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This paper is a retrospective account of some of the developments leading up to, and ensuing from, the analysis 
of the complexity of some polynomial network consistency algorithms for constraint satisfaction problems. 

1 Historical Context 
In 1970 one of us (AKM) worked on an implementation of Huffman-C1owes [1] labeling 

of line drawings. This exploited the consequences of a deceptively simple constraint on the 
visual world of planar objects: the three-dimensional interpretation of a line as an edge must 
be the same at both ends. Unfortunately, he observed that standard breadth-first and depth­
first search techniques suffered from severe combinatorial explosions. About the same time the 
other_ one of us (ECF) shared a graduate student office in the M.I.T. AI Lab with David Waltz, 
who was also working on a program to interpret line drawings. Waltz designed a filtering 
process to remove inconsistent interpretations during the analysis of a scene [21], making the 
combinatorial explosion manageable. Waltz observed experimentally that the effort required for 
this filtering process was "roughly" linear in the size of the scene. A heuristic argument based 
on the semantics of his domain supported the plausibility of this behavior. 

Since this technique appeared to have promise, AKM described a class of network consis­
tency algorithms [10], abstracted away from the applications, which contains, amongst others, 
the algorithms described by Waltz [21] and Ugo Montanari [16]. Incidentally, one of the ref­
erees of [10] suggested further complexity analysis of the problems and the algorithms could 
be done. Bernard Meltzer, the founding editor of Artificial Intelligence, agreed but did not re­
quire it for publication. He suggested it as a topic for a sequel as, indeed, it became. John 
Gaschnig subsequently raised some doubt about the linear behavior of filtering [8]; however, he 
was careful not to draw any firm conclusions from the limited data, and the complexity of the 
process remained an open issue. 

Both of us solved this problem, independently, in 1981. Raimund Seidel, a student in AKM's 
graduate course, had achieved a nice new algorithm [18]. In the course of discussion with ECF, 
Seidel realized we (AKM and ECF) each had the same result. We joined forces and eventually 
the paper appeared [11]. 
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2 Complexity and Network Consistency 
One outcome of our 1985 paper [11] was a resolution of the open issue. Heuristic intuition 

and experimental data could no~ by their nature, hope to achieve a complete resolution of the 
question. We used formal analytical techniques to prove that the filtering process could be 
carried out in linear time for any application. 

The proof relied on our analysis of an abstraction of the visual filtering process called arc 
consistency. Arc consistency is a basic tool in what has come to be called constraint-based 
reasoning. Constraint-based reasoning has been widely used in artificial intelligence: in vision, 
language, planning, diagnosis, scheduling, configuration, design, temporal reasoning, defeasible 
reasoning, truth maintenance, qualitative physics, logic programming and expert systems. The 
analysis of techniques like arc consistency can thus lead to tractability results in many areas of 
artificial intelligence. 

A constraint satisfaction problem (CSP) involves finding values for a set of problem variables 
which simultaneously satisfy a set of restrictions (constraints) on which combinations of variables 
are acceptable (consistent). The Huffman-Clowes-Waltz scene labeling problem is a Finite CSP 
(FCSP) since the variable domains are discrete and finite. Our complexity results were for FCSPs. 

One of the key insights of arc consistency for FCSPs can be found in Fikes' paper in the 
very first issue of Artificial Intelligence [6]; in particular, if a value, c, for one problem variable 
is inconsistent with all values for some other problem variable, then c will never participate in 
a complete solution to the problem and can be eliminated from all further consideration. The 
obvious algorithm for removing all such inconsistencies, AC-1, has an O(n3d3) complexity 
bound, for an FCSP with n variables each with d possible values. AC-3, a simpler and more 
general version of the Waltz filtering algorithm AC-2, was shown in our paper to have an 
O(n2d3) bound. 

That bound can be expressed as O(ed3), where e is the number of constraints, or edges 
in a constraint graph, whose vertices correspond to variables and whose edges correspond 
to constraints between variables. (We will restrict our attention here to binary constraints, 
which involve only two variables; analogous methods are available for dealing with higher order 
constraints.) Since scene labeling problems have planar constraint graphs, and for planar graphs 
the number of edges is linear in the number of vertices, we were able to show that arc consistency 
for the scene labeling problem is linear in the number of problem variables. We also showed 
that path consistency, a generalization of arc consistency, could be achieved in time cubic in 
the number of variables. 

The complexity of arc consistency has since been refined further. Mohr and Henderson [15] 
found an arc consistency algorithm, AC-4, which has a theoretically optimal O ( ed2) bound. 
(In retrospec~ we regret that this did not fall out in our paper; optimality was within our grasp 
- only a factor of d away!) This brought the complexity of scene labeling filtering down to 
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O(nd2). However, better bounds have been found for arc consistency for restricted classes of 
problems. In particular, Perlin [17] has identified a class of problems that includes scene labeling 
for which arc consistency can be obtained in time linear in d. Thus arc consistency can, in fact, 
be obtained for scene labeling in time that is linear in both the number of variables and the 
number of values per variable. There are even cases where it can be obtained in 0( e log d) [12]. 
This may be the end of that story, but there are other stories to tell, too many for this short note. 

3 Tractable Problem Classes 
It is important to realize that the varying forms of consistency algorithms can be seen as 

approximation algorithms, in that they impose necessary but not always sufficient conditions for 
the existence of a solution on a CSP. Each of them can be thought of as a low-order polynomial 
algorithm for exactly solving a relaxed version of an FCSP whose solution set contains the set 
of solutions to the FCSP. The more effort one puts into finding the approximation the smaller 
the discrepancy between the approximating solution set and the exact solution set. 

Since FCSPs are so hard (NP-complete) as a general class, it became important to identify 
specific classes of problems which admit tractable solution techniques. Tradeoffs can be made 
between representational and computational complexity, trading representational complexity to 
remain within the comfortable computational confines of a tractable problem class. These 
tractable classes can also be used to assist in the solution of more general problems. One 
way to identify these classes is to look for restricted FCSP classes where the approximation 
algorithms are exact, namely, where the consistency conditions are necessary and sufficient 
These classes can be characterized by restrictions on the topology of the constraint graph, on the 
size of the domains or on the nature of the constraints. We pointed out this possibility, giving 
one concrete example and leaving it as an open issue to identify others. 

FCSPs with tree-structured constraint graphs were the first such tractable class to be 
identified, and provide a gcxxl illustration of these issues. Our paper provided an O ( nd3) 

bound on the complexity of tree-structured problems (improved to an optimal O(nd2) in [31). 
Tambe and Rosenbloom used these results to bound the complexity of production rule pattern 
matching by restricting to tree structures [19]. Dechter, Pearl and Meiri have demonstrated how 
tree-structured substructure or superstructure can assist in the solution of non tree-structured 
problems [3,4,2,14]. Complexity bounds have been obtained for "higher-level" tree structures, 
where each level trades increased representational power for increased complexity [7]. 

One of the practical consequences of our results was that the designers and implementers of 
constraint-based programming languages could feel comfortable including consistency algorithms 
as primitives in the language [6,10]. Ideally, a language primitive should require constant time; 
but, failing that, it is comforting to know that it will terminate in linear time. The constraint 
logic programming language ClDP [20] was the first to exploit this potential fully by providing 
an arc consistency based inference engine. 
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Progress continues to be made on finding efficient ways to solve important classes of 
problems, e.g. Deville and Van Hentenryck's 0( ed) algorithm for a successor to CHIP [5], and 
on identifying the trade-offs between representational adequacy and computational complexity, 
e.g. Meiri 's clarification of the effort required to answer consistency questions for classes of 
temporal reasoning problems [13]. 

Another interesting follow-on result was that although arc consistency is achievable in linear 
sequential time there is apparently no polylogarithmic time parallel algorithm in the general 
case: it is log-space complete for P [9] and, hence, unlikely to be in NC. (There are, though, 
well-behaved parallel and distributed algorithms for some special cases [22].) This negative 
result struck some as counter-intuitive. Algorithm AC-1, which has poor sequential complexity, 
has a high degree of intrinsic parallelism (but potential serial data dependencies); whereas each 
AC-p (p>l) has been optimu.ed for a single processor. In fact, various generalizations of AC-1 
have been proposed for neural netw~ks. But the gloomy theoretical result has not deterred the 
designers of AC VLSI chips or other intrepid experimentalists. 

4 Conclusion 
The development of constraint satisfaction algorithms was originally motivated by concerns 

for efficiency. The subsequent analysis of the complexity of both the problems and the algorithms 
further stimulated the development of practical tools and the identification of significant tractable 
problem classes. So the history of the topic is a tale of intimate interaction amongst theory, 
implementation, experiment and application characteristic of artificial intelligence research. 
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