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Abstract

This paper explores the parallel complexity of �nite constraint satisfaction prob-

lems (FCSPs) by developing three algorithms for deriving minimal constraint networks

in parallel. The �rst is a parallel algorithm for the EREW PRAM model, the second

is a distributed algorithm for �ne-grain interconnected networks, and the third is a

distributed algorithm for coarse-grain interconnected networks. Our major results are:

given an FCSP represented by an acyclic constraint network (or a join tree) of size n

with treewidth bounded by a constant, then (1) the parallel algorithm takes O(logn)

time using O(n) processors, (2) there is an equivalent network, of size poly(n) with

treewidth also bounded by a constant, which can be solved by the �ne-grain distributed

algorithm in O(logn) time using poly(n) processors and (3) the distributed algorithm

for coarse-grain interconnected networks has linear speedup and linear scaleup. In ad-

dition, we have simulated the �ne-grain distributed algorithm based on the logical time

assumption, experimented with the coarse-grain distributed algorithm on a network of

transputers, and evaluated the results against the theory.

�Shell Canada Fellow, Canadian Institute for Advanced Research
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1 Introduction

A Finite Constraint Satisfaction Problem (FCSP) can be described informally as follows.

Given a set of variables, each with a �nite domain, and a set of constraints, each specifying

a relation on a subset of the variables, �nd the relation on the set of all the variables

which satis�es all the given constraints simultaneously. FCSPs are useful abstractions of

many problems in image understanding, planning, scheduling, database retrieval and truth

maintenance [Mac92] [Dec92]. However, it is well known that the FCSP decision problem

is NP-complete. In order to cope with the intractability of FCSPs, two strategies have

been followed: (1) �nding e�cient algorithms for preprocessing, such as arc consistency

[Mac77], path consistency [Mon74] and k-consistency [Fre78] algorithms and (2) exploiting

the topological features of FCSPs to guide e�cient algorithms for solving these problems

[Dec92].

Arc consistency (AC) plays an important role in constraint network preprocessing, not

only because it has linear complexity in the number of constraints in binary constraint

networks, but also because it produces the minimal network when it is applied to a tree

[MF85]. Similar results were proved in relational database theory [BFM+81], i.e. for acyclic

networks pairwise consistency is su�cient for global consistency. In fact, pairwise consistency

is exactly arc consistency on a join network and the scheme of an acyclic network is a

hypertree [SS88]. On the other hand, by exploiting the topological structures, a subset

of tractable FCSPs was identi�ed [Fre90] [Dec92]. The scheme of this kind of FCSP is a

particular kind of graph called a partial k-tree, i.e. a graph which can be embedded in

a hypertree with treewidth bounded by a constant k. It has been shown that many NP-

complete problems in graph properties can be decided in linear time for the set of partial

k-trees given a tree-decomposition [AL91]. Furthermore, it has been discovered that many
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classes of graphs are in this set [Bod86], including series-parallel graphs, outerplanar graphs

[Bod86] and graphs generated by context-free grammars [RM89] [Cou90]. The complexity of

FCSPs given a tree-decomposition is related to two parameters of acyclic constraint networks:

size and treewidth, which depend only on the topological features of FCSPs. The treewidth

of a constraint network, which is equivalent to the minimum induced width [Dec92], is one

of the essential factors for the complexity. If a tree-decomposition is given for an FCSP with

treewidth bounded by a constant, the decision problem can be solved in linear sequential

time [MF85] [Dec92] [RM89] [Fre90].

Research on parallel and distributed algorithms for FCSP started very recently. The par-

allel complexity of problems can be characterized by a class called NC [KR90]. A problem

is in NC i� there is a parallel algorithm for this problem in a PRAM model, which takes

polylog time using polynomial number of processors, i.e. theoretically, the problem can be

solved e�ciently in parallel. It has been shown [Bod88] that many graph recognition prob-

lems which are NP-complete in general are in NC when restricted to graphs with bounded

treewidth. It is proved that the arc consistency problem for a constraint network of binary

relations is in NC if the constraint network is a tree, but P-complete in general [Kas90]. It is

well known that NC � P and a P-complete problem is in NC i� NC = P which is unlikely to

be true. Some work on the connectionist approach to constraint satisfaction has also been

reported [Coo89] [Gue91], but worst case time has not essentially been improved by massive

parallelism.

Even though PRAM models are theoretically elegant for studying parallel complexity,

many parallel machines are designed as recon�gurable interconnected processors with dis-

tributed memory. Such a distributed computation model for FCSPs has been given in [CD91].

The distributed problem solving with distributed constraint satisfaction has been formalized

by [YDIK92]. A series of distributed arc consistency algorithms has been developed and the
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performance both in simulation and on real parallel machines has been analyzed. However,

the complexity of distributed constraint satisfaction remained unknown.

The major contributions of this paper are three new parallel and distributed algorithms

for constraint networks, and the analysis of these algorithms. Given an FCSP represented by

an acyclic constraint network (or a join tree) of size n with treewidth bounded by a constant,

we have the following results.

1. The parallel algorithm PTAC takes O(log n) time using O(n) processors, therefore such

an FCSP decision problem is in NC. It generalizes Kasif's result [Kas90] from treewidth

1 to any constant k; the result can be further generalized to FCSPs with treewidth

bounded by O(log n).

2. There is an equivalent network, of size poly(n) with treewidth also bounded by a

constant, which can be solved by the �ne-grain distributed algorithm, DJAC, in O(log n)

time using poly(n) processors.

3. The algorithm for coarse-grain interconnected networks, DTAC, has linear speedup and

scaleup.

In addition to the theoretical results, we have simulated the �ne-grain distributed algorithm

based on logical time assumptions and experimented with the coarse-grain distributed algo-

rithm on a network of transputers.

Table 1 summarizes current knowledge on the complexity of FCSPs; our results are

marked with (y). The rest of the paper is organized as follows. Section 2 gives the de�nition

of constraint networks and the related concepts, followed by two sequential AC algorithms,

JAC and TAC . Section 3 presents the parallel algorithm PTAC for the EREW PRAM model,

which yields the parallel complexity result. Section 4 develops the distributed algorithm DJAC

for �ne-grain interconnected networks, and related complexity results are developed for this
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Table 1: The complexity of FCSPs

Problem Restriction Sequential Complexity Parallel Complexity

FCSP decision binary relations NP-complete

Enforcing arc consistency linear P-complete

Consistency k-consistency poly P-complete

FCSP decision treewidth = 1 linear NC

given tree- treewidth � k linear NC y

decomposition treewidth � k log n poly NC y

model. Preliminary versions of the results in Sections 3 and 4 have been presented earlier

[ZM91a, ZM91b, ZM91c]. Section 5 constructs the distributed algorithm DTAC for coarse-

grain interconnected networks; speedup and scaleup are discussed for this model. Section 6

shows the experimental results both in simulation and on real distributed machines. Section

7 concludes the paper.

2 Properties of Constraint Networks

Many problems can be formalized as �nite constraint satisfaction problems, which can be

represented by constraint networks. In this section, we use the Course Scheduling (CS)

problem as an example to illustrate the major ideas. CS is a simpli�ed version of the

general timetabling problems [SS80]. CS(N;n; k) can be informally stated as follows. Given

a set of courses, fc1; c2; : : : ; cNg, each of which can be scheduled in one of k timeslots, and

a set of students, fs1; s2; : : : ; sng, each of whom takes some of the courses, the problem is

to �nd a timetable such that no two courses taken by any student are scheduled in the

same timeslot. We will come back to this example later when we discuss the properties of

constraint networks.
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2.1 Constraint networks

Formally, a constraint, written r(R), can be considered as a relation r on a relation scheme

R [Mai83]. A relation scheme R is a set of variables, fv1; v2; : : : ; vkg. Associated with each

variable vi is a domain di. Let d = d1 [ d2 : : : [ dk. A relation r on a relation scheme R is a

set of mappings, ft1; t2; : : : ; tpg, from R to d, with the restriction that if t 2 r then t(vi) 2 di.

We call r(R) a universal constraint if r includes all the possible mappings from R to d with

that restriction. Projection, join and semijoin are operations de�ned on constraints. Let

r(R) be a constraint and X � R. The projection of r onto X, written �X(r), is a relation

on the relation scheme X, �X(r) = ft(X)jt 2 rg, where t(X) is the mapping restricted to

X. The join operation of two constraints r(R) and l(L), written r 1 l, is a relation on the

relation scheme R[L, r 1 l = ft(R[L)jt(R) 2 r; t(L) 2 lg. The semijoin operation of r(R)

and l(L), written r / l, is a relation on the relation scheme R, r / l = �R(r 1 l). Projection,

join and semijoin are the basic operations in our algorithms.

Any FCSP can be represented by a constraint network. Graphically, a constraint network

is a labeled hypergraph, in which nodes represent variables and arcs represent constraints.

Formally, a constraint network is de�ned as follows.

De�nition 2.1 (Constraint network) A constraint network is a quadruple CN = hV; dom;A; coni

where

� V is a set of variables, fv1; v2; : : : ; vNg,

� associated with each variable vi is a �nite domain di = dom(vi),

� A is a set of arcs, fa1; a2; : : : ; ang,

� associated with each arc ai is a constraint ri(Ri) = con(ai).
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Let C be the set of constraints of a constraint network CN , C = fcon(ai)jai 2 Ag. The

hypergraph of CN is called the scheme of CN [Dec92], scheme(CN) = hV;Ei where E =

fRjr(R) 2 Cg.

Clearly, CS can be represented by a constraint network CN with V = fc1; c2; : : : ; cNg,

dom(ci) = f1; 2; : : : ; kg, A = fs1; s2; : : : ; sng, and con(si) = ri(Ri) where Ri is the set of

courses which si takes and ri = ftj8cp; cq 2 Ri; cp 6= cq ! t(cp) 6= t(cq)g.

A solution s of a constraint network CN is a mapping from the set of all variables to

their corresponding domains which satis�es all the given constraints. Formally, let sol(CN)

be the set of all solutions of CN , s 2 sol(CN) i� 8r(R) 2 C, s(R) 2 r. A constraint network

CN is minimal i� 8r(R) 2 C, �R(sol(CN)) = r. Clearly, the FCSP decision problem can

be reduced to the problem of deriving minimal networks. Two constraint networks CN and

CN 0 are equivalent, written CN � CN 0, i� V = V 0; dom = dom0; sol(CN) = sol(CN 0). A

constraint network is binary i� 8r(R) 2 C; jRj � 2.

2.2 Dual networks and join networks

The dual network DN of a constraint network CN is an alternative representation of an

FCSP. DN is a labeled undirected graph, in which the nodes are the arcs of CN labeled by

constraints. Formally, for any two nodes ai; aj in DN , with con(ai) = ri(Ri) and con(aj) =

rj(Rj), if I = Ri \ Rj 6= ;, then e = fai; ajg is an edge in DN . The label of e, denoted

L(e), is I. A dual network can be regarded as a binary constraint network with constraints

of equality.

A join network JN of a constraint network is a subnetwork of the dual network DN , with

redundant edges removed. Formally, for any two nodes ai, aj in JN , with con(ai) = ri(Ri),

con(aj) = rj(Rj), and I = Ri\Rj 6= ;, if there is a path between ai and aj in JN , consisting

of he1; e2 : : : ; eli, such that 81 � k � l, I � L(ek), then e = fai; ajg is not an edge in
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JN , otherwise e is an edge in JN . A dual network can have many join networks with

di�erent redundant edges removed. Consider a CS example with N = 7, n = 6, k = 4 and

R1 = fc1; c2; c3g; R2 = fc1; c4g; R3 = fc4; c5g; R4 = fc5; c6g; R5 = fc2; c6g; R6 = fc1; c2; c7g.

Figure 1 shows the scheme of the constraint network, the dual network and four of its

join networks for this example. Two join networks JN1 and JN2 are equivalent, written

JN1 � JN2 i� their correspondent constraint networks are equivalent.

2.3 Acyclic constraint networks

A constraint network CN is acyclic i� its scheme is acyclic, a hypertree [Mai83] [SS88].

It has been shown that a hypergraph is a hypertree i� its join graphs are trees [Mai83].

A constraint network may not be acyclic in general, as in the example shown in Fig. 1.

However, for any hypergraph, a tree-decomposition can be de�ned as follows.

De�nition 2.2 (Tree-decomposition) Let G = hV;Ei be a hypergraph. A tree-decompo-

sition of G is a pair hfXiji 2 Ig; T = hI; F ii, with Xi � V and T a tree, with the following

properties:

�
S
i2IXi = V ,

� for every edge e 2 E, there is an Xi; i 2 I such that e � Xi,

� for all i; j; k 2 I, if j lies on a path in T from i to k, then Xi \Xk � Xj .

The treewidth of a tree-decomposition hfXiji 2 Ig; T i is maxi2I jXij�1. The treewidth of G,

denoted treewidth(G), is the minimum treewidth of a tree-decomposition of G, taken over

all possible tree-decompositions of G. Given a constraint network CN = hV; dom;A; coni,

if hfXigi2I; T i is a tree-decomposition of scheme(CN), TC = hV; fXigi2Ii is called a tree-

clustering scheme of CN . It is easy to see that (1) any tree-clustering scheme TC of CN is
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Constraint Network Dual Network
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Figure 1: A constraint network, its dual network and four join networks
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a hypertree and (2) for any relation scheme R in CN , there is an edge R0 in TC, such that

R � R0. TC can be obtained by applying a tree-clustering algorithm [Dec92] to scheme(CN).

Figure 2 shows two di�erent tree-clustering schemes for the constraint network given in Fig.

1.

c1 1cc3

c2

3c
2c

c4

c5

6c

c6

5c

c4

21 TC  = {{c1,c2,c3}, {c1,c4,c5}, {c2,c5,c6}, {c1,c2,c5}, {c1,c2,c7}}TC  = {{c1,c2,c3}, {c1,c2,c4,c5,c6}, {c1,c2,c7}}

c7 7c

Figure 2: Two tree clustering schemes

Given a tree-clustering scheme TC for CN , we can construct an equivalent acyclic net-

work ACN for CN as follows. Let ACN = hV; dom;A [ A0; con0i such that 8R0 2 TC and

R0 62 scheme(CN);9a0 2 A0; con0(a0) = r0(R0) is a universal constraint and 8a 2 A; con0(a) =

con(a). It is easy to see that (1) ACN � CN and (2) ACN is an acyclic constraint network.

For the CS problem, if TC is TC2 in Fig. 2 then A
0 = fa1; a2; a3g, with universal constraints

con0(a1) = r1(fc1; c4; c5g), con
0(a2) = r2(fc2; c5; c6g), and con0(a3) = r3(fc1; c2; c5g). A join

network for this acyclic constraint network is shown in Fig. 3. We call a join network of an

acyclic constraint network a join tree.

2.4 Enforcing consistency

A constraint networkCN = hV; dom;A; coni is pairwise consistent [BFM+81] if for all pairs of

ri(Ri) and rj(Rj) in C, �Ri\Rj(ri) = �Ri\Rj(rj) where C = fcon(a)ja 2 Ag. It is easy to see

that a constraint network is pairwise consistent i� its dual network is arc consistent [Mac77].
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{c   c  }2 6

{c   c  }1 5

52{c   c  }
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{c   c  }1 2

1cc1 2c1c 7c

c11c 3cc2c1 1cc1c1 c2 5c

1cc1c2 c5 6c

1cc1c1 c4 5c

c1 4c 5cc4

2c c6 c5 6c

Figure 3: A join tree

Furthermore, the dual network is arc consistent i� its join networks are arc consistent. It is

clear that if a constraint network is minimal, it is pairwise consistent. However, the converse

is not always true for arbitrary networks. For any relations on the relation schemes in a

constraint network, pairwise consistency implies global consistency if the constraint network

is acyclic [BFM+81]. This is equivalent to the result in [MF85] that arc consistency enforces

a minimal network if the network is a tree.

Let AC be a series of algorithms with a join network as input and an equivalent arc

consistent join network as output. AC enforces arc consistency on a join network, i.e.

AC(JN) � JN . We present two sequential AC algorithms: JAC and TAC.

JAC (Fig. 4) is a modi�ed version of AC-3 in [Mac77]. First put the set of arcs, pairs of

constraints, in a queue. While the queue is not empty, do the following: Get an arc from the

queue, perform a semijoin of the two constraints, with the �rst constraint against the second.

If the �rst constraint is re�ned, make sure all of its neighboring arcs are on the queue. The

algorithm �nishes with an arc consistent join network. According to [MF85], JAC is linear

in the number of arcs, or edges, in the join network. Furthermore, it can be more e�cient

for a join tree if the arcs in the queue are initially ordered.
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||||||||||||||||||||||||||{

Algorithm JAC: Enforce Arc Consistency

Input: join network <A,E>;

Output: arc consistent network;

BEGIN

q := the set of all arcs in E;

/* if {a1,a2} in E, then both (a1,a2) and (a2,a1) in q */

WHILE (q is not empty) DO

BEGIN

remove arc (a1,a2) from q;

/* con(a1) = r1(R1),con(a2) = r2(R2) */

r := r1 semijoin r2;

IF r =\= r1 THEN

BEGIN

r1 := r;

q := q union {(a,a1)|{a,a1} in E}\{(a2,a1)}

END

END

END

||||||||||||||||||||||||||{

Figure 4: Enforcing arc consistency in a join network
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TAC (Fig. 5) is an explicit version of JAC for rooted join trees (by picking any node as

root), such that each arc is checked only once. The algorithm produces an arc consistent

||||||||||||||||||||||||||{

Algorithm TAC: Enforcing Arc Consistency

Input: rooted join tree <A,E>;

Output: arc consistent join tree;

BEGIN

q0 := the set of all nodes in A;

/* ordered from children to parents */

q := q0;

WHILE (q is not empty) DO

BEGIN

remove node a from q; /* con(a) = r(R) */

FOR (all (a,a1) in E) /* con(a1) = r1(R1) */

/* a is the parent of a1 */

r := r semijoin r1

END

q: = reverse q0;

/* ordered from parents to children */

WHILE (q is not empty) DO

BEGIN

remove node a from q;

FOR (all (a1,a) in E) DO

r := r semijoin r1

END

END

||||||||||||||||||||||||||{

Figure 5: Enforcing arc consistency in a join tree

join tree by traversing the join tree twice: �rst bottom up, then top down. The algorithm

consists of two phases. The �rst phase starts from the leaves and each constraint performs

semijoin operations with all of its children. This phase results a directional arc consistent

network, i.e. parents are consistent with their children. The second phase starts from the
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root and each constraint performs a semijoin operation with its parent.

The solutions for a constraint network CN can be computed in three steps. First, con-

struct a join tree JT of an acyclic constraint network ACN which is equivalent to CN .

Second, enforce arc consistency in JT . Third, apply backtrack free search [Fre82] to AC(JT ).

In this paper, we concentrate on the parallel and distributed algorithms for the second step,

while the �rst step is considered as preprocessing, in that our algorithms assume that CN

is represented by JT (for PTAC and DTAC) or JN (for DJAC).

2.5 Sequential complexity

The complexity of the arc consistency problem on a join network is related to two parameters

of its constraint network: size and width. The size of a constraint network is the number

of arcs, size(CN) = jAj. The width of a constraint network is the maximum size of the

relation schemes minus one, width(CN) = maxR2scheme(CN) jRj � 1. The width of an acyclic

constraint network is also called the treewidth. For the constraint network CN given in Fig.

1, size(CN) = 6, width(CN) = 2. Its acyclic constraint network with tree-clustering scheme

TC1 has size 7, treewidth 4; while its acyclic constraint network with tree-clustering scheme

TC2 has size 9 and treewidth 2. The treewidth of a constraint network is the minimum

treewidth over all of its acyclic constraint networks resulting from tree-decomposition.

For an acyclic constraint network of size n and treewidth w, arc consistency in any of its

join trees takesO(nl log l) sequential time [Dec92] where l = mw+1 andm = max1�i�Nfjdom(vi)jg.

Since w is the only exponential factor, it is critical for an acyclic constraint network to have

small treewidth. Even though �nding the treewidth of a constraint network and its corre-

sponding tree-decomposition is an NP-complete problem [AL91], there are many e�cient

algorithms for building sub-optimal tree-clustering schemes [Dec92]. Furthermore, in many

cases, the relation schemes are �xed, such as a relational database subjected to repeated
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queries, or have a regular topology such as an array, ring or mesh structure. The paral-

lel and distributed AC algorithms assume that the equivalent acyclic network and its join

network are constructed o�-line.

3 A Parallel Algorithm and Complexity

Arc consistency on a join tree whose constraint network has treewidth 1 is in NC [Kas90]. In

this section, we generalize this result to any acyclic constraint network of bounded treewidth.

We show that, given a join tree of an acyclic constraint network CN of bounded treewidth,

there is an e�cient parallel AC algorithm which takes O(log n) time using O(n) processors

in the EREW PRAM model, where n is the size of CN .

The key idea is to apply parallel tree contraction and expansion algorithms to the prob-

lem. The techniques of tree contraction and expansion are abstracted from many applica-

tions dealing with trees. Tree contraction reduces a tree to a single node, processing the

information on the nodes as they are removed. Tree expansion is an inverse of contraction,

propagating the information from the single node back to other nodes. It is known that there

exist e�cient parallel algorithms for tree contraction and expansion [MR85] [ADKP89]. We

can obtain an e�cient parallel algorithm for the problem by associating a procedure with

each tree contraction and expansion step and proving that such a procedure executes in

parallel quickly. The parallel algorithm is based on the parallel tree contraction algorithm

in [MR85]. The procedures can be associated with other parallel tree contraction algorithms

[ADKP89].

3.1 Parallel tree contraction

Let T = hA;Ei be a rooted tree with nodes A and edges E. A sequence of nodes a1; : : : ; ak

is called a chain if ai+1 is the only child of ai for 1 � i < k, and ak has exactly one child and
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that child is not a leaf. The parallel tree contraction algorithm de�nes two basic contract

operations: RAKE and COMPRESS (Fig. 6). RAKE is the operation of removing all

COMPRESS

RAKE

RAKE || COMPRESS

CONTRACT:

Figure 6: Parallel tree contraction

leaves from T . COMPRESS is the operation on T which contracts all the maximal chains

of T in half, by identifying ai with ai+1 for i odd, where ai is a node on a maximal chain.

CONTRACT is the simultaneous application of RAKE and COMPRESS to the entire tree.

After dlog5=4 ne executions of CONTRACT on a tree of n vertices, the tree is reduced to its

root [MR85].

3.2 The parallel algorithm PTAC

The parallel AC algorithm PTAC consists of two phases: ContractAC and ExpandAC.ContractAC,

shown in Fig. 7, iterates tree contraction on a rooted join tree T . Semijoin operations are
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associated with each RAKE; join and projection operations are associated with each COM-

PRESS. The algorithm assumes that the join tree T = hA;Ei, with constraints associated

with A, is allocated in the common memory.

For a 2 A, let pt(a) be the parent of a. If a has only one child, let cd(a) denote

that child. If arg(a) is the number of children of a, let chain(a) be a boolean function

de�ned as arg(a) = 1 and arg(pt(a)) = 1. We call p the contracting parent of a, if a

is raked from p or a is compressed to p. Let cp(a) denote the contracting parent of a.

Whenever a RAKE operation removes a leaf node with constraint l(L) from its parent with

constraint r(R), a semijoin r / l is performed and r, the relation on the parent, is updated.

Correspondingly for the COMPRESS operation, suppose ai; ai+1 are two consecutive nodes

on a chain and let ai�1 be the parent of ai and ai+2 be the child of ai+1 with con(ak) = rk(Rk)

and Lk = Rk\Rk+1, where i�1 � k � i+1. Whenever ai is identi�ed with ai+1, an operation

�Li�1[Li[Li+1(ri 1 ri+1) is applied, to produce the constraint for the new merged node.

Figure 8 shows the �rst three iterations of applying algorithm ContractAC to a join tree

resulting from a tree-decomposition of a constraint network with a ring topology, where

shading depicts the removal of a node from T . It is clear that the number of iterations in

ContractAC is identical to the number needed for CONTRACT.

During the tree contraction phase, links between a contracting parent and its contracted

nodes are established. Let T 0 = hA0; E0i be the join tree resulting from applying ContractAC

to T , such that A0 = A [A00 where A00 includes all the nodes created in the tree contraction

phase, and (a; a0) 2 E 0 i� a0 = cp(a), i.e., a0 is the contracting parent of a. The tree expansion

phase (Fig. 9) starts from the root node of T 0 and propagates the solutions from root to

leaves. Initially, the root is marked. Whenever the parent of a node is marked, the solutions

can be computed for the node and then the node is marked.

The parallel AC algorithm PTAC (Fig. 10) simply applies ContractAC to T and then
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||||||||||||||||||||||||||{

Algorithm ContractAC: Tree Contraction Phase

Input: rooted join tree T = <A,E>;

Output: directional arc consistent join tree;

Iterate the following procedure until T=root:

In Parallel for all a in A\{root}

BEGIN

r(R) := con(a); p(P) := con(pt(a));

IF (a has a leaf child) THEN /* RAKE */

FOR (each leaf child c with constraint l(L))

BEGIN

r := r semijoin l; remove c;

/* update links of a */

cp(c) := a

END

ELSE IF (chain(a)) THEN /* COMPRESS */

BEGIN /* pt(a) is identified with a */

create a new node a';

c(C) := con(cd(a));

p'(P') := con(pt(pt(a)));

P" := C * R + R * P + P * P';

/* + denotes union,* denotes intersection */

p" := project (r join p) on P";

con(a') := p"(P");

pt(cd(a)) := a'; cd(a') := cd(a);

cd(pt(pt(a)) = a'; pt(a') = pt(pt(a));

cp(a) := a'; cp(pt(a)) := a'

END

END

||||||||||||||||||||||||||{

Figure 7: The algorithm for parallel directional arc consistency: I
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Figure 8: The tree contraction phase

applies ExpandAC to T 0.

Proposition 3.1 The result of applying PTAC to T is an arc consistent join network whose

constraint network is minimal and equivalent to the constraint network of T .

Proof: The result of the tree contraction phase is the same as the result of the �rst phase

in TAC, i.e. the network is directional arc consistent. The result of the tree expansion phase

is the same as the second phase in TAC, which makes each edge in T 0 arc consistent. Since

A � A0, the constraint network with arcs A is arc consistent. On the other hand, the

constraints associated with A0 are derived from A. So the resulting constraint network of T 00

is equivalent to the constraint network of T .2

19



||||||||||||||||||||||||||{

Algorithm ExpandAC: Tree Expansion Phase

Input: result of ContractAC T' = <A',E'>;

Output: arc consistent join tree;

marked(root) := 1;

Iterate the following procedure the same

number of times as for ContractAC:

In Parallel for a in A' \{root}

/* at most n nodes at each iteration */

BEGIN

IF (marked(cp(a)) THEN

BEGIN

r(R) := con(a); p(P) := con(cp(a));

r := r semijoin p;

marked(a) := 1

END

END

||||||||||||||||||||||||||{

Figure 9: The algorithm for directional arc consistency: II

||||||||||||||||||||||||||{

Algorithm PTAC: Parallel Arc Consistency

Input: rooted join tree T;

Output: arc consistent join tree T";

BEGIN

T' = ContractAC(T);

T" = ExpandAC(T')

END

||||||||||||||||||||||||||{

Figure 10: The parallel AC algorithm PTAC
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3.3 Parallel complexity

The parallel complexity of arc consistency on a join tree can be derived from the following

theorem.

Theorem 3.1 The algorithm PTAC takes O(log n) time using O(n) processors in the EREW

PRAM model, given a join tree of an acyclic constraint network with bounded treewidth.

Proof: If the join tree T is not of bounded degree, it can be represented by a binary tree

with at most twice as many nodes. Such a transformation takes O(log n) time in parallel

[MR85, ADKP89]. So let T be a binary join tree. Let w be the treewidth of the acyclic

constraint network of the join tree T . It is clear that RAKE does not change any of the

relation schemes. After each COMPRESS operation, relation schemes are updated to Li�1[

Li [ Li+1. But jLij is always bounded by w, for all i, during the whole process. So the

size of all relation schemes in T 0 is bounded by 3w. We also notice that since T is a binary

tree, RAKE can be done in constant time at each iteration. Thus the operations take

constant time at each iteration of contraction. The total number of iterations is dlog5=4 ne.

At each iteration, there are at most n nodes which require at most n processors. For the

tree expansion phase, the tree sequence is the inverse of the sequence for tree contraction.

Furthermore, there are no more than a bounded number of processors reading from the same

memory location at any time. 2

The procedures associated with RAKE and COMPRESS for arc consistency can be asso-

ciated with other parallel tree contraction algorithms. By associating semijoin with PRUNE

and associating join and projection with BYPASS in the algorithm given by [ADKP89], arc

consistency for an acyclic constraint network of bounded treewidth can be done optimally

in O(log n) time using O(n= log n) processors in an EREW PRAM.
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Since an acyclic constraint network whose join tree is arc consistent is also a minimal

network, �nding a minimal network (the FCSP decision problem) for a bounded treewidth

constraint network is in NC given the tree-decomposition.

The result can be extended to constraint networks with the treewidth bounded by

O(log n). It is easy to see that the number of tuples in a relation scheme of size O(log n)

is bounded by poly(n). Join and projection operations can be considered as variations of

sort and merge operations which can be done O(log l) using O(l) processors, where l is the

length of the longer list [KR90]. Therefore, each RAKE and COMPRESS operation in PTAC

takes O(log n) using poly(n) processors. Since there O(log n) iterations, the algorithm takes

O(log2 n) using poly(n) processors.

4 A Distributed Algorithm and Complexity

In the real world, many parallel machines are recon�gurable interconnected processors with

distributed memory and asynchronous control. We de�ne a �ne-grain interconnected network

(FIN) model as follows:

De�nition 4.1 (FIN model) Each processor has a set of input and output ports. A pro-

cessor can receive and send one message of bounded size, and perform one operation on

operands of bounded size in its local memory at each step. The network consists of a set of

processors connected by channels with any �xed topology. Communication is asynchronous

with unbounded bu�ers and message passing is of bounded delay.

Let si be a state of processor i. The state of a distributed computing network of n processors

is de�ned as hs1; s2; : : : ; sni. A stable state S of a network has the following property: if there

is a time t at which S is the state then for all t0 > t S is the state. A distributed algorithm

on a network is stable if the network always achieves a stable state. The time complexity of
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a distributed algorithm is de�ned as the longest time required to achieve a stable state from

any initial state.

4.1 The distributed algorithm DJAC

The distributed constraint satisfaction algorithm DJAC (Fig. 11) is essentially the distributed

version of JAC. Let the nodes and edges of a join network map to processors and bidirectional

channels in a distributed computing network, respectively. The algorithm is uniform: all

processors have the same program. Let r(R) be the local constraint and propagate be a

subroutine for propagating the local constraint to its neighbors. The following propositions

characterize the properties of DJAC.

Proposition 4.1 DJAC is a stable distributed algorithm.

Proof: This is obvious since semijoin is a monotone decreasing function on the number of

the relation tuples which is initially �nite.2

Proposition 4.2 A join network JN is arc consistent i� the distributed network of JN is

stable.

Proof: Obvious. 2

4.2 The distributed complexity

The distributed complexity of arc consistency can be derived from the following propositions.

Proposition 4.3 If the width of constraint network CN is bounded by a constant, the com-

plexity of DJAC is O(n), where n = size(JN).

Proof: Suppose the number of relation tuples on each relation scheme is bounded by a

constant K. So the total number of messages is bounded by 2Kn. Therefore in O(n) time

the network will achieve a stable state. 2
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||||||||||||||||||||||||||{

propagate:

FOR (all channel c) send r(R) to c

Algorithm DJAC: Distributed AC

Input: join network <A,E>;

Output: arc consistent network;

BEGIN

propagate;

LOOP

BEGIN

s := r;

FOR (all channel c)

IF (there is a message at channel c) THEN

BEGIN

receive r1(R1) from c;

s := s semijoin r1

END

IF s =\= r THEN

BEGIN r := s; propagate END

END

END

||||||||||||||||||||||||||{

Figure 11: The distributed AC algorithm DJAC
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It is clear that given a join tree of an acyclic constraint network, the resulting constraint

network is minimal i� its corresponding distributed network is stable. Moreover, such a

distributed network tends to stabilize more quickly than an arbitrary network.

Proposition 4.4 If JT is a join tree of an acyclic constraint network of bounded treewidth

and JT is of bounded degree, the complexity of DJAC is �(D) where D is the diameter of JT .

Proof: Let the degree of JT be bounded by K. Consider K time steps as one big time step.

A constraint ri(Ri) will be \a�ected" by another constraint rj(Rj) i� given all the universal

constraints along the path from j to i, the semijoin propagation from Rj to Ri is strictly

included in Ri. After l big steps, any node may be \a�ected" by nodes at distance l. Since

there is a unique path between any pair of nodes in a tree, a node can only be \a�ected" by

some other node once. No node can be \a�ected" by any other node after D big steps. So

KD is the upper bound. And it is obvious that D is the lower bound, since two nodes at

distance D may \a�ect" each other. 2

If the join tree is of unbounded degree, we can transform the join tree to a binary join

tree which can be mapped to a distributed network. Furthermore, it is easy to see that if the

join tree happens to be a balanced tree, then D = O(log n). However, in many cases, a join

tree may be very unbalanced, with D = 
(n). The following theorem shows that for any

FCSP, if it can be represented by an acyclic constraint network ACN of size n and bounded

treewidth, then we can �nd a balanced binary join tree, such that its acyclic constraint

network, with size poly(n) and bounded treewidth, is equivalent to ACN .

Theorem 4.1 Let n and w be the size and treewidth of an acyclic constraint network ACN .

One can construct a balanced binary join tree such that its acyclic constraint network ACN 0

is equivalent to ACN with size(ACN 0) = poly(n) and treewidth(ACN 0) � 3w.
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Proof: Let JT be the join tree of ACN and JT 00 be the binary tree representation of JT and

ACN 00 be the acyclic constraint network of JT 00. Let n00 and w00 be the size and treewidth

of ACN 00. It is clear that n00 � 2n and w00 = w. Let L and R be relation schemes. The

following recursive algorithm BT (T;L;R) takes a binary join tree T as input and returns

the balanced binary join tree.

If T has only one node, return T . Otherwise do the following. First, �nd an edge in T

which is a \1/3 { 2/3" separator, i.e., it cuts the binary tree into two subtrees T1 and T2

with both sizes in the range of [1=3nT ; 2=3nT ], where nT is the number of nodes in T . Let

BT (T1; L;M) and BT (T2;M;R) be results of applying this algorithm recursively to T1 and

T2 respectively, whereM is the label of the separator. Then create a node C with a universal

constraint on relation scheme L[M [R. Finally create a tree with C as root, BT (T1; L;M)

and BT (T2;M;R) as the left and right children of C, and return C.

Let JT 0 = BT (JT 00; ;; ;) be the result of applying the above algorithm to JT 00. Let

ACN 0 be the acyclic constraint network of JT 0. Since the height of JT 0 is log3=2(n
00), there

are at most 2log3=2(n
00) nodes, i.e., size(ACN 0) = poly(n). Since all jLj, jM j and jRj are

bounded by w, treewidth(ACN 0) is bounded by 3w. 2

Since the diameter of the resultant join tree is O(log n), enforcing arc consistency in an

acyclic constraint network of size n with bounded treewidth takes O(log n) time in a network

of poly(n) processors.

5 A Coarse-Grain Distributed Algorithm

In the previous two sections, we have presented the parallel AC algorithms for PRAM mod-

els and �ne-grain interconnected network models. In both of these models, the number of

processors is not bounded. However, most real parallel machines are coarse-grain intercon-

nected networks, i.e. the number of processors is bounded by a constant. In this section, we
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give a distributed algorithm for arc consistency on join trees for coarse-grain interconnected

network (CIN) models. Speedup and scaleup of the problem will be discussed for this class

of models.

5.1 The distributed algorithm DTAC

The distributed algorithm DTAC is a distributed version of TAC, given a balanced binary join

tree. Like the algorithms given by [CA91], DTAC distributes a problem into a set of processors

statically. Let JT be a balanced binary join tree and let the processors be con�gured as a

balanced binary tree PT . Let hj and hp be the height of JT and PT respectively, assuming

hj � hp. There are three kinds of processors in PT : root processor (RP), internal processors

(IPs) and leaf processors (LPs). We assign each subtree of JT rooted at depth hp to each LP

and assign the root and the rest of internal nodes of JT to the RP and IPs of PT respectively

(Fig. 12).

LP LP LP LP

IPIP

RP

Figure 12: The problem distribution with hj = 4 and hp = 2

Algorithm DTAC consists of three types of processes: RPAC, IPAC and LPAC. RPAC (Fig.

13) is loaded on RP of PT . It combines the results from its children and sends the �nal result

back. IPAC (�gure 14) is loaded on each IP. It sends the result combined from its children to

its parent and then sends the result combined with its parent back to its children. LPAC (Fig.
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||||||||||||||||||||||||||{

Algorithm RPAC: Root Algorithm

BEGIN /* c(C) is the constraint on the node */

receive l(L) from left;

receive r(R) from right;

c := c semijoin l;

c := c semijoin r;

send c(C) to left;

send c(C) to right

END

||||||||||||||||||||||||||{

Figure 13: The Root Processor algorithm RPAC

||||||||||||||||||||||||||{

Algorithm IPAC: Internal Node Algorithm

BEGIN /* c(C) is the constraint on the node */

receive l(L) from left;

receive r(R) from right;

c := c semijoin l;

c := c semijoin r;

send c(C) to parent;

receive p(P) from parent;

c := c semijoin p;

send c(C) to left;

send c(C) to right

END

||||||||||||||||||||||||||{

Figure 14: The Internal Processor algorithm IPAC
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||||||||||||||||||||||||||{

Algorithm LPAC: Leaf Node Algorithm

/* r(R) is the constraint on the subtree root */

BEGIN

SemijoinUp(r); /* Fig. 16 */

send r(R) to parent;

receive p(P) from parent;

r := r semijoin p;

SemijoinDown(r); /* Fig. 16 */

END

||||||||||||||||||||||||||{

Figure 15: The Leaf Processor algorithm LPAC

15) is loaded on each LP. It consists of two phases: the �rst phase combines the results up

to the root of the subtree, the second phase propagates the �nal results back to each node

in JT .

5.2 Speedup and scaleup

The ideal parallel system demonstrate two key properties [DG92]: (1) linear speedup: twice

as much hardware can perform the task in half the elapsed time, and (2) linear scaleup: twice

as much hardware can perform twice as large a task in the same elapsed time. Formally, the

speedup of a system is measured as

speedup(N) =
elapsed time using 1 processor

elapsed time using N processors
:

The speedup is said to be linear if speedup(N) = O(N). On the other hand, the scaleup of

a system is measured as

scaleup(n;N) =
elapsed time of size n problem using 1 processor

elapsed time of size nN problem using N processors
:

The scaleup is said to be linear if scaleup(n;N) = O(1).
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||||||||||||||||||||||||||{

Procedure SemijoinUp(c):

/* c(C) is the current constraint */

/* l(L) is the left constraint */

/* r(R) is the right constraint */

BEGIN

IF (C is not a leaf node in JT) THEN

BEGIN

IF (there is left child l) THEN

BEGIN

SemijoinUp(l);

c := c semijoin l

END

IF (there is right child r) THEN

BEGIN

SemijoinUp(r);

c := c semijoin r;

END

END

END

Procedure SemijoinDown(c):

/* c(C) is the current constraint */

/* l(L) is the left constraint */

/* r(R) is the right constraint */

BEGIN

IF (C is not a leaf node in JT) THEN

BEGIN

IF (there is left child l) THEN

BEGIN

l := l semijoin c;

SemijoinDown(l)

END

IF (there is right child r) THEN

BEGIN

r := r semijoin c;

SemijoinDown(r)

END

END

END

||||||||||||||||||||||||||{

Figure 16: The procedures SemijoinUp and SemijoinDown for LPAC
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In Section 4, we have shown that given a join tree of a constraint network with bounded

treewidth, we can �nd an equivalent balanced binary join tree whose constraint network is

also of bounded treewidth. In this section, we will show that given balanced binary join

trees whose constraint networks are of bounded treewidth, DTAC has linear speedup and

linear scaleup.

Theorem 5.1 Given balanced binary join trees whose constraint networks are of bounded

treewidth, DTAC has linear speedup and linear scaleup.

Proof: letN = 2hp+1�1, n = 2hj+1�1. Given a tree-decomposition with bounded treewidth,

the sequential complexity is linear in the number of tree nodes:

speedup(N) =
O(2hj+1 � 1)

O(2hj�hp+1 � 1) +O(hp)
:

Since hj � hp, speedup(N) = O(2hp) = O(N). Thus it has linear speedup. Similarly,

scaleup(n;N) =
O(2hj+1 � 1)

O(2hj+hp�hp+1 � 1) +O(hp)
:

We have scaleup(n;N) = O(1). Thus it has linear scaleup. 2

6 Experimental Results

Here we will present some experimental results on the algorithms given in the previous

sections. We have developed a simulation environment for DJAC on FIN models based on

logical time assumptions. In addition, we tested DTAC on a network of transputers. Both

of these experiments are done on a set of generic constraint networks with a ring topology,

two valued domain, and inequality relations. The size of the problem is the size of the ring

minus one. The inputs to the algorithms are balanced binary join trees which are generated

automatically (Fig. 17).
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Figure 17: A ring structure and a balanced binary join tree

6.1 Simulation of the distributed algorithm DJAC

The simulation environment was developed in Strand88 [FT89]: a parallel logic programming

language. Each node in the join network corresponds to a process, with the relation scheme

as the identity, and with the local time and the relation tuples as the state. Each edge in

the join network corresponds to a communication channel. Whenever a process receives a

message from a neighbor process, consisting of the state of that process, it updates its state

to a new state. The new relation tuples will be the result of the semijoin operation and the

new local time will be the result of the logical time assumption de�ned as follows:

De�nition 6.1 (The logical time assumption) Each message of bounded size takes one

unit time to arrive and each semijoin operation on relations of bounded size takes one unit

time to compute. The time for sending and receiving messages is ignored.

The logical time assumption is captured by the Strand88 program in Fig. 18.

If the relation tuples are re�ned because of the semijoin operation, the current state, the

new relation tuples together with the new local time, is sent to all of its neighbor processes.

The system will settle down to a stable state when no relation tuple is re�ned.
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||||||||||||||||||||||||||{

% T is the time when the message is sent

% Time is the local time

% CTime is the time when the message is arrived

% NewTime is the new local time

commTime(T, Time, CTime) :-

T >= Time | CTime is T + 1.

commTime(T, Time, CTime) :-

otherwise | CTime is Time.

newTime(T, Time, NewTime) :-

commTime(T, Time, CTime),

NewTime is CTime + 1.

||||||||||||||||||||||||||{

Figure 18: The logical time assumption

In this environment, we simulated the distributed algorithm DJAC on a set of constraint

networks with a ring topology, for the problem size of 4, 8, 16, 32 and 48. Figure 19 shows

the time to stability vs. problem size on a log scale. The curve is almost linear which is

consistent with the theoretical complexity.

6.2 Performance of DTAC on a network of transputers

We tested the algorithm DTAC on a network of transputers. Brie
y, a transputer is a RISC-

like microprocessor with four bidirectional bit serial links. The instruction set supports

communication, concurrent processes and process scheduling. The hardware supports only

nearest neighbor communication. The program is written in C++ and then compiled for the

transputer. Table 2 summarizes the performance results.

The speedup for problem size 800 is shown in Fig. 20, The real performance is better

because the memory access time increases rapidly with the increase of the problem size in
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Figure 19: The time to stability vs. problem size on a log scale for DJAC

Table 2: The actual time performance of DTAC

Number of Problem Size

Processors 100 200 400 800 1600 3200 6400

1 0.25 0.71 2.29 8.02

3 0.30 0.77 2.32 8.5

7 0.39 0.86 2.46 8.17

15 0.52 0.97 2.57 8.28
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each processor. The scaleup for the problem is shown in Fig. 21, which demonstrates that

0 1 0 2 0
0

10

20

Actual
Theoretical

Number of processors

Sp
ee

du
p 

(p
ro

bl
em

 s
iz

e 
= 

80
0)

Figure 20: The speedup for DTAC
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Figure 21: The scaleup for DTAC

the real scaleup is very close to linear, when the problem size is large in each processor.
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7 Conclusions

We have presented three parallel AC algorithms for enforcing arc consistency in a join net-

work. The FCSP decision problem can be reduced to the arc consistency problem if the

tree-decomposition of the constraint network is given. The analysis shows that for an FCSP

that can be represented by an acyclic constraint network of bounded treewidth, there are

e�cient algorithms in both parallel and distributed environments. The bounded treewidth

property of constraint networks characterizes a set of tractable FCSPs as well as e�ciently

parallelizable FCSPs. The experimental results on simulation and real parallel machines

show that good performance is achievable.
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