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Abstract 

As Influence diagrams become a popul a r representational tool for decision analysis. influ
ence diagram evaluation attracts more and more research interests . In this article , Wt' present 
a new, two-phase method for influence diagram evaluation . In our method, an influence dia
g ra111 is fi['!,I 111 app r r,I i1ll<1 o. dPc ision graph a nd then the analys is is carried out by evaluating 
Lli <> di>t isiou grapu . Our 111 et.hod is more efficient than How;,ird and Matheson ·s two-phase 
111 ,.~ li d bt>(' a use , am ong or lier reasons, ·ht- s iz of the decision graph generated by our method 
from an influence diagram can be much smaller than that by Howard and Matheson 's method 
for the same influence diagram. Like those most recent algorithms reported in the literature . 
our method can also exploit independence relationship among variables of decision problems. 
and provides a clean interface between influence diagram evaluation a nd Bayesian net eval
uation, thus, various well-established algorithms for Bayesian net evaluation can be used in 
influence diagram Pvaluation. In this sense, our method is as efficient as those algorithms . 
Furthermore , our method has a few unique merits. First, it can take advantage of asymmetric 
processing in influence diagram evaluation. Second, by using heuristic search techniques, it 
provides an explicit mechanism for making use of heuristic information that may be available 
in a domain-specific form. These additional merits make our method more efficient than the 
current algorithms in general. Finally, by using decision graphs as an intermediate represen
tation, the value of perfect information can be computed in a more efficient way. 
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1 Introduction 

An influence diagram (Howard and Matheson 1984) is a graphical representation of decision 
problems. In comparison with decision trees, influence diagrams are arguably more intuitivP., 
natural and compact. 

The first method for influence diagram evaluation is Howard and Matheson's two-phase 
method. In this method, an influence diagram is first transformed into a decision tree and then the 
analysis is carried out by evaluating the decision tree. This two-phase method was largely aban
doned after Shachter showed an influence diagrams can he evaluated directly (Shachter 1986). All 
of the r cent algoritlum for influence diagram evaluation ( Cooper 1!188 Zhang ·,.rid P le 199:lb 
Sbachter and Peat 1 !)92, Zhang et al. 199%) cany 11 • 'Llif' eva.hia,ti n withnn a sr.won cl ary n'pr . 
sentation. One reason for abandoning the two-pbitsP a pproach migh b<'! that p<, >p ie lwli rvP hat, 

direct evaluation is more efficient. 
H wever, all those aJp; ri thms that PValm\te in1hi0n<:P. diagra.rns directly s11 lfor from a r mmc 11 

shortcoming. That is tbey do not perform asymmetric pr r.f.'ssing (Shachter 1986). Anothf>r 
weakness of these algorithms is that they fail to provide any explicit mechanism to make use of 
domain dependent information ( e.g. a heuristic function estimating the optimal expected values 
of influence diagrams), even when it is available. 

In this paper, we will show that the two-phase approach to influence diagram evaluation need 
not be inefficient. The inefficiency of Howard and Matheson 's method is not due to the two-phase 
approach. Rather, it is due to the way to generate the secondary representation. We will present a 
two-phase method for influence diagram evaluation. In our method, we map an influence diagram 
into a decision graph (Qi 1993, Qi and Poole 199;3) in such a way that an optimal solution graph 
of the decision graph corresponds to an optimal strategy of the influence diagram. Thus, the 
problem of computing an optimal strategy is reduced to the problem of searching for an optimal 
solution graph of a decision graph, which can be accomplished by various algorithms ( Qi 199:3, 
Qi and Poole 1993). The size of the decision graph generated by our method from an influence 
diagram can he much smaller than that generated by Howard and Matheson 's method for the same 
i111:lu -nee cliagram. Like those m st recent algorithm~ (Zhang and Poole 1992b, Zhang et al. 1993a, 
Shachter ancl p.., t 1992, Zl1ang 199:3), our method can also exploit independence relationship 
among variables of decision problems, and provides a clean interface between influence diagram 
evaluation and Bayesian net evaluation, thus, various well-established algorithms for Bayesian net 
evaluation can be used in influence diagram evaluation. In this sense, our method is essentially as 
efficient as the one proposed by Zhang and Poole (Zltaug an d Poole 1092b) whid1 rivals auy oLher 
a.lg rithms in terms of efficiency (Zhang 199:3). F'urtllNUlOTf' , om· melb cl l1 a.'> a fpw additional 
merits. First, it can take advantage of asymmetri . proc<-'~,; ing in inflmm . dia[!;ra.m evaluation. 
Second, by using heuristic search techniques, it provides an explicit mechanism for making use of 
heuristic information that may be available in a domain-specific form. Finally, by using decision 
graph~ as an intermediate r .presentation, the value of perfect information (Matheson 1990) can 
be · mputed in a more efficien · way (Zhang et al. 199:3b). 

The remainder of this paper is organized as follows. We introduce the basic concepts of 
influence diagrams and influence diagram evaluation in the next section, and review the current 
algorithms for influence diagram evaluation in Section ;3_ In Section 4, we point out why those 
recent algorithms fail to perform asymmetric processing. In Section 5, we present our two-phase 



method for the evaluation of inf111ence diagram with a single value nodP. We first establish a 
stochastic dynamic prop;nnnn i11µ; fornrnlatiou for influenre diagram enl11ation and show that 
the problem of influence diagram evaluation can he reduced to a decision graph search problem. 
Then we point ut how to ex-plait asynuut>try in a decision problem for improving evaluation 
efficiency. In Section 6, we PX f' tl<l our rnP t,li od to the influence diagrams with multiple value 
nodes. Conclusions are given in Section 7. 

2 Influence Diagrams 

An influence diagram is a direct acyclic graph with three types of nodes: random nodes, decision 

nodes and value nodes. Each random node represents a random variable whose value is determined 
according to some probability distribution, and each decision node represents a decision variable 
whose value is to be chosen by the decision maker. In this paper, we will use the term decision 
(r, ndom) variables and decisi n (ra.,1dom) nodes intercha.11g ably. The arcs into a rcwdom node, 
c.tUPd conditional arcs, indicatr,:, thP probabilistic depe udE'll<.' Y of the random node. Th arcs into a 
decision node, called informational arcs, indicate the information available to the decision maker 
at the time he must choose a value for the decision variable. The lack of an arc from a node a 
to a decision node d means that the value of the variable a is not known to the decision maker 
when decision d is to be made. 

An influence diagram is regular (Howard and Matheson 1984, Shachter 1986) if there is a direct 
path containing all of the decision variables. Since the diagram is acyclic, such a path defines an 
order for the decision nodes. This is the order in which the decisions are made. We refer to it 
as the 1·egularity order of the influence diagram. An influence diagram is "no-forgetting" if each 
decision node d and its parents an• also parrnts of those deci si01.1 nodes wh.ich are descendents of 
d (Howard and Matheson H-)~4 Sharhter 1986). Intuitively, the "no-forg tting" property means 
that a decision maker will remember all the information that was earlier available to him and 
remember all the previous decisions he made. A regular and "no-forgetting" influence diagram 
represents the decision maker's view of the world. 

We first consider the regular influence diagrams with exactly one value node. We come to the 
more general influence diagrams in Section 6. 

In a given influence diagram, let v be the value node, let D and C denote the set of decision 
nodes and the set of random nodes respectively. Suppose a-+ b is an arc in an influence diagram. 
The node a is called a parent of node b, and node b is a child of node a . We will also use other 
standard graph terminologies such as descendents and ancestors in this paper. Without loss of 
generality, we assume that the value node in any influence diagram has no children. 

For any node x, let 1r( x) denote the set of all parents of x in the diagram. Associated with 
each node ;r, is set nx, which is the set of values the variable can take. This set is called the 
frame of the variable. For any subset J s;; CU D, let nJ = f1xo nx. Each random node x is 
characterized by a conditional probability distribution, written P{xl1r(x)}. For each o E nx and 
c E n1r(x) , the distribution specifies the conditional probability of event x = o, given 1r( x) = c 1 . 

The value node is characterized by a function f, called the value function of the value node. The 

1 In this paper, for any variable set J and any element e E !1; , we use J = e to denote the set of assignments 
which assign an element of e to the corresponding variable in J. 
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value function is a mapping from n,r(v) to n,, which is usually assumed to be the real domain 
R. 

Let D = { d1, ... , dn} be the set of decision nodes of influence diagram /. A strategy ti for 
the influence diagram is a collection of decision functions, ti = ( 61, 62, ... , 6n), where function 
61; , l ~ k ~ n, corresponds to decision node dk and is a mapping from n,r(d,J to S1r1A: . Nate 
that the set S1,r(dA:) repres .nts all t he possible states f LhP. informa.t ion availahl . t th dei:i:-;iou 
maker when he needs to r hoose a value for the dedsiou variab le dk , and the SP flr11, reprrn;<'nls 

all the possible choices for dk. Thus, a decision fun ·tion prescri bes a decisio n ch ice ha,.,.,NI 11 

the information available to the decision maker when the decision is to be made. 
Given a strategy ~ = ( 61 , 62 , ••• , 6n), each decision node di can be regarded as a deterministic 

random node whose probability distribution is given as follows: 

if 6i( c) = :r,, 
otherwise. 

With the decision nodes treated this way, the influence diagram I, together with a particular 
strategy ti , becomes a Bayesian net. We use I~ to denote the net and use P~ { ·} to denote the 
joint distribution determined by h. 

Let P~{1r(v) = o}, for any o E S11r(v), denote the probability for the event 1r(v) = o, in I~. 
The expected value of the value node w.r.t. strategy ~, written Edv], is given by 

Edv]= L f(o)*P.0.{1r(v)=o} ( l) 
oE!1,r(v) 

Since we presently assume that v is the only value node of the influence diagram, E~[v] is 
actually the expected value of the influence diagram w. r. t. strategy ti . The decision objective is 
to find an optimal strategy maximizing the expected value. i.e. to find ~ 0 such that 

E,0.o[v] = max{Edv] / ti is a strategy} (2) 

The computational problem related to an influence diagram is to compute the optimal expected 
value and an optimal strategy for the influence diagram. In this paper, we refer to this problem 
as influence diagram evaluation. 

As an example, consider the oil wildcatter problem from (Raiffa 1968). In the problem, an 
oil wildcatter must decide whether to drill or not to drill an oil well on a particular site. He is 
not certain whether the site is dry, wet or soaking. Before making this decision, he can either 
order a test on the seismic structure or not. If he does, the test result will be available to him at 
the time when he decides whether or not to drill. The profit depends on the cost of the test, the 
amount of oil and the cost of drilling, which can be either low or medium or high. 

An influence diagram representation of this problem is shown Fig. 1. In the diagram, boxes 
are decision nodes, circles are random nodes and the diamond is the value node. T and D are 
decision variables, corresponding to the test decision and the drill decision. D, S, R and CD are 
random variables, representing the amount of oil, the seismic structure, the test result, and the 
cost of the drill, respectively. 

Decision variables have the same frame consisting of two alternatives: yes and no. The frame 
of random variable O has three values: dry, wet and soaking. The frame of random variable 
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Table l: The function of the value node 

T D 0 CD V T D 0 CD V 
no no -- -- 0 yes no -- -- -10 
no yes dry 1 -40 yes yes dry 1 -so 
no yes dry m -so yes yes dry m -60 
no yes dry h -70 yes yes dry h -80 
no yes !let 1 80 yes yes !let 1 70 
no yes !let m 70 yes yes wet m 60 
no yes !let h 50 yes yes !let h 40 
no yes soaking 1 230 yes yes soaking 1 220 
no yes soaking m 220 yes yes soaking m 210 
no yes soaking h 200 yes yes soaking h 190 

Table 2: The conditional probability distributation of R 

T s R prob 
no -- nobs 1.0 
no -- others 0 
yes -- nobs O· 
yes ns ns 1.0 
yes cs cs 1.0 
yes OS OS 1.0 

S has three values: ns for no-structure, cs for close-structure and os for open-structure. The 
frame of random variable R has four values: ns for no-structure, cs for close-structure, os for 
open-structure, and nobs for no observation. The frame of random variable CD has three values: 
1 for low, m for medium and h for high. 

The value function of the value node and the probability distributions of the random variables 
are given in Tables 1 - 5. 

Figure 1: An influence diagram for the oil wildcatter's problem 
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Table 3: The conditional probability distributation of CD 

CD prob 
1 0.2 
m 0 . 7 
h 0 . 1 

Table 4: The prior probability distributation of 0 

0 prob 
dry 0.5 
Ret 0 . 3 
soaking 0 . 2 

Table 5: The conditional probability distributation of S 

0 s prob 
dry ns 0 . 6 

cs 0.1 
OS 0.3 

Ret ns 0.3 
cs 0.3 
OS 0.4 

soaking ns 0.1 
cs 0.5 
08 0 . 4 
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3 A Review of Methods for Influence Diagram Evaluation 

3.1 Howard and Matheson's two-phase method 

Influence diagrams were first proposed as a representational tool for decision analysis (Miller ct al. 
1976, Howard and Matheson 1984). They served as a "front-end" for the automation of decision 
making process. The actual analysis of a decision problem was carried out in two-phases. An 
influence diagram is first transformed into a decision tree and then the decision tree is evaluated. 

Howard and Matheson (Howard and Matheson 1984) discussed a way to transform a regular 
and no-forgetting influence diagram into a decision trP . The transf nnation involves two stepfi . 
An influence diagram is first transformed into a decision tree netwod: and then a de ·i. i n ti: 
can he constructed from the decision tree network by sequentially "expanding" variables in the 
network. An influence diagram is a decision tree network if it is regular and no-forgetting, and 
if all predecessors of each decision node are direct predecessors (parents) of the decision node 
l Howard and MathPsl n 1984). Th basic p0rati n for transforr.u.ing a regular, uo- G rgettin11; 
in ll,,1 ence diagram ii1t a decision network is arc re1, ·1·snl (Howard and Matheson 1. 84 Sha ·ht(' r 
19H6). 

The aT'C reversal operation is illustrated as in Fig. 2. Suppose a ----+ b is an arc in an influence 
diagram such that both a and b are random nodes and there is no other directed path from 
node a to node b, then, the direction of the arc can be reversed and both nodes inherit each 
other's parents. This operation is an application of Bayesian th o rPm. In Fig. 2, we begin 
with conditional probability distribu ions P{b\a, ·} and P{a\·}, and end up with conditional 
probability distributions P{alb, ·} and P{bl·}. Formally, we have: 

P{blx,y,z} = LP{a,blx,y,z} = LP{bla,y,z}* P{alx,y} 
b b 

P{ lb,. }- I'{a b\ x, y z} _ P{bla,y,z}* P{alx,y} 
a ' :1, ' y' z - P { b \ :i: y, z} - P { b Ix, y, z} · 

As an example, consider the influence diagram shown in Fig. 1. That influence diagram is regular 
and no-forgetting, but is not a decision tree network, since node S and O are two predecessors of 
node D but they are not parents of D. In order to transform that influence diagram into a decision 
network, we can first reverse the arc O ----+ S and then reverse the arc S ----+ R. The resultant decision 
network is shown in Fig. ;3_ In the course of this transformation, we have also to compute the 
new conditional probability distributions for nodes O and S. More specifically, when we reverse 
the arc O----+ S, we need to compute probability distributions P{DIS} and P{S} from probability 
clistrilrnLio11s P{S I □} a11 I P{D}; whe11 we r -.vNse the arc S----+ R, we nef>d to com put probability 
distrib111. i ns P{RIT} an d ['{SIT, R} from probability distributions P{S} and P{RIT, S}. 

A cl,~ci sion tree can b r-> c m;tructf'd from :, d cision tree network as follows. First, define an 
order -< over the set CU D U { v} such that a -< b if either b = v or there is a directed path 
from a to b in the network or a is a decision node and there is no directed path from b to a 
in the network. Then, construct a decision tree by considering variables one by one according to 
the order. Each layer in the decision tree corresponds to a variable. For the decision network in 
Fig. :1, we can obtain the following order: 
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y 0 X 

Figure 2: An illustration of arc reversal operation: reversing arc a - b 

0 
Figure 3: A decision tree network derived from the influence diagram for the oil wildcatter's 
problem 
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T -< R -< D -< S -< 0 -< CD -< V 

Using Howard and Matheson's notation (Howard and Matheson 1984), the decision tree for the 
oil wildcatter problem is shown in Fig. 4. In the figure, boxes correspoud to decision variables, 
circles to random variables, and diamonds to the valu node. This is a c mpact representation of 
a full decision tree. A layer of the decision tree is indicated by the corresponding variable and its 
possible values (alternatives). In the case of a random variable, its probability distribution is also 
im lucl .cl in the la.yer. T h e:> full ciPcision tree can be obtai~ed by systemati ally expanding each 
l;i,yrr a ncl aclcUng nee. s::;ary ronnections in thr PXpanded graph. Fig. 5 sl,ow·s a partial decision 
trPC'. res ulting from thP rxp, nsi u of Lhe first tl,ree layers of the compact representation. 

{RIT) {SIR,T) (01S) {CD) 

~~ea E. ~ G) 00 
I) s 

• 
no ca 

dry~ 
.,...__w_et_ 

0 
0 

n.oak1ng 

Figure 4: A compact representation of the decision tree derived for the oil wildcatter problem 

yes 

{RIT} 

nobs 

ns no ;· OS 

cs 

L {RIT} 

nobs 

no 

yes 

no 

Figure 5: A partial decision tree after the expansion of the first three layers 

li e Luajor problem of th.is approach is that. the resultant decision tr lends to be very large 
a11d in vo)vP murli redunda11ry. The depth of the decision tree so obLa.inecl from an iufl uence 
diagram is eq ual lo the numbPr o-f the va.riab lc,,s in the influence diagram. Thus, the size of the 
decision tree is exponential in the number of the variables in the influence diagram. 

10 



3.2 Methods for evaluating influence diagrams directly 

Tlw idea of evaluating inlh1euce diaJ?;ra,ms lir>ct ly was proposed in ( Olm:,;L0d 198:3). The first 
c-omplete algor ithm f r intlu nco diagram evaJua.tion was cl vel p cl in (Slmrh t-'T 1986). 

3.2.1 Shachter's algorithm 

Shachter's algorithm takes a reduction approach. For a given influence diagram, the algorithm 
evaluates the influence diagram by applying a series of value-preserving reductions. A value
preserving reduction is an operation that can transform an influence diagram into another one 
with the same optimal expected value. 

Shachter identifies four basic value-preserving reductions, namely, barren node removal, ran

dom node removal, decision node removal and arc reversal. The arc reversal operation has been 
illustrated in the previous section. The other reductions are illustrated as follows. 

Bar1'cn node removal. A node in an influence diagram is called barren node if it has no children 
in the diagram. The barren node removal reduction states that any barren node which is not a 
value node, can be removed together with their inc-oming arcs. 

Random node removal. If the value node is 1;he only child of a random node :i: in an influence 
diagram, then the node :i: can be removed by conditional expectation. Afterwards, the value 
node inherits all of the parents of node x. The reduction is illustrated in Fig. 6 where the value 
function f' of the value node v' in the resultant influence diagram is given by: 

J'(a,b,c) = Lf(;c,b,c)* P{x/a,b}. 
,. 

Decision node removal. A decision node is called a leaf decision node if it has no decision node 
descendent. If a leaf decision node d has the value node v as its only child and 1r(v) ~ {d}U1r(d), 
then the decision node can be removed by maximization. The reduction is illustrated in Fig. 7 
where the value function f' of the value node v' in the resultant influence diagram is given by: . . 

The maximizing operation also results in an optimal decision function fJ for the leaf decision node 
through 

o(b) = arg rnaxdf(d, b). 

Note that the value node does not inherit any parents from the leaf decision node. Thus, some 
of the parents of d may become barren nodes as a result of this reduction. In Fig. 7, node a 
becomes a barren node. The arc from such a node to d represents information available to the 
decision maker, but the information has no effects on the optimal expected value and the optimal 
strategy of the influence diagram. We call this kind of arcs (such as a --+ d in Fig. 7) irrelevant 
arcs. Later, we will see that irrelevant arcs can be identified and removed at a pre-processing 
step. 
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0 G 
Figure 6: Au illustration of random node removal: x is removed by expectation 

II Q 
fa 

G 
Figure 7: An illustration of decision node removal: d is removed by maximization 

3.2.2 Other developments 

J.Vt0r Sh a rhl.rr '~ ,dgor ithw research on influ euce diagram evalua ti II lrns adva11ced in the f IJ owing 
clirPC'l.i ri s: exploiting 8/.ructit1'al ·indep ml n ·y , making ·use of Bc~y sirm n •. l valuation methods 
a,n I ~:vlo i ting s -Jml·a&·i lily of l h vafo . fnnctfon. Ln LI.Lis sE'cLion, we <lj s ·n ss t'li c first two dir rti ns . 
We wiLI corn e to t lw t hird clirer t,i 11 i.11 SPction 6. 

As we have seen, during the evaluation of an influence diagram, some arcs to a decision node 
may turn out to be irrelevant to the decision node. An interesting question is that, given an 
influence diagram, can we identify which arcs are irrelevant in general'? Shachter studied this 
problem in (Shachter 1988, Shachter 1990) through examining the cl-separation among nodes in 
an iu.D 11 r nces di agram. Zhang and P ole (Z l1a 11 g ,md Po l J 992b) recently gave a sim pie algorithm 
to id r>uLify irrel •. vant arcs. This algorithm a lso removes all barren n des resulting from removing 
the irrelr.v,~11 a rcs. The resultant influence diagrarn is simpler than th e original one in the sense 
that it lrns few0r nodes and arcs. 

Influence diagrams are closely related to Bayesian nets (Pearl 19K8), which ha.ve be .11 a very 
active research area. A number of algorithms havP been developed in li e literatur (L~rnritzen and 
Spiegelhalter 1988, Shachter et al. 1990, Zhang and Poole 1992a, .J ense11 et al. 1990, Pearl 1988) for 
computing marginal probabilities and posterior probabilities in Bayesian nets. Thus, it is natural 
to ask whether we can make use of these Bayesian net algorithms for influence diagram evaluation. 
This problem is examined in (Shachter 1990, Sha ·liter ,i.nd Peot 1992, Cooper J !)XR, Zha ng and 
Poole 1992h, Ndilikilikesha 1991, Shenoy 1990, Shenoy 19fll), and tb f' answer is aJiinnative. 

Recall that a decision function for decision n dP d in an irdlu 11 c diagrarn is a n1<tppu1g 
from n 7r(d) to H,1. lt is r bsf'rvf1cl iu (C: u11e1· l!)R8, Shach er 1990 , Sltacli t ~r and Peot. 1992 
Zhan~ a nd P) I H)f):2b) ha t g iven a 110- forg tt.in g i1dlu -u c cLl ag r: a.w. t he optimal sl ra.t ·gy 0 1,u 

I" computed by sN111 ntia.ily co wputing ~h e ptim a.1 cl ecisi011 functio n.~ l'or decisi u nodes, ll (>. a.t 
a time, starting from the last one backwards. The computation of the optimal decision function 
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of a decision node is independent of those decision nodes which precede the decision node. 

In ( Cooper 1988), a recursive formula is given for computing the maximal expected values and 

optimal policies of influence diagrams. To some extent, the formula serves as a bridge between 

the evaluations of Bayesian nets and influence di f.1,Tams. 
In (Shachter and Peat 1992), the problem of iufluencP diagram evaluation is reduced to a series 

of Bayesian ll P.t evaluations. To this end, t he value node of an inA uence diagram is first replacPd 
with an "obse rved" probabilistic utility nodP v'. Tl e frame of Liu$ utility node is {O , l}. ThP 

probability distribution of v' is defined by: 

wherP f mi11 and fi nru: are the s malles t and the large. t val 1es or LhP value function . Now, 
s np1 ose thr1, t lw deci s ion nodes ill thP influence diagrnru is orcl erPd a.s d1, ... , dn su ·b that d11 is 

t !H' hist deci sion no le, dn- l i::; · hf' SPc.o ud last, etc. aud d1 is tlt P. first. d<>r.ision uod0. ThPn , the 
optimal decision function 8n for the last decision node dn can he computed as follows: for each 

element e E n,7r(rl,.), 

In gen eral, the optimal decision fun ·Lion /ji of the decision n cl , di is cowpn l.1~(1 aft .r tbe p tima.l 

decis i 11 functions 8i+t ... , 8n ha v0 been obtain cl. Th . cl C:'.ri ·ion nodes rl i+ 1 ... <L11 a rP fir s t. 
rep lacPd with their corre. poncUn~ det rministic ran dom nod .s in th i110 n P1H' · d iagram. Tl1P 

decis i 11 fun .Lion /ji is tllf'n c m puted as follows: for each element e E n7r(rl;), 

Thus, the problem of influence diagram evaluation is reduced to problems of computing posterior 

pro ! abil1 t iPs in Bayesia n UC't s . In ti! sa.rn pap P-r, Shachter and PeoL pointed out th<1.t ,w influPllC<' 
cli·tgra.m ran bf' ronvNtP.d into a clusl .r l1· . which is similar to t he> clique trees of Hayei; ia n ll Pl,s , 
an 1 thP prnhlem of Pvalu r1; ing the infl t1All t P d iagram is reduced to the proh l0111 of eval1rn.tinp; the 

cluster tree. This approach was previously used by Shenoy for his valuation based sysl ms (Sh~'110y 

1990). 
In (Zlia.ng a,n<I r le UH)2b), an influe nce Li a.gram is called stepwise solvable if its ptimal 

st,,ttegy ·a,n bP cornputecl l y consid erinf,!; 11 e dN·.is i n node at a time. Zhang and Poole p1· vide a 

suffic ient. a,11cl 11 .c .ssa ry r 11dit i n on t,he s tepwise solvability of influence diagrams. The condition 
is called stepwise-decomposability (Zhang and Poole 1992b) . 

. 'te pwise- d i>.comp sa biliLy is defined in terms of graph separation. Informally, an influence 
cliag ra,m is s/. pwise dffomposable if for each derision node, its parents divide the influence diagram 
into two parts. In order to define the property formally, we need some notations and concepts. 

We use nond( x) to denote the se t of nodes which are not descendents of x in the influence 
di ap;r a m . Thus, nond( d) n D is the set of decis ion nocl<~s whi rlt are not des<'Pndents of node d . 

F r a uo cle set Z, let 7r(Z) = UzEZ1T(z) and 1T (Z) = Z U 1r(Z). 
The moral graph of a directed graph G is an uud iTect -d p;raph m(G) with the same node 

set such that there is an edge between node x and node y in m( G) if and only if either there 



1s an arc x -+ y or y -+ :.r: in G, or there are two arcs (x, z) and (y, z) in G. A node :.r: is 
m-sepamtcd from a node y by a node set Z in a directed graph G if every path between :c and 
y in the moral graph m( G) contains at least one node in set Z. 

Let rl be a d <"i s i II node in ( ,' , m (G) be t bP m ral ~rnpb f G a ud G ,1 b<-' t he 1rndirP.rtPd 
graph I ta,in .d from 1n((:) by re111 ving all th ~• no les iu 1r(d). The down.-;f1"N£m tl r rt is the 
set of all tliP nnclrs whicl1 rtre connectPd to d in (,' ,1 , with d excluded. The up,<;h·en,m X,1 of d 
is the set of all the nodes that are not connected to d iu </r1 . 

A II i1ilh1Pn cP <liagrarn is st<'JHvisP decomp )S;:i,hl e if for Path decision node d, and a ny nod r 
.1: E 7r"' (nun<l(d) 11 D). {:1:} U 7i(.c) s X,1 U 7r(d) . Note Umt a n - fc l'l!;etting influe11n• dia?;ram ifi 
,I. :::~<-'1 wi :,,., dN <rn1p , a,hl<' influence cLiag ra.111 . Tl1 e 110- forgeLLi11g property is clefinNI in terms r 
iuforu1a.tion av·'lci la.biULy, wllilP sLPpwis<' deco111p sability is defined in terms of graph separation. 
1n ,1, s te pwise dt>coruposa.bk inli 11e·ncf' d.ia,~ram, an arc into a decision node indicates both infor
mati ua.l availability and functional dependency. 1 r prPc is ~ly, for any decision node d and 
any oth<'r node a in a stepwise> der mposable inflncnce <liagrn.m the presence of an arc a -+ d 
impU Ps t;liaL the value of vc1.riable a is <1,vaila l le at the tim~ when decision d is to be macle and 
it is ,wt !mown that the iuJoru1c1.tio11 is in· l< t ant to the decision. On the other hand, the ,tbsence 
or an arr ft -+ d in an st c> pwis£> dPromp si\blt~ influence diagram implies that either the value of 
variable a is not available at the time when decision d is to be made, or it is known that the 
information is irrelevant to the decision. Thus, one of the advantages of stepwise dN· mpos<l.l ility 
oVPr 110- ~ rgetting is that it allows the r@presentation of the lrn wleclg that a piC>ce of i_nforrna
t;it n ra.rri d by a ( no-forgetting) inform a.ti mal arc to a dec i. ion node in an influence diagram is 
irre1evant to the optimal decision function of the decision node. 

Like Shachter and Peat's a lgorithm, Zhang ,tml P ale's algorithm also deals with one decision 
node at a time. Unlike ShachL<'r and Peat's alg ri lw.i, Zlt c ng and Poole's algorithm takes a 
reduction approach. Suppose node d is a leaf decision node of a stepwise decomposable influence 
diagram I , then, 7r( d) separates the influence diagram into two parts, namely a body and a tail. 
The tail is a simple influence diagram with nly one decision n dP ( d ). The budy's value node 
is a new node whose value function is ob 1,a.ined by evaluating Ll1 e tail. A rech1ction step w.r.t. 
the decision node d rNlt\ .es I to the body. The main computation involved in a reduction step, 
however, is for evaluating the tail. 

Since th • tail is c1, fl impl in.lh1P11 e cli a ?,Ta,I.ll with o·nly on e l<'d sio11 11 d , its evah, a lion nm be 
directly r cl uc~ecl to a problem of couqrnting p~>s C1>ri ,. pr 1 a bilitiC's in a Bay@sian 11 1,•l, ;;i i; suggested 
in (Sha.cht0.r a,nd P , L 19$):2, Zl1 ang cl al. 199:3a). Th res1d't of 11 !Waluation consists of two 
parts: a fondi on f' : n,r(rl) -+ 'R., and an ptimal dec:is i n function ad : n,r(d) -+ nd for decision 
nod e d. Tl11' f11 nrtion J' is nsecl in the body as the valne lllllt"tion of the value node. 
A r0dnction step can he describPCl a.5 f< U ws . 

Input: I - a stepwise decomposable influence diagram. 

O'\l t pu t : I' - a new decomposable influence diagram, and 
8c1 - the optimal decision function of a leaf decision node d. 

l . Identify a leaf decision node d, and divide the influence diagram into two parts: 
a body and a tail. 
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2. Evaluate the tail to obtain a new value function f' and an optimal decision bd 
for decision node d . 

;3_ Use J' as the value function of the value node in the body. Return the decision 
function and the body. 

It is proved in (Zhang and Poole 1992b) that this reduction is a value preserving reduction 
and the resultant influence diagram is also stepwise decomposable if the original one is. Thus, 
this reduction can be applied recursively till the optimal expected value of the original influence 
diagram and an optimal decision function for each decision node are obtained. Here we can see 
that Zhang and Poole's algorithm and Shachter and Peot's algorithm are somehow complementary. 
A better algorithm can be readily obtained by combining them together. The combined algorithm 
will use Zhang and Poole's overall reduction framework and use Shachter and Peat's algorithm 
to evaluate the tail at each reduction step. 

4 Some Common Weaknesses of the Previous Algorithms 

One common weakness of the influence diagram evaluation algorithms we reviewed in the previous 
section is that they fail to provide any explicit mechanism to make use of domain dependent infor
mation ( e.g. a heuristic function estimating the optimal expected values of influence diagrams) , 
even when it is available for some problems. 

Another notable and common shortcoming of these algorithms is that they <lo not perform 
asymmetric processing. This was also observed in (Shachter 1986). 

In an influence diagram, all relations of variables are symmetric. Thus an influence diagram 
corresponds to a symmetric decision tree. The asymmetric relations of variables in a decision 
problem are extended into symmetric ones by introducing artificial ou tcornes to the frames of 
relevant variables. This may lead to significant inefficiency in evaluation when the asymmetry in 
a decision problem is substantial. 

For example, the oil wildcatter problem is asymmetric in the following two aspects: ( l) if the 
test decision is 'no', then no test result will be observed while if the test decision is 'yes', the test 
result can have one value out of three possibilities; (2) if the drill decision is 'no', the profit will 
he independent of the amount of oil and the cost of drilling. 

Fung and Shachter made a first attempt to tackle the asymmetry issuP.. They proposed in 
(Fung and Shachter 1990) a modified representation, called contingent influence diagrams, as a 
tool to explicitly represent the asymmetric aspects of decision problems. However, it seems quite 
hard to do so without compromising the elegance of influence diagrams in representing decision 
problems. 

In the next section, we present a new method to influence diagram evaluation. In our method, 
all the representational advantages of influence diagrams are retained. The asymmetric aspects 
can be recovered at evaluation time. 

Before presenting our method, let us examine, by using an example, some of the previously 
discussed algorithms again, to see how and why they fail to exploit a.symmetry. Observe that a 
common property of these algorithms is that they all compute the decision functions one by one 
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in the reverse order of the decision nodes ( that is why we generally refer to them as reduction 
methods). 

For the oil wildcatter problem, Shachter's algorithm will transform the original influence dia
gram into the one shown in Fig. 8. At this time, in order to reduce decision variable D into the 
value node, the following parameterized maximization operation is performed: 

maxo{E[vlD, R, Tl} 

In performing the above operation, a iuaximization is done conditioned on each of the eight 
P.!1•1nents in n{T, R} . The result of t his maximization is of two parts: a decision function 80 for 
v;;i,ri a ble D and a new value node. B th the decision function and the new value node are usually 
r presf.!nted as a tahle co11 ta.inin~ nc> entry ~ r (' , ch element in n{T, R}. How .ver, as we lrnow , 
h,1,lr r t.h P PlenH'IILS in n {T' R} (P.g., T=no , R=o) repr .Sl;'Tit impossible eVPTitS (their marginal 
proha.hilitiPs are ze.rn). hc>r f rf' , the lll tl.xi1llization con<lit'ioned on these events and the entries 
corresponding to these events in the decision table for variable D waste computational resources. 

For the same problem, both Zhang and Poole's algorithm and Shachter and Peat's recent al
gorithm (Shachter and Peat 1992) will first compute the optimal decision function bo for decision 
node D. Zhang and Poole's algorithm does not specify a particular way for this computation. 
Shachter and Peat's algorithm computes the function as follows. For each element e E n{T, R}, 
bo( e) is obtained by: 

This algorithm computes bo(e) even when e represents an impossible event. 

Figure 8: An intermediate influence for the oil wildcatter problem 

This example shows that the problem with the current algorithms is that, for each decision 
nodP d tliPy will pPr~ nu ,~ ma.xhtllzation operation nclitioned on each element in n71'(d) , even 
t,lwugh t.b ~ margh,a,l proba.bilit ies of some elf'ments a:rE' zero. The reas n f r th.is is that, at the 
time Lo perfcwm ·t,h P 1rn1.ximiz,1,t ion o percvi ons, the m arginal· probabilities of the el ments in n71'(d) 

are not compul:Ad yet. T hi s problem arises from tlrn fact that t h se algoritluus compute the 
decision functi ns in the rPyerse order of the derision nodes in the influence diagram. 

5 A Search Oriented Algorithm 

In this section, we present our method for influence diagram evaluation. We first formulate the in
fluence diagram evaluation problem as a stochastic dynamic programming problem. Then we give 
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a graphical depiction of the computational structure of the optimal expected value by mapping an 
influence diagram into a decision graph. Finally, we point out how to avoid wasteful computation 
in computing the optimal strategy, and propose a search oriented approach to influence diagram 
evaluation. 

5 .1 Preliminaries 

A decision node d directly precedes another decision node d' if d precedes d' and there is no 
other decision node d" such that d precedes d" and d" precedes d'. In a regular influence 
diagram, a decision node can directly precede at most one decision node. 

A decision node that is preceded by no other decision node is called a root decision node. 
Let I be a regular, stepwise influence diagram with a single value node v. Suppose the 

decision nodes in I are d1 ... , dn in the regularity order, then, d1 is the only root decision 
node and dn is the only leaf decision node. For each k, 1 :S k < n, <h directly precedes 
dk+1 . For each k, 1 :S k < n let /( dk, dk+1) IPnote t.l1e subgntph consisLing of dk, 1r( dk) 
and those non-descendents of dk+ 1 which are not m-separatNl from dk by 1r(ri,,.). Procedurally, 
I ( rh d.1.:+ 1) can he obtained From I as ·~ Hows: ( 1) n:1 move all nodes t h a,t are m- separated fron1 
elk b_ rr(ch), erl udii1g the n des in 7r(ri,,_); (2) remow\ all the desceuciPnts of dk+ 1 ; (:3) rerm ve> 
a.11 th arcs a'lll< 11g the nodes in 1r(dk) U {dd and assign uniform distribution to the root nodes 2 

in 1r ( dk) U { dk} . 
I(dk, dk+1 ) is call d the . ction f 1 fr m dk to rlk+i . rrr t.h(~ r ot dP('isi n 11 d<> d1 , t he 

seC' ion J( - rl1 ) conta.ins nly non- descen I .11 s of d1 . .8 r the k•al' dPc:ision 11 o d P d,, tl1 sectiu11 
l((l," -) cont,·tins those n des in rr(d,.) U {<l,~} and tho~w nodes whidt are not m- seJ arnted fr u1 

d11 by rr( rln). 
It is asy to see that the section /(-, d1 ) is a Bayesian net. l1urthermore, hecausf' I is stepwise

cl composa.hk it is f'c\SY t:o seP tha,t dk is the only de ·ision n de in the section 1( dk, dk+ 1 ) that 
, rP not in rr(dk), Therefore I(dk d,H1) is a Bayesian n (;work. Similarly, d11 is the only decision 
110dP in th . secLiou J(,t,., - ) . Thus I(d 11 -) is a Bayesian net with a value node attached. 

As an example, consider again the oil wildcatter problem. The section !(-, T) is empty. The 
sect io ns /(T, D) and /(D, - ) are s b wu in Fig. 9. 

LPt ~ = ( 81 , ••. , 8,,) be any strat gy for I . We have the following results on I~ . 

Lemma 1 For any k, 1 < k '.S n, any j, l :S j < k, 1r( v) is independent of 1r( dj) and dj, 
given 1r( d,1.:) . Formally, the following relations hold: 

Proof Immediately follows the m-separation property of a stepwise decomposable influence 
diagram. 

2 The assignment of uniform distributions to the root nodes in rr{ dk)U { rh} is only to make I (rh, dk+i) a Bayesian 
network. Since we shall only be considering probabilities conditioned on rr(<h) U {dk}, the distributions of those 
nodes are irrelevant. 
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0 

(a) I(T, D) (b) I(D, -) 

Figure 9: Two sections of the influence diagram for the oil wildcatter problem. 

Lemma 2 For any k, 1 :S k :Sn, and any o E n1r(v), x, E n1r(d1<), 

Proof. Recall that, w. r. t. a strategy .6. = ( 81, ... 8n), th_e decision node di, for i = 1, ... , n, is 
characterized by the following probab ility distribution: 

Thus, 

D 

PA{1r(v) = oj1r(dk) = x} 

if 8i(c) = x, 
otherwise. 

L PA{1r(v) = oj1r(dk) = x,dk = a}•* PA{dk = aj1r(dk) = x} 
aEO( dk) 

= PA{1r(v) = oj1r(dk) = x,dk = 8k(x)} 

Lemma 3 For any :r. E n1r(di), the probability P.a,{1r(d 1) = x} de71 nds on only those nodes in 
/ht ., t:lion I( - , d1), and is independent of .6.. Conscqiiently, for any other sfralegy .6.', 

Proof. Si-11c . all th<~ nodf'i, not bi / ( - ,d 1) ar<> des<.:>nd nts of the nodes in 1r(rii), thus, they 
arP in0!Pvan to th margin; I pr ha.bilities of 1r(di). Si11C there is no decision nod~ in /(-, d1 ), 

L h0n PA { ii( lli) = :r} is ir1 d<>p<~ndPUL f' . 0 

Lemma 4 ( 1) For any O E n1r(v)' X' E n1r(t! ,. ) ancl Cl E ndn ' the conditional probability 
PA{1r(v) = oj1r(dn) = x,dn = a} depends on only thos nodes in the section I(dn,-), and 
i8 independent of .6. . In other words, for any othn· sfral,cgy .6.' , 
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(2) For any y E n1r (d1,:+ il• x E n1r(d,,,) and a E ~l11,:, the conditionalprobabilit,y Pc.{1r(d1,+1 ) = 
yl1r( dk) = :1: , dk = a} d _pends on only those nodes in the section I( dk, dk+ 1 ), ,md i.~ 'independent 
of ~ . In other words, for any other strategy ~, , 

(:3) Suppose ~' = ( 8L ... , 8:J is another strategy for I such that b~ = 81, ... , bL1 = Ok-1 for 
some k , l S k Sn, then, for any j, l S j S k, and any x E n1r(d

1
), 

Proof. Follows the definition of sections and the m-separation property of a stepwise decompos
able influence diagram. □ 

Lemmas 3 and 4 indicate that some conditional probabilities in an influence diagram is in
dependent of the strategies for the influence diagram, and can he computed in a section of the 
influence diagram. The computations can he carried out by any one of the well established 
algorithms for Bayesian nets. This fact facilitates a clean interface between influence diagram 
evaluation and Bayesian net evaluation. 

5.2 Influence diagram evaluation vs. stochastic dynamic programming 

In this section, we establish a stochastic dynamic programming formulation for influence diagram 
evaluation. We accomplish this by studying the relationship among the conditional expected 
values of influence diagrams. 

Let e be any event in ft. and let Ec.[vle] be defined as follows: 

Ec.[vle]= L J(o)*Pc.{1r(v)=oje}. 
oEO,r(v) 

For each k, 1 S k S n , let [h be a function defined as follows. 

Informally, [h( :r,, ~) is the expected value of the influence diagram w. r. t. strategy ~, conditioned 
on 1r(dk) = x. 

Lemma 5 The expected value of the influence diagram w.r.t. strategy ~ can be expr·essed in 
terms of [h as: 

Ec.[v] = L [h(:r: , ~)*Pt. {1r( dk) = x} 
xE01r(dd 

Proof By the definition of Et.[v], we have: 

Ec.[v]= L f(o)*Pt.{1r(v)=o}. 
oEO,r( v) 

19 



Since 

Pei.{11"(v) = o} = L Pei.{11"(v) = oj71"(dk) = x} * Pei.{11"(dk) = x}, 
xE!1,r(dk) 

thus, 

oE!1,,.(v) 

By reordering the order of the two summations, we have: . 

By the definition of lh , we have: 

Eei.[v] = L lh(x, 6.) * Pei. {11"(dk) = x }. 
xE!1n-(dk) 

□ 

Lemma 6 The following relation between functions lh and Uk- 1 holds. 

lh-1(x,6.) = L lh(y,6.)* Pei.{11"(dk) = yj1r(dk-1) = x} 
yE!1,,.(dd 

for any X E n'll'(dk-il . 

Proof By the definition of lh-1, we have: 

lh-1(x,6.) = L f(o) * Pei.{1r(v) = ol1r(dk-1) = x}. 
oE!1,r(v) 

Since 

Pei.{1r(v) = ol1r(dk-1) = x} = 

L Pti,{1r(v) = ol1r(dk-1) = x,1r(dk) = y} * Pei.{1r(dk) = yj1r(dk-1) = x}, 
yE!1,,.( dk) 

then, by Lemma 1, we have: 

By reordering the two summations, we obtain: 

0 E!1,,.( v) 

By the definition of Uk, we have: 

lh-1(x,6.) = L lh(y,6.) * Pei.{1r(dk) = yl1r(dk) = x}. 
yE!1,r(dd 

□ 
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Lemma 7 Let 6.' = (of, ... , o:J be another strategy for I such that o~ = ok, ... , 0:
1 

= On, for 
some k, l ~ k ~ n. Then, Uj(x, 6.) = Uj(x, 6.') for each j, k ~ j ~ n and each x E n7r(d

1
). 

Proof By induction. 
Basis: Consider Un. By the definition of Un, we have: 

Un(:1:,6.)= L J(o)*P~{rr(-v)=olrr(dn)=:i;} 
oEO,r(v) 

and 
Un ( x, 6.') = L J( o) * P ~' { rr( v) = ojrr( dn) = :r}. 

oEO,,.(v) 

By Lemma 2, we have: 

and 

Since On = o:i , then by Lemma 4-( 1), we have: 

Thus, Un(x, fl)= Un(x, 6.'). Therefore, the basis holds. 
Induction: Suppose Ui(x, 6.) = Ui(x, 6.') for all i, k < i ~ n. By Lemma 6, we have: 

Ui-1(x,6.) = L Ui(y,6.)* P~{rr(di) = yjrr(di-1) = :i:} 
yEO,,.(d;) 

and 
ui-1(x,6.') = L Ui(y,6.') * P~ 1 {rr(di) = vlrr(di-1) = x}. 

yEO,,.(d;) 

By the induction hypothesis, we have: 

By Lemma 2, we have: 

and 
P~ 1 {rr(di) = yjrr(di-d = x} = P~ 1{rr(di) = yj1r(di-1) = x,di-l = o:_1(x)}. 

Since Oi-1 = 8L1 , then by Lemma 4-(2), we obtain: 

Thus, 
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Therefore, 

Ui-1(x,6.) = Ui-1(x,6.'). 

Therefore, the lemma holds in general. □ 
So far, we developed some results on the expected values of an influence diagram w.r.t. an 

arbitrary strategy. Now, let us examine th properties of an optimal str,1,Legy. Let 6. o = ( 8r, ... , 8~) 
be an optimal strategy for influence d ia.grn.m I and let Vi: be a function defined as 

Intuitively, Vi( x) is the optimal expected value of the influence dia~Ta.m I conditioned on 11'( dk) = 
:r.. In other words, Vi:( x) is the expected value a decision maker can btain if he starts to make 
optimal d,.,risions in the situa.~ic n rep1·<>se>ute.cl by the event 11'(dk) = x. 

Let f(.t a) be an aux.ilia.ry funtl ion <lefi11ed as: 

V{(x,a)= (4) 

lnt11itivP!y Vf( .r tt) is ~b • optim, 1 experL0cl value of the influence diagram I conditioned on 
;r(dk = :1;, ,lk = <i. In other w rd~ , V1;(.c, fl) is he expected value a decision maker can obtain if 
he :;;tarts to u1 a lrn de ·isio11 s iu tl, e. iLna.tion repr0sented by the event 11'(dk) = x, and first chooses 
a, for rlk (in th.is situa. i n) an I them fol l ws au optimal strategy for the rest decisions. 

The next two lemmas characterize the relationship between Vi: and Vf. 

Lemma 8 For all k = 1, ... , n, 

Proof 

Vf(x, 8Z(x )) 

I: Vi:+1(Y) * P~o{1l'(dk+1) = Yl11'(dk) = x,dk = oZ(x)} 
yEl1,r(dA:+1l 

I: Vi:+1(Y) * P~o{11'(dk+1) = Yl11'(dk) = x} by Lemma 2 
yE11,r( dk+ l) 

I: lh+1(y,6.0
) * P~o{11'(dk+1) = Yl11'(dk) = x} by the definition of Vi: 

yEOrr(dk+i) 

= lh(x, 6. 0 ) by Lemma 6 

= Vi:( x) by the definition of Vi:-1 . 

□ 

Lemma 9 For all k = 1, ... , n, 

Vf ( X' of ( X)) 2'. Vi'.( X' a) for each X E n1r(dk) and each a E ndk . 

lh( x, 6. 0 ) 2'. lh( x, 6.) for every strategy 6. and each x E n1r(d,J . 
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Proof (1) Suppose the first inequality does not hold. Thus, there exist x 0 E n1r(dk) and a0 E !1r1k 

such that 

V{(xo, ao) > V{(xo, og(xo)). 

Construct a strategy b.' = (Di, ... , o:J such that Di = o? for all i, 1 ::; i::; n, i :/- k and o}( :1: 0) = 
ao, and 8k(:i:) = oZ(:i:), for all :1: E n1r(dk),X :/- Xo. It can he }HOVf'd that £.6.,[v] > E.6.o[v]. A 
contradiction to the optimality assumption of b. 0 . 

(2) The second inequality can he proved by a simple induction on k, starting from k = n 
and backwards. D 

The results we have obtained so far can be summarized into the following theorem. 

Theorem 1 Let I be a regular and stepwise decomposable influence diagram, let functions Vi, 
and V£ be defined as before, and let b. 0 = ( o?, ... , 8~) be an optimal strategy for I . For any 
k, l ::; k < n, x E n1r(dk) and a E !1r1k , the following relations hold. 

V{(x, a)= 

Vi(x) = V{(x,og(:i:)) = ma:i:aEnJ Vi( :1:,a) 
"k 

oZ( X) = arg niaxaEndk { Vi( :i;, a)} 

E.6.o[v] = L Vo(x) * P{1l"(d1) = x}. 
xEnc11 

(5) 

(6) 

(7) 

(8) 

where P{1r(dt) = :i:} = P.6.o{1l"(d1 ) = :i:} canbecomputcdinthesection I(-,d1) and P{1r(dk+t) = 
Yl1!"(dk) = :r:, dk = a} = P.6.o {1r(d1.+1 ) = vl1r(ch) = :1:, dk = a} can be computed in the section 
I(dk, ch+1 ), and they are independent of b.0

. 

Equations 5, 6 and 7 establish the computational structure of influence diagram evaluation in the 
form of finite-stage stochastic dynamic programming (Ross 1983). They essentially describe an 
expectation- maximization iteration for computing the optimal strategy and the optimal expected 
value. Equations 5 and 6 collectively form a variation of Bellman's optimality principle (Bellman 
1957) for stochastic dynamic programming. 

According to Theorem 1, if we can compute function ¾t, then we can compute functions 

Vi, ... , ¾t-I and o?, ... , 8~_ 1 , as well as ELio[11). The computation process is similar to the one 
implied in the recursive formula given in ( Cooper 1988). It is not hard to observe that the amount 
of computation involved is comparable to that involved in the other algorithms such as those in 
(Zhang and Poole 1992h, Shachter and Peat 1992). 

Now, let us consider how to compute the functions ¾t and 8~. Recall that 

and 
Un(:1:,.6.) = L f(o) * P.6.{1l"(v) = o11!"(dn) = :i:}. 

0En1r(11 ) 



By Lemma 2, we have: 

lln(:r.,6.) = L f(o) * P~{7r(v) = oj7r(dn) = x,dn = 1'71 (x)}. 
0E01r( v) 

..\rrorcling to LPmma 4-( 1 ), the probability term in the above equation is independent of the other 
d<'rision funct ions of 6. other than On . Thus, 

lln(:1:,6.) = L f(o) * P{7r(v) = oj7r(dn) = x,dn = 611 (:1:)}. 
0E01r(v) 

Since U11 (x, .6.0 ) 2'. U11 (x, .6.) for every strategy 6., we have: 

L J(o) * P{7r(v) = oj7r(dn) = x,dn = 6~(x)} 
oElh(v) 

> L f(o)* P{7r('u) = oj7r(dn) = x,dn = 1'n(x)} 
0Elh(11) 

for any decision function 1'n of d11 • This is equivalent to: 

L f ( 0) * P { 7l" ( V) = 0 I 7l" ( dn) = X , dn = 0~ ( X) } 
0E01r( 11) 

> L J(o) * P{7r(v) = oj7r(dn) = x,dn = a} 
0E01r(v) 

for any a E ndn . Therefore, we have: 

and 

6~(x) = arg niaxaEOdn { L J(o) * P{7r(v) = oj7r(d11 ) = x, d11 =a}} 
0Elh(11) 

½1(:t) = L f(o) * P{7r(v) = oj7r(dn) = x,dn = 6~(x)}. 
0Erl1r( 11) 

The computation of functions 6~ and ½1 involves only the section I(d11 , -) of I. These functions 
can be computed directly from the above formulas or be more efficiently computed by the methods 
as suggested in (Shachter and Peot 1992, Zhang et al. 1993a). 

5 .3 Decision graphs 

From the s ructural point of view, ad .dsion graph (Qi 1993, Qi and Poole 199:3) is an acyclic 
AND/OR graph (Pearl 1984, Nilsson 1!)82) with maximization-expectation evaluation function. 
More precisely, a decision graph is a directed acyclic graph whose nodes are classified into two 
types: choice nodes and chance nodes. Each decision graph has exactly one root. A subset 
of nodes is designated as terminals. Each terminal has a value associated with it. A value 
is associated with each arc emanating from a choic'P node. Ear.h chance node has a (discrete) 
probability distribution over its children. In other words, a pr ba,bility is associated with each of 
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the children of a chance node, and the probabilities of all the children of a chance node sum to 
unit. 

A solution graph SC:, w. r. t. a node M , of a decision graph DC: is a graph with the following 
characteristics: 

1. M is in SG; 

2. If a non-terminal chance node of DG is in SG, then all of its children are in SG; 

:3. If a non-terminal choice node of DG is in SG , then exactly one of its children is in SG. 

A solution graph w.r.t. the root of a decision graph is simply referred to as a solution graph of 
the decision graph. 

5.4 Representing the computational structure by decision graphs 

Before we discuss how to construct decision graphs for influence diagrams, we need some termi
nologies. 

LPt d be a decision node in an influence diagra,m. For ,~ach :r. E n1r(rl), we call an assignment 
in tlte r rm of rr(d) = x a, parent situatinn of the de.cis ion nod e d. For each alternative a E H,1 , 
we (' al] a·11 assignment in Ut e form of rr(cli) = x, d = a an inclusive situation of the decision node 

d. 
For an influ POCP diagram, we can define a decision graph in tentis of situations. In the gr aph, 

a choice node r presents a parent situation and a chance node rt>presents an inclusive situation. 
The following is a specification of such a decision graph. 

• The empty situation is the root, which is a chance node, of the decision graph. 

• For each dPcision node di , 1 S: i < n, and each x E n1r(rli) , there is a choi e node in the 
decisiou );!; raph representing the parent situation rr( di) = x; for each a E fi tt; , t.l1 ere is a 
chance node in the decision graph representing the inclusive situation rr(di) = x, di= a. 

• Let s be a choice node representing a parent situation rr( di) = :1: , 1 s; i < n, the chance 
no Jes rept'esen ing the h1 lusive situatious rr(di) = x, di= a for all a E Hr1; constitute the 
children of node s. Th va lue associ;:i,Led with the arcs emanating from the choice node are 
all zero. 

• For each x E Hr1n , there is a terminal node representing the parent situation rr( dn) = x. 
The value of the terminal is ½1 ( x) . 

• Let s be a chance node representing an inclusive situation rr(di) = :z:, di= a, and let Si+t 
denote the set of choice nodes representing 1;hl':' paren sil.11ati ns r <li+ J .<: lt as ·lte node. 

in Si+t as its children. In other words, f r Pach ; i; E n -:r{.I ,) . a E n il, a ud y E ~1,,(cl,+il 
there is an arc from the chance node rep rest- n~inp; tu <> indn sivP situat ion 1r(di) = :i: cl;= r1, 

to a choice node represeutiug the parent s it1rn,t i 11 rr(d;+ t ) = y. Th e , re is la.b0IPd by t hf' 
probability P{1r(di+1) = yjrr(di) = x,di =a}. 
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T=no 
R~cs 

Figure 10: A complete decision graph for the oil wildcatter problem 
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• For each choice node representing a parent situation of d1 in form of 7r( cl1 ) = :i:, there is an 
arc from the root node to the choice node. On the the arc is a probability P{7r(di) = :i:}. 

In such a decision graph, a choice node represents a parent situation in the form of 7r( di.) = :1: 

for some k and x E !lrr(dk). In such a situation, the decision agent needs to decide which 
alternative among fldk should be selected for dk. Thus, the choice node has lflr1k I children, 
each for an alternative value in Di11,: • The child corresponds to alternative a is a chance node, 
representing the inclusive situation 7r(dk) = x, dk = a. From this inclusive situation, one of the 
parent situations of dk+ 1 may he reached, according to a probability distribution. The probability 
of rf'ac hh1 µ; the pa r nl sitna,cion 1r(rlk+i) = y is P{1r(rlk+i ) = yl1r(d1,:) = .,:,dh = n}. 

As a.11 exampl , consider the ii wildrntt r pr hleru. A c mp lete deri sion gnLph r r the ()il 
wildcal;t<:,r pr ble.m is s!iown in Pig. 10. s WP. know a probal ili ty is ass ria. cl with .ach ams 
from a chance node to a choice node. These probabilities can be computed in the section I(T, D) 
as shown in Fig. 9. 

In Fig. 10, those arcs without labels are associated with zero probability. Those non- zero 
probabilities are computed as follows. 

P{T = yes, R = nslT=yes} 

= P{R = nsl T = yes} 

= P{R = nsl T = yes, S=ns} * P{S = ns} 

+P{R = nsl T = yes, S=os} * P{S = as} 

+P{R = nsl T = yes, S=cs} * P{S = cs} 

= 1 * P{S = ns} + 0 * P{S = as}+ 0 * P{s = cs} 

= P{s = ns} 

Similarly, we have: 
P{T = yes, R = oslT=yes} = I'{S"' as} 

and 
P{T = yes, R = cslT=yes}=P{S = cs}. 

The marginal probabilities of 8 are computed as follows. 

P{S = ns} = P{S=ns IO = dry}* P{O=dry} 

+ P{S=ns IO = wet}* P{O=wet} 

+ P{S=ns IO = soaking}* P{O=soaking} 

0.6 * 0.5 + 0.:3 * 0.:3 + 0.1 * 0.2 = 0.41 

Similarly, we can obtain that P{S = as} = 0.:35 and P{S = cs} = 0.24. 
Let DG be such a decision graph, we can define a maximization-c:i:pcctation evaluation func

tion, u 1 , on DU as follows: 

• If .s is a terminal representing a situation 1r( d11 ) = x, then 
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• If .s is a chancP nodP , with children .~ 1 , ... , .s1, then 

I 

u1(DG , .s) = L Pi* u1(DG,.si) 
i=l 

where Pi is the probability on the arc from node s to node Si. 

• If .s is a choicP nodP, with childn=m s 1 , .. ., s1, then 

A solu tion f.!; raph SC: o r Llw (Ip '. iRio 11 gr< ph /)( : is optim al w. r. t. the evaluation fo 11 ction ·n1 if 
n1(S(,' .. '> ) = n1 ( D(r' . . <l ) ror PVPry 11odP .., in .W:. The r LI iwing lemma can he e.-,~ily proved by 
induct ion on nodPs in tl 1P drd i:; io11 ?;rnp l1 . 

Lemma 10 (1) Ifs is a choice node representing a parent situation 7r(dk) = x, then u1 (DG, s) = 
ViJ:1:). 

(2) If 8 i8 a chance node repffscnting an indusivc situation 7r(dk) = :i:, (h = a, then 

n1(DG,s) = V£(:i:,a). 
(8) Ifs is the root, then u1(DG,s) is equal to the optimal expected value of the inffoencc 

diagram. 

Now, the correspondence betwePn the optimal strategies of the influence diagrams and the optimal 
solution graphs should be apparent. As a matter of fact, an optimal solution graph of the decision 
graph can he viewed as a representation of decision tables in which all the unreachable situations 
are removed (Zhang et al. 199:k). Thus, the problem of influence diagram evaluation is reduced 
to the problem of decision graph search. 

5.5 Computing the optimal solution graph 

The optimal solution graph of a decision graph can he computed in a "bottom-up" way or in a 
"top-clown" way. The bottom-up computation will compute the values for all leaves first. In the 
course of computing leaves, 811 , the optimal decision function for decision d11 is also computed. 
Then, the max- exp values of interior nodes can be computed when the max-exp values of all 
children of the node are available. The computational complexity of this process is linear in the 
size of the decision graph:3• This method also has the weaknesses we mentioned in Section 4. 

5.5.1 Recovering the asymmetric property 

We observe that the asymmetric property of an influence diagram is reflected by the arcs with 
zero probability in the corresponding decision graph. As we know, the value of a chance node in 
a decision graph is the expectation of the values of its children. If the probability on the arc to 
a child is known in advance to he zero, then there is no need to compute the value of the child 
( as far as this chance node is concerned). In case the probabilities on all the arcs to a node are 

3 Note that the size of the decision graph is normally exponential. See the analysis in the next section. 
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all zero, the value of the node will never he required, thus some computation effort can lH' saved. 
Unfortunately, this saving cannot be exploited in bottom-up compntations as clescrilH'cl above. 
One way to exploit asymmetry is to use the following procedure: 

( 1) generate a decision graph from an influence diagram; 

(2) compute the probabilities of all arcs emanating from chance nodes; 

(:3) delete all arcs with zero probability; 

(4) delete all those nodes, along with the arcs incident to and from them, which are not reachable 
from the root node in the decision graph; 

(5) compute an optimal solution from the resultant graph. 

Consider the decision graph shown in Fig. 10. In the figure, those arcs, emanating from circle 
nodes and without labels, have zero probability. After removing from the graph those arcs with 
zero probability and those nodes not reachable from the root we obtain a simpler decision graph 
as shown in Fig. 11. With this decision graph, we will no longer need to compute the values for 
the parent situations of D which represent the impossible situations such T=no, R = ns. 

The values for the rest terminals can be computed locally in the section /(D, - ) (as shown in 
Fig. 9) by various algorithms. The optimal choices for the decision variable D in the situations 
corresponding to these terminals are also computed in the process of computing the values of 
these terminals. The values and the choices for the terminals in Fig. 11 are as follows. 

For the node T=yes, R = ns, the optimal choice for Dis no; the value for the node is -10, the 
cost of the test. For the node T=yes, R = os, the optimal choice for D is yes; the the value for 
the node is 52.5. For the node T=yes, R = cs, the optimal choice for D is yes; the value for the 
node is 97.5. For the node T=no, R=nobs, the optimal choice for D is yes; the value for the node 
is 40. 

The decision graph has two solution graphs as shown in Fig. 12-( a) and Fig. 12-(b) respec
tively. The solution graph in Fig. 12-(a) corresponds to the strategy of no test and drill. The 
expected value of the influence diagram w. r. t. the strategy is 40. The solution graph in Fig. 
12-(b) corresponds to the strategy of test and drill unless the test result is no structure. The 
expected cost of the influence diagram w.r.t. the strategy is :37.675. Thus, the optimal expected 
value of the influence diagram is 40, and the optimal strategy is not to test and drill. 

It seems that, when compared to the algorithms in (Zhang and Poole 1992b, Shachter and 
Peat 1992), the above procedure involves some extra work in steps (1), (3) and (4) for processing 
decision graphs. We argue that the extra effort will he paid hack. Our argument is as follows. 
First, we note that the procedure can be improved by combining the first four steps into one 
step, and generating the decision graph starting from the root. This way, those arcs with zero 
probability will not be included in the graph at the first place. Consequently, those parts that will 
be deleted by steps (:3) and (4) need not be generated either. Thus the overhead can he reduced. 
Second, the values of the nodes and the probabilities of the arcs in the parts deleted by steps 
(:3) and ( 4) need not he computed at all. If the asymmetry involved in the decision problem is 
substantial. the deleted part can constitute quite a large portion of the total decision graph, and 
this may mean a hi?; saving. Furthermore, the decision graph representation generated by this 
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Figure 11: A simplified decision graph 
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Figure 12: The two solution graphs for the oil wildcatter problem 

;30 



procedure can be used for efficiently computing the value of perfect information. This possibility 
is explored in (Zhang et al. 1993b). 

5.5.2 Using heuristic algorithms 

The computation method just described is successful in recovering the asymmetric property of the 
original problem. Better performance can he achieved if we use the algorithms developed in ( Qi 
199:3, Qi and Poole 1993) for decision graph search. By using these algorithms, some subgraphs 
may not he processed at all, clue to pruning. 

To use these algorithms, we need a domain dependent function that can give admissible 
estimation on u1(8) for any situation 8. Note that the admissibility of a heuristic function here 
is different from the one in the traditional case. Because we are maximizing merits instead of 
minimizing costs, we define a heuristic function to be admissible if it never under-estimates for 
any context s. Formally, a function h is admissible if h( s) 2: u 1 ( s) for any situation s. 

5.6 A comparison with Howard and Matheson's method 

The relationship between our method and Howard and Matheson 's method should now be clear. 
In both methods, an influence diagram is first transformed into a decision tree from which an 
optimal strategy is computed. However, there are a few notable differences between the two 
methods. 

First, Howard and Matheson's method works only for no-forgetting influence diagrams while 
ours is applicable to stepwise decomposable influence diagrams. 

Second, the size of the decision trees generated by the two methods are different. For a given 
influence diagram, the depth of the decision tree obtained by Howard and Matheson 's method is 
equal to the number of the variables in the influence diagram, while the depth of the decision tree 
obtained by our method is 2n, where n is the number of the decision variables in the influence 
diagram. Typically, there are more random variables than decision variables in a decision problem, 
thus the depth of a decision tree obtained by Howard and Matheson 's method from an influence 
diagram is larger than the depth of a decision tree obtained by our method for the same influence 
diagram. Furthermore, the number of the nodes in the decision tree obtained by Howard and 
Matheson 's method from an influence diagram is exponential in the depth of the tree, but this is 
not necessarily true for the decision tree obtained by our method. In fact, the number of nodes 
in a decision tree obtained by our method is: 

n-1 

1 + 1n7r(d,,)I + 2)1n7r(d;)I + 1n7r(d;)I * 1nci;I). 
i=l 

Finally, our method provides a clear interface to those algorithms developed for Bayesian net 
evaluation. 

6 Extension to Influence Diagrams with Multiple Value Nodes 

In the previous section, we developed a method for influence diagram evaluation. We have assumed 
that the concerned influence diagrams are regular and have only one value node. As pointed out 
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in (Tatman and Shachter 1990), if the value function of an influence diagram is separable, then the 
separable nature can be exploited for increasing the efficiency of influence diagram evaluation. 
The separability of a value function can be represented by multiple value nodes. Thus, it is 
desirable to develop algorithms that can be used to evalu.ate influence diagrams with multiple 
value nodes. 

An generalization of Shacter's algorithm has been developed in (Tatman and Shachter 1990) 
that can exploit the separability of value functions. Zhang and Poole's algorithm (Zhang and Poole 
1992b) is actually developed for influence diagrams with multiple value nodes. In this section, we 
generalize the method we presented in the previous section so that it can be applicable to regular 
influence diagrams with multiple value nodes as well. 

6.1 Separable value functions 

If the value function of the value node in an influence diagram can be expressed as the sum of two 
or more functions with fewer variables, we say the value function is separable. More precisely, let 
f(X) be a value function with variable set X, let f 1 ... , Jq are functions with variable sets X 1 

... X 9 respectively, and X 1 ... X 9 are all proper subsets of X. V is separable if 

q 

J(X) = L fi(Xi)- . 
i=l 

Consider again the oil wildcatter problem. The value node depends on four variables: T, D, O 
and CD. The value function can be separated into three parts: a function /J on the cost of the 
seismic structure test, a function fz, on the drill cost, and a function h 011 the value of the oil. 
Formally, this can be expressed as 

f(T, D, 0, CD)= /1(T) + fz(D, CD)+ h(D, 0). 

With this separation of the value function, the value node can be split into three value nodes, v1 , 

v2 and V:3, with /1 , fz and h as their value functions respectively. This separation results in 
a new influence diagram as shown in Fig. 13. 

Figure 1:3: A new representation of the oil wildcatter problem by an influence diagram with 
multiple value nodes 

The semantics of influence diagrams with multiple value nodes is the same as that of influence 
diagrams with single value node except that, for an influence diagram with multiple value nodes, 



we interpret the sum of the values of all individual value nodes as the value of the influence 
diagram. Therefore, all the terminologies we have used before can be used here for influence 
diagrams with multiple value nodes. Furthermore, the expected value and the optimal strategies 
of a influence diagram with multiple value nodes can be defined in a similar way as follows. Let 
U = { v1, ... , vq} be the set of the value nodes of influence diagram I. Let .6. be a strategy for I. 
Let Pe:,. denote the joint probability distribution determined by the Bayesian net ft:,. obtained 
from I and the strategy .6.. 

Let Pe:,.{1r(vi) = :r}, for any x E Dv;, denote the probability for the event 1r('1Ji) = :1:, in the 
Bayesian net le:,.. The expected value of the influence diagram w.r.t. strategy .6., and the value 
node vi, written Et:,.[vi], is given by 

Ee:,.[vi] = I: fi(x) * Pe:,.{1r(vi) = x} (9) 
xEll,,.( v;) 

where Ji is the value function of the value node Vi. The expected value of the influence diagram 
w.r.t. strategy .6., written Ee:,., is given hy 

q 

Ee:,.= LEe:,.[vi]. 
i=I 

The decision objective is to find an optimal strategy maximizing the expected value. 1.e. to find 
.6. 0 such that 

Ee:,.o = max{Ee:,.I .6. is a strategy} ( 10) 

The computational problem related to an influence diagram is to compute the optimal expected 
value and an optimal strategy for the influence diagram. 

6.2 Decision graphs for influence diagrams with multiple value nodes. 

Like the case for influence diagrams with single value node, the computational structure of the 
optimal expected value of an influence diagram with multiple value nodes can also be represented 
as a decision graph. The difference is that in the case for influence diagrams with single value 
node, the values are associated only with the terminals in the decision graph while in the case 
for influence diagrams with multiple value nodes, values can be associated with interior nodes as 
well. In order to illustrate this, let us consider the influence diagram shown in Fig. 1:3, which is 
an influence diagram with three value nodes for the oil wildcatter problem. Since the value node 
v1 depends on only node T, its value can be determined in any situation where the variable Tis 
instantiated. Thus, at the nodes representing the situations T = yes and T = no, the value of v1 

can be determined. In particular, the value of Ji for the situation T = yes is -10 and the value 
of Ji for the situation T = no is 0. The value -10 can be viewed as the value resulting directly 
from performing the test action in the parent situation, while the value O can be viewed as the 
value resulting directly from performing the no-test action in the parent situation. 

In order to deal with general cases, we introduce a new concept. Let 1r(dk) = x be a parent 
situation of <h, 1r(dk) = x, dk = a, be an inclusive situation of dk and let I(dk, dk+i) be the 
sPction of I from d1,; to d1,;+ 1 • Without loss of generality, suppose nodes vi, ... , Vj are the value 



nodes in I(d1,;,<h+1), For i ~ l ~ j, let E1(clk,clk+d[vtl1r(dk) = :r,d1,; = a] denote the expected 
vafor of the value node v,, conditioned on 1r(dk) = x, d1,; =a, in t he section I(d1,;, d1,;+ 1 ). We call 
the sum 

j 

L E1(r1k,d1.:+d[v1l1r(d1,;) = a:, d1,; = a] 
l==i 

the value of the inclusive situation 1r(d1,;) = x, rh =a. This value can be computed more efficiently 
by a method in (Zhang et al. 199:3b). Intuitively, the value can be viewed as the utility directly 
resulting from selecting a as the choice for decision node d1,; in the parent situation 1r( d1,;) = x. 
Usinl?; the terminologies for decision graphs, the value can· be associated with the arc from the 
choice node representing the parent situation 1r( d1,;) == x to the chance node representing to the 
inclusive situation 1r(d1,;) = x,d1,; =a.The following is a new specification of the decision graph 
of an influence diagram with multiple value nodes. 

• The empty situation is the root, which is a chance node, of the decision graph. 

• For Pach decision node di, 1 ~ ·i < n, and each x E n7l"(rl;), there is a choice node in t.he 
decision graph representing the parent situation 1r(d;) = x; for each a E Dc1;, there is a 
chance node in the decision graph representing the inclusive situation 1r( d;) = x, d; = a. 

• Let 8 be a choice node representing a parent situation 1r( d;) = x, 1 ~ i < n, the nodes 
representing the inclusive situations 1r(d;) = x, d; = a for all a E nc1; constitute the children 
of node 8. The arc from the node representing the parent situation to a child representing 
an inclusive situation 1r(di) = x, d; = a is labeled with the value of the inclusive situation. 

• For each x E Hc1n, there is a terminal node representing the parent situation 1r(d11 ) = x. 
The value of the terminal is V, 1(x). · 

• Let S;+1 denote the set of choice nodes representing the parent situations of d;+1 • For each 
chance node representing an inclusive situation 1r(d;) = x, d; =a, it has the nodes in S;+1 
as its ch1Jdn'TI. In ot her w rdi; r l' each X E n'l!'(d,)' a E nc1; and y E n7!"(d;+iJ there is an 
arc: fr Ill. the cban cfl node reprc>seriting the inrlt1sive situation 1r(di) == x, d; = a to a choice 
n 1de repr<•senting 1;l.te parP11t, situ atio11 1r( d.;+1) = y. The arc is labeled by the probability 
P{1r(d;+1) = yl1r(d;) = x, d; =a}. 

• For each choice node representing a parent situation of d1 in form of 1r( d1) = ;r, there is an 
arc from the root node to the choice node. On the the arc is a probability P{1r(d1) = :r}. 

As an example, consider the influence diagram as shown in Fig. 13. A decision graph for the 
influence diagram is shown in Fig. 14 (all arcs with zero probability are removed). 

Let DC: be a decision graph derived from an influence diagram with multiple value nodes, we 
can define an evaluation function, u2 , on it as follows: 

• If 8 is a terminal, corresponding to a situation 1r( d1,;) = x, then 



Figure 14: A decision graph for the influence diagram shown in Fig. 1;3 

• If 8 is a chance node, with children 8 1 , ... , 8/, then 

I 

u2(DC:,8) = LF'i *U2(DC:,si) 
i=l 

where Pi is the probability on the arc from node s to node Si . 

• If s is a choice node, with children s1, ... , 8/ ,then 

The reader may have noticed that the decision graphs corresponding to the examples we have 
considered so far are actually decision trees. This need not be true in general. Here we consider 
another example whose decision graph has shared structure. 

Consider the following variation of the oil wildcatter problem. In the previous examples, we 
implicitly assumed that the amount of oil the oil wildcatter can obtain is equal to the amount 
of the oil underground. Now we replace this assumption by a more realistic one, namely, the 
amount of oil the oil wildcatter can obtain depends on the amount of the oil underground and 
the equipment status as well. Thus, the oil wildcatter needs also to decide whether to upgrade 
his equipment. Furthermore, suppose the profit by selling oil also depends on market information 
and the sale policy. This more elaborated problem can be represented by the influence diagram 
as shown in Fig. 15. 

Suppose the amount of obtained oil can be either zero, or low, or medium or high. The 
decision graph corresponding to the problem is shown in Fig. 16. Suppose the decision problem is 
asymmetric in the following sense: if the drill decision is yes, then the amount of obtained oil must 
not be zero and if the drill decision is no, the amount of obtained oil must be zero. Therefore, 
Some of the arcs to the nodes representing the situations of oil-obtained are labeled with zero 
probability. After removing these zero-probability arcs, the decision graph becomes the one in 
Fig. 17, which is indeed a graph (not a tree). 
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Figure 15: A more elaborated decision problem 

....... # . . ... ...... . 

upgrade=yes 

upgrade=no .. 

drill=no 

upgrade=yes 

upgrade;,,no 

oil-obtained=high 

oil-obtained=low 

oil-obtained=zero 

Figure 16: A decision graph for the influence diagram in Fig. 15 
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upgrade=yes 

oil-obtained=high 

oil-obtained=low 
drill=no 

oil-obtained=zero 

upgrade=yes 

upgrade=no 

Figure 17: A decision graph, with zero probability arcs removed, for the influence diagram in Fig. 
15 
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A possible heuristic function for this problem can be defined as follows: For any node s, if s 
represents a situation in which the drill decision is no, return zero, otherwise, return M where 
M is a large integer. Obviously, if M is large enough, .this heuristic function is admissible. 
Suppose we use algorithm Al to search the decision graph in Fig. 17. If the algorithm uses 
the heuristic function, and searches the branch corresponding to drill = yes first, then the 
subgraph under the branch corresponding to drill = no could he pruned altogether, provided 
that, according to the actual numerical setting, it is profitable to drill. Furthermore, if we have 
a stronger heuristic function such that it asserts that the optimal expected value for the node 
representing the situation drill = no equals zero, then lower half of the decision graph in Fig. 
17 need not to he expanded at all. When one builds a decision tree for the decision problem, 
exactly the same heuristic information is used so that the ·branch corresponding to drill = no 
will not he expanded. 

7 Summary 

In this paper, we have presented a new method for influence diagram evaluation. The basic idea 
of the method is to transform an influence diagram into a decision graph in such a way that 
the optimal strategies of the influence diagram correspond to the the optimal solution graphs of 
the decision graphs. In this aspect, our method is similar to Howard and Metheson 's two-phase 
method. However, our method is more efficient than theirs. 

To the best of our knowledge, our method is the only one enjoying all of the following merits 
simultaneously. 

(1). It is applicable to a class of influence diagrams that are more general than the class of 
no-forgetting influence diagrams. 

(2). It provides an interface to the algorithms developed for Bayesian net evaluation. 
(:3) It can make use of heuristic search techniques and domain dependet knowledge. 
( 4) It can take the advantage of asymmetry in decision problems. 
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