section of [ from dy to diyy . For the root decision node dy, the
section I(—,d;) contains only non—descendents of dy. For the leal decision node d,, , the section
I(d,,,—) contains those nodes in w(d,)U {d,} and those nodes which are not m-separated from
d, by w(d,).

[t is easy to see that the section [(—,d;) is a Bayesian net. Furthermore, because [ is stepwise-
decomposable, it is easy to see that dj is the only decision node in the section [/(dy,ds1) that
are not in w(dy). Therefore I(dy,dy;) is a Bayesian network. Similarly, d,, is the only decision
node in the section [I(d,,—). Thus, I(d,,—) is a Bayesian net with a value node attached.

As an example, consider again the oil wildcatter problem. The section I(—,T) is empty. The
sections I(T,D) and I(D,—) are shown in Fig. 9.

Let A = (é1,...,6,) be any strategy for 1. We have the following results on [Ia .

Lemma 1 Forany k, 1 <k <n,any j, 1 <j <k, n(v) is independent of n(d;) and d;,
giwen w(dg). Formally, the following relations hold:

Pa{m(v) = o|r(di) = y} = Pa{m(v) = o|n(di) = y,7(d;) = z,d; = a}
Jor any 0 € Qy(y), T € Qw(d,-), a €8y, and y € Qrq,) -

Proof Immediately follows the m-separation property of a stepwise decomposable influence
diagram.

*The assignment of uniform distributions to the root nodes in w(di)U{dy} is only to make [(dk,dx41) a Bayesian
network. Since we shall only be considering probabilities conditioned on w(di) U {di}, the distributions of those
nodes are irrelevant.
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2 —=(s) :

(a) I(T, D) (b) I(D,-)

Figure 9: Two sections of the influence diagram for the oil wildcatter problem.
Lemma 2 Forany k, 1 <k<n, and any 0 € Quyy, 2, € Qrq,)
Pa{r(v) = o|m(dy) = z,dy = 6,(x)} = Pa{m(v) = o|r(di) = a}

Proof. Recall that, w.r.t. a strategy A = (61,...6,), the decision node d;, for i = 1,...,n,is
characterized by the following probability distribution:

P{da == iﬂ]?r(d,;) = c} - { é if 6:’(0) =z,

otherwise.
Thus,
Pa{r(v) = o|r(dy) = =}
= Z PA{?T('U) =alridy) = B,dp= a}* Paddy = ﬂ-|ﬂ'(dk) =a}
neﬂ(dk)
= Pa{r(v) = o|r(di) = z,dy = 6i(z)}
O

Lemma 3 For any « € Qyq,), the probability Pa{r(d)) = a} depends on only those nodes in
the section I(—,dy), and is independent of A . Consequently, for any other strategy A',

Pp{m(d1) = 2} = Par{m(d1) = z}

Proof. Since all the nodes not in /(—,d;) are descendents of the nodes in =w(d;), thus, they
are irrelevant to the marginal probabilities of w(d;). Since there is no decision node in I(—,d;),
then Pa{m(dy) = x} is independent of A. O

Lemma 4 (1) For any o € Qg), @,€ Q) and a € Qq,, the conditional probability
Pa{m(v) = o|r(dy) = z,d,, = a} depends on only those nodes in the section I(d,,—), and
is independent of A . In other words, for any other strategy A,

Pa{r(v) = olr(dy) = #,dy = a} = Par{n(v) = olr(dy) = z,dy, = a}.
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(2) For any y € Qr(disr)r T € Qr(ay) and a € Qy, , the conditional probability P A m(dpsr) =
y|m(dy) = z,dyp = a} depends on only those nodes in the section I(dy,diyq), and is independent
of A . In other words, for any other strateqgy A',

Pa{m(dg+1) = y|r(di) = @, di. = a} = Par{n(di+1) = y|7(di) = z,d} = a}.

(3) Suppose A" = (81,...,6;,) is another strategy for I such that 67 = by,...,6;_, = bg_1 for
some k, 1 <k <n, then, fm any 7, 1 <3<k, and any = € Qn-(dJ):

Padr(d;) = 2} = Padnldy) =2}

Proof. Follows the definition of sections and the m-separation property of a stepwise decompos-
able influence diagram. O

Lemmas 3 and 4 indicate that some conditional probabilities in an influence diagram is in-
dependent of the strategies for the influence diagram, and can be computed in a section of the
influence diagram. The computations can be carried out by any one of the well established
algorithms for Bayesian nets. This fact facilitates a clean interface between influence diagram
evaluation and Bayesian net evaluation.

5.2 Influence diagram evaluation vs. stochastic dynamic programming

In this section, we establish a stochastic dynamic programming formulation for influence diagram
evaluation. We accomplish this by studying the relationship among the counditional expected
values of influence diagrams.

Let ¢ be any event in /o and let Ea[v]e] be defined as follows:

alvle] = E f(0) * Pa{r(v) = ole}.

0EStn(v)
For each k, 1 <k < n,let U, be a function defined as follows.
Ue(z,A) = Ealv|r(di) = z) (3)

Informally, Ui(z,A) is the expected value of the influence diagram w.r.t. strategy A, conditioned
on w(dy) =a.

Lemma 5 The ezpected value of the influence diagram w.r.t. strategy A can be czpressed in
terms of Uy as:

Ealv)= > Ui(z,A)* Pa{r(dy) =z}
2€8n(d,.)

Proof By the definition of Ea[v], we have:

Ealv] = z f(0) # Pa{m(v) = o}.

€ 8x(v)
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Since

Palr(v)=0)= X Paln(v)= ofr(ds) = 2} » Pafn(d) = 2},
T€Qn(a,)

thus,

Ealv)= Y. f(o)* Y. Pa{r(v)=o|r(d)=z}* Pa{n(dy) = z}.

0€Qx(y) Z€Qn(dy,)
By reordering the order of the two summations, we have: |
Eal)= ). Pa{r(d)=z}x > f(0)* Pa{m(v)=o|m(ds) = x}.
TE€Qn(uy) o€« Qx(v)
By the definition of U, we have:
Ealv)= Y Ui(x,A)* Pa{r(dy) = z}.

IEQw(dk)
a

Lemma 6 The following relation between functions Uy, and Ug—y holds.
Upa(e,8) = D Ur(y,A)* Pa{r(di) = ylr(dr-1) = 2}
yen,(d“ 3
for any z € Qr(q,_,)-
Proof By the definition of Uy_,, we have:
Upr(z,8) = 3 f(0) * Pa{m(v) = o|m(dk—r) = z}.
0€Lr(v)
Since
Pa{m(v) = o|r(di—1) = z} =

> Paf{n(v) = o|n(di-1) = @, 7(di) = y} * Pa{m(d) = ylr(ds-1) = z},
VEQ (4,

then, by Lemma 1, we have:

Up-i(z,8)= Y flo)* Y Pa{m(v) = olm(dy) = y} + Pa{m(di) = ylm(di1) = z}.

0EQ () YERn(dy,)

By reordering the two sumimations, we obtain:

Urr(e,8) = 5 Pafr(di) = ylr(deer) =a}x 3 £(0) % Pa{m(v) = ofn(di) = y}.
YEQa(ay,) o€ q(y)

By the definition of U}, we have:

U=1(z,8) = > Ui(y,A)  Pa{m(di) = y|n(di) = z}.
VE(dy,)
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Lemma 7 Let A' = (61,...,8]) be another strategy for I such that &, = &,...,8! = &, , for

ey Uy

some k, 1<k <n. Then, Uj(z,A)=Uj(z,A") for each j, k< j<n and each x € Qpq,) -

Proof By induction.
Basis: Consider U, . By the definition of U, , we have:

s ) = Z f(o) x Pa{m(v) = o|n(dy) = z}

0€€n(v)

and

Un(z, ") = > f(0)* Par{m(v) = o|n(dn) = z}.

0€Sn(v)

By Lemma 2, we have:
Ppi{m(v) = o|n(dy) = 2} = Pa{m(v) = o|n(dn) = z,d,, = &' ()}

and
Pa{m(v) = o|m(d,) = 2} = Pa{n(v) = o|x(d,) = z,d, = §,(z)}.

Since 6, = ¢/, , then by Lemma 4-(1), we have:
Pa{m(v) = o|n(dn) = 7,d = 8u(2)} = Par{m(v) = ol(dn) = @, dy = 8(x)}.

Thus, U,(z,A) = U,(z,A’"). Therefore, the basis holds.
Induction: Suppose U;(z,A) = Uj(z,A’) for all i, k <i<n. By Lemma 6, we have:

Uina(2,8) = Y Ui(y, &) * Pa{n(ds) = yln(diy) = o}
VEn(a;)

and
Uisa(z,A") = Y Ui(y, A') * Par{m(d) = ylm(di—q) = z}.
YEQr(q;)

By the induction hypothesis, we have:
Ui(y, A) = Ui(y, &").
By Lemma 2, we have:
Pa{n(di) = y|r(di-1) = 2} = Pa{n(di) = ylr(di-1) = z,di-y = bi1(2)}

and
Pa{r(d;) = yln(di1) = &} = Par{r(d;) = y|r(di—1) = ,di—1 = §;_;(2)}.

Since 6;—1 = 6i_, , then by Lemma 4-(2), we obtain:
Par{m(ds) = yln(dict) = @, dicy = §l_1(2)} = Pa{n(ds) = yln(dizs) = 2, diy = i1 (2)}.

Thus,
Pa{n(di) = y|r(di-1) = 2} = Par{n(di) = y|m(di-1) = z}.
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Therefore,
U{_} (.’B, A) = U,j_](:l':, Af)

Therefore, the lemma holds in general. O

So far, we developed some results on the expected values of an influence diagram w.r.t. an
arbitrary strategy. Now, let us examine the properties of an optimal strategy. Let A° = (¢9,...,69
be an optimal strategy for influence diagram I and let V; be a function defined as

Vi) = Up(z, A).

Intuitively, Vi(z) is the optimal expected value of the influence diagram I conditioned on 7(dy) =
@ . In other words, Vi(z) is the expected value a decision maker can obtain if he starts to make
optimal decisions in the situation represented by the event w(dy) = z.

Let V/(x,a) be an auxiliary function defined as: '

Viwa)= 3 Ven@)s Palr(d) = sln(d) =z de=a}  (4)

VEm(dy )

Intuitively, V/(x,a) is the optimal expected value of the influence diagram I conditioned on
7(dy) = @,dg = a. In other words, V{(x.a) is the expected value a decision maker can obtain if
he starts to make decisions in the situation represented by the event w(di) = 2, and first chooses
« for di (in this situation) and then follows an optimal strategy for the rest decisions.

The next two lemmas characterize the relationship between Vi and V/.

Lemma 8 Forall k=1,...,n,
Vi, 8(2)) = Vi(e).

Proof
Vi(e, 6(x))
= Y. Vierr(y) * Pao{r(ditr) = ylm(de) = 2,dy = 63(2)}
YELn(dyy )
= Z: Vis1(y) * Pao{n(dk41) = y|7(dx) = 2} Dby Lemma 2
Y€y 4 1)
= Z: Uk+1(y, A®) * Pro{m(di+1) = y|7(dx) = z} by the definition of V}
YEQm(dy )
= Ui(z,A°) by Lemma 6
= Vi(z) Dby the definition of Vj_;.
a

Lemma 9 Forall k=1,...,n,
Vi(z,80(z)) > Vi(x,a) for each x € Qp(q,) and each a € Qq, .

Ur(z,A®%) > Up(z,A) for every strategy A and each = € Qr(dy) -
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Proof (1) Suppose the first inequality does not hold. Thus, there exist 29 € Qr(a,) and ag € Qq,

such that
Vi(zo, a0) > V{(zo, 63(20)).

Construct a strategy A’ = (81, ...,6%) such that & = 62 forall i, 1 <i<n, i#k and 6(xo) =
ag, and 6 (z) = 6(z), for all & € Qr(q,),2 # ®o. It can be proved that Earfv] > Epofv]. A
contradiction to the optimality assumption of AC.

(2) The second inequality can be proved by a simple induction on k, starting from k = n
and backwards. O

The results we have obtained so far can be summarized into the following theorem.

Theorem 1 Let [ be a reqular and stepwise decomposable influence diagram, let functions V
and V| be defined as before, and let A° = (89,...,82) be an optimal strategy for [. For any
k,i<k<n, z€ Q,(dk) and a € 4, , the following relations hold.

Vilz,a)= 30 Vin(y)+ PAm(disr) = yln(dy) = 2, dy = o} (5)
yeg"i“k+j)
Vi(z) = Vi(z,60(z)) = maz.en, Vi(e,a) (6)
6p(z) = arg mazqeq, {Vi(z, a)} (7)
EAn ['U] — Z Vg(.’l!) * P{Tl’(d]) = :J':}. (8)
xEle

where P{m(dy) = x} = Ppo{m(d1) = a} can be computed in the section I(—,dy) and P{r(dj41) =
ylr(dy) = a,dy = a} = Ppo{m(diyr) = ylr(di) = z,di = a} can be computed in the section
I(dg,dy1) , and they are independent of A° .

Equations 5, 6 and 7 establish the computational structure of influence diagram evaluation in the
form of finite-stage stochastic dynamic programming (Ross 1983). They essentially describe an
expectation-maximization iteration for computing the optimal strategy and the optimal expected
value. Equations 5 and 6 collectively form a variation of Bellman’s optimality principle (Bellman
1957) for stochastic dynamic programming,

According to Theorem 1, if we can compute function V,,, then we can compute functions
Viyey Vo1 and 69,...,6%_;, as well as Epo[v]. The computation process is similar to the one
implied in the recursive formula given in (Cooper 1988). It is not hard to observe that the amount
of computation involved is comparable to that involved in the other algorithms such as those in
(Zhang and Poole 1992b, Shachter and Peot 1992).

Now, let us consider how to compute the functions V,, and 62 . Recall that

V() = Upn(z,A°%)
and

Un(z.8)= Y f(o) * Pa{m(v) = o|r(d,) = x}.

fJEQ.?r{iJ)
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By Lemma 2, we have:

Ui(d, 8) = Z f(o) * Pa{r(v) = o}rr(o;.n) = oylda-=talz 1k

o€ (v)

According to Lemwma 4-(1), the probability term in the above equation is independent of the other
decision functions of A other than 6, . Thus, :

Un(z,A)= Y~ f(o)* P{m(v) = o|n(dy) = z,dy = bu(x)}.

o€91r{1.-)
Since U,(z,A%) > U,(z,A) for every strategy A, we have:

Y~ f(0) * P{m(v) = o|n(dn) = z,d, = 63(z)}

oelm(v)

Z f(o) * P{ﬂ-('”} = Olr(dn} =z,dy = 61:.(3)}

o€Qr(u)

for any decision function §,, of d,,. This is equivalent to: -

> f(o)* P{m(v) = o|r(dy) = z,dy, = 62(z)}

o€flm(v)

> > f(o)x P{r(v) = o|n(dy) = z,dn = a}

oeﬂr(v]

for any a € Qy,, . Therefore, we have:

62(z) = arg mazqeq,, { Z f(o) * P{r(v) = o|r(d,) = z,d,, = a}}

o€l (u)

and

Va(e) = D f(o)* P{n(v) = ofn(dn) = z,dy = 53(2)}.

o€Qn(v)

The computation of functions 62 and V,, involves only the section [(d,,~—) of I. These functions
can be computed directly from the above formulas or be more efficiently computed by the methods
as suggested in (Shachter and Peot 1992, Zhang et al. 1993a).

5.3 Decision graphs

From the structural point of view. a decision graph (Qi 1993, Qi and Poole 1993) is an acyclic
AND/OR graph (Pearl 1984, Nilsson 1982) with maximization-expectation evaluation function.
More precisely, a decision graph is a directed acyclic graph whose nodes are classified into two
types: choice nodes and chance nodes. Each decision graph has exactly one root. A subset
of nodes is designated as terminals. Each terminal has a value associated with it. A value
is associated with each arc emanating from a choice node. Each chance node has a (discrete)
probability distribution over its children. In other words, a probability is associated with each of
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the children of a chance node, and the probabilities of all the children of a chance node sum to
unit.

A solution graph SG, w.r.t. a node M , of a decision graph DG is a graph with the following
characteristics:

1. M isin S ;
2. If a non—terminal chance node of D( isin S(¢, then all of its children are in 5(7;
3. If a non—-terminal choice node of D( is in S(/, then exactly one of its children is in S( .

A solution graph w.r.t. the root of a decision graph is simply referred to as a solution graph of
the decision graph.

5.4 Representing the computational structure by decision graphs

Before we discuss how to construct decision graphs for influence diagrams, we need some termi-
nologies.

Let d be a decision node in an influence diagram. For each @ € .y, we call an assignment
in the form of n(d) = & a parent situation of the decision node d. For each alternative a € Q,
we call an assignment in the form of 7(d;) = z,d = a an inclusive situation of the decision node
d.

For an influence diagram, we can define a decision graph in terms of situations. In the graph,
a choice node represents a parent situation and a chance node represents an inclusive situation.
The following is a specification of such a decision graph.

o The empty situation is the root, which is a chance node, of the decision graph.

e For each decision node d;, 1 <t < n, and each 2 € ,(q,), there is a choice node in the
decision graph representing the parent situation m(d;) = x; for each a € Qg , there is a
chance node in the decision graph representing the inclusive situation 7(d;) = 2,d; = a.

e Let s be a choice node representing a parent situation w(d;) = 2, 1 <i < n, the chance
nodes representing the inclusive situations 7(d;) = z,d; = a for all a € Q4 constitute the
children of node s. The value associated with the arcs emanating from the choice node are
all zero.

e For each z € Q, , there is a terminal node representing the parent situation w(d,) = z.
The value of the terminal is V,(z).

e Let s be a chance node representing an inclusive situation m(d;) = x,d; = «, and let S;4,
denote the set of choice nodes representing the parent situations of dyyy, s has the nodes
in Si41 as its children. In other words, for each # € .y, a € 4, and y € (i)
there is an arc from the chance node representing the inclusive situation n(d;) = «,d; = a
to a choice node representing the parent situation =(d;41) = y. The arc is labeled by the
probability P{m(diy1) = y|7(d;) = z,d; = a}.
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Figure 10: A complete decision graph for the oil wildcatter problem
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e For each choice node representing a parent situation of d; in form of m(d;) = x, there is an
arc from the root node to the choice node. On the the arc is a probability P{w(d;) = «}.

In such a decision graph, a choice node represents a parent situation in the form of n(dy) = «
for some k and z € §,(4,)- In such a situation, the decision agent needs to decide which
alternative among 4, should be selected for dj. Thus, the choice node has [{y,| children,
each for an alternative value in Qg . The child corresponds to alternative a is a chance node,
representing the inclusive situation w(di) = z,dx = a. From this inclusive situation, one of the
parent situations of dp4; may be reached, according to a probability distribution. The probability
of reaching the parent situation w(diy1) =y is P{w(diy1) = ylr(dy) = w.dyp = a}.

As an example, consider the oil wildcatter problem. A complete decision graph for the oil
wildcatter problem is shown in Fig. 10. As we know, a probability is associated with each ares
from a chance node to a choice node. These probabilities can be computed in the section /(T, D)
as shown in Fig. 9.

In Fig. 10, those arcs without labels are associated with zero probability. Those non-zero
probabilities are computed as follows.

P{T = yes, R = ns|T=yes}
= P{R = ns| T = yes}
= P{R = ns| T = yes, S=ns}# P{S = ns}
+P{R = ns| T = yes, S=os}* P{S = os}
+P{R =ns| T = yes, S=cs}* P{S = cs}
=1%P{S =ns}+ 0% P{S = os}+ 0x P{S = cs}
= P{S = ns}
Similarly, we have:
P{T = yes, R = os|T=yes} = ’{S = os)}
and
P{T = yes, R = cs|T=yes} = P{S = cs}.

The marginal probabilities of S are computed as follows.

P{S = ns} = P{S=ns|0 = dry}«* P{0=dry}
+ P{S=ns|0 = wet}* P{0=wet}
+ P{S=ns|0 = soaking} + P{0=soaking}
= 0.6+x0.5+03+x0.3+4+0.1%0.2=0.41
Similarly, we can obtain that P{S = os} = 0.35 and P{S = cs} =0.24.

Let DG be such a decision graph, we can define a mazimization-capectation evaluation func-
tion, uy, on DG as follows:

o If s is a terminal representing a situation m(d,) = z, then

u (DG, s) = V(x)
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o If s is a chance node, with children sq,...,;, then

{
ui(DGs) =Y Pixug (DG s)

1=1
where F; is the probability on the arc from node s to node s;.

o If s is a choice node, with children s;,...,s;, then

w (DG, s) = mazt_ {u1 (DG, 5;)}.

A solution graph S¢ of the decision graph D(/ is optimal w.r.t. the evaluation function wu; if
wp(SGLs) = wy (DG s) for every node s in SG. The following lemma can be easily proved by
induction on nodes in the decision graph.

Lemma 10 (/) If s is a choice node representing a parent situation w(dy) = z, then w1 (DG, s) =
Vi(z).

(2) If s is a chance node representing an inclusive situation w(dy) = x,d). = a, then
w1 (DG, s) = V{(x,a).

(3) If s is the root, then u;(DG,s) s equal to the optimal expected value of the influence
diagram. '

Now, the correspoudence between the optimal strategies of the influence diagrams and the optimal
solution graphs should be apparent. As a matter of fact, an optimal solution graph of the decision
graph can be viewed as a representation of decision tables in which all the unreachable situations
are removed (Zhang ¢t al. 1993c). Thus, the problem of influence diagram evaluation is reduced
to the problem of decision graph search.

5.5 Computing the optimal solution graph

The optimal solution graph of a decision graph can be computed in a “bottom—up” way or in a
“top—down” way. The bottom-up computation will compute the values for all leaves first. In the
course of computing leaves, ¢, , the optimal decision function for decision d,, is also computed.
Then, the max—exp values of interior nodes can be computed when the max—-exp values of all
children of the node are available. The computational complexity of this process is linear in the
size of the decision graph®. This method also has the weaknesses we mentioned in Section 4.

5.5.1 Recovering the asymmetric property

We observe that the asymmetric property of an influence diagram is reflected by the arcs with
zero probability in the corresponding decision graph. As we know, the value of a chance node in
a decision graph is the expectation of the values of its children. If the probability on the arc to
a child is known in advance to be zero, then there is no need to compute the value of the child
(as far as this chance node is concerned). In case the probabilities on all the arcs to a node are

Note that the size of the decision graph is normally exponential. See the analysis in the next section.
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all zero, the value of the node will never be required, thus some computation effort can he saved.
Unfortunately, this saving cannot be exploited in bottom—-up computations as described above.
One way to exploit asymmetry is to use the following procedure:

(1) generate a decision graph from an influence diagram;
(2) compute the probabilities of all arcs emanating from chance nodes;
(3) delete all arcs with zero probability;

(4) delete all those nodes, along with the arcs incident to and from them, which are not reachable
from the root node in the decision graph;

(5) compute an optimal solution from the resultant graph.

Consider the decision graph shown in Fig. 10. In the figure, those arcs, emanating from circle
nodes and without labels, have zero probability. After removing from the graph those arcs with
zero probability and those nodes not reachable from the root we obtain a simpler decision graph
as shown in Fig. 11. With this decision graph, we will no longer need to compute the values for
the parent situations of D which represent the impossible situations such T=no, R = ns.

The values for the rest terminals can be computed locally in the section [(D,—) (as shown in
Fig. 9) by various algorithms. The optimal choices for the decision variable D in the situations
corresponding to these terminals are also computed in the process of computing the values of
these terminals. The values and the choices for the terminals in Fig. 11 are as follows.

For the node T=yes, R = ns, the optimal choice for D is no; the value for the node is -10, the
cost of the test. For the node T=yes, R = os, the optimal choice for D is yes; the the value for
the node is 52.5. For the node T=yes, R = cs, the optimal choice for D is yes; the value for the
node is 97.5. For the node T=no, R=nobs, the optimal choice for D is yes; the value for the node
is 40.

The decision graph has two solution graphs as shown in Fig. 12-(a) and Fig. 12-(b) respec-
tively. The solution graph in Fig. 12-(a) corresponds to the strategy of no test and drill. The
expected value of the influence diagram w.r.t. the strategy is 40. The solution graph in Fig.
12-(b) corresponds to the strategy of test and drill unless the test result is no structure. The
expected cost of the influence diagram w.r.t. the strategy is 37.675. Thus, the optimal expected
value of the influence diagram is 40, and the optimal strategy is not to test and drill.

It seems that, when compared to the algorithms in (Zhang and Poole 1992b, Shachter and
Peot 1992), the above procedure involves some extra work in steps (1), (3) and (4) for processing
decision graphs. We argue that the extra effort will be paid back. Our argument is as follows.
First, we note that the procedure can be improved by combining the first four steps into one
step, and generating the decision graph starting from the root. This way, those arcs with zero
probability will not be included in the graph at the first place. Consequently, those parts that will
be deleted by steps (3) and (4) need not be generated either. Thus the overhead can be reduced.
Second, the values of the nodes and the probabilities of the arcs in the parts deleted by steps
(3) and (4) need not be computed at all. If the asymmetry involved in the decision problem is
substantial, the deleted part can constitute quite a large portion of the total decision graph, and
this may mean a big saving. Furthermore, the decision graph representation generated by this
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Figure 12: The two solution graphs for the oil wildcatter problem
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procedure can be used for efficiently computing the value of perfect information. This possibility
is explored in (Zhang et al. 1993b).

5.5.2 Using heuristic algorithms

The computation method just described is successful in recovering the asymmetric property of the
original problem. Better performance can be achieved if we use the algorithms developed in (Qi
1993, Qi and Poole 1993) for decision graph search. By using these algorithms, some subgraphs
may not be processed at all, due to pruning.

To use these algorithms, we need a domain dependent function that can give admissible
estimation on u;(s) for any situation s. Note that the admissibility of a heuristic function here
is different from the one in the traditional case. Because we are maximizing merits instead of
minimizing costs, we define a heuristic function to be admissible if it never under—estimates for
any context s. Formally, a function h is admissible if 2(s) > uy(s) for any situation s.

5.6 A comparison with Howard and Matheson’s method

The relationship between our method and Howard and Matheson’s method should now be clear.
In both methods, an influence diagram is first transformed into a decision tree from which an
optimal strategy is computed. However, there are a few notable differences between the two
methods.

First, Howard and Matheson’s method works only for no—forgetting influence diagrams while
ours is applicable to stepwise decomposable influence diagrams.

Second, the size of the decision trees generated by the two methods are different. For a given
influence diagram, the depth of the decision tree obtained by Howard and Matheson’s method is
equal to the number of the variables in the influence diagram, while the depth of the decision tree
obtained by our method is 2n, where n is the number of the decision variables in the influence
diagram. Typically, there are more random variables than decision variables in a decision problem,
thus the depth of a decision tree obtained by Howard and Matheson’s method from an influence
diagram is larger than the depth of a decision tree obtained by our method for the same influence
diagram. Furthermore, the number of the nodes in the decision tree obtained by Howard and
Matheson’s method from an influence diagram is exponential in the depth of the tree, but this is
not necessarily true for the decision tree obtained by our method. In fact, the number of nodes
in a decision tree obtained by our method is:

n—1

L+ [Qramy) + D 1Ry + Qe | * 1)

i=1
Finally, our method provides a clear interface to those algorithms developed for Bayesian net
evaluation.

6 Extension to Influence Diagrams with Multiple Value Nodes

In the previous section, we developed a method for influence diagram evaluation. We have assumed
that the concerned influence diagrams are regular and have only one value node. As pointed out
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in (Tatman and Shachter 1990), if the value function of an influence diagram is separable, then the
separable nature can be exploited for increasing the efficiency of influence diagram evaluation.
The separability of a value function can be represented by multiple value nodes. Thus, it is
desirable to develop algorithms that can be used to evaluate influence diagrams with multiple
value nodes.

An generalization of Shacter’s algorithm has been developed in (Tatman and Shachter 1990)
that can exploit the separability of value functions. Zhang and Poole’s algorithm (Zhang and Poole
1992b) is actually developed for influence diagrams with multiple value nodes. In this section, we
generalize the method we presented in the previous section so that it can be applicable to regular
influence diagrams with multiple value nodes as well.

6.1 Separable value functions

If the value function of the value node in an influence diagram can be expressed as the sum of two

or more functions with fewer variables, we say the value function is separable. More precisely, let

S(X) be a value function with variable set X ,let f; ..., f, are functions with variable sets X,
. X, respectively, and Xy ... X, are all proper subsets of X . V is separable if

HX)y=23_ K%). .
1=1

Consider again the oil wildcatter problem. The value node depends on four variables: T, D, 0
and CD. The value function can be separated into three parts: a function f; on the cost of the
seismic structure test, a function f;, on the drill cost, and a function f; on Lhe value of the oil.
Formally, this can be expressed as

f(T, D, 0, D)= f1(T) + f2(D, CD)+ f3(D, 0).

With this separation of the value function, the value node can be split into three value nodes, v,
vy and vz, with f1, f; and f3 as their value functions respectively. This separation results in
a new influence diagram as shown in Fig. 13.

Ty
O ®

Figure 13: A new representation of the oil wildcatter problem by an influence diagram with
multiple value nodes

The semantics of influence diagrams with multiple value nodes is the same as that of influence
diagrams with single value node except that, for an influence diagram with multiple value nodes,
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we interpret the sum of the values of all individual value nodes as the value of the influence
diagram. Therefore, all the terminologies we have used before can be used here for influence
diagrams with multiple value nodes. Furthermore, the expected value and the optimal strategies
of a influence diagram with multiple value nodes can be defined in a similar way as follows. Let
U = {v,...,vy} be the set of the value nodes of influence diagram /. Let A be a strategy for I.
Let P denote the joint probability distribution determined by the Bayesian net [n obtained
from I and the strategy A.

Let Pa{m(v;) = x}, for any z € Q,, , denote the probability for the event 7(v;) = z, in the
Bayesian net [a . The expected value of the influence diagram w.r.t. strategy A, and the value
node v', written Ea[v;], is given by

Ealv]= Y. filz)* Pa{r(v;) =z} (9)

J:EQ,,(,_,’)

where f; is the value function of the value node v;. The expected value of the influence diagram
w.r.t. strategy A, written Eja , is given by

q
Ea = Z Ealvi].

i=1

The decision objective is to find an optimal strategy maximizing the expected value. i.e. to find
A® such that
Epo = maz{Ea| A is a strategy} (10)

The computational problem related to an influence diagram is to compute the optimal expected
value and an optimal strategy for the influence diagram.

6.2 Decision graphs for influence diagrams with multiple value nodes.

Like the case for influence diagrams with single value node, the computational structure of the
optimal expected value of an influence diagram with multiple value nodes can also be represented
as a decision graph. The difference is that in the case for influence diagrams with single value
node, the values are associated only with the terminals in the decision graph while in the case
for influence diagrams with multiple value nodes, values can be associated with interior nodes as
well. In order to illustrate this, let us consider the influence diagram shown in Fig. 13, which is
an influence diagram with three value nodes for the oil wildcatter problem. Since the value node
vy depends on only node T, its value can be determined in any situation where the variable T is
instantiated. Thus, at the nodes representing the situations T = yes and T = no, the value of v,
can be determined. In particular, the value of f; for the situation T = yes is -10 and the value
of fi for the situation T = no is 0. The value -10 can be viewed as the value resulting directly
from performing the test action in the parent situation, while the value 0 can be viewed as the
value resulting directly from performing the no-test action in the parent situation.

In order to deal with general cases, we introduce a new concept. Let m(di) = = be a parent
situation of dg., 7(dy) = ,dx = a, be an inclusive situation of dj and let [(dy,di4q) Dbe the
section of I from dj to diy . Without loss of generality, suppose nodes v;,...,v; are the value
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nodes in [(dg,dpsr). For i <1 <7, let Ei[:{,,.,dk_{_i)[‘”l]?"(fffk) = x,d; = a] denote the expected
value of the value node v, conditioned on m(dy) = z,dy = a, in the section [(dg,djy1). We call
the sum

2

> Efdpeny[vilm(di) = 2, dy = a

=i
the value of the inclusive situation m(dy) = ®,d, = a. This value can be computed more efficiently
by a method in (Zhang et al. 1993b). Intuitively, the value can be viewed as the utility directly
resulting from selecting a as the choice for decision node dj in the parent situation m(dy) = z.
Using the terminologies for decision graphs, the value can be associated with the arc from the
choice node representing the parent situation 7(dy) = z to the chance node representing to the
inclusive situation m(d;) = x,d; = a. The following is a new specification of the decision graph
of an influence diagram with multiple value nodes.

e The empty situation is the root, which is a chance node, of the decision graph.

e For each decision node d;, 1 <1 < n, and each x € Q,,(d‘.], there is a choice node in the
decision graph representing the parent situation w(d;) = z; for each a € Qg , there is a
chance node in the decision graph representing the inclusive situation n(d;) = z,d; = a.

e Let s be a choice node representing a parent situation n(d;) = z, 1 < ¢ < n, the nodes
representing the inclusive situations m(d;) = z,d; = a forall a € Qg constitute the children
of node s. The arc from the node representing the parent situation to a child representing
an inclusive situation 7(d;) = z,d; = a is labeled with the value of the inclusive sitnation.

e For each = € g4, , there is a terminal node representing the parent situation =7(d,) = z.
The value of the terminal is V().

o Let S;4 denote the set of choice nodes representing the parent situations of d;4q . For each
chance node representing an inclusive situation mw(d;) = z,d; = @, it has the nodes in &§;4,
as its children. In other words, for each @ € Q,(4,), ¢ € Sy, and y € Qy(q,,,) there is an
arc from the chance node representing the inclusive situation 7(d;) = #,d; = a to a choice
node representing the parent situation 7(di41) = y. The arc is labeled by the probability
P{r(diy1) = yln(di) = =,di = a}.

o For each choice node representing a parent situation of d; in form of 7(d;) = «, there is an
arc from the root node to the choice node. On the the arc is a probability P{n(d;) = z}.

As an example, consider the influence diagram as shown in Fig. 13. A decision graph for the
influence diagram is shown in Fig. 14 (all arcs with zero probability are removed).

Let D@ be a decision graph derived from an influence diagram with multiple value nodes, we
can define an evaluation function, wuy, on it as follows:

o If s is a terminal, corresponding to a situation m(dg) = z, then

uy( DG, 8) = Vo ()
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Figure 14: A decision graph for the influence diagram shown in Fig. 13

e If s is a chance node, with children sq,...,s, then
!
ux( DG, s) = Z P; x uy( DG, 85)
1=1

where P; is the probability on the arc from node s to node s;.
e If s is a choice node, with children sq,...,s;,then

ua( DG, 8) = mazt_ {c(s, 8) + us( DG, 37)}.

The reader may have noticed that the decision graphs corresponding to the examples we have
considered so far are actually decision trees. This need not be true in general. Here we consider
another example whose decision graph has shared structure.

Clonsider the following variation of the oil wildcatter problem. In the previous examples, we
implicitly assumed that the amount of oil the oil wildcatter can obtain is equal to the amount
of the oil underground. Now we replace this assumption by a more realistic one, namely, the
amount of oil the oil wildcatter can obtain depends on the amount of the oil underground and
the equipment status as well. Thus, the oil wildcatter needs also to decide whether to upgrade
his equipment. Furthermore, suppose the profit by selling oil also depends on market information
and the sale policy. This more elaborated problem can be represented by the influence diagram
as shown in Fig. 15.

Suppose the amount of obtained oil can be either zero, or low, or medium or high. The
decision graph corresponding to the problem is shown in Fig. 16. Suppose the decision problem is
asymmetric in the following sense: if the drill decision is yes, then the amount of obtained oil must
not be zero and if the drill decision is no, the amount of obtained oil must be zero. Therefore,
Some of the arcs to the nodes representing the situations of oil-obtained are labeled with zero
probability. After removing these zero-probability arcs, the decision graph becomes the one in
Fig. 17, which is indeed a graph (uot a tree).



upgrads oil-obtained)—=

Figure 15: A more elaborated decision problem
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Figure 16: A decision graph for the influence diagram in Fig. 15
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Figure 17: A decision graph, with zero probability arcs removed, for the influence diagram in Fig.
15
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A possible heuristic function for this problem can be defined as follows: For any node s, if s
represents a situation in which the drill decision is no, return zero, otherwise, return M where
M is a large integer. Obviously, if M is large enough, .this heuristic function is admissible.
Suppose we use algorithm Al to search the decision graph in Fig. 17. If the algorithm uses
the heuristic function, and searches the branch corresponding to drill = yes first, then the
subgraph under the branch corresponding to drill = no could be pruned altogether, provided
that, according to the actual numerical setting, it is profitable to drill. Furthermore, if we have
a stronger heuristic function such that it asserts that the optimal expected value for the node
representing the situation drill = no equals zero, then lower half of the decision graph in Fig.
17 need not to be expanded at all. When one builds a decision tree for the decision problem,
exactly the same heuristic information is used so that the branch corresponding to drill = no
will not be expanded.

7 Summary

In this paper, we have presented a new method for influence diagram evaluation. The basic idea
of the method is to transform an influence diagram into a decision graph in such a way that
the optimal strategies of the influence diagram correspond to the the optimal solution graphs of
the decision graphs. In this aspect, our method is similar to Howard and Metheson’s two—phase
method. However, our method is more efficient than theirs.

To the best of our knowledge, our method is the only one enjoying all of the following merits
simultaneously.

(1). It is applicable to a class of influence diagrams that are more general than the class of
no—forgetting influence diagrams.

(2). It provides an interface to the algorithms developed for Bayesian net evaluation.

(3) It can make use of heuristic search techniques and domain dependet knowledge.

(4) It can take the advantage of asymmetry in decision problems.
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