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Abstract 

A decision graph is an AND/OR graph with a certain evaluation function. Decision graphs 
have been found a very useful representation for a variety of decision making problems. This 
article present a number of search algorithms computing an optimal solution from a given 
decision graph. These algorithms include one depth-first heuristic-search algorithm, one best
first heuristic-search algorithm, one anytime-algorithm and two itera·tive-deepening depth-first 
hemistic-search algorithms. Similar to the *-minimax. search algorithms of Ballard, our deptb
fi.rst heuristic-search algorithm is developed from the alpha- beta algorithm for minimax tree 
search. In addition, we show how heuristic knowledge can be used to improve search efficiency. 
Furthermore, we present an anytime algorithm which is conveniently obtained from the depth
first _heuristic-search algorithm wjthout incurring much overhead. The best-first heuristic
search algorithm is obtained by modifying the well known AO* algorithm for AND/OR graphs 
with adcLitive costs. The iterative-deepening algorithms result from combining the iterative
deepening techniques with the depth-first search techniques. Some experimental data on some 
of these algo:I"ithms performance ar.e given. 

Key words: decision graphs, heuristic search, anytime algorithms. 
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1 Introduction 

Decision making under uncertainty is an active research topic in AI, decision theory and operations 
research. Many problems, such as diagnostic reasoning (Poole 1992, Provan and Poole 1991), 
planning with uncel'tainty (Hadda.wy and Hanks 1992, Horvitz et al. 1988, l oenlg 1992, Wellman 
1990), path planning in uncertain environments (Dean et al. 1990 Mobasseri 1989, Mobasseri 
1990, Qi and Poole 1992a) can be abstracted as decision making under uncertainty. S e (Dean 
and Wellman 1992) for a good introduction to this subject. Problems of decision making under 
uncertainty can be presented in various forms, such as decision trees (Raiffa 1968), :finlte stage 
Marlcov decision processes (Derman 1970), or influence diagrams (Howard and Matheson 1984, 
Shachter 1986). The problems presented in different forms may have different semantics attached. 
This makes it difficult to study the computational issues for decision making with uncertainty in 
a uniform approach. Although a lot of research has been carried out to address the computational 
jssues of decision problems in particular forms, most of the algorithms are applicable only to tl1at 
form and do not lend themselves to decision problems in other forms. For example, a lot of work 
has been done in the operations research community (see (Puterman 1990) for a comprehensive 
survey) on the computation of Markov decision processes (Derman 1970, Howard 1960) but the 
algorithms developed there are not directly applicable to influence diagram evaluation. Similarly 
influence diagram evaluation has been an active reseaTch topic in the AI community, but the 
algorithms developed for influence diagram evaluation ca,nnot be directly used for solving Markov 
decision processes. · 

In order to deal with the computational issues of decision making problems in a uniform way, 
we proposed in (Qi 1993) decision gmphs as a common base for the decision making problems, 
and showed that decision making problems in various forms, such as decision trees, :finite stcl.ge 
Markov decision processes, and lnfl.uence diagrams1 can_ be represented by decision graphs. 

A decision graph is an AND/OR graph with a certain evaluation Junction. Decision graphs 
can also be viewed as a generalization of decision trees (Raiffa 1968) in the sense that they allow 
for structure sharing. The solution graphs minimizing the evaluation function are the optimal 
solution graphs of the decision graph. 

When a decision graph is used to represent a decision problem, the solution graphs of the 
decision graph are interpreted as the st,-ategies of the decision problem, while the evaluation 
function acts as a cost function for the stra.tegies. The optimal solution graphs correspond to the 
optimal strategies of the decision problem. 

Given a decision making _ problem represented by a decision graph, we need to compute an 
optimal solution graph of the decision graph. In this article, we describe a number of algorithms for 
this computational problem. These algorithms include one depth-first heuristic-search algo7'i.thm 
one best-first heuristic-search algorithm, one anytime-algo1'ithm and two itemtive-deepening depth
first heuristic-search algorithms. The techniques used in these algorithms are common in the AI 
literature. Similar to the *-minimax. search algorithms of Ballard 1983, the depth-first heuristic
searclt algorithm is developed from the alpha- beta algorithm for minimax tree seaTch (Knuth and 
Moore 1975). While Ballard emphasizes the generalization of the alpha-beta pruning technique 
for handling chance nodes in a minimax tree, in OUl' development we emphasize tlLe pruning 
technique and the effective use of heuristic knowledge to improve search efficiency. Fu.rt} ermor 
we show that an anytime algorithm can be conveniently obtained by integrating the anytime 
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concept (Boddy 1991) into the depth-first heuristic-search algorithm. The best-first heuristic
search algorithm is obtained by modifying the well known AO * algorithm (Mahanti and Bagchl 
1985, Nilsson 1982, Pearl 1984) for AND/OR graphs with additive costs. The iteTative-deepening 
algorithms result from combining the iterative-deepening techniques (Korf 1985) with the depth
first search techniques. 

The remainder of this paper is organized as follows. In the next section, we introduce the 
decision graph search problem. We present the depth-first heuristic-search algorithm and its 
anytime version in Section 3. In Sections 4 and 5, we describe the best-first heuristic-search 
algorithm and the iterative-deepening algorithms. Section 6 provides some experimental data on 
the performance of the depth-first heuristic-search algorithm and the best-first heuristic-search 
algorithm. Section 7 concludes the paper. 

2 Decision Graphs and Decision Graph Search 

From the structural point of view, a decision graph is an acyclic AND/OR graph with a certain 
evaluation function. More precisely, a decision graph is a directed acyclic graph whose nodes are 
classified into two types: choice nodes and chance nodes, which are analogous respectively to the 
OR nodes and AND nodes in an AND/OR graph. Each decision graph has exactly one root. All 
children of a node in a decision graph are of the same type. Chance nodes and choice nodes are 
interleaved in a decision graph. A cost is associated with each arc emanating from a choice node. 
A probability is associated with each arc emanating from a chance node, and the probabilities of 
all the arcs from a chance node sum to unit. Leaf nodes are terminals, each of which has a value. 

A decision graph can be considered as a compact representation of a decision tree1 in which 
some subtrees may be identical. 

A solution graph S, w.r.t. a node n of a decision graph D is a graph with the following 
characteristics: 

1. n is in S; 

2. if a non-terminal chance node of D is in S, then all of its children are in S; 

3. if a non-terminal choice node of D is in S, then exactly one of its children is in S. 

A solution graph w.r.t. the root of a decision graph is simply referred to as a solution graph of 
the decision graph. Thus a solution graph w.r.t. node n of a decision graph is a solution graph 
of the (sub-) decision graph rooted at n in the original decision graph. 

A decision graph can be interpreted as a representation of a process of sequential decision 
making. Nodes in a decision graph represent situations (states of the world). The root node 
represents the initial situation. A choice node represents a situation where an agent has to select 
one of the actions. The arcs emanating from a choice node can be viewed as the actions. The values 

1 More accurately, we should use Markov decision tree instead to distinguish the subtle semantic difference 
between the decision tree we are talking about here and the decision trees in the decision analysis community 
(Raiffa 1968) where a node in a decision tree depends on all the nodes and the arcs along the path from the root 
to the node. 
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associated with the arcs are the costs of the corresponding actions. A chance node represents an 
uncertain situation. At a choice node, if an agent selects and takes an action, the cost of the 
action is incurred, and an uncertain situation, represented by a chance node, is reached. From 
this uncertain situation, some new situation will be reached. The probability that a particular 
situation will be reached is given by the number associated with the arc from the chance node to 
the child representing the situation. This process repeats until a terminal is reached. A terminal 
node represents a situation where an assessment can be made directly. 

Let n' be one of the children of node n . We use c( n, n') to denote the cost of the arc from n 
to n', if n is a choice node; we use p( n, n') to denote the probability of the arc from n to n', 
if n is a chance node. We use v( n) to denote the value associated with a terminal node n . 

Let D be a decision graph. Its evaluation function is a real-valued function u defined as 
follows: 

1. If n is a terminal: u(D, n) = v(n). 

2. If n is a chance node with l children, n1, ... , n1 in D: 

u(D, n) = E;=l p(n, nj) * u(D, nj). 

3. If n is a choice node with l children, n1, ... , n1 in D: 

u(D,n) = min;=i{c(n,ni) + u(D,nj)}. 

This evaluation function is called a min-exp evaluation (in contrast to the minimax evaluation of 
a minimax tree (von Neumann and Morgenstern 1947)). 

The concepts of solution graphs and min-exp evaluation are the natural extension of those 
defined for decision trees in ( Qi and Poole 1992b ). The value given by u( D, n) is called the 
min-exp value of node n in D. The min-exp value of node n in D can be interpreted as the 
minimal expected cost an agent is going to pay if it starts a sequential decision process from the 
situation represented by node n. Note that the above definition is applicable to a solution graph 
as well since a solution graph is a special decision graph. 

For a decision graph D with evaluation function u, a solution graph S of D is optimal w.r.t. 
the evaluation function if u( S, n) = u( D, n) for every node n in S. 

Fig. 1 shows a simple decision graph. In the figure, boxes, circles, and dotted-line circles 
denote the choice nodes, chance nodes and terminals respectively. 

The problem of decision graph search is defined as follows. For a given decision graph D and 
an evaluation function, to find an optimal solution S (w.r.t. the evaluation function). 

This problem can be solved by a brute-force search algorithm or by using the folding-back 
and averaging-out method (Rai:ffa 1968) that is commonly used in decision analysis for evaluating 
decision trees. The disadvantage of these algorithms is that they need to "visit" all of the nodes 
in a decision graph in order to compute an optimal solution. 

In the sections to follow, we present several search algorithms for computing an optimal 
solution graph from a decision graph. These algorithms need not visit every node of a decision 
graph in general, and in certain favorable situations, need only to visit the nodes in an optimal 
solution graph of the decision graph. 
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Figure 1: A simple decision graph 

3 Depth-First Heuristic-Search Algorithms 

. .. · . . -~ --
:: n2g: :: 112~: :: n3q: :_ n3 i1 
·- -· ·-·· · --· · •#· 

In this section, we develop a depth-first heuristic-search algorithm, and its anytime version, for 
decision graph search. These algorithms use a kind of domain dependent information and a 
pruning technique similar to the alpha-beta mechanism for minimax tree search (Knuth and 
Moore 1975). 

The depth-first heuristic-search algorithm was originally developed for searching decision trees 
( Qi and Poole 1992b ). Since any decision graph can be viewed as a compact representation of 
a decision tree, these algorithms are applicable to decision graph search as well. In the rest of 
this section, we first present this decision tree search algorithm and its anytime version, and then 
discuss how to tailor the algorithms to exploit shared structures in decision graphs. The depth
first heuristic-search algorithm is similar to the *-minimax algorithm of Ballard (1983). While 
Ballard emphasizes the generalization of the alpha-beta technique to deal with chance nodes in a 
game tree, we emphasize the pruning technique as well as the effective use of domain dependent 
knowledge to increase search efficiency. 

3.1 Pruning mechanism 

In order to develop the pruning technique, we contrast a decision tree to a minimax tree. A choice 
node in a decision tree can be regarded as a min node since we want to minimize the min-exp 
value of it. Consequently, a chance node is analogous to a max node. However, a decision tree is 
different from a minimax tree in two major aspects. First, there is no cost or other information 
associated with the edges of a minimax tree, but in a decision tree, the information of this kind 
plays an important role in computing both the min~xp values of nodes and an optimal solution 
tree of the decision tree. Second and more importantly, the way to compute the minimax values in 
a minimax tree is different from the way to compute the min- exp values in a decision tree. These 
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two differences make the original alpha-beta pruning rules not directly applicable to a decision 
tree. 

Nevertheless, we still can design a similar pruning mechanism for decision trees if some ad
missible heuristic Junctions are available. A heuristic function for a decision tree is a function 
which estimates the min-exp values of the nodes of the decision tree. A heuristic function h for 
decision tree Dis admissible if, for every node n in D, h(n) ~ u(D, n). For the sake of brevity, 

. we will use h*( n) to denote u( D, n) when no ambiguity arises. 
The pruning mechanism works as follows. For each node n to be searched next, and a given 

upper bound b, it tries to find out whether h* ( n) is less than b, and find out the value of h* ( n) 
if it is less than b. Using the terminology in (Knuth and Moore 1975), we call the upper bound 
the ",B-value" of node n. 

Let h be an admissible heuristic function for D, and b be the ,B-value of node n, the node to 
be searched next. We have the following three cases. 

(1) b ~ h(n). In this case, due to the admissibility of h, it can be concluded immediately 
that b ~ h*(n). Thus node n (and the subtree rooted at n) need not be searched at all. 

(2) b > h(n) and n is a choice node with children n1, ... , n1. In this case the questions can 
be answered by searching the subtrees rooted at n1, ... , n1. Let 

ro=b and Ti=min{ri-1,c(n,ni)+h*(ni)} for any i l~i~l. 

Here, c( n, ni) is the cost of the arc from n to ni and Ti-1 stands for the lowest cost we have 
obtained when the subtrees rooted at n1 , ... , ni-I have been searched and the subtree rooted 
at ni is to be searched next. We call Ti-I an intermediate back-value of node n. If Ti-I ~ 
c(n, ni) + h*(ni), then c(n, ni) + h"'(ni) is either no less than b, the ,B-value for n, or no less 
than c(n, n;) + h*(nj) for some j, 1 ~ j < i. In either case, it is fruitless to search through the 
subtree rooted at ni. Therefore, we can set Ti-1 - c(n, ni) as the ,B-value for node ni. After all 
of the subtrees under node n have been searched, we know that h*(n) ~ b if r1 ~ b and that 
h*(n) = r1 if r1 < b. 

(3) b > h( n) and n is a chance node. In this case, a series of approximations of h*( n) can 
be obtained as the children of n are searched. Let 

i I 

partiali=Lh"'(nj)*p(n,nj)+ L h(n;)*p(n,n;) 
j=l j=i+l 

where p(n, ni) is the probability of the arc from n to n1 , for O ~ i ~ l. partiali can be 
considered as the approximation of h"'(n) when the subtrees rooted at nodes n1 , ... , ni have been 
searched. From the definition of partial1 , we have: 

and 

I 

partialo = L h(nj) * p(n, n;), 
j=l 

I 

partial,= Lh"'(n;) *P(n,n;) = h*(n). 
j=l 
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Since h is admissible, partiali-l ~ partiali for any i, 1 ~ i ~ l. Thus, if for some i, 1 ~ i ~ l, 
partiali 2: b, then, h*( n) 2: b. In this situation, the search can be discontinued. Since 

implies partiali 2: b, we can use (b- partiali_i)/p( n, ni) + h( ni) as the /3-value of node ni. If the 
subtree rooted at n1 is eventually searched and partia/i < b, then partiali is equal to h*(n). 

3.2 A decision tree search algorithm 

A decision tree search algorithm using the pruning mechanism discussed in the previous section, 
called A, is shown in Fig. 2. In this algorithm, MAXNUM is a large positive number, representing 
oo; cost(n, i) and prob(n, i) correspond to c(n,n,) and p(n,ni) respectively. h corresponds 
to an admissible heuristic function, and order-d and order-n correspond to two tree ordering 
functions which can order the children of choice nodes and those of chance nodes respectively. 
These three functions are the abstraction of the domain dependent information of which A can 
make use. 

The algorithm consists of two mutually recursive functions: dnode(n, p) and nnode(n, b), 
for choice node search and chance node search respectively. In the algorithm, parameter b is 
the ,8-value for node n; variable nb is the ,6-value for the child to be searched next. In dnode, 
variable result represents the intermediate back-up value of node n ( corresponding to r1 ). As 
the children of node n are being searched, variable result is updated, and the ,6-value (nb) for 
the next child to be searched is computed. If the ,B-value for a child is no more than the value 
given by the heuristic function, then the child need not be searched. In nnode, variable partial 
represents the series of approximations of the min-exp value of node. As the children of node n 
are being searched, variable partial is updated and the ,6-value for the next child to be searched 
is computed. It is important to note here that partial will never decrease as more children of a 
chance node are searched, due to the admissibility of the heuristic function. Therefore, as soon 
as partial catches up with b, it is surely known that the min-exp value of the chance node is 
equal to or over the ,6-value. Thus no more children need to be searched. 

The description of Algorithm A given in Fig. 2 ignores the part of explicitly constructing 
the optimal solution tree. In case this is needed, the algorithm can be easily modified to do so. 
Thus for a decision tree D and a node n, Algorithm A can be used either to compute h*( n) 
or to compute an optimal subtree rooted at n in D. Since Algorithm A is a depth first search 
algorithm, the size of the space it needs is linear in the depth of the tree if the solution tree need 
not be constructed explicitly, and is linear in the size of the largest solution graph the algorithm 
ever constructs in the search course. 

As an illustration of this algorithm, let us consider an example. For the purpose of convenience, 
we can think that, for a given decision tree, the algorithm orders the tree first (using its tree. 
ordering functions) and then search the ordered tree in the left-to-right order2 (in contrast to 
integrating searching and tree ordering together). A decision tree, after being ordered by the 
tree ordering functions used by Algorithm A, is shown in Fig. 3 where we assume that all the 
terminals have value 10 and all the children of any chance node have the same probability (0.5). 

2 This convention is used throughout this section. 
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dnode(n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; 
else return v(n); 

if h(n) >= b then return MAXNUM; 
result= b; 
j =#of children of n; 
let n1, n2, ... , nj = order-d(n); 
for (i = 1 to j) do 

nb = result - cost(n, i); 
if nb > h(ni) then 

result= min {result; cost(n, i) + nnode(ni,nb)}; 
if result>= b then return MAXNUM; 

else return result; 

nnode(n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; 
else return v(n); 

if h(n) >= b then return MAXNUM; 

j =#of children of N; 
let n1, n2, ...• nj = order-n(n); 
partial= h(n1)* prob(n, 1) + ... + h(nj) * prob(n, j); 
i = O; 
while (partial< b) and (i < j) do 

i = i + 1; 
nb = (b - partial)/prob(n, i) + h(ni); 
partial=partial+prob(n, i)•(dnode(ni, nb)-h(ni)); 

if partial>= b then return MAXNUM; 
else return partial; 

Figure 2: The pseudo codes of Algorithm A 
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The optimal soJution is indicated by the arrows. Its cost is 35.5. Suppose. that Algorithm A 
uses heuristic function ho which returns zero for every node in the tre . leatly, this heuristic 
function is admissible. The search algorithm starts from the root with oo as the ,6-valu . After 
node n8 is searched, the intermediate result for node n4 is 28. Thus when node n9 is being 
explored, its /3-value is 3. After node n18 is explored, the approximation of the min-exp value of 
node n 9 is 5 which exceeds Hs /3-value, thus node n19 is cut off3 • Another cutoff happens right 
after node n10 is explored. The intermediate back-up value of node ns is 25. The ,8-value for 
node nu is negative, therefore, node nu, together with all the nodes below it is cut off. The 
last pruned node for this problem is node n21 . Therefore, five nodes in total are cut off. 

n8 

::~·16) (n~1 ::nui: (n~~ 
• .. - ·• •"' ...... . ... • 

- . . . . . . . 
::n2a: ::n29.: ::n3Q! :: n3i: 

~ . -. . . .. . .. -.. . . ... . 

Figure 3: An illustration of the search algorithm 

Let dt1 be a function defined as: 

dt (n b) = { nnodel(n,b) 
1 

' dnodel( n, b) 
if n is a chance node; 
otherwise. 

The following theorem establishes the correctness of Algorithm A. 

Theorem 1 If the heuristic function used by Algorithm A is admissible, then: 

_ { h*(n) 
dt1(n,b)- MAXNUM 

for any node n in the decision tree, and a number b . 

if h*(n) < b 
otherwise 

3 Cutting off a node means the algorithm need not visit the node at all. In the current case, even if node n 19 1s 

not a terminal, but is an interior node, it will still be cut off. 
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This theorem can be proved by induction. A proof can be found in the Appendix. 

Corollary 1 If the heuristic Junction used by Algorithm A is admissible, then: dtt(n , b') < 
dti ( n, b) for any node n in a decision tree and any two numbers b' 2:: b . Furthermor if 
dt1 ( n, b) < b, then dt1 ( n, b) = dt1 ( n, b'). 

Corollary 2 If the heuristic function used by Algorithm A is admissible, then: h*(n) = dt1(n, oo) 
for any node n in the decision tree. 

3.3 The effect of heuristic functions 

Let h1 and h2 be two heuristic functions, h1 is more informed than h2 for a decision tree if 
h1(n) ~ h2(n) for every node n in the decision tree. Suppos both heuristic functions h1 and 
h2 are admissible, it is clear that the performance of Algorithm A with h1 will be no wors than 
that of AlgorHhm A wjth h2 for the same decision tree if h1 is mote informed than h2 . 

As an illustration on the effect of the heuristic function, let us assume that for the same 
decision tree, we now h.ave a more faforrned heuristic function h0 defined as follows: h0( ni) = 16 
for i == 2, ... ,7 and h0(ni) = 7 for i = 8, ... ,31. When applying Algorithm A with h0 to the 
decision tree ordered as shown in Fig. 3, nine nodes (nodes in the subtree rooted at nodes ng, 
n11 and n1a) will be cut off. 

3.4 Tree ordering 

Note that the correctness of Algorithm A is independent of the tree ordering functions. However, 
like minimax tree search, the order in which the children of nodes in a decision tree are searched 
has a great effect on the efficiency of the algorithm. Generally speaking, we want to searc.h first 
the brancl1 of a choice node that can result in the .final (minimal) min-exp value of the choice 
node in hope that as many otl1er branches as possible can be pruned; and we want to search first 
the child of a chance node which can contribute most to the min-exp value of the chance node in 
hope that the partial accumulation can reach b as early as possible. 

As a.n illustration on the effect of tree ordering, let us consider the decisfon tree shown in Fig. 
4. This is the same decision tree as the one in the previous example except that the ordedngs of 
the children of some nodes are different. It can be verified that when Algorithm A with heuristk 
function ho is applied to this tree, nine4 nodes (nodes n 27 , n 29 , n 19 , and th nodes in. the 
subtrees rooted at nodes n10 and n.11 ) will be cut off; and when Algorithm A with h0 is applied 
to this tree, twenty one5 nodes (nodes in the subtrees rooted at nodes n 13 , n 14 , and n2 ) will be 
cut off. 

Note that a heuristic function normaUy contains more information than a tree ord ring [UJ1 -

tion. In particular, we can define tree ordering functions from a heuristic function. For example, 
given a heuristic function h , we can define orde1·d in such a way that if ni and n; are two 
children of a choice node n and 

4in contrast with five in the previous example. 
5 in contrast with nine in the previous example. 
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Figure 4: An illustration on the effect of tree ordering 

then ni should be chosen before nj . With this definition, child nj of a choice node n will be 
cut off if there exists a child ni of n, i < j, such that: 

h*(ni) + c(n,ni) :$ h(nj) + c(n,nj), 

Let e = h( nj) + c( n, nj) - ( h( ni) + c( n, ni)) , the above inequality is equivalent to: 

h*( ni) - h( ni) :5 e. 

The left hand side in the above inequality is the difference between the min-exp value of node 
ni and its lower bound given by function h, and the right hand side is the difference which 
determines the search order between ni and nj . The more informed the heuristic function is, 
the smaller h*(ni) - h( ni ) , thus the better the chance for the brother nodes being pruned. 

We can also define ordern( n) in such a way that if ni and nj are two children of a chance 
node n and 

h(ni)*p(n,ni) ~ h(nj)*p(n,nj), 

then ni should be chased before nj . Similarly, children nj+l, ... n1 of a chance node n will all 
be cut off if 

j I 

Lh*(nk)*p(n,nk)+ I: h(nk)*p(n,nk)~ b. 
k=l k=j+l 

It is easy to verify that with the tree ordering functions defined as above, if h( n) = h*( n) , all the 
non-optimal children of any choice node will be cut off, then the subtree searched by Algorithm 
A is exactly the same as an optimal solution tree. 

In the other extreme case where the tree ordering functions give an order of the children of a 
choice node that is just the reverse of the order as defined above, then Algorithm A may visit a 
lot more nodes. 
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In Section 6, when we apply our decision gra.ph search algorithms to U-graph based navigation 
problems ( Qi and Poole 1992a), we will encounter some heuristic functions for a realistic problem. 
Moreov r, we will define ordering functions in terms of heuristic functions in the same way as we 
did above. 

For a uniform tree of depth 2d + 1 where each non-terminal choice node has b1 children and 
each chance node has b2 children, then the total number of the terminal nodes in the decision 
tree is (b1b2l while the number of the terminal nodes in an optimal solution tree is 01tly b~ . 
Therefore, the ratio of the performance in the best case to that in the worst case is bi . We call 
this ratio is the ideal cutoff ratio. It is clear that the bigger the b1 , the larger th.e ideal cutoff 
ratio, thus the more potential Algorithm A has. An intuitive interpretation on this is that the 
bigger b1 , the more important the domain knowledge. 

3.5 Using inadmissible heuristic functions 

In the previous section, it is required that the heuristic function h must be admissible. For A* 
algorithm, Harris (Harris 1974) has argued that the condition of admissibility is too restrictive. 
llis arguments are applicable to decision tree search as well. Although it may be impractical to 
find a good heuristic function that never violates the admissibility condition, it is often easier to 
fmd a function that estimates the min-exp values well, but occasionally overestimates them. Like 
the case for A* (Pearl 1984), we have the following two theorems for Algorithm A which establish 
the linear relationship between the maximal error of an inadmissible heuristic function and the 
maximal error of the min-exp value of the resulting solution. 

Theorem 2 Suppose Algorithm A uses heuristic Jtmction h . If there exists a number o 2='. 0 
such that h satisfi es: h(n) ~ h*(n) + o, for every node n in a decision tree, then for every node 
n in the decision tree 

h'"(n) + 8 2:: b if dt1(n, b) 2:: b and 

h*(n) + o 2='. dt1(n,b) if dt1(n,b) < b. 

Theorem 3 Suppose Algorithm A uses heuristic function h . If the costs of all the edges in a 
decision tree are non-negative and h*( n) 2:: 0 for each node n in the decision tree, and there 
exists a number o 2='. 0 such that h satisfies: 

0 ~ h(n) ~ (1 + 6) * h*(n), for every node n in the decision tree, 

then for every node n in the decision tree and any non-negative number b , 

h*(n) * (1 + 8) 2:: b if dt1(n, b) 2:: b and 

h*(n) * (1 + 8) ~ dt1(n, b) if dt1(n, b) < b. 

The proofs of these theorems can be found in the Appendix. 
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3.6 An anytime version of Algorithm A 

The time complexity of searching for an optimal solution tree or a suboptimal solution tree with 
a bounded quality of a decision tree is exponential in the depth of the tree. Thus for a practical 
problem, it may take qltite a. long time before such a solution tree can be computed. Note 
that Algorithm A will not return any thing before completing the computation of an optimal 
(suboptimal) solution. However, in some situations, it would be very useful if an algorithm can 
Ieturn some (possibly non-optimal) solutions in the course of computing an optimal solution. It 
would be even better if the quality of those intermediate solutions improves monotonically with 
the computational time the algorithms spend. Since an algorithm with this property can give an 
answer at any time after computing the initial solu ion, it is called an anytime algorithm (Boddy 
1991). 

We can think of an anytime algorithm as a program which generates a stream of solutions 
ordered by t heir qualities (the expected costs in our case). For decision tree search, we can easHy 
obtain a naive anytime algorithm from a brute-force procedure and a filter. For a given decision 
tree, the brute-force procedure will systematically enumerate all of the possible solutions of the 
decision tree, and pass the solution stream to the filter. The filter maintains the minimal cost of 
the solutions arrived so far and discard the next solution with cost no smaller than the minimal 
cost. Unfortunately, the performance of this algorithm can be very bad. What we like is an 
algorithm, called B, which incorporates the pruning mechanism we discussed in Section 3.1 and 
at the same time behaves like an anytime algorithm. This is the topic of this section. 

We observe that Algorithm B should differ from Algorithm A in the the following two aspects: 

• When searching a choice node, Algorithm A will exhaust all of the children of the choice 
node and return the best one. But Algorithm B should return the first child which results 
in an admissible solution. Furthermore, Algorithm B should set a backtrack point at the 
same time so that it can continue generating better solutions when needed. 

• In the course of searching a chance node, if Algorithm A finds that partial ~ b, it reports 
a cutoff. But when in a similar situation, Algorithm B should request a backtrack. 

Fig. 5 shows the pseudo code of Algorithm B. In the figure, we have a new procedure a-search 
as the interface of the algorithm. The statement backtracking means to go on computation 
from the latest backtrack point. If there is no backtrack point, then just return MAXNUM. A Prolog 
version of this algorithm is given in Fig. 6. Observe that for a given problem, Algorithms A and 
B will visit the same number of nodes. The only overhead Algorithm B over Algorithm A is to 
maintain those backtrack points, which needs a storage linear in the maximum of the sizes of 
solution graphs. 

3.7 A remark 

It is interesting to note that, although there are many other techniques developed for minimax 
tree search (e.g. SSS* (Stochman 1979), conspiracy number (M Allester 1988)), it seems that 
only the alpha-beta technique can be conveniently applied to decision tree search. 
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a_search (n, b) 
if n is a terminal then return MAXNUM else return v(n); 
if n is a choice node then result= a_dnode(n, b) 

else result a_nnode1(n, b); 
report(result); backtracking; 

a_dnode(n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; else return v(n); 
if h(n) >= b then return MAXNUM; 
result= b; 
j =#of children of n; 
let n1, n2, ... , nj = order_d(n); 
for (i = 1 to j) do 

nb = result - cost(n, i); 
if nb > h(ni) then 

result1 = cost(n, i) + a_nnode(ni,nb); 
if result1 < result then 

result= result1; 
set a backtrack point; return result; 

return MAXNUM; 

a_nnode(n:, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; else return v(n); 
if h(n) >= b then return MAXNUM; 

j =#of children of N; 
let n1, n2, ...• nj = order_n(n); 
partial= h(n1)* prob(n, 1) + ... + h(nj) * prob(n, j); 
i = O; 
while (partial< b) and (i < j) do 

i = i + 1; nb = (b - partial)/prob(n, i) + h(ni); 
partial=partial+prob(n, i)•(a_dnode(ni, nb)-h(ni)); 

if partial>= b then backtracking else return partial; 

Figure 5: The pseudo codes of Algorithm B 
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¼ search node N for a solution tree R with cost C such that C < B 

:-dynamic stop/1. 

search(N, B, term(V, N), V) :- terminal(N), v(N, V), V < B. 
search(N, B, choice(C, N, R), C) :- h(N, HV), HV < B, 

choice(N), children(N, L), searchchoice(L, B, R, C). 
search(N, B, chance(C, N, R), C) :- h(N, HV), HV < B, chance(N), 

children(N, L), initial(L, CO), 
searchchance(L, B, R, C, CO). 

¼search children list of a choice node 
¼When find a solution, we can return the solution and update the bound. 

searchchoice([], B, R, C) :- fail. 
searchchoice([(LC, N)IL], B, R, C) :- NB is B - LC, 
search(N, NB, R1, C1), assert(stop(L)), C2 is LC+ C1, 

searchchoice_with_s([(LC, N)IL], R1, R, C2, C). 
searchchoice([_IL], B, R, C):- \+ stop(L), searchchoice(L, B, R, C). 

searchchoice_with_s([(LC, N)I_], R1, (LC, R1), C1, C1). 
searchchoice_with_s([_IL], _, R, C1, C):- searchchoice(L, C1, R, C). 

¼search children list of a chance node 

searchchance(L, B, R, C, CO) :- CO>= B, fail. 
searchchance([J, B, [], CO, CO) :- CO< B. 
searchchance([(P, N)IL], B, [(P, R1)IR2], C, CO) :- CO< B, h(N, HV), 

NB is (B - CO)/P + HV, search(N, NB, R1, C1), 
C2 is CO+ P*(C1 - HV), searchchance(L, B, R2, C, C2). 

¼ An auxiliary function 

initial([], 0). 
initial([(P, N)IL], C) ·- h(N, HV), initial(L, C1), C is C1 + P* HV. 

Figure 6: A Prolog version of Algorithm B 
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3.8 Exploiting shared structures in decision graphs 

A decision graph can be considered as a compact representation of a decision tree in which some 
subtrees are identical. onversely, a decision graph can be "expanded" into a decision tree by 
duplicating those shared nodes in the decision graph. 

The algorithms we presented so far a.re based on decision trees. These algorithms are also 
applicable to decision graphs in the sense that they are applicable to the "expanded versions" 
(the corresponding decision trees) of the decision graphs. An advantage of this treatment is 
that the algorithms have moderate space requirements6• A disadvantage of the treatme11t is its 
inability to exploit shared structure of decision graphs. In other words, the algorithms may search 
a subgraph rooted a shared node more than once. In order to overcome this disadvantage, we can 
use a "cache technique". When the expected cost of a shared node is obtained, it will be stored 
in a cache for later use. When a node is to be searched, the algorithms first check whether the 
expected cost of the node is in the cache, and will search the node only if the expected cost of 
the node is not in the cache. 

In a similar vein, we ca.11 also make use of an 1'adaptive" heuristic f rn1ction. That is, whenever 
a cutoff occu,rs at a node n , we obtain a new lower bound on the expe ·ted cost of the node. This 
new lower bound can be used to update h(n), the value of the heuristic function aL the node n. 
Th.is is an example of "learning fron failure". 

Incorporating this caching technique into Algorithm A, we can obtain Algorithm A' as shown 
in Fig. 7. A similar version can be obtained for Algorithm B in the same way. 

In the algorithm, when the expected cost of a node is obtained, it is needed to determine 
whether the expected cost should be cached or not; when a cutoff occurs at a node, it is needed to 
determine whether the heuristic function should be updated accordingly. If the "caching policy" 
allows no node to be cached, the algorithm degenerates to Algorith.m A. On the other hand if 
the "caching policy" allows the expected costs of all sbared nodes to be cached, the algorithm can 
exploit the shared structure of decision graphs to the maximum degree. One way to guarantee this 
is to cache the expected cost of every searched node. Ilowever, thls may lead to an exponential 
space requirement, totally defeating the advantage mentioned above. Clearly, there js a tradeo:ff 
between time and space. Generally speaking, we would like to cache thos nodes wh.ich are likely 
to be sea.1-dted again and it would take much time to search them. The searching time of a node 
can be obtained online. The probability that a node to be searched again may be estimated based 
on domain dependent knowledge. Russell and Wefald's meta.reasoning mechanism (Russell and 
Wefald 1989, Russell 1990) can play a role in deciding which nodes' expected costs should be 
cached. 

4 Applying AO* to Decision Graph Search 

AO* can be considered as a counterpart of A* for AND /OR graph search. The algorithm was 
developed in (Martelli and Montanari 1973). AO* as the name of the algorithm was first giv~n 

5 For Algorithm A, the space requirement is linear in the depth of the decision trees if it is not required to 
construct an optimal solution graph, and is linear in the size of solution graphs otherwise; the space requirement 
of the anyime algorithm is linear in the size of solution graphs. 
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dnode' (n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; else return v(n); 
if n is cached then 

let result be the cached value; 
if result>= b then return MAXNUM else return result; 

if h(n) >= b then return MAXNUM; 
result= b; 
j =#of children of n; 
let n1, n2, ... , nj = order-d(n); 
for (i = 1 to j) do 

nb = result - cost(n, i); 
if nb > h(ni) then 

result= min {result; cost(n, i) + nnode'(ni,nb)}; 
if result>= b then 

{if function h should be updated at n then update it; 
return MAXNUM;} 

else {if n should be cached then cache n; return result;} 

nnode'(n, b) 
if n is a terminal then 

if v(n) >= b then return MAXNUM; else return v(n); 
if n is cached then 

let result be the cached value; 
if result>= b then return MAXNUM else return result; 

if h(n) >= b then return MAXNUM; 

j =#of children of N; 
let n1, n2, ... , nj = order-n(n); 
partial= h(n1)* prob(n, 1) + ... + h(nj) * prob(n, j); 
i = O; 
while (partial< b) and (i < j) do 

i = i + 1; 
nb = (b - partial)/prob(n, i) + h(ni); 
partial=partial+prob(n, i)*(dnode'(ni, nb)-h(ni)); 

if partial>= b then 
{if function h should be updated at n then update it; 
return MAXNUM;} 

else {if n should be cached then cache n; return partial;} 

Figure 7: The pseudo codes of Algorithm A' 
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in (Nilsson 1982). 
AO* was first developed for searching AND/OR gra_phs with additive costs (Martelli and 

Montanari 1973). As shown in (Kumar et al. 1988), AO* is applica ble to AND/OR graphs with 
monotone evaluation functions (Kumar et al. 1988). We say a function g( x1, ... , x1, L) is monotone 
if g(y1, ... ,y,,L) ~ g(x1, ... ,x,,L) provided Yi~ Xi for i = 1, ... ,1. An evaluation function u is 
monotone if there is a monotone function g such that 

u(n) = g(u(n1), ... ,u(n1),L) 

for each non-terminal node n, where L represents the local information (in terms of arc costs or 
arc probabilities for the case of decision graphs) associated with the arcs incident from n. From 
the definition of the min-exp evaluation function, we can see that the min-exp evaluation function 
is monotone. Thus AO* is applicable to decision graph search problems as well. In this section, 
we illustrate how to tailor AO* so that it can be applicable to decision graph search, and present 
some results on the resultant algorithm. 

As usual, we assume that the decision graph to be searched is given in the implicit form. We 
use h again to denote a heuristic function. The algorithm works on an explicit graph G which 
initially consists of the root node only and is gradually expanded. During the entire process, G 
is always a subgraph of the original graph. 

A node in G is called a tip node if it has no children. A solution graph of the explicit graph 
is called potential solution graph (psg). A psg is actually a solution graph of the given graph if 
all the tip nodes in the psg are terminals. · 

With the help of the heuristic function h, we can define a minimization-expectation function 
f on the explicit graph. Let n be any node in G, f ( n) is defined as follows. 

• f(n) = v(n) if n is a terminal. 

• f(n) = h(n) if n is a non-terminal tip node. 

• f( n) = min~=d c( n, ni) + f( ni)} if n is a choice node with children n1, ... , n1. 

• f( n) = I:i=l p( n, ni) * f ( ni) if n is a chance node with children n1, ... , n1. 

Due to the admissibility of h, the following result is obvious. 

Lemma 1 For any node n in G, f(n) ~ h*(n). 

At any moment, the explicit graph can have a number of potential solution graph. We use 
opsg to denote an optimal potential solution graph - a potential solution with the lowest cost. 

AO* can be intuitively understood as a repetition of tl1e following two major operations. 
Th .first one is the node expap.si.on which_ finds a non-terminal tip node in the cu.rrent optimal 
potential solution graph and generates the children of the node. The cost of each child is given 
by the heuristic function, if it is generated for the first time. The second operation is the cost 
updating operation which, starting from the newly expanded node, updates the costs of the 
ancestors of the newly expanded node, according to the cost function. In the course of the cost 
updating, a new optimal potential solution graph is identified. The termination condition for this 
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process is that the current optimal potential solution graph has no non-terminal tip node. The 
basic structure of the algorithm is as follows: 

1. Initially, both G and opsg consist of only the root node. 

2. If all of the tip nodes of opsg are terminals, stop and output opsg as the solution graph. 

3. Select a non-terminal tip node of opsg, expand the node, generating all the children of the 
node and adding them to G (if some children are already in G, just share them). 

4. Set opsg to be the optimal potential solution graph in G. 

5. Go to step 2. 

The above algorithm can be further refined by using the ma.rking technique of (Martelli and 
Montanari 1973) . . The following version of AO* is adopted from (Chakrabarti et al. 1987), 
where h denotes a heuristic functions for the given decision graph satisfying h( n) = v( n) for 
all terminals in the decision graph. In the algorithm, the marked psg rooted at the root of the 
decision graph is the same as the opsg in the above simple version of the algorithm. 

Algorithm AO* 

1. Initially the explicit graph G and the potential solution graph psg solely consist of the 
root node s . Set 

](s) - h(s). 

If s is a terminal node, then label s SOLVED. 

2. Repeat the following steps until s is labelled SOLVED. Then, exit with J(s) as the solution 
cost. 

2.1 Choose a tip node n of the marked psg which is not SOLVED. For each child, ni, of 
n not already present in the explicit graph G, set 

Label SOLVED any children of n that are terminals. 

2.2 Create a set Z of nodes containing only node n. 

2.3 Repeat the following steps until Z is empty. 

2.3.1 Remove from Z a node m such that no descendent of m in G occurs in Z. 
2.3.2 (i) If m is a choice node with children m1 , ... , mk, then set 
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Mark that arc ( m, mio) for which the above minimum occurs. [Resolve tie arbi
trarily, but in favour of a SOLVED node.] Label m SOLVED if and only if mio 
is labelled SOLVED. 
(ii) If m is a chance node with children m1, ... , mk, then set 

](m) .._ L p(m, mi)* ](mi). 
1::;i::;k 

Mark all arcs (m, mi). Label m SOLVED if and only if every mi is labelled 
SOLVED. 

2.3.3 If ](m) changes value at step 2.3.2 or if m is labelled SOLVED, then add to Z 
all immediate predecessors. 

The only difference between the above algorithm and the AO* algorithm given in ( Chakrabarti 
et al. 1987) for AND/OR graphs with additive costs lies in the way of updating function j at 
step 2.3.2 (ii). 

Lemma 2 At any stage during the search process, if a node n is labelled SOLVED, a solution 
graph with cost ]( n) can be obtained by tracing down the marked arcs from n. 

Proof. By a trivial induction on the stage of the algorithm. 

Lemma 3 If there exists some €, € ~ 0, h(n) :$ h*(n) +€,for every tip node n in the explicit 
graph G, then at any stage during the search process, we have ]( n) :$ h*( n) + € for all nodes in 
G. 

Proof. Similar to the proof of Lemma 1 in (Martelli and Montanari 1973). We will prove the 
lemma by induction on the stage of the algorithm. The lemma is trivially true initially. Let us 
suppose that it is true at certain stage and let us prove it is true at the next stage, that is after 
each execution of the body of the outer loop (i.e. steps 2.1 - 2.3). 

Since during the execution of the loop body, the J values of only those nodes which are 
ancestors of node n may be changed, let us consider the subgraph, G', of ·G obtained up to this 
stage, which consists of all the ancestors of node n. Since G' is acyclic, an index can be attached 
to each node of G', starting with n° = n, in such a way that all paths from node ni to node n° 
contain only ni with j < i . 

Now, we prove by induction on the index i that the inequality still holds for each node in G' 
after its J value is updated. 

First, we prove that this is true for n°. Let n1 , ••. , n, be the children of n. For any child, nk, 
1 :$ k :$ l, if it has been generated before, we have ](nk) :$ h*(nk) + € by the outer induction 
assumption, and if nk is generated for the first time, we also have J(nk) = h(nk) :$ h*(nk) + € 

by the hypothesis on the heuristic function h . 
If n is a choice node, we have: 
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J(n) = mink{](nk) + c(n,nk)} 
:S mink{h"'(nk) + € + c(n, nk)} 
=E+h"'(n) 

Similarly, if n is a chance node, we have: 

](n) = 'E,d](nk) *P(n,nk)} 
:S L-k{(h"'(nk) + €) * p(n,nk)} 
=E+h"'(n) 

Now, let us assume that the inequality is true for all nodes ni with j < i , then the in quaJj ty 
can b proved true for node ni by repeating the above argument . T hus, we have proved that the 
lemma is true after the execution of the loop body. Therefore, th lemma holds by induct ion. D 

Note that Lemma 1 in (Martelli and Montanari 1973) is actually a special case of Lemma 3 
above with E = 0. The above lemma will not be true for AND /OR graphs with additive costs, 
because if E > 0, the error may be accumulated in the search process for additive cost AND/OR 
graphs. 

Theorem 4 The algorithm with heuristic function h satisfying h( n) :S h "'( n) + E for every node 
n that is ever in the explicit graph G, where E ~ 0, will return a solution graph with cost less 
than or equal to h"'(s) + E, if the algorithm terminates. 

Proof. Follows Lemma 2 and Lemma 3 immediately. D 

Corollary 3 The algorithm with an admissible heuristic function will return an optimal solution, 
if it terminates. 

Lemma 4 If h * (n) ~ 0 and there exists some E, E ~ 0, 0 :S h(n) :S h*(n)(l + E), for every 
node n in the explicit graph G, and the arc costs in the given graph are non-negative, then at 
any stage during the search process, we have J(n) :S h"'(n)(l + E) for every node n in G . . 

Proof. Similar to that for Lemma 3. 

Theorem 5 If the arc costs in the given graph are non-negative, then the algorithm with heuristic 
function h satisfying O :S h(n) :S h"'(n)(l + E) for every node that is ever in the explicit graph, 
where E ~ 0, will return a solution graph with cost less than or equal to h"'( s )(1 + E), if the 
algorithm terminates. 

Proof. Follows Lemma 2 and Lemma 4 immediately. D 

As the reader may have already noticed, Theorems 4 and 5 above do not assure that the algorithm 
must stop even if a finite solution graph exists for a given (infinite) decision graph. Thus they 
are weaker than Theorem 1 in (Martelli and Montanari 1973). However, for finite acyclic decision 
graphs , the algorithm is guaranteed to terminate. This weakness seems to be inevitable in general, 
and indeed is also shared by the depth first heuristic algorithms we presented in the previous 
section, since there does exist some case where a finite optimal solution graph does exist but the 
algorithm will not terminate. This can be illustrated by the following example. Consider the 

22 



decision tree in Fig. 8. Node A in the decision tree is the root of the graph. Each choice node 
has two children, the child on the right side is a terminal with zero cost. The cost of the arc 
to the left child is 1 and the cost to the right child is 2. The left child is a chance node. Each 
chance node has two children, each with 0.5 probability. The subtree below each child of a chance 
node is isomorphic to the entire decision tree. Thus the decision tree is infinite. It is easy to 
prove that the min-exp value of this decision tree is 2 and an optimal solution tree consists of 
only two nodes: the root and its right child. However, if the above algorithm adopts a depth first 
left-to-right strategy in selecting the next tip for expansion, the algorithm will not terminate, 
since the j values of the marked potential solution trees will always be less than 2 . 

. ·····•. 
( C :: 

Figure 8: An example for which AO* may not terminate 

It can be observed that the possibility of non-termination of the algorithm stems from the 
arbitrariness in the selection of a tip node to be expanded next. In the case of searching into 
AND /OR graphs with additive costs, no matter which tip node is selected, the expansion of the 
tip node will contribute to the costs oft.he solution graphs consisting of the node a certain amount 
that can be bounded from below, thus the contribution cannot be arbitrarily small. However, 
in the case of searching into decision graphs, there is no such guarantee with respect to the cost 
contribution of a tip node expansion. 

In order to guarantee the termination of the algorithm when a finite optimal solution graph 
exists, we need another heuristic function for tip node selection. Although some researchers 
(Nilsson 1982, Pearl 1984) pointed out the use of heuristic functions for tip node selection, they 
did so purely out of efficiency consideration. Here, we propose two heuristics for tip node selection 
out of termination consideration. 

Heuristics 1: using the breath first strategy in tip node selection. That is, if t1 , ... 1 t1 are 
the tip nodes of the marked potential solution graph rooted at s, the tip node with the smallest 
depth should be selected for expansion. 
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Heuristic 2: using a best first strategy in tip node selection. Suppose t1, ... , t1 are the tip 
nodes of the marked potential solution graph rooted at s. The tip node with the largest P(ti) 
value should be expanded, where P(ti) is the product of the probabilities along the path from 
the root to tip node ti . 

5 Iterative Deepening Search 

The two kinds of algorithms we discussed so far for decision graph search are complementary. A 
major disadvantage of AO* is that it requires exponentially large space. The advantage of AO* 
is that it will not stick too long to a solution graph which is apparently "bad". On the other 
hand, in comparison with AO*, the major advantage of the depth first search algorithms is their 
moderate requirement on space. However, the price for this is that they may search down to a 
very deep layer in a part of solution graph which is not in an optimal solution graph. Thus it 
would be nice if we can design algorithms that combine the advantages of AO* and the advantage 
of the depth search algorithms together. For OR-graph search, the iterative deepening search 
technique (Korf 1985) was proposed for such kind of combination, and was proved asymptotically 
optimal along the following three dimensions: time complexity, space complexity and the quality 
of the solution. In this section, we propose two iterative-deepening heuristic-search strategies for 
decision graph search. 

5.1 Depth bounded iterative deepening 

The first iterative-deepening search strategy is a depth-bounded iterative-deepening strategy. The 
strategy repeatedly applies Algorithm A to a decision graph, with increasing depth bounds. When'~ 
ever a non-terminal node n on the depth boundary is visited, h( n) is used as its min-exp value. 
After each iteration, a potential solution graph with the minimum cost is identified. This process 
terminates when the optimal potential solution graph identified this way is actually a solution 
graph (all tip nodes in the potential solution graph are terminals). 

Unllice iterative-deepening A* (Korf 1985, Patrick et al. 1992), our algorithm uses search 
depth as the cutting off criterion. In this regard, our iterative-deepening strategy is similar to 
the iterative-deepening depth-first search algorithm (DFID) reported in (Korf 1985). However, 
unlike DFID, the depth-first search in each iteration in our algorithm is a kind of heuristic search. 
In fact, our algorithm is very much like the iterative-deepening game tree searching algorithms in 
(Slate and Atkin 1977, Winston 1984). 

The following result is obvious. 

Theorem 6 The depth bounded iterative deepening algorithm returns an optimal solution graph 
if the heuristic function it uses is admissible and if it terminates. 

5.2 Cost bounded iterative deepening 

The second iterative deepening search strategy is a cost bounded iterative deepening strategy, 
very much like iterative deepening A* (IDA*) (Korf 1985). The idea is that successive iterations 
correspond not to increasing depth of search, but rather to increasing ,B-values for the search. 
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The strategy maintains two values: the upper bound bu and the lower bound b1 on the decision 
graph and works as follows: Initially, the lower bound b1 is set to the value given by the heuristic 
function, while the upper bound is set to the min-exp value of a solution graph which can be 
obtained by identifying an arbitrary solution graph. At each iteration, a new ,8-value b is set 
to b1 *ex+ b,. * (1 - a) for some a E (0, 1) and a depth first search (using Algorithm A) with 
b as the ,8-value is performed. If a solution with cost less than b is returned, then the solution 
is an optimal solution, thus algorithm stops. Otherwise, the lower bound b1 can be set to b. 
This process continues until either an optimal solution is found or the lower bound and the upper 
bound become close enough. 

Theorem 7 The cost bounded iterative deepening search algorithm returns an optimal solution 
graph if the heuristic function it uses is admissible and if it terminates. 

An advantage of this algorithm over Algorithm A is that it is less sensitive to the node ordering 
in a graph. This can be best illustrated by an example. Suppose we have a decision tree. The 
root of the decision tree is a choice node with two children n1 and n2 • Suppose further that the 
subtree below n1 is very large and so is its min-exp value, but the subtree below n2 is very small 
and so is its min-exp value. Clearly, node n1 cannot be in an optimal solution tree. However, if 
Algorithm A happens to behave in such a way that it searches the subtree below node n 1 first, 
then it will not come to node n2 until an optimal solution tree for the subtree below node n1 is 
founded. This may take a lot of time which turns out to be useless. On the other hand, the cost 
bounded iterative deepening algorithm will not stick to the subtree below node A for too long 
(because the ,8-value can be very small). 

The cost-bounded iterative deepening algorithms discussed above is analogous to the binary 
iterative deepening A* (Patrick 1992) in the sens,~ that both the upper bound and the lower bound 
of the problem are maintained. 

It is interesting to note that the cost bounded iterative deepening algorithm and the anytime 
algorithm B can work as co-routines in the following way. For a given problem, Algorithm B 
can gradually approach the optimal value of the decision graph from above, thus can be used to 
update the upper bound bu of the cost bounded iterative deepening algorithm. The co-routines 
stop when either algorithm reports finding an optimal solution or when the lower bound and 
the upper bound become close enough. In this way, we end up with an algorithm with anytime 
property which is simultaneously using cost bounded iterative deepening strategy. 

Theorem 8 The co-routines return an optimal solution graph if the heuristic function they use 
is admissible and if they terminate. 

Finally, we conclude this section with a result on the termination of the algorithms discussed 
so far. The result is quite conservative. Nevertheless, it is sufficient for our purpose. 

Theorem 9 All of the algorithms presented in this paper terminate for finite acyclic decision 
graphs. 
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6 Some Experimental Results 

In this section, we present some experimental results on the performance of Algorithms A and 
AO*. The data are obtained when we apply these algorithms to the problem of U-graph based 
navigation (Qi and Poole 1991, Qi 1993). 

6.1 The application domain 

AU-graph is an extension of an ordinary distance graph in which the weights of some edges (arcs) 
are not constants, but are random variables. If the weight of an edge between two vertices is a 
discrete random variable, it will be referred to as an uncertain edge. Otherwise, it will be referred 
to as an ordinary edge. An uncertain edge between two vertices represents a piece of knowledge 
that there exists a connection between the locations denoted by the vertices but the weight of the 
connection is not certain. The distribution of the random variable characterizes the uncertainty. 

Given a U-graph, a start vertex and a goal vertex, an agent needs to reach the goal vertex 
from the start vertex by following some strategy. It is assumed that the agent can determine the 
actual weight of an uncertain edge ony when it is at a vertex adjacent to the edge, and the weight 
of an uncertain edge will remain the same throughout a navigation course once it is revealed. 

The computational problem is to compute a navigation strategy which can lead the agent to 
the destination with the minimal expected cost. 

A navigation task can be modeled by a decision graph. Within such a graph, a node contains 
the current U-graph and the current vertex. A choice node represents a situation where the agent 
has to decide where to go from the current vertex, and a chance node represents a situation where 
the agent is facing some uncertain edges whose status is to be revealed. A leaf node represents 
the situation where the agent finishes the task. The root represents the initial situation. The 
mini-exp value of a node is the minimal expected cost for the agent to arrive at the destination 
from the situation represented by the node. For the details of this modeling, see ( Qi 1993, 
Qi and Poole 1991, Qi and Poole 1992a). The decision graph for the navigation task of going 
from vertex A to vertex B in the U-graph in Fig. 9-( a) is shown in Fig. 9-(b ). 

In our experiments, we apply Algorithms A and AO* to a set of U-graph based navigation 
problems. We consider two classes of U-graphs. The U-graphs in the first class are randomly 
generated from grids with the following parameters: d1 , d2 , Pl , P2 . Here, d1 and d2 specify the 
width and height of the grids; p1 specifies the probability that a connection ( either an ordinary 
edge or an uncertain edge) exists between any pair of neighbour vertices on the grids; p2 specified 
the probability of a connection being an uncertain edge. We assume that the distributions of all 
uncertain edges are binary and independent of one another. For each ordinary edge, a random 
number is generated as its weight; for each uncertain edge, three random numbers c1 , c2 and p 
are generated, with O < p < 1; the weight of the uncertain edge is c1 with probability p and 
is c2 with probability 1 - p. A U-graph of this kind is an abstraction of the road layout of a 
city. For each randomly generated U-graph, we assume the navigation task is to go from the 
upper-left conner to the lower-right conner on the grid. 

The U-graphs in the second class are randomly generated from a structure as shown in Fig. 
10, which is a model of two parallel-highway systems jointed by a bipartite graph at the middle. 
The U-graphs are generated with two parameters: m, the number of branches in each parallel 
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(a) (b) 

Figure 9: A simple U-graph and a simple decision graph 

·····0-0 0-0····· 

:\ 
····0--0 0-0····· 
····0-0- 0-0····· 

Figure 10: An abstraction of a parallel highway system 
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highway system, a.nd p, the probability that an ordinary edge exists between a pair of vertices 
one at the boundary of each half of the bipartite graph. The weights of the ordinary edges and 
the weight distributions of the uncertain edges are generated h1 the same way as that for the 
U-gra_phs in the first class. Again, we assume the weight distributions of all uncertain edges are 
binary and are independent of one another. 

6.2 A heuristic function 

For a given navigation task, let rg denote the decision gra])h representing a given navigation 
task, and u be a min-exp evaluation function defined on rg such that u(rg,N) is the minimal 
expected cost the agent is going to spend in the situation represented by node N. We define a 
heuristic function h as follows: 

h(N) = d8 (G 0 ,vc,v9 ). 

In words, h(N) is the shortest distance between the current vertex and the goal vertex in G0
, 

where G0 is the optimistic induced graph of the current U--graph of node N. The optimistic 
induced graph of a U-graph G is obtained from G by replacing each uncertain edge in G by an 
ordinary edge whose weight is the lowest possible value of the distribution of the uncertain edge. 
It is intuitively clear that h(N) ~ u(rg, N) for any N. Therefore h is admissible. 

6.3 Experiment 1 

In this experiment, we measured for each problem the number of nodes examined by Algorithm 
A and that examined by AO*. The experimental data for the U--graphs in the first class and for 
the U-graphs in the second class are summarized in Tables 1 and 2 respectively. Each row in the 
tables corresponds to a problem instance. The second and the third columns of each row contain 
the nodes examined by AO* and by Algorithm A respectively for the problem corresponding to 
the row. The + (- or =) in the fourth column of each row indicates that the number of the nodes 
examined by AO* is more than (fewer than or equal to) the number of the nodes examined by 
Algorithm A for the same problem. 

From Table 1 we see that for seventy seven problems out of one hundred, Algorithm A examines 
fewer nodes than AO* does. From Table 2 we see that for fifty two problems out of one hundred, 
Algorithm A examines fewer nodes than AO* does. Thus we may conclude that Algorithm A likely 
examines fewer nodes than AO* does. This may be due to the fact that in our implementation 
of AO* for U-graph based navigation, we do not check the possibility of structure sharing in 
the representing graphs (thus each representing graph is essentially treated as an unfolded tree), 
because otherwise, the overhead (for checking whether a node is already in the graph) will be 
intolerably high. 

Moreover, our experiments show that, for most of the problems, Algorithm A spends less time, 
even when it examines more nodes than AO* does. This is due to the fact that Algorithm A is 
a depth first algorithm, involving less overhead. This suggests that Algorithm A is better suited 
for U-graph based navigation. 
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Table 1: The performance comparison 1 of Algorithms A and AO* (for the U-graphs in the first 
class) 

Ao~ A H.l!;::iULT AO• A H.l!;::iULT 

1 19 8 + 2 1958 1367 + 
3 173 1092 - 4 41 31 + 
5 142 137 + 6 402 ll8 + 
7 341 203 + 8 194 457 -
9 99 88 + 10 52 35 + 
11 7699 4143 - 12 646 507 + 
13 20 31 - 14 7521 5321 + 
15 6366 10138 - 16 1854 1248 + 
17 1165 2168 - 18 199 109 + 
19 53 50 + 20 15 13 + 
21 504 329 + 22 14 15 -
23 86 59 + 24 251 229 + 
25 1134 808 + 26 607 280 + 
27 118 85 + 28 21 16 + 
29 23 23 = 30 23 23 = 
31 2104 2098 + 32 136 469 -
33 4847 328 + 34 341 178 + 
35 29 26 + 36 225 247 -
37 162 231 - 38 1707 1576 + 
39 316 397 - 40 183 121 + 
41 926 444 + 42 63 60 + 
43 45 112 - 44 6460 6433 + 
45 197 143 + 46 168 149 + 
47 88 58 + 48 356 650 -
49 4.: ;j\j + 50 19 17 + 
51 52 36 + 52 16623 17472 
53 307 229 + 54 127 100 + 
55 218 117 + 56 41 24 + 
57 61 36 + 58 145 76 + 
59 993 2753 - 60 682 571 + 
61 46 41 + 62 3046 2026 + 
63 59 52 + 64 1.:7 71 + 
65 128 106 + 66 46 28 + 
67 161 184 - 68 13 11 + 
69 499 321 + 70 78 63 + 
71 325 271 + 72 13 11 + 
73 51 61 - 74 28 31 -
75 6166 7581 - 76 545 519 + 
77 39 25 + 78 12 11 + 
79 117 115 + 80 23 45 -
81 115 64 + 82 365 304 + 
83 12 13 - 84 127 61 + 
85 102 43 + 86 85 52 + 
87 18 17 + 88 31 28 + 
89 37 137 - 90 222 172 + 
91 67 65 + 92 132 88 + 
93 1417 1080 + 94 1367 779 + 
95 1251 667 + 96 70 65 + 
97 21 19 + 98 1214 831 + 
99 3720 2393 + 100 955 772 + 
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Table 2: The performance comparison 2 of Algorithms A and AO* (for the U-graphs in the second 
class) 

AU"' A H.b::;ULl AU" A H.b::iULT 

1 121 107 + 2 93 95 -
3 216 152 + 4 128 88 + 
5 63 83 - 6 57 48 + 
7 47 28 + 8 21 31 -
9 48 82 - 10 92 90 + 
11 138 159 - 12 203 504 -

13 61 88 - 14 657 879 -

15 159 131 + 16 1235 1169 + 
17 481 304 + 18 138 152 -
19 251 202 + 20 93 129 -
21 86 60 + 22 956 706 + 
23 217 305 - 24 55 33 + 
25 265 200 + 26 89 110 -
27 153 176 - 28 1244 881 + 
29 112 138 - 30 133 72 + 
31 548 482 + 32 159 90 + 
33 165 124 + 34 93 90 + 
35 502 303 + 36 821 509 + 
37 561 812 - 38 232 512 -
39 273 400 - 40 106 79 + 
41 2812 1642 + 42 263 249 + 
43 73 120 - 44 256 221 + 
45 137 71 + 46 1688 866 + 
47 5566 3539 + 48 659 465 + 
49 560 438 + 50 414 1323 -
51 126 346 - 52 906 2461 -
53 117 158 - 54 413 436 -
55 3089 2994 + 56 2653 3348 -
57 244 449 - 58 13854 8523 + 
59 5625 10832 - 60 837 1206 -
61 546 1608 - 62 212 103 + 
63 340 nsO - 64 440 3004 -
65 1962 1584 + 66 14!J9 4548 -
67 317 418 - 68 70 344 -
69 2132 2858 - 70 1139 1070 + 
71 145 877 - 72 292 412 -
73 7400 9086 - 74 101 269 -
75 7579 6306 + 76 174 471 -
77 377 571 - 78 103 40 + 
79 637 1324 - 80 3567 3607 -
81 1417 1014 + 82 26 23 + 
83 22 24 - 84 45 38 + 
85 36 28 + 86 48 35 + 
87 140 86 + 88 197 365 -
89 329 639 - 90 758 1425 -
91 305 206 + 92 158 229 -
93 479 373 + 94 802 527 + 
95 128 180 - 96 82 57 + 
97 181 122 + 98 7454 4165 + 
99 766 564 + 100 482 297 + 
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6.4 Experiment 2 

Qualitatively, we know that if we cannot assure the admissibility of a heuristic function, then the 
solution computed by Algorithm A may not be optimal. In this situation, an algorithm with a 
particular heuristic fun_ctio11 can be evaluated by two factors: its performance and its quauty. In 
our case the performance is a measurement on the speed of the of the algorithm while the quality 
is a measurement of the expected cost it may induce. 

Our second experiment is to coma.pre the effect of heuristic functions on the the performance 
and the quality of the algorithms. Our experiments cast some light on the tradeoff between time 
and solution quality. 

In our experiments, Algorithm A is tested with .:five different heuristic functions: h, h1 , h2 , 

ha and h', where h1, h2 and ha are defined as follows. 

h1(N) = h(N)/(1 + £) 
h2(N) = h(N)/(1 + £)2 and 
ha(N) = h(N)/(1 + £)3 

with £ = 0.25. The heuristic function h' is defined as follows: 

where Ga is the average induced graph of the current U-graph of the situation represented by N. 
The average induced graph of a U-graph G is a grapl1 obtained by replacing each uncertain edg 
in G with an ordinary edge whose weight is the mean value of the distrJbution of the uncertain 

dge. 
Heuristic functions h , h2, hs and h' are not admissible. Theorems 3 give the quality 

bounds for Algorithm A with heuristic functfon h1 , h2 and h3 • However, we do not have a 
bound on the admissibility of the heuristic function h'. 

For each problem and each heuristic function, we measure the cost of the solution graph and 
the numbeT of the nodes visited by Algoritl1m A with the heuristic function for the problem. More 
specifically, for each problem, we measured the following data: 

• c - the cost of the solution graph returned by Algorithm A with heuristic function h. This 
is the minimal expected cost for the problem. 

• m - the number of the nodes examined by Algorithm A with heuristic function h. 

• c1 - the cost of the solution graph returned by Algorithm A with heuristic function h1 • 

• m1 - the number of the nodes examined by Algorithm A with heuristic function h1 . 

• c2 - the cost of the solution graph returned by Algorithm A with heuristic function h2 • 

• m2 - the number of the nodes examined by Algorithm A with heuristic function h2 • 

• m3 - the cost of the solution graph returned by Algorithm A with heuristic function h3 • 

• m3 - the number of the nodes examined by Algorithm A with heuristic function h3 . 
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Table 3: The average cost ratios and speedup ratios of Algorithm A with different heuristic 
functions 

acr11 asru acr12 asr12 acr13 asr13 acr asr 
Class 1 1.0ll 1.54 1.031 2 .07 1.041 2.41 1.006 39.49 
Class 2 1.012 2.77 1 .064 9 .17 1.131 23.04 1.074 23.18 

• c' - the cost of the solution graph returned by Algorithm A with heuristic function h' . 

• m' - the number of the nodes examined by Algorithm A with heuristic function h'. 

From the measured data, we compute the following data: 

cr1 = c1/c, sr1 = m/mi, for j = 1,2, 3, and 
er'= c'/c, sr' = m/m' 

Intuitively, for each problem, crj is the cost ratio of the solution returned by Algorithm A with 
the heuristic function hj to the cost of the optimal solution for the problem; STj is the speedup 
ratio of Algorithm A with the heuristic function hj to Algori thm A with the heuristic function h. 
Similarly, er' is the cost ratio of the solution returned by Algori thm A with the heuristic function 
h' to the cost of the optimal solution for the problem; sr' is the speedup ratio of Algorithm A 
with the heuristic function h' to Algorithm A with the heuristic function h. 

The average values of the computed data overall problem instances are given in Table 3. From 
this table, we make the following observations. 

• The average cost ratios of Algorithm A with heuristic functions h1 h2 and h3 are all quite 
close to one. This implies that, even though these heuristic functions are not guaranteed 
admissible, they usually give very conservative estimations. Therefore, there is a great 
potential to obtain more informed heuristic functions. 

• For the U-graphs in both classes, Algorithm A with heuristic function h' outperforms 
Algorithm A with heuristic functions h1, h2 and h3. This is especially true for the U
graphs in the first class. The average cost ratios of Algorithm A with h' is 1.006, less 
than the cost ra tio of Algorithm A wi th the heuristic function h1 ; and the average speedup 
ratio is almost 40, far greater than the s_p eedup ratios of Algorithm A with the heuristic 
function ha . Th e good performance of Algorithm A with the heuris tic function h.' could 
be attributed to the fac t that more domain dependent knowledge is encoded in h' than 
in h1 or h2 or h3 • This is another illustration on the importance of domain dependent 
knowledge for decision search in particular and for heuristic search in general. 

7 Conclusions and Future Work 

In this article, we described a number of heuristic search algorithms for decision graph search. 
Since many decision making problems can be represented by decision graphs, these algorithms 
have a great application range. In particular, they have been used to solve the problem of U
graph based navigation. We also give some experimental results obtained when applying two of 

32 



the algorithms, namely Algorithms A and AO*, to the navigation problem. The experimental 
results show that for the particular problem, Algorithm A performs better than AO* in average. 
Furthermore, the experimental results illustrate that the domain-specific heuristic information 
plays a crucial role for decision graph search. 

Our future work includes applying the algorithms presented in this article to other applications 
such as influence diagram evaluation. It will be very instructive to compare the performance of 
our algorithms with that of other well known influence diagram evaluation algorithms such as 
(Shachter 1986, Shachter and Peot 1992, Zhang and Poole 1992, Zhang et al. 1993). Also, it will 
be very interesting to apply our anytime algorithm to real-time decision making problems to see 
how competitive it is. 
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A The Proofs of Theorems 

Theorem 1 If the heuristic function used by Al is admissible, then 

{ 
h*(n) 

dti ( n, b) = MAXI NT 

for any node n in the decision tree and a number b. 

if h*(n) < b 
otherwise. 

To prove this theorem, we make two observations. First, we observe that function h* is 
equivalent to dt0 defined as follows: 

Case 1 n is a terminal: 
dto(n) = h*(n) = v(n). (1) 

Case 2 n is a chance node: 
dto(n) = to, (2) 

where to = to1 and toi, 0 ~ i ~ l is recursively defined as follows: 

too= I:~=1 h(nj) * Pj; 
toi = toi-1 +Pi* (dto(ni) - h(nj)). 

(3) 

If h is admissible, then t? ~ t?+i for i = 0, ... , l - 1. 
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Case 3 n is a choice node: 
dto(n) = to (4) 

where to = to1 and toi, 0 $ i $ l is recursively defined as follows: 

too = oo; 
toi = min{toi-1,ci + dto(ni)}. 

(5) 

In the above definition, Ci denotes the cost of the edge from a choice node to its i-th child, and 
Pi denotes the probability associated with the i-th child of a chance node. They correspond to 
cost(N, i) and prob(N, i) respectively in algorithms Al and A2. This convention will be used 
in the rest of this section. 

'Second, we observe that, according to the structure of algorithm Al, the definition of dt1 can 
be further refined as follows: 

Case 1 n is a terminal; 

_ { v(n) 
dti ( n, b) - MAXINT 

Case 2 n is a chance node: 

dt1(n,b) = { ~~XINT 

if v(n) < b 
otherwise. 

if t1 < b 
otherwise. 

where t1 = t11 and t1i, 0 $ i $ l is recursively defined as follows: 

t10 = I:;=1 h( ni) * Pii 
b1i = (b - (t1i-1 - h(n;) * Pi))/Pii 

{ 
t1i-l 

th = t1i-1 +Pi* (dt1(n;,b1i)- h(ni)) 
ift1i-1 ~ b. 
otherwise. 

Case 3 n is a choice node: 
if t1 < b 
otherwise. 

where t1 = t11 and ti;, 0 $ i $ l is recursively defined as follows: 

t10 = b; 

t . _ { lii- 1 11 - min{t1i-1,Ci + dt1(n;,t;1-1 - ci)} 
if t1i-1 - Ci$ h(ni) 
otherwise 

Thus, to prove the theorem, it suffices to prove 

{ 
dto(n) 

dt1 ( n, b) = MAXINT 

for every node n in the decision tree. 

if dt0(n) < b 
otherwise. 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Based on the definition of dto and the characterization of dt1 given above, relation (11) can 
be proved by induction on the ·structure of the decision graph. First, we need two intermediate 
results. 
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Lemma 5 Let n be a choice node with children n1, ... , n1 . Let toi and t1i be defined by equations 
(5) and {12) respectively. Suppose that for any number b', 

for 1 :$ i :$ l . Then, for any i, 1 :$ i $ l 
{A) t1i < b iff toi < b; 
(B) if toi < b, then toi = t1i, otherwise. t1i = b. 

if dto( ni) < b' 
otherwise. 

Proof We prove this lemma by induction on i. Our observation here is that, under the given 
assumptions, equation (10) is equivalent to the following simpler one: 

t10 = b; 
t1i = min{ t1i-1, Ci+ dt1 ( ni, t1i-1 - ci)} 

Basis i = l. t11 = min{b,c1 + dt1(n1,b-:- c1)} and to1 = c1 + dto(n1). 
If 

then, 

By the given assumptions, we have: 

dt1(n1,b- c1) = MAXINT > b. 

Therefore 
tn = b. 

If 

to1 = c1 + dto(ni) < b 

then, 

By the given assumptions, we have: 

dto(ni) = dt1(n1,b - c1); 

c1 + dt1(n1, b- c1) = c1 + dto(n1) < b. 

Therefore, tn = c1 + dto(n1) = to1. The induction base holds. 
Induction Suppose the lemma is true for i = k. For i = k + 1, we have: 

tlk+l = min{tlk, ck+1 + dt1(nk+1, b- ck+l)}; 

tok+i = min{tok,ck+I + dto(nk+1)}, 

Now, we have two cases: 
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(A) tok+1 ~ b. In this case, we have tok ~ b and ck+l + dto(nk+1) ~ b. Thus we can obtain 
t1k = b by the induction assumption. Furthermore, since 

then, by the given assumptions, we have: 

dt1(nk+1, tlk - Ck+1) = dt1(nk+1, b - Ck+1) = MAXINT. 

Therefore, tlk+l = b . 
(B) t0k+1 < b, In this case, we need to consider three subcases: 
(a) tok ~ b. In this subcase, we have: 

ck+t + dto(nk+1) = tok < b; 

dto(nk+1) < b - ck+Ii 

tok+1 = ck+l + dto(nk+1)-

By the induction assumption, we have: tlk = b. By the given assumptions, we obtain: 

Thus, 
tlk+l = Ck+1 + dt1(nk+1,b- Ck+1) = dto(nk+1) + Ck+t· 

Therefore, tlk+l = tok+1 . 
(b) tok < b and tok::; ck+1 + dto(nk+1). In this subcase, we have: 

tok+1 = tok 

tok = tlk (by the induction assumption). 

Thus, 
tlk ::; Ck+l + dto( nk+l) ::; Ck+l + dto( nk+l, b - Ck+ t), 

Therefore, t1k+1 = t1k = tok+1 . 
( c) tok < b and tok > ck+l + dto( nk+t) In this subcase, we have: 

tok = tlk (by the induction assumption); 

tok+1 = Ck+1 + dto(nk+1) 

dto(nk+t) < tok - Ck+1 = tlk - Ck+1· 

Thus, by the given assumptions, we have: 

Thus, 
dt1(nk+1, b- Ck+1) + Ck+t = dto(nk+1) + Ck+t < tlk. 

Therefore, tlk+1 = dt1 ( nk+t, b - ck+l) + ck+t = tok+1 . 
In summary, the claim holds for i = k + 1. Consequently, the lemma holds by induction. D 
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Lemma 6 Let n be a chance node with children n1, ... , n1. Let toi and tli be defined by equations 
(3) and (8) respectively. Suppose that for any number b', 

if dto( ni) < b' 
otherwise. 

for 1 ~ i ~ l . Then, for any i, 1 ~ i ~ l 
(A} t1; < b iff toi < b; 
(BJ if toi < b, then toi = t1i. 

Proof: By induction on i, similar to that for Lemma 6 . D 

Proof of Theorem 1. We prove relation (11) by induction on nodes in the decision tree. 

1. n is a terminal. Then v(n) = h*(n) = dto(n). Thus, relation (11) holds trivially. 

2. n is a choice node. Suppose relation (11) holds for all the children of n. We need to 
consider two cases. 
(A). dt0 ( n) ~ b. We have the following derivation: 

to1 ~ b (by equations ( 4) and (5)) 

t1 = t11 ~ b (by Lemma 5) 

dt1(n) = MAXINT (by equation (9)). 
(B). dt0 (n) ~ b. We have the following derivation: 

dto( n) = t 01 < b (by equations ( 4) and ( 5) 

t11 = to1 ~ b (by Lemma 5) 

dt1 ( n) = t1 = to1 = dto( n) (by equation 9). 
In summary, relation (11) holds for n. 

3. n is a chance node. Suppose relation ( 11) holds for all the children of n. Similarly, it can 
be proved that the relation holds for n as well by using Lemma 6. 

In summary, the theorem holds in general. D 

Theorem 2 Suppose Al uses heuristic function h. If there exists a number 8 ~ 0 such that 
h satisfies: 

h(n) ~ h*(n) + 8 for every node n in a decision tree 

then 

and 
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for every node n in the decision tree. 

Theorem 3 Suppose Al uses heuristic function h. If the arc costs in a decision tree are all 
non-negative, h"'( n) ~ 0 for every node n in the decision tree, and there exists a number 8 ~ 0 
such that h satisfies: 

h(n) ~ (1 + 8) * h"'(n),for every node n in the decision tree, 

then for every node n in the decision tree and any number b ~ 0, 

h"'(n) * (1 + 6) ~ b if dt1(n, b) ~ b; 

and 

Since h* is equivalent to dt0 , all the occurrences of h * (n) in the above theorems can be 
replaced with dt0( n) . Therefore, for Theorem 2, it suffices to prove that for every node n in the 
decision tree 

dt0( n) + <5 ~ b if dt1 ( n, b) ~ b; 

and 
dto(n) + 6 ~ dt1(n, b) if dt1(n, b) < b 

For Theorem 3, it suffices to prove that for every node n in the decision tree 

and 

The proofs of Theorems 2 and 3 are very similar. Here we just present the proof of Theorem 3. 
Proof of Theorem 3 

Case 1 n is a terminal. Since dto(n) = h"'(n) ~ 0, thus, (1 + 8) * dt0(n) ~ dt0(n). 

If dt1(n, b) ~ b, then v(n) = h"'(n) ~ b, therefore, dt0 (n) * (1 + 8) ~ b. 

If dt1(n, b) < b, then dt1(n,b)v(n) = h"'(n) = dto(n), thus dt0(n) * (1 + <5) ~ dt1(n, b). 

Therefore, the theorem holds for node n . 

Case 2 n is a chance node. 
Suppose the theorem holds for all the children of node n. We need to consider the following 
two cases: 
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(A). dt1(n,b) < b. According to equation (7), we have dt1(n,b) =ti= t11 < b. Thus, 
tli < b for i = 1, ... ,l. Concequently, by equation (8), we have: dt1(ni,bii) < bii. By 
the induction assumption, we have: 

for i = 1, ... , l. According to equations (3) and (2), we obtain: 

I 

dto(n) =to,= LPi * dto(ni) 
i=l 

According to equation (8), we obtain: 

I I 

t11 = LPi * dt1(ni, b1i) ~ LPi * dt1(ni) * (1 + 8) = to1 * (1 + 8) 
i=l i=l 

Thus, dt1(n,b) ~ dto(n) * (1 + <5). 

(B). dt1(n,b) 2: b. According to equations (7) and (8), we know that t1 = t11 2: b. This 
implies that either tio 2: b or there exists k, 1 ~ k ~ l such that tlk-l < b and 
tlk 2: b . In the former case, we have: 

I I 

dto(n) * (1 + 8) = LPi * dto(ni) * (1 + 8) 2: LPi * h(ni) = t10 

Thus, dt0(n) * (1 + <5) 2: b. 
In the latter case, we can obtain: 

dt1(nj,b1j)<b1j for O~j<k 

dt1(nk,blk) 2: blk 

where blk = (b- (tlk-l - h(nk) * Pk))!Pk. Consequently, by the induction assumption, 
we have: 

and 

Therefore: 

Pk* (1 + 8) * dto(nk) 2: b - (t1k-1 - h(nk) * Pk)) 

tlk-1 +Pk* (1 + 8) * dto(nk) - h(nk) * Pk 2: b 

According to equation (8), we have: 

k-l I 

tlk-I = L dt1(nj, b1j) *Pi+ L h(nj) * Pi 
i=I j=k 
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Thus, 
k-1 I 

L dt1(ni,b1i) *Pi+ Pk* (l + o) * dto(nk) + L h(ni) *Pi~ b 
i=l i=k+l 

k I 

I:(1 + o)dto(ni) *Pi+ L (1 + o)dto(ni) *Pi~ b 
i=l i=k+l 

Therefore, 
I 

(1 + o) * dto(n) = I:(1 + o)dto(nj) *Pi~ b 
j=l 

Case 3 n is a choice node. 
Suppose the theorem holds for all the children of node n. The theorem holds too for node 
n if we can prove 

(13) 

for i = 0, ... , l, where toi and t1i are defined by equations (5) and (12) respectively. This 
inequality can be proved by induction on i. 

Basis: i = 0 , trivial. 

Induction. Suppose the inequality is true for i = k. Consider the case when i = k + l. 

(A). tok 5 ck+I + dto( nk+I). In this case, we have tok = tok+i. Since tlk+l 5 tlk, by the 
inner induction assumption, we conclude tlk+l 5 (1 + o) * tok+i. 

(B). tok > ck+I + dto(nk+I). In this case, we have: Ck+I + dto(nk+I) = tok+l. 
If t1k - ck+ 1 5 h( nk+I) , then, 

tlk+l = tlk 5 Ck+I + h(nk+1) 5 Ck+l + (1 + o) * dto(nk+I) 

Since Ck+1 ~ 0 and o ~ 0, we have tlk+I 5 (1 + 6) * tok+1. 
If tlk - Ck+1 > h(nk+1), then, 

tlk+l = min{tlk,ck+l + dt1(nk+1, tlk - ck+I)} 

When tlk - ck+I 5 dt1(nk+1, tlk - Ck+1), by the outer induction assumption, we have: 

(1 + o) * dto(nk+I) ~ tlk - Ck+1 

tlk+l = tlk 5 (1 + o) * dto(nk+I) + Ck+I 

Since ck+1 ~ 0 and o ~ 0, we have tlk+i 5 (1 + o) * tok+l . 
When tlk - Ck+i > dt1(nk+1, tlk - Ck+1), by the outer induction assumption, we have: 

(1 + o) *dto(nk+I) ~ dt1(nk+1,t1k - Ck+1) 

t1k+1 = Ck+1 + dt1(nk+1, t1k - Ck+1) 5 Ck+1 + (l + o) * dto(nk+1) 

Since ck+i ~ 0 and o ~ 0, we have tlk+1 5 (1 + o) * tok+i. 
By induction, inequality 13 holds for all i = 0, ... , l. 

In summary, the theorem holds for any node n . □ 
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