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Abstract 

A computational theory is developed that explains how line drawings of polyhedral objects 

can be interpreted rapidly and in parallel at early levels of human vision. The key idea is 

that a time-limited process can correctly recover much of the three-dimensional structure of 

thes~ objects when split into concurrent streams, each concerned with a single aspect of scene 

structure. 

The work proceeds in five stages. The first extends the framework of Marr to allow a 

process to be analyzed in terms of resource limitations. Two main concerns are identified: 

(i) reducing the amount of nonlocal information needed, and (ii) making effective use of 

whatever information is obtained. The second stage traces the difficulty of line interpretation 

to a small set of constraints. When these are removed, the remaining constraints can be 

grouped into several relatively independent sets. It is shown that each set can be rapidly 

solved by a separate processing stream, and that co-ordinating these streams can yield a low

complexity "approximation" that captures much of the structure of the original constraints. 

In particular, complete recovery is possible in logarithmic time when objects have rectangular 

corners and the scene-to-image projection is orthographic. The third stage is concerned with 

making good use of the available information when a fixed time limit exists. This limit is 

motivated by the need to obtain results within a time independent of image content, and by 

the need to limit the propagation of inconsistencies. A minimal architecture is assumed, viz., 

a spatiotopic mesh of simple processors. Constraints are developed to guide the course of the 

process itself, so that candidate interpretations are considered in order of their likelihood. 

The fourth stage provides a specific algorithm for the recovery process, showing how it can 

be implemented on a cellular automaton. Finally, the theory itself is tested on various line 

drawings. It is shown that much of the three-dimensional structure of a polyhedral scene can 

indeed be recovered in very little time. It also is shown that the theory can explain the rapid 

interpretation of line drawings at early levels of human vision. 
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Chapter 1 

Introduction 

Those aspects of human vision most directly involved with the incoming image have a char

acteristic mode of operation: they are rapid ( usually completed within several hundred mil

liseconds), spatially parallel ( operating simultaneously across the visual field), and automatic 

(unaffected by changes in goals during the course of processing). This has led to an assump

tion that these "early" processes determine only simple geometric and radiometric properties 

of the image, e.g., line orientation, color, and contrast. There is considerable support for 

this assumption on computational grounds - these are the only kinds of properties can be 

reliably determined by spatially-limited processors operating within a fixed amount of time. 

To reliably determine properties of the corresponding scene, therefore, a later stage of more 

time-consuming operations is needed. 

This division into early and later processes has formed the basis for many computational 

and psychophysical studies of the human visual system. However, the underlying assumption 

is false - for some images, recovery of scene properties can be done at early stages of 

processing, rapidly and in parallel [Ram88, ER90a, ER91]. In figure l.l(a), for example, 

the drawing of the block with a unique three-dimensional orientation can be detected almost 

immediately. However, this is not possible when these drawings are altered slightly (figure 

l.l(b)), showing that this phenomenon is not due to simple image properties alone, but to 

some aspect of the recovered scene structure. 

The goal of this thesis is to explain how properties of the scene can be recovered rapidly 

and in parallel at early levels of visual processing. In particular, it develops a computational 

theory of how the human visual system can rapidly interpret line drawings to obtain the three

dimensional structure of the corresponding polyhedral objects. Since the general problem of 
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line interpretation is NP-complete [KP88], a great deal of time may sometimes be required 

for its solution, even when parallel processing is used. If recovery is to be rapid, therefore, it 

cannot be based on this mapping, but rather must be based on an approximation in which 

the reliability and completeness of the output have been lowered to some degree. 

The central idea developed here is that a good approximation can be obtained by splitting 

the recovery process into several quasi-independent streams, each based on a set of constraints 

that can be quickly solved. It is shown that relatively few constraints need to be altered in 

order to achieve this decomposition, and that the resulting "quick and dirty" process can 

recover a substantial amount of scene structure in very little time. It is also shown that this 

model can explain the recovery of three-dimensional structure at early levels of human vision. 

In common with other areas of computational analysis, this study is first and foremost 

concerned with how information can be used by a visual system. For rapid recovery, however, 

the structure of the problem is no longer dictated entirely by the optics of the situation -

instead, limits on processing time must also be taken into account. This work shows how this 

perspective can be incorporated into a computational framework, and how it can lead to a 

new source of constraints on the representations and processes used in early vision. 

1.1 The Problem 

In what follows, the scene domain is taken to be the set of opaque polyhedral objects with 

trihedral corners. The term 'trihedral' is used here in a narrow sense, referring to corners 

formed from the intersection of three planar surfaces in such a way that only three edges 

can radiate from any vertex, and that the vertex cannot contact any other edge. The image 

domain is the corresponding set of drawings formed by the projection of these objects onto 

the image plane. The rapid recovery process must recover from these drawings as much of 

the scene structure as possible within some fixed amount of time. The goal of this work is 

to develop a computational theory of this process, one which accounts for those aspects of 

three-dimensional structure recovered in human early vision. 

There are several reasons for this choice of problem. First, there is evidence that human 

vision actually does recover three-dimensional structure rapidly and in parallel at early levels 

[ER90b, ER91, ER92]. The phenomenon is a striking and robust one, with a strong sensitivity 

to the arrangement of the lines. As such, there is considerable potential for making predictions 

about the kinds of line arrangements for which recovery will and will not be successful. 

2 
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Figure 1.1: Early recovery of three-dimensional structure. A line drawing that corresponds 
to a distinct three-dimensional block can be detected almost immediately when the block 
slants upwards (a). Rotating the page so that this block slants downwards causes detection 
to become more difficult, showing that slant has an asymmetry typical of many properties of 
early vision (see [TG88, ER90bl). When line relations are slightly altered (b ), detection is 
equally difficult under all conditions ( also see [ER91]), indicating that slant is not recovered 
at all. 
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Second, a great deal is known about the limits to which three-dimensional structure can 

be recovered from line drawings, 1 this problem having been the focus of several decades of 

work in the area of computational vision (see section 2.2.1). Moreover, the general problem 

of line interpretation has been shown to be NP-complete [KP85]. Since the time required to 

solve an NP-complete problem can (in the worst case) increase exponentially with its size,2 

this rules out the possibility that the process can always be sped up by parallel processing 

alone. 

Fina.Uy, of a.ll the rapid recovery processes, line interpretation is perhaps that which most 

severely taxes the abilities of early vision. Relations between image and scene are more ten

uous here than for most other recovery processes; indeed, many aspects of line interpretation 

are often considered to be learned conventions (see, e.g., [Sug86]). Thus, if a mechanism can 

be found for the rapid interpretation of line drawings, it becomes plausible that similar mech

anisms might also exist for recovery processes based on more realistic associations between 

image and scene. 

1.2 The Approach 

For a time-limited process, the goal is no longer to extract all available information from an 

image, but rather to make good use of the available computational resources. Two factors are 

therefore of primary concern: (i) minimizing the sheer amount of data transformation and 

transmission that needs to be carried out in parallel, and (ii) maximizing the effectiveness 

of these transformations in extracting three-dimensional structure. This work examines how 

these two factors influence the structure of the recovery process at the levels of computation, 

algorithm, and implementation. 

Chapter 2 provides the background material for this analysis. It begins with a survey of 

the major empirical and theoretical results on the limits of rapid parallel processing. This is 

followed by an overview of the important results concerning the recovery of three-dimensional 

structure from line drawings. A discussion is then presented of the ways in which these two 

1 Theories of line .interpretation, however, have rarely taken into account noise and other distortions of the 
image. Complications also arise from shadow edges and texture boundaries. In the interests of simplicity, 
these will not be discussed here. 

2 Although there remains a possibility that NP-complete problems are in class P (i.e., can be carried out 
in polynomial time in the worst case), this situation appears highly unlikely [GJ79, Joh90]. Even if P=NP, 
the possibility would still exist that such problems are P-complete, meaning that their speed could not be 
substantially increased by the use of parallel processing [GR88]. 
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threads can be drawn together. Next, Marr's framework of computational analysis is extended 

to cover the case of resource-limited processes. Two sorts of computational constraints are 

distinguished: "external" constraints on the static form of the mapping between image and 

scene, and "internal" constraints that guide the course of the process that generates it. 

The analysis of rapid recovery itself begins in chapter 3, which examines the ways in which 

the image-to-scene mapping used in the general problem of line interpretation can be replaced 

by an approximation oflower complexity. In particular, it shows that low-complexity recovery 

can be carried out by weakening the constraints to allow their separation into independent 

subsets, each concerned with a single aspect of the scene. Four such aspects are considered: 

the contiguity of edges, the positive convexity of edges, the sign of edge slants, and the 

magnitude of edge slants. It is shown that each of these subsets can be solved in sublinear 

time by a processing stream containing a sufficiently large set of parallel processors, and 

that this complexity is not increased when interaction between the streams involves only 

a one-way transmission of information. Although the interpretative power of the resultant 

mapping is somewhat reduced, a considerable amount remains; indeed, it is shown that 

contiguity, convexity, and slant can be recovered completely in logarithmic time when all 

corners are rectangular, i.e., composed of mutually orthogonal surfaces. 

The next step is to develop constraints that maximize the likelihood of successful inter

pretation when a limit is placed on processing time. This is done in chapter 4. A fixed 

amount of time is assumed to be available. This choice is consistent with the limits typical 

for an early visual process, and also has the advantage that the propagation of inconsistencies 

is localized. In keeping with this minimalist vein, computational resources are limited to a 

mesh of simple processors. A set of external constraints is developed to limit the space of 

possible interpretations. Four principles are used for the choice of constraints: separation 

of dimensions, locality of constraints, local coordination of dimensions, and the structural 

assumption that the corners of the polyhedra are rectangular. Internal constraints are then 

developed that guide the course of the recovery process through this space of possible so

lutions. These are based on four principles: maintenance of interpretative power, locally 

irreversible computation, minimization of inconsistency, and an ordering of search to select 

preferred interpretations of maximum contiguity and convexity. Taken together, the exter

nal and internal constraints define a process capable of recovering a considerable amount of 

three-dimensional structure in very little time. 
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Although the external and internal constraints limit the way in which the process uses 

information, they do not completely specify an algorithm. Chapter 5 provides this specifica

tion, and implements the resulting algorithm on a mesh architecture. This is done via the 

device of a cellular processor. This mechanism is formed by partitioning the image into a set 

qf disjoint "cells", each governed by a finite-state processing element that can be programmed 

to execute a few simple operations on the contents of its cell, and that can communicate only 

with its immediate neighbor. As such, it obeys the general architectural limitations assumed 

for the computational analysis while simultaneously being easy to control and analyze. The 

resulting algorithm provides an existence proof that rapid line interpretation can be done on 

an architecture of the assumed type. 

The final step of the work is to test the theory on actual line drawings. In chapter 6, the 

process is tested on domains that range from th9se in which all underlying assumptions are 

obeyed to impossible figures which cannot correspond to any kind of polyhedron at all. It 

is shown that a considerable amount of three-dimensional structure can indeed be recovered 

in very little time, and that this process degrades gracefully as the underlying structural 

assumptions about the scene domain are violated. These results are then used as the basis of 

predictions about the kinds of line drawings that can and cannot be rapidly detected by the 

human visual system. The theory is shown to be capable of explaining the ability of early 

human vision to recover three-dimensional structure rapidly and in parallel. 

1.3 Limitations and Key Assumptions 

Before embarking on the development of the theory, it is important to acknowledge a number 

of limitations and assumptions that could potentially limit its relevance. First of all, the 

treatment here is concerned exclusively with the rapid recovery of three-dimensional structure 

from line drawings. The advantage of this approach is that the problem domain is small and 

has a simple mathematical description, making the analysis of the recovery process as simple 

as possible. But this domain is a highly artificial one - the figures contain no gaps or any 

other kind of noise, nor do they describe cracks and markings which are found on just about 

any real surface. Indeed, these stimuli are so artificial that the analysis runs the risk of saying 

nothing at all about processes that interpret more realistic images. 

The scope of the theory is also limited by the architectural constraints required for the 

computational analysis. The analysis here assumes only a two-dimensional array of relatively 
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simple processors, each connected only to its immediate neighbors ( chapter 4 ). Since this 

limitation is relatively severe, the resulting process provides a lower bound to what might be 

reasonably expected from a spatiotopic array of processors. But the assumption of a minimal 

processing architecture also means that the predictions are applicable only to the extent that 

such an architecture actually is representative of that used in human early vision. 

There is also considerable latitude in the choice of the finer details of the theory. Several 

of the choices made here are somewhat tentative, intended only to show that such a theory 

can be developed. Consequently, they are unlikely to withstand the test of time. 

Insofar as the theory can explain the rapid recovery of three-dimensional orientation by the 

early human visual system, it assumes that this system actually doe,~ carry out this process. 

Results to date [ER90b, ER91, ER92] show that the recovery of three-dimensional orientation 

at early levels is sufficient to explain most known results concerning the sensitivity of early 

vision to line drawings of opaque polyhedra. But while this sensitivity cannot be explained 

in terms of simple operations on the image ( e.g., spatial filtering), there still remains the 

possibility of some other "image-based" explanation, e.g., a sensitivity to particular spatial 

relations between the lines, or the "loading-in" of a complete object model via lookup that 

based on image features ( e.g. [PE90]). 

Finally, even if three-dimensional orientation actually is computed at these early levels, 

there is still no guarantee that the process is in any way attempting to make good use 

of available computational resources. Evolution often produces biological systems that are 

adequate rather than optimal (see, e.g., [Ram85, Gou89]), and it may well be that rapid 

recovery falls into this category. If so, its operation is governed by constraints other than 

those based on effectiveness, and the computational model developed here will be largely 

irrelevant for explaining human performance. 

A scientific theory, however, ultimately succeeds or fails to the degree that it explains 

phenomena in a succinct way, and suggests new avenues ofresearch to explore ( e.g., [Lak78]). 

As the following chapters show, the theory developed here is able to account for the recovery 

of three-dimensional structure at early levels of human vision, and can make predictions as 

to what other kinds of line drawings can and cannot be recovered in this way. Furthermore, 

it does so by developing principles that are potentially applicable to other areas of perception 

and cognition, and to both artificial and biological systems. 
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Chapter 2 

Background 

The problem of rapid line interpretation is a fusion of two concerns that historically have 

been quite separate: (i) determining the extent to which properties can be extracted rapidly 

and in parallel from an image, and (ii) determining the extent to which line drawings can 

be interpreted as opaque polyhedral objects. Thus, a good way to begin is to survey the 

principal developments in each of these areas. It is then shown how aspects of both can be 

usefully combined into a rapid recovery process, and how this process can be analyzed by an 

extension of the computational framework of Marr (Mar82]. 

2.1 Rapid Parallel Processing 

The earliest stages of visual processing are characterized by the uniform application of rela

tively simple operations at each location in the visual field ( see, e.g., (Zuc87b, LBC89]). It 

is evident that the problems solved at these levels make great use of parallelism, with one 

or more processors assigned to each patch of the image. It is less evident, however, what 

the limits of this kind of processing might be. This section surveys some of the main results 

pertaining to rapid parallel processing. Theoretical results are presented first, with discussion 

focusing on the way in which a problem's structure determines its complexity on a parallel 

processor. This is followed by an overview of what is known about the extent of rapid parallel 

processing in human early vision. 
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2.1.1 Computational Studies 

Two different routes can be taken when studying the limits of parallel processing. The 

first starts with a given architecture and then determines its suitability for various classes 

of problems. Such "processor-dependent" analysis is widely used, particularly to ascertain 

the capabilities of an existing machine ( e.g., [PD84, LBC89]). But the emphasis here is 

on problems rather than architectures per se. Consequently, a "dual" approach is taken: a 

class of problems is specified and the suitability of various architectures for this class then 

examined. This approach can be based on the amount of coherence in the mapping between 

input and output image. It is shown that this coherence has a large influence on the limits 

to which an operation can be sped up by a parallel architecture. 

A. Basics 

To establish what is meant by the "suitability" of an architecture for a particular problem, 

consider first a network of Turing machines joined together by high-bandwidth connections. 

Such a "maximal" architecture obviously allows the greatest use to be made of parallelism, 

regardless of problem structure. Its generality, however, means that computational resources 

are often wasted. A natural architecture is therefore defined as one which best matches the 

given problem, i.e., whieh uses a minimal set of resources to carry out the task. Such an 

architecture can be obtained ( conceptually, at least) by starting with a maximal architecture 

and then weakening the power of the individual processors and the communication patterns 

between them until a change occurs in the time or space required. The minimal configurations 

at each of these transitions are exactly the natural architectures. Since different choices of 

time and space bounds are possible, there is usually more than one natural architecture for 

a given problem. 

In general, finding the natural architecture for a problem is difficult - even the mapping 

of neighbors in the problem space to neighbors in the architecture is NP-hard1 [NKP87]. But 

when problems are based on the mapping of images to images2 the coherence in the mapping 

simplifies matters considerably (see, e.g., [Sto87, Sto88]). Finding a natural architecture for 

a problem then reduces to determining its mapping coherence and relating it to the time and 

1This means that the problem is at least as hard as any NP-complete task. 
2 Without loss of generality, the calculation of a lower-dimensional result can be expressed as a mapping 

in which the output image contains repeated instances of the result. For example, calculation of the average 
value in an image can be expressed in terms of an output image containing the average at each location. 
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Figure 2.1: Linkage between zone and surrounding locations . 

space required on various kinds of architectures. 

i) Mapping Coherence 

To begin with, let a zone be some s x s patch of pixels in the image. Zones may overlap, so 

that each m x m image contains ( m - s )2 zones. Mapping coherence is described here in terms 

of how the input inside a zone influences the output image in the surrounding locations (figure 

2.1 ). A zone is said to interact with the rest of the image if there is at least one direction in 

which the range of this influence is unlimited. The linkage of the mapping is defined as the 

number of degrees of freedom in this interaction.3 

For strictly local operations, such as those typical of early vision, no interaction exists 

between a zone and locations sufficiently far away in the output. These are consequently zero

linkage problems - any changes within a zone are propagated only a finite distance away. At 

the opposite extreme, consider the sorting of image intensities. Here, changing any of the 

pixel values in the zone potentially changes the value of the output at a location arbitrarily 

far away. The linkage is therefore proportional to zone area. 

3 Many of the ideas presented here regarding mapping coherence have their origin in the work of Stout 
[Sto87, Sto88]. However, the definition of linkage used here is considerably different, being based on degrees 
of freedom in a more uniform fashion . Distinctions such as unidirectional and bidirectional linkage, as well as 
the resulting set of coherence classes, are also novel. 
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Linkages can run both ways, however, so that two kinds of problem can be distinguished. 

In unidirectional problems, the information transmitted from the zone can be computed 

purely locally - no pixel values are needed from the rest of the image beyond some finite 

surrounding region. For example, determining the average pixel intensity requires only one 

parameter ( the sum of pixel intensities) to be transmitted from any zone. Since the pixels 

outside the zone do not affect this value, this interaction is clearly unidirectional, with no 

outside information needed. 

In bidirectional problems, on the other hand, the interaction between a zone and its 

surroundings runs both ways: not only do changes in the zone influence the rest of the 

image, but the rest of the image influences what is required of the zone. More precisely, the 

information to be transmitted from a zone cannot be determined in isolation for bidirectional 

problems, since values from the rest of the image are needed to select the appropriate quantity 

to be calculated locally. An example of this is the calculation of the median intensity of an 

image in which the range of pixel values is unlimited ( e.g., random variables with a gaussian 

distribution). A single degree of freedom can be assigned to the local output: the number 

of pixels above ( or below) the global median. But the value of this median must first be 

transmitted to the zone, and this value may be affected by changes in pixel intensities at 

locations arbitrarily far away. 4 In essence, the kind of linkage back from the image to the 

zone reflects the amount of contextual information needed to select the appropriate local 

operation (figure 2.1). 

Given this characterization of mapping coherence, problems can be grouped according 

to the strength and directionality of their linkage. 5 Four classes are considered here: zero 

linkage, constant linkage, linkage proportional to zone perimeter, and linkage proportional to 

zone area. Constant- and perimeter-linkage problems are further divided into unidirectional 

and bidirectional subclasses. Any operation involved in visual processing can be placed into 

one of these classes,6 and it is shown below that placement into a class puts bounds on its 

complexity on various kinds of architectures. 

4 1n a sense, the difference between unidirectional and bidirectional problems corresponds to that between 
deterministic and nondeterministic problems: in the unidirectional case, the outputs of isolated zones are 
sufficient to produce the solution, whereas in the bidirectional case, they are sufficient only to verify it. (For 
a discussion of the relation between deterministic and nondeterministic problems see, e.g., [GJ79].) 

5 The strength of the linkages can be different in the two directions. But the simple classification into 
unidirectional and bidirectional problems is sufficient for present purposes. 

6 Operations having a structure that does not match well with the examples discussed here (e.g., those 
involving fractal quantities) will require a finer division of coherence classes. But as a first approximation, 
lower bounds for such problems can be obtained by "rounding down" to the nearest coherence class. 
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ii) Complexity Measures 

The complexity of a problem can be analyzed in a relatively processor-independent way 

via the methods of complexity theory (see, e.g., [Baa78, GJ79, Joh90]). Here, the basic 

~nit is taken to be the time required to merge two independent quantities into one - for 

example, the addition or multiplication of two numbers, or the testing of their equality. The 

complexity of a given algorithm is then measured by the number of such operations required 

for the most difficult case in the problem set.7 The complexity of a given problem is that of 

the least-complex algorithm capable of solving it on a given architecture. 

Differences in the speed of basic operations - such as arise in different mechanical or 

biological systems - are eliminated by the use of 0-notation, which describes the time only 

to within a constant factor. An algorithm is said to require O(f ( n)) time if there exist positive 

constants c, d and N such that for any input of size n > N, the time cf( n) ::; T( n) ::; df( n ). If 

the algorithm is the least complex known to solve the problem, the complexity of the problem 

is said to have an upper bound of O(f(n)). Similarly, the problem has a lower complexity 

bound fl(g(n)) when any algorithm to solve it must have a complexity of at least O(g(n)). 

If a problem is bounded above by O(f(n)) and below by fl(f(n)), it has (exact) complexity 

0(f(n)) (see, e.g., [Baa78, Har87]). 

Defined in this way, the time needed to solve a problem is - to within a polynomial factor 

- independent of the particular set of instructions of the machine (see, e.g., [Har87]). This 

quantity is therefore an invariant of the problem, (see, e.g., [Baa 78, TWW88]), and so can be 

used for abstract, machine-indifferent analysis [RP91]. 

As for the case of mapping coherence, processes can be grouped into various complexity 

classes. (For a good survey of these classes, see [Joh90).) One of these is the set P of processes 

that can be carried out in polynomial time; such processes may have a different complexity 

on different (serial) architectures, but this complexity will always be polynomial (see, e.g., 

[GJ79, Har87]). This class can be further subdivided according to the degree that complexity 

is lowered by the introduction of parallel processing. The class NC is defined as the set of 

problems having sublinear complexity when a sufficient number of processors are provided.8 

7 Complexity measures can also be based on average-case analysis, as well as on a probabilistic analysis that. 
ignores exceptional cases of small measure (see [TWW811]). However, worst-case measures are those most often 
used, in part because of the relative ease of analysis. These measures are also preferred here since they avoid 
the need to develop extra procedures to handle cases in which the computational limitations are exceeded. 

8 More precisely, these are problems of complexity O(logk n) when O(nP) processors are available (where 
exponents k, p E Z). 
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In contrast, a class of "P-complete" problems has been found that is apparently incapable 

of being sped up this way; in essence, these problems remain "serial" no matter how many 

processors are allowed (see, e.g. [GR88]). 

Note that this view of complexity is based on the number of operations needed to combine 

data and so the time needed for data transmission across space is often ignored. While this is 

suitable for many situations, it is less so for others, especially for operations on images, where 

data is often moved around a considerable distance during the course of the computation. 

Transmission delays are severe in biological systems (where speeds are typically on the order 

of lm/s [She83]), and are also a factor in the operation of machine systems [Uhr87, p. 261). 

When applying complexity measures to image-processing problems,9 therefore, the effects of 

transmission delay must be kept in mind. 

iii) Architectural Parameters 

Given that the complexity of an image-processing problem depends on the underlying 

architecture, it is important to establish what the relevant parameters might be. In what 

follows, architectures are described by graphs where each node represents a separate process

ing element (PE) and each edge a direct connection between the corresponding PEs. Thus, 

a maximal architecture corresponds to a complete graph in which each PE ( equivalent to a 

Turing machine) is directly connected to all the others. This model is superficially differ

ent from the parallel random access machine (PRAM) often used in theoretical studies of 

parallel processing (e.g., [GR88]), since·the PRAM is defined as an abstract machine with a 

shared memory immediately accessible to any of the processors.10 But this shared memory 

allows direct communication between PEs, and so the PRAM and maximal architectures are 

essentially equivalent. 

In this formulation, the complexity of a problem can be analyzed by tracing the flow 

of information through the network. The path taken by each piece of information can be 

represented by a path through the graph that begins at the point where it is picked up in 

the image, and terminates at its final position(s) in the output. The nodes of the graph are 

9 As used here, the terms 'image-processing problem' and 'image operation' are largely synonymous. The 
only difference is that the specification of a problem does not necessarily contain an explicit rule to obtain the 
output from the input, whereas this is generally true of the term 'operation' . 

10Strictly speaking, this characterizes only the most powerful variant: the PRIORITY concurrent read -
concurrent write (CRCW) PRAM. Since no other PRAM variants will be considered here, this qualification 
will not be explicitly mentioned. 
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assigned weights representing the time required for local computation.11 A weight can be 

assigned to each data path by accumulating the weights of all nodes encountered along the 

way. The processing time for a computation is then the maximum weight of all the data paths 

in the computation. Thus, complexity is largely governed by two sets of parameters: (i) those 

concerned with the processing resources available to each PE, and (ii) those concerned with 

the pattern of data transmission between PEs. 

A wide variety of processing elements are possible for a parallel architecture. At one 

extreme, each PE has the power of a Turing machine and can operate completely indepen

dently of the others. This is basically the multiple instruction, multiple data-stream (MIMD) 

architecture [Fly72], in which each PE may carry out a different set of instructions. Weaken

ing the power of the PEs decreases their ability to respond to different signals so that they 

become less able to respond to the structure of the image and less flexible in communicating 

with their neighbors. In the extreme case this becomes a single instruction, multiple data

stream (SIMD) architecture [Fly72], where all PEs operate in lockstep , carrying out the same 

operation everywhere in the network. 

A similar spectrum of possibilities exists for data transmission. The simplest network is 

a two-dimensional .,/n x .,/n array of n processing elements._ Here, each of the processors 

is assigned to some particular zone or set of zones in the image, and operates in complete 

isolation from the others. This is the kind of architecture generally thought to exist at the 

very earliest stages of visual processing, i.e., the retina and the striate cortex ( e.g. , [Rob80]). 

The simplest form of processor-processor interaction occurs in the mesh, a network, where 

each PE in the array is connected with its nearest neighbors ( e.g., [Ros83]). Here, data can 

be sent from any PE to any other PE with time proportional to the distance in the mesh. 

Transfer can be greatly sped up (at least in terms of the number of switches involved) 

by way of a pyramid network, in which a hierarchical communication structure is used. The 

basic y'n x y'n mesh forms the lowest level of this hierarchy. This mesh is then partitioned 

into a set of k X k nonoverlapping sections, with the PEs in each section then connected to a 

single PE in a higher-level y'n/ k x .,/n/ k mesh. This higher-level mesh is in turn sectioned 

and connected to the PEs in a still higher-level mesh, this process continuing until only one 

PE exists at the highest level (see, e.g. [Ros86]). The resulting structure is hierarchical, 

allowing any two PEs separated by distance m to communicate through O(log m) switches. 

11 In this view, switches and memories are regarded as nodes corresponding to simple computations. 
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Linkage Array Mesh Pyramid Hypercube 

Zero 0(1) 0(1) 0(1) 0(1) 

Constant ( unidirectional) - 0(n) 0(1og n) 0(1og n) 

Constant (bidirectional) - ? O(log3 n) ? 

Perimeter ( unidirectional) - 0(n) 0(nl/2) 0(1og n) 

Perimeter (bidirectional) - O(nk) O(n) ? 

Area - ? n(n) O(log n) 

Table 2.1: Complexities of coherence classes. 

Pyramid networks have been proposed for several of the more "global" processes of vision, 

such as line tracing [Ede87] and selective visual attention [KU84, Tso90] 

A more highly-connected architecture is that of the hypercube ( e.g., [Hil84]). A d

dimensional hypercube has 2d corners; if the positions ~f neighbors in the hypercube differ 

by some constant distance a > 0 along any dimension, corners will be separated by at most a 

distance of ad. Thus, if n = 2d PEs are connected such that each corresponds to a different 

corner of the hypercube, then two PEs can communicate within O(log n) time. Although this 

is the same as for the pyramid, the greater number of possible paths yields a greater effective 

bandwidth, which allows the hypercube to avoid the bottlenecks that can arise at the higher 

levels of the pyramid [Sto87]. 

B. Classes of Image-Processing Problems 

This section presents the major results known about the limits to which various kinds of 

image-processing problems can be sped up by parallel processing. Problems are grouped 

according the coherence of the corresponding mapping between input and output. Arranged 

in this way, an interesting pattern emerges from these results - the lower-bound complexities 

due to data transmission are the same for all problems in any coherence class (table 2.1.1). 

And these lower bounds prove to be the dominant factors in the complexity of many image

processing problems. 
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i} Zero-linkage Problems 

By definition, zero-linkage problems have no interaction between a zone and a location 

that is sufficiently far away. These are exactly the problems best handled by local operations. 

The simplest of these are local measurements, i.e., the uniform application of a spatially

limited template across the image. These include pointwise remappings of intensity ( e.g., 

gamma correction) and convolutions by functions of limited spatial extent. More generally, 

zero-linkage problems include those that can be solved using properties of fixed support, i.e., 

where the property can be extracted from a fixed set of points in each zone [Ull84). The limit 

on transmission distance means that each PE can complete its operation within a fixed time 

independent of image size, and so these problems have 0(1) complexity. The limited time 

and spatial extent also mean that each PE need only be a finite-state automaton. A natural 

architecture for a zero-linkage problem is therefore a simple array in which each finite-state 

PE takes its input from the corresponding zone in the image. 

Although communication time is minimal in an array, an extensive amount of wiring is 

usually required to connect pixels to their PEs, especially if the zones are large. Furthermore, 

such a network would be impossible to reconfigure when a different zone size is required. 

These drawbacks are largely eliminated by using a mesh. Here, the input is partitioned into 

nonoverlapping sections, with each PE taking its input from a single section. Since PEs do 

not generally have direct access to all information in a zone, information must be transmitted 

through the mesh. In essence, a mesh trades off time for space. 

For zero-linkage problems, the natural mesh architecture is the cellular automaton [TM87, 

CHY90, TM90), for which the processing elements are simple finite-state automata. By 

limiting the number of iterations allowed for each PE, a cellular automaton can carry out 

zero-linkage problems such as spatial filtering [PD84). As the PEs are given more power, they 

are able to combine simple measurements in interesting ways - for example, to determine 

the color or orientation of line segments by comparing the magnitudes among a basic set of 

local measurements (see, e.g., [Gra85]). 

ii) Constant-linkage Problems 

Constant-linkage problems are characterized by a positive linkage whose strength does 

not depend on the size of the zone. Two variants can be distinguished: unidirectional and 

bidirectional. 
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Unidirectional problems 

One of the simplest unidirectional problems is to determine the average value of the 

pixels in an image. As discussed in section 2.1.1, determining this quantity requires only 

one parameter ( the sum of pixel intensities) from any zone. Similarly, the calculation of 

the standard deviation is also undirectional, requiring two parameters ( the sum of pixel 

intensities, together with the sum of their squares) to be obtained from each zone. Other 

problems which can be formulated this way include finding the minimum distance between 

black ( or white) pixels in the image [Sto87], determining the center of mass [Tan84], and 

detecting horizontal or vertical concavities [Sto87]. 

All these tasks can be carried out in O(log n) time on a pyramid architecture [Tan84, 

Ros86, Sto87]. In general, logarithmic complexity can be achieved for any process in which 

each PE reduces the data from the level below it to a constant amount, and passes this data 

upwards [Sto87]. The pyramid is consequently a natural architecture for the entire class 

of unidirectional constant-linkage problems. Hypercubes allow no additional reductions of 

complexity. 

Bidirectional problems 

Relatively little work has been done on this class of problems. Determining the median 

can be done in O(log3 n) time on a pyramid; it is not known whether this quantity can 

be lowered [Sto87]. Another bidirectional constant-linkage problem is the determination 

of extreme points, i.e., those points located at the corners of the smallest convex polygon 

containing all points in the image. The complexity of this problem also is O(log3 n) on a 

pyramid [Sto87]. It may be that this (provisional) limit applies to all such problems. 

iii) Perimeter-linkage Problems 

A large set of problems can be characterized by linkage proportional to the perimeter of 

the zone. Again, both unidirectional and bidirectional variants can be distinguished. 

Unidirectional problems 

This class is exemplified by connected component labelling (CCL), where each distinct 

component in the image is to be assigned a unique label. Note that a special case of this 

problem is the determination of whether all lines in the image are connected. Provided that 

the components passing through the perimeter of a zone are correctly labelled ( as far as the 

zone is concerned), no other aspect of the zone's contents are needed to solve this problem. 
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The number of degrees of freedom is therefore equal to the number of perimeter crossings. 

Assuming a uniform distribution of components in the image, this is directly proportional 

to perimeter length. Another perimeter-linkage problem is the determination of the lengths 

of all lines in the image. Here, two parameters (label and total length inside the zone) are 

required at each perimeter crossing. 

CCL can be done in 0(n) time on a mesh [Sto88], 0(n112) time on a pyramid [MS87], 

and 0(log(n)) time on a hypercube [LAN89]. This latter limit is the same when a PRAM is 

used [SV82]. It may be that these limits also apply to the other problems in this class. 

Bidirectional problems 

This class includes problems of constraint relaxation,12 which are characterized by local 

measurements that require context for their complete interpretation [HZ83, KI85]. Since these 

problems depend only on local constraints, the effect of a zone on the result is determined 

by a band of pixels along the border, the exact width depending on the range of the local 

process. Linkage is consequently proportional to the length of this border. But values in the 

local zone must also be consistent with their surroundings, making the problem bidirectional. 

Two types of relaxation problem exist: continuous and discrete. For continuous relax

ation, local values ( as well as interaction terms) are represented as real numbers. Among 

other things, this allows non-zero probabilities to be assigned to different interpretations of 

any local feature. The problems themselves are generally formulated in terms of maximizing 

or minimizing some global quantity, which then allows them to be recast as finite difference 

equations [HZ83]. One particularly interesting set of problems involves reconstructing sur

faces by finding the extremum of some global measure such as the smoothness or error of the 

reconstructed surface. This approach is the basis of general frameworks of visual processing 

such as regularization theory [PTK85] and Markov random fields [GG84]. 

Continuous relaxation can also be formulated in terms of linear programming [BB82, 

p. 420-430]. Since linear programming can be done in polynomial time [Kar84], it is likely 

that continuous relaxation is of this complexity. For problems that can be cast as the solution 

of elliptical equations ( either linear or nonlinear), the number of iterations required to solve 

the problem to within a given accuracy is 0( nL), where Lis the order of the equation [Bra 77, 

p. 281]. On a pyramid architecture, where multiresolution techniques [Bri87] can be used, 

12 These are often referred to as relaxation processes. They are described here as problems, however, since 
they are abstract specifications of input-output mappings that are quite independent of the particular processes 
used to carry them out. 
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this is reduced to O(n) iterations [Gla84]. 

In contrast to continuous relaxation, discrete relaxation requires that values assigned to 

pixels be integers, and that only one interpretation be allowed for ea.ch object. Many of 

these problems a.re NP-complete, including the interpretation of line drawings [KP85]. It is 

strongly suspected ( although not proven) that NP-complete problems take an exponentially 

large amount of time in the worst case [GJ79]. Assuming this to be true, the complexity 

of discrete relaxation results more from the cost of search than from bottlenecks on data. 

transmission. 

iv) Area-linkage Problems 

Finally, problems exist for which linkage is proportional to the area of the zone. These 

area-linkage problems have minimal coherence between values in the input and the output at 

any location. An example is the rotation of a. discrete image by 180°. Here, a. change in one 

pa.rt of the input can change the output at a position arbitrarily far a.way. Another example 

is the sorting of pixel intensities. Here again, a change in the value of a single pixel can lead 

to changes at locations far removed from the original zone. 

Area-linkage problems involve such large amounts of data transmission that pyramid 

architectures ( and variants thereof) cannot efficiently handle the transmission of data.. Bot

tlenecks exist at the higher-level PEs of the pyramid, and so considerable time is therefore 

required to move data. over large distances. Image rotation, for example, is of complexity 

n( n) on a pyramid. A similar limit exists for sorting [Sto87]. This latter value may a general 

limit for area-linkage problems on this architecture. 

When the communication bottlenecks are bypassed by the use of more completely

connected architectures, the complexity of area-linkage problems is reduced. For example, 

sorting on a hypercube requires O(log n) time [Sto87], the lowest complexity possible on any 

architecture [GR88]. 

2.1.2 Psychophysical Studies 

Early vision consists of those operations in the human visual system that a.re rapid, spatially 

parallel, and require little attention. Since these operations are directly involved with the 

incoming image, they are relatively easy to study empirically. Consequently, they have long 

been the subject of psychophysical investigation (see, e.g., [Zuc87b]). 
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Since the focus here is on the limits to this kind of processing, this section surveys only 

the results of psychophysical studies on the descriptions used at the highest stages of early 

vision. As this survey shows, there is a remarkable degree of convergence to these results. 

A. Basics 

Psychophysical studies of rapid visual processing have largely been concerned with those 

activities that occur almost instantaneously and without conscious effort. For example, when 

a horizontal line is placed among a group of vertical lines, it invariably "pops out" of the 

image, no matter how many vertical lines there may be. On the other hand, detecting a 

T-shaped figure among L-shaped figures requires a much slower and more effortful serial scan 

of the display [Tre88]. This is generally taken as evidence that fast search is based on "visual 

primitives" formed rapidly and in parallel across the visual field, while slow search is based 

on constructs formed serially at higher levels. 

This difference in performance (in both accuracy and response time) can be used to 

determine the set of properties determined rapidly and in parallel in early vision. For the 

most part, experiments have been based on one of three types of task: visual search, texture 

segmentation, or grouping. 

i) Visual Search 

In visual search, the task is to determine whether a displayed image contains a subset of 

some given collection of target patterns. Performance is generally measured by the accuracy 

or speed of the response. Psychophysical studies explore how this performance varies as a 

function of the number and type of target patterns in the collection, the number and type of 

items in the display, and the duration of the display itself (see, e.g. [Rab78, Rab84]). 

Visual search experiments date back to the work of Green and Anderson [GA56), who 

demonstrated that search speed for a target was unaffected by variations in the shapes of 

the other items, except for those of the same color. This suggested that color is available at 

early levels to allow the selective processing of visual information. Further work by Neisser 

[Nei63] showed this to hold for simple geometrical properties as well: target letters embedded 

in a group of nontargets are detected more quickly when they have a distinctive shape or 

orientation. 

20 



More recent studies ( e.g., [Tre82, Tre88, Dun89]) measure response time for a single 

target as a function of the number of items in the display, with response accuracy being held 

constant. These experiments show that if the target is sufficiently distinct from the other 

items, response time is effectively independent of the number of items present - subjectively, 

the target "pops out" of the display. Otherwise, detection time is roughly proportional to 

the number of items in the display, with the constant of proportionality being twice as 

large for target-absent displays as for target-present ones. This latter pattern is taken as 

evidence for a serial scanning process that terminates when the target pattern has been 

found [Rab78, Tre82, Tre88]. 

ii) Texture Segmentation 

An alternative way to investigate rapid parallel processing is based on the perception of 

visual texture. Texture perception has several different aspects. These include obtaining 

surface shape from texture gradient, determining the intrinsic structure of a surface, and 

finding the boundaries between regions of different texture (see, e.g., [Wil90]). Much of what 

is known about texture perception is based mostly on studies of this latter aspect, called 

texture segmentation. In particular, studies have concentrated on finding the determinants 

of "effortless" segmentation, i.e., segmentation occurring within several hundred milliseconds 

of initial viewing and with no conscious scrutiny (e.g., [Jul81]). 

Segmentation itself has several different aspects, including the detection of regions of 

different texture, and the determination of the shape of the possible boundaries [Wil90]. For 

the most part, experiments proceed either by measuring the time required to perform these 

tasks to within a given accuracy or by measuring performance accuracy as a function of 

display time. 

In both cases, a pattern of results is found that is much the same as that for visual search. 

Textured regions can be separated effortlessly from each other when they differ sufficiently 

in the density of their elements, or if these elements are sufficiently distinct from each other 

(e.g., a region of horizontal lines against a region of vertical lines) [Jul86]. It must be kept 

in mind, however, that texture segmentation is a process with goals that are in many ways 

different from those of visual search, and so may not necessarily involve the same set of 

elements. 
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iii) Visual Grouping 

The representations used in early vision can also be studied by finding the determinants of 

visual grouping [Bec66, Bec82]. This approach has its origins in the Gestalt laws of grouping. 

Disconnected elements can be grouped together into larger units ( such as lines and regions) 

on the basis of similarity and spatial organization [Zuc87a]. Turning this around provides a 

way to define these properties _operationally - similarity and spatial organization are exactly 

those properties that lead to visual grouping. 

Since studies of visual grouping often are based on the conscious perception of grouping 

strength ( e.g., [Bec82, SBG89]) and not on processing speed or accuracy, their results do not 

necessarily pertain to rapid parallel processing. But it has been found that "spontaneous" 

grouping is not based on the overall shapes of objects, but rather on the similarity of their 

"elementary parts" [Bec82]. To the extent that these parts are consistent with the elements 

of visual search or texture perception, they can provide a check on the descriptions formed 

at early levels of vision. 

Three types of grouping are commonly studied: (i) segregation into regions, (ii) segre

gation into populations, and (iii) creation of intrinsic surface structures. The first of these 

is similar to texture segmentation. But, whereas segmentation is generally concerned with 

the boundaries of textured regions, segregation focuses on the linking of items into distinct 

regions. 

Population segregation is similar in most ways except that linking based on proximity 

in the image is replaced by linking based on proximity in a more abstract space of intrinsic 

properties ( e.g., color or orientation). Th)ls, for example, a group of yellow dots intermixed 

with blue dots can be separated into two distinction populations, even though no geometrical 

boundaries exist. Experiments are generally based on judgements of whether two or more 

kinds of features are scattered throughout the image. Although it is also sometimes termed 

"texture segmentation" [Bec82], this task is conceptually quite different, involving the pooling 

of visual elements based on their intrinsic properties rather than their locations. 

The third type of grouping is the formation of "intrinsic" structures, such as one

dimensional contours or two-dimensional flow patterns, which can arise even in images formed 

only of dots [Ste78, ZSS83]. Like the segregation of elements into regions or populations, this 

process is generally thought to be based on simple properties computed over local zones in 

the image [Bec82]. 
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B. Models of Rapid Visual Processing 

The general pattern of results from experiments on visual search, texture segmentation, and 

grouping is much the same: performance is governed by a small set of simple image properties 

such as line orientation, curvature, contrast, and color (see [TG88]). The explanation of 

these results, however, is far from straightforward. First, the limited range of conditions over 

which data is collected can make it difficult to determine whether a process requires constant, 

logarithmic, or linear time. And there is no necessary connection between those properties 

that are computed quickly and those that are computed in parallel - a description may be 

the result of an extremely fast-acting serial mechanism, or conversely, a parallel mechanism 

may still require time that increases with the size of the input [Tow72). 

In spite of these reservations, several theories have been proposed to explain many aspects 

of the results. Although differing in details, these theories agree that simple properties are 

computed rapidly and in parallel at an early "preattentive" stage, and that complex properties 

require the application of more sophisticated serial operations at a subsequent "attentive" 

stage of processing [Bec82, Jul86, Tre88). 

i) Feature Integration Theory 

Feature-integration theory [Tre82, TG88) was originally developed to explain why "pop

out" in visual search occurs when the properties of targets differed sufficiently from those 

of nontargets, but not when they differed only in the spatial arrangement of their parts. 

According to this theory, the preattentive system is composed of a set of parallel spatiotopic 

maps, each describing the distribution of a particular property (or "feature") across the 

visual field. These features are simple properties of the two-dimensional image, including 

orientation, curvature, binocular disparity, color, and contrast [TG88). Once these maps have 

been computed, a target containing a unique feature can be detected simply by checking for 

activity in the relevant map [Tre88). 

The separation of the maps, however, means that spatial relations between features can

not be represented explicitly. Instead, the coherence of items is represented indirectly via a 

"master map" linking together the appropriate locations in the feature maps. The compu

tation of coinplex structures therefore requires a spotlight of attention to access the master 

map and link up all the relevant features into a coherent whole. Since this spotlight must 

serially inspect each collection of features present in the image, the detection of complex 

features requires time proportional to the number of features present. This explains why, for 
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example, targets distinguished only by inside/outside relations do not pop out [TG88). 

In its original form, feature-integration theory did not account for several phenomena. 

Among these were the finding that conjunctions of simple features at the same location can 

be rapidly detected when their constituents are strongly discriminable, and the finding that 

search rate increases smoothly with the discriminability of the stimuli [Tre88]. The first of 

these has since been explained by postulating an inhibition ( or excitation) of the master map 

at locations where elements are strongly activated. This allows all items containing nontarget 

features to be effectively ignored, leaving a small remainder among which the target can be 

quickly detected [Tre88, CW90, TS90]. The second effect is accounted for by postulating that 

the spotlight of attention operates not on individual items but on groups of items, the size of 

the group varying with the discriminability of its members [TG88]. Both these refinements, 

however, maintain the assumption that only simple local operations are carried out in parallel 

at preattentive levels. 

ii) Resemblance Theory 

Resemblance theory [DH89, Dun89] is an alternative account of visual search that differs 

from feature-integration theory in several ways. It shares the basic premise that simple 

features are computed at the preattentive level but postulates that the speed of search depends 

entirely on the resemblance between the target and nontarget patterns in the image. It 

explains the relatively slow search for conjunctions as due to the similarity of target and 

nontarget items arising from their common features. 

One of the more interesting aspects of this theory is that resemblance is based on the 

degree of transformation needed to map the features of one figure into those of another [D H89]. 

It therefore is a first step away from the idea that preattentive processes are necessarily based 

on simple local properties. Although some of the difficulty of conjunction search is apparently 

due to conjunction itself [Tre91], the possibility remains that some aspects of preattentive 

operation are best explained in terms of features resulting from procedures applied to simple 

line elements. 

iii) Texton Theory 

In contrast to both feature-integration and resemblance theory, texton theory was de

veloped to account for effortless texture segmentation. Here, perceived texture is thought 

to depend entirely on the first-order densities of spatial patterns called textons. These are 
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localized geometric shapes with simple properties, including endpoints, elongated blobs, line 

crossings, and line segments of various lengths, widths, and orientations [Jul84a]. 

Texton theory explains texture segmentation by a model similar to those used for visual 

search, with processing being separated into distinct preattentive and attentive systems. The 

preattentive system is composed of a set of spatiotopic maps, each describing the distribution 

of a particular texton across the visual field. Effortless segmentation occurs when the regions 

differ sufficiently in the first-order densities of their constituent textons. Because only texton 

densities are involved, textures cannot be effortlessly segmented when they differ only in the 

relative arrangements of their textons ( e.g., a region of L-shaped figures against a region 

of T-shaped figures). To separate such regions therefore requires conscious "scrutiny" by 

higher-level processes [Jul84a]. 

Textons have much in common with the set of features postulated for visual search. They 

include not only length, width, and orientation, but also color, motion, binocular disparity, 

and flicker [Jul84a]. Indeed, given that line-crossings are no longer considered to be true 

textons [Not91], the two sets appear to be almost identical. Textons have even been used 

to explain visual search itself, using a mechanism analogous to the spotlight of attention 

being postulated to account for the detection of particular texton combinations [JB83]. Like 

feature-integration theory, texton theory has also been revised to allow groups of items to be 

searched in parallel within limited regions, the size of these regions varying with the strength 

of the density gradient [Jul87]. 

But important differences also exist. Whereas feature-integration and resemblance theo

ries are based on the absolute presence or absence of features, texton theory posits boundaries 

based on the local differences between texton densities [Jul86]. Furthermore, while most (if 

not all) textons have properties similar to those of preattentive features, they are quite dif

ferent ontologically: textons are geometric elements containing specific properties, and are 

not the properties themselves. In essence, each texton contains a conjunction of simple prop

erties. Thus, although effortless texture segmentation cannot be based on spatial relations, 

it can be based on the conjunction of simple features [Jul84b]. 

iv) Spatial Filtering 

Recent attempts to provide an algorithmic framework for texture segmentation have 

shown that much of it can be explained in terms of the spatial filters postulated for 

edge detection, viz., localized linear filters of differing widths and orientations (e.g., 
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[Cae84, BA88, VP88]). It also has been suggested that the texture boundaries themselves 

are determined via operations analogous to those used for edge-detection, with the array of 

filter outputs being smoothed and the lines of maximum change then used to mark the tex

ture boundaries [VP88, GB89, BCG90]. Direct psychophysical evidence has been obtained 

in favor of this view [Not91]. As a consequence, there is now some doubt about the need to 

maintain textons as a separate set of texture primitives (see, e.g., [Not91]). But consensus 

remains that texture primitives - whatever these ultimately may be - are based only on 

simple local properties computed rapidly and reliably from the image. 

The spatial-filter model also helps to explain the grouping of image elements. Such filters 

respond not only to actual lines of a given orientation and length but also to simple structural 

groups having the same general outlines, such as the "virtual lines" formed by a row of dots 

of similar contrasts [Zuc86]. However, although filters are thought to be necessary for the 

grouping process, they are not usually believed to be sufficient. Apart from exceptions such 

as the rapid detection of "locally parallel" structure in Glass patterns [Ste78]), grouping 

processes are generally thought to require nonlocal integration of information across the 

image ( e.g., [Zuc87b]). 

It also appears unlikely that the properties determined at the preattentive level can be 

explained entirely in terms of a single set of filter-based elements. For example, population 

grouping is based on the lightness differences of the elements, rather than by the contrast 

ratios that govern region segregation. Furthermore, conjunctions of these properties do not 

support population segregation, whereas they do support region segregation [BGS91]. The 

two sets of processes cannot therefore involve the same set of basic elements. Further support 

for this view comes from studies that show texture identification and texture segmentation 

to be based on different sets of primitive elements [Not91]. Thus, given the possible existence 

of several different sets of preattentive elements, it is likely that at least some of them are 

not directly related to spatial filters. 

2.1.3 Computational versus Psychophysical Studies 

From a computational viewpoint, there are good theoretical grounds for the assumption 

of a distinct stage of early visual processing. To begin with, almost all the properties at 

this level have two important characteristics: (i) they are zero-linkage (section 2.1.1),13 and 

13 As a convenient way of speaking, the linkage of a property is identified with the linkage of the corresponding 
image-processing problem. 
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(ii) they have a fixed support, i.e., the relevant property can be extracted from a fixed set 

of points in the zone. A spatially-bounded template can therefore determine the relevant 

property at each point and the corresponding map can be computed rapidly and in parallel. 

Although recent experiments have shown that conjunctions of preattentive features can pop 

out when sufficiently distinct [TS90], this has little effect on the general argument since, as 

several models have shown ( e.g., [CW90, TS90]), this can be accounted for entirely by a more 

sophisticated search mechanism that selectively suppresses ( or excites) the outputs of the 

simple feature maps. 

In contrast to these "template" properties, others are neither zero-linkage nor have a fixed 

support. For example, determining whether a given object is inside or outside a neighboring 

object cannot be done within some fixed zone, since there are no limits to the extent of the 

neighbor's boundaries. Even if limits were imposed, there would still be no fixed points which 

could always be used. Thus, a different template is required for each of the exponentially

increasing number of possible shapes.14 It has therefore been suggested that "nonlocal" 

properties, including virtually all types of grouping and spatial relations, are determined 

pmcedurally via specialized visual routines applied to earlier "base" descriptions [Ull84]. Many 

of these routines are serial, spatially inhomogeneous, and are thought to be controlled by 

higher-level processes. As such, their application is sometimes linked ( to greater or lesser 

extent) with the spotlight of attention required at attentive levels [Ull84, TG88]. This point 

of view receives some confirmation from the finding that spatial relations such as parallelism 

and inside-outside cannot be detected preattentively [TG88]. 

However, this grouping of visual processes into distinct early and later stages is not 

without its difficulties. Consider first the property of length. This is generally regarded 

as a primitive quantity, both in empirical studies on visual search ( e.g., [TG88]) and in 

computational models of early vision ( e.g., [Mar82]). But length is not a zero-linkage property 

- a gap arbitrarily far away can change the value assigned to a line. It also is not easily 

determined by a template, or even a set of templates along the line, since the value from any 

individual template depends on the overlap between it and the line being measured. At best, 

length might be determined from competition among the set of templates along the given 

line ( cf. [Zuc87a]) but this begins to introduce a nonlocal element into the computation. 

It also has been found that binocular disparity (and possibly depth) can be determined 

14 For exa.mple, consider a surfac patch divided into n intervals . If k possible values ( e.g., color, height) 
exist for each i.uterval, then kn rufferent combinations are possible. 

27 



preattentively [NS86]. It is possible to call disparity a zero-linkage property, in the sense that 

the value at any point depends only on some finite surrounding zone in the image. But there 

is no way in which it can be given a compact fixed support - to ascertain disparity requires 

the matching of patches in the left and right images, and the contents of these patches can 

be quite arbitrary. Matching must therefore be done procedurally. 

Recent results have also shown that the preattentive system can determine properties such 

as direction of lighting and three-dimensional orientation - properties not of the image, but 

of the scene to which it corresponds [Ram88, ER90a, ER90b, ER91]. Such recovery appears 

to have a nonlocal procedural component, since its success does not depend completely on 

the presence or absence of any particular local property, but instead depends on the entire 

system of line relations present in the item [ER90b, ER91, ER92]. These findings call into 

question the basic assumptions behind the conventional assignment of visual processes to 

early and later levels. In particular, they call into question the reasons for believing that 

three-dimensional structure cannot be rapidly determined by a spatiotopic array of parallel 

processors. 

2.2 The Interpretation of Line Drawings 

The problem of line interpretation is one that is simple enough to allow easy formulation 

and experimental manipulation, yet complex enough that its solution requires at least some 

degree of intelligence. As such, it provides an interesting arena in which to study processes 

of a type generally thought to be restricted to higher levels of cognition. 

This section surveys some of the main results of the computational and psychophysical 

studies that have been carried out in this area. In particular, it examines the case where the 

drawings correspond to two-dimensional projections of opaque polyhedra. Some of the more 

important theoretical results are first surveyed. This is followed by an overview of what is 

known about the ability of humans to interpret such drawings. 

2.2.1 Computational Studies 

The problem of determining the three-dimensional structure of an object from its corre

sponding line drawing has been the focus of a considerable amount of work in the field of 

computational vision (see, e.g., [CF82]). This section reviews several important results that 

have been obtained. These results have for the most part been developed within a single 
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framework - the blocks world. When the basic assumptions of this framework are met, a 

great deal can be said about what can and cannot be recovered from a line drawing. 

A. Basics 

Early work on the machine interpretation ofline drawings ( e.g., [Rob65]) attempted to analyze 

scenes composed of a small set of known polyhedra. The goal was to identify lines in the 

image with edges of particular instances of these objects. Recognition proceeded by using a 

priori knowledge of the polyhedral shapes to determine which image regions corresponded to 

which surfaces. 

Although research in "model-based" vision ( e.g., [Low85]) continues to use such global 

constraints, attention also turned to the use of "local models", i.e., constraints on the local 

structure of the objects in the scene. Guzman [GA68) showed that the structural relations 

among the lines of the junctions were often sufficient for the extraction of three-dimensional 

structure. Subsequent work (e.g., [Clo71, Huf71, Wal72, Mac76]) gave this approach a more 

solid theoretical framework in which to formulate and discuss issues of line interpretation. 

This theoretical framework was based on the so-called "blocks world", a scene domain 

comprised of polyhedral objects with trihedral corners, i.e., corners formed from the intersec

tion of three polygonal faces (see, e.g., [CF82]). The corresponding image domain is formed 

by the orthographic projection of these objects onto the image plane. Given that corners are 

trihedral in the narrow sense ( section 1. 1 ), this projection consists of straight-line segments 

connected by junctions of either two or three lines. By using line drawings alone, all effects 

of surface coloration ( e.g., reflectance and texture) and shading are discounted. Viewing di

rection and direction of lighting are held constant, with the two directions often being made 

coincident in order to avoid shadows. The result is a "miniworld" in which attention can be 

focused entirely on the recovery of surface geometry. 

The most comprehensive, and difficult, problem concerning line interpretation in this 

miniworld is that of realizability: Given a line drawing, does it correspond to an actual 

arrangement of polyhedral objects in some three-dimensional scene? If so, what are the three

dimensional shapes and positions of these objects? Virtually all the work done on the blocks 

world has proceeded by splitting this problem into two parts: a qualitative aspect concerned 

with the structural relations between edges and surfaces in the scene, and a quantitative 

aspect concerned with the slants of the lines and the depths of the vertices [Sug86, KP88). 
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Although both aspects can be approached independently, the results of qualitative analysis 

have usually been used as the starting point for quantitative analysis (see, e.g., [Sug86]). 

B. Qualitative Interpretation 

Since the faces of a polyhedral object are planar, its structure is completely determined by 

the locations of its edges, i.e., locations where the orientation of adjoining faces suddenly 

changes. Qualitative analysis is based on the structural relations between these edges (see, 

e.g., [Mal87]). Edges can be subdivided into convex and concave forms according to whether 

or not the edge folds outward, i.e., whether or not an external plane can be placed into 

contact with the edge. A further subdivision results from the relation between object and 

viewer. Edges can be grouped according to whether both or just one face is visible. 15 This 

latter kind of edge is referred to as a boundary edge. These correspond exactly to places in 

the viewer-centered description where depth changes discontinuously. Two types of boundary 

edge are often distinguished, according to which side of the line corresponds to the visible face. 

The remaining edges are referred to as interior edges. These correspond to locations where 

the depth gradient changes discontinuously. These are divided into two types, according to 

whether the corresponding edge is convex or concave. Between them, boundary and interior 

edges describe not only an object's shape but also the segmentation of the image, i.e., which 

regions in the image do or do not correspond to connected surfaces in the scene (see, e.g. 

[Sug86, Kan90]). 

To interpret a line drawing, each line must be labelled as a particular kind of edge ( convex, 

concave, or boundary). The interpretation is guided by a set of explicit constraints on the 

various edge labellings. These constraints can be provided largely by :restrictions on the 

labelling of junctions [Huf71, Clo71]. Four types of junction can be distinguished (figure 2.2). 

The first three are trilinear, formed from the joining of three lines: (i) arrow-junctions, for 

which the greatest angle between two lines is greater than 180°, (ii) Y-junctions, for which it 

is less than 180°, and (iii) T-junctions, for which it is exactly 180° (see figure 2.2). There also 

exist L-junctions, formed from the joining of two noncollinear lines. Each type of junction 

leads to a particular set of constraints. These constraints, first given by Huffman [Huf71] 

and Clowes [Clo71], are shown in figure 2.3. These correspondences fail to hold when there is 

an accidental alignment of viewing direction with particular arrangements of surface edges. 

Since accidental alignments are exceedingly rare, the assumption usually is made that they 

15 It is evident that this distinction applies only to convex edges. 
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Figure 2.2: Types of junctions. 

do not occur; under this general viewpoint constraint, the correspondences between junction 

and edge types will always hold. 

The problem of finding a consistent set of labels for a given drawing is known as the line 

labelling problem. Every polyhedral scene gives rise to a unique set of labels [Ric88], and if 

a drawing is realizable, it can be consistently labelled [Huf71, Sug86]. But the converse is 

not true. The separation into independent qualitative and quantitative components means 

that the metric structure of the scene is not available to the qualitative labelling process. 

Consequently, line drawings can be consistently labelled, but have no correspondence with 

any polyhedral object [Huf71, Kan90]. 

The labelling of a given drawing can be carried out by a relatively straightforward pro

cedure. As figure 2.3 shows, each type of junction can be labelled in several different ways. 

To reduce the number of local candidates, interpretation often begins with the application of 

"Waltz filtering" to eliminate labels that are locally inconsistent [Wal72, Mac77]. This kind 

of consistency check is a relatively simple procedure that can be carried out in polynomial 

time (MF85]. 

Waltz filtering finds a correct interpretation if the locally consistent labels are globally 

consistent as well. But this does not always occur. Consequently, it is sometime necessary to 
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explore all possible combinations of the remaining labels, each combination then tested for 

global consistency. Since the labelling problem is NP-complete [KP85], it is highly unlikely 

that a globally consistent solution can always be found in polynomial time. Instead, the 

worst-case time is likely to be an exponential function of the number of junctions ( and lines) 

in the image. 

Although the Huffman-Clowes constraints never lead to inconsistency in a drawing that 

corresponds to a physically realizable object, they sometimes consistently label an object that 

cannot be realized. Two types of error occur: inconsistencies in the global topological struc

ture, and inconsistencies in the depths of the surfaces (see, e.g., (Dra81, Kan90]). Topological 

inconsistencies can be eliminated when all corners are rectangular [Kan90). Inconsistencies in 

depth, however, must be handled via more powerful constraints based on the metric structure 

of the scene. 
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The use of metric constraints was pioneered by Mack worth [Mac73], who developed an 

approach based on the observation that regions in the image must correspond to flat planes in 

the scene. Each plane is represented by its gradient, a two-dimensional measure of its orienta

tion in space. Since all faces of a polyhedral object are planar, its coherence can be captured 

by constraints in the gradient space, which eliminate many inconsistent interpretations. 

Although constraints on gradient space are useful, they do not eliminate all inconsistent 

interpretations [Dra81]. This is because only partial use is made of three-dimensional infor

mation - gradients ignore the fact that planes are also specified by their depth along the 

line of sight. This latter quantity forms the basis of sidedness reasoning [Dra81) , in which 

constraints are based on the condition that one plane must always be in front of the other 

on a given side of their intersection line. The resulting set of constraints then ensures that 

all consistent interpretations correspond to physically realizable objects [Dra81). 

C. Quantitative Interpretation 

An alternative to qualitative line interpretation is to work directly with the quantitative 

structure to obtain · the depths and the three-dimensional orientations of the objects in the 

scene. This technique, first suggested in [Fal72), is based on the observation that the junctions 

around a common region correspond to points and edges around a common planar face. This 

plane can be described by a linear equation, with the unknowns being the depths of the 

corners in contact with the face. Collecting the equations for each region in the drawing yields 

a system of linear equations, which can be solved by straightforward means [Sug86, Kan90). 

In general, these systems of equations are underdetermined. Thus, even when an absolute 

depth is attached to one point, several degrees of freedom still remain [Sug86). Additional 

constraint on the solutions is therefore required. One such constraint is an a priori specifica

tion of the three-dimensional orientation of particular faces. Since each of these specifications 

is independent, the number of degrees of freedom is reduced by the number of orientation 

specifications that can be given. 

Other kinds oflocal constraint also are possible. If a junction corresponds to a rectangular 

corner, the slant and tilt of the corresponding faces and edges are completely determined by 

the angles of the lines about its vertex, the values depending only one whether the junction is 

concave or convex [Per68, Mac76, Kan90]. Furthermore, there exists a set of necessary (but 

not sufficient) conditions on a junction that corresponds to a rectangular corner [Per68]: an 
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arrow-junction must have one angle greater than 90°and the other two less than 90°, while 

a Y-junction must have all its angles greater than 90°[Per68, Kan90]. Three-dimensional 

orientations can also be recovered when only two of the angles are 90°[Kan90]. In this case, 

the lines must be correctly identified with the corresponding edges in the scene. Recovery of 

slant is possible for both orthogonal and perspective projection of the object onto the image 

plane [Kan90, ch. 8]. 

Global constraint also is used. One approach is to specify the recovered surface as the 

smoothest of all possible candidates[Kan90, ch. 10]; this loosely corresponds to the regu

larization technique suggested for several aspects of early vision [PTK85). More generally, 

there is an interplay between local and global constraints. For example, Mulder & Dawson 

[MD90] have shown that for some objects, a complete quantitative interpretation requires 

that only a subset of corners be rectangular. This essentially is a special case of maximizing 

the rectangularity in the recovered figure. 

2.2.2 Psychophysical Studies 

In contrast with the work on computational aspects of line interpretation, work in psy

chophysics has been rather heterogeneous. It encompasses a wide variety of experimental 

methodologies and stimuli, as well as different theoretical frameworks. However, there is 

wide agreement in the general pattern of experimental results, and these patterns also are 

consistent with many of the results from computational studies. 

A. Basics 

Investigations into the perception of line drawings extend back to the very beginnings of 

experimental psychology. The first comprehensive explanation of how drawings could be 

perceived as three-dimensional objects was given at the turn of the century by Mach, who 

proposed that the visual system operates on a "principle of economy" (see [Att82]). This 

gave way to the Gestalt principle of figural "goodness", which selected those interpretations 

that required minimal "energy" for their representation (see e.g., [Hoc78, pp. 131-155]). 

According to this principle, a line drawing of a cube is perceived as a three-dimensional 

object rather than as a collection of two-dimensional lines because this requires less energy 

for its representation. Similar reasons also explained the tendency to perceive its sides and 

angles as equal whenever possible. 
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The vagueness of Gestalt laws eventually led to their abandonment by many workers in 

the field. However, the central insight remained that interpretation must involve constraints 

on the interpreted object. This provided the starting point for later investigations ( e.g., 

[HM53, Att54]) which attempted to provide a more rigorous study of these constraints. As 

in the case of machine vision, these later studies can be categorized into two groups: those 

concerned with the qualitative aspects of line interpretation, and those concerned with its 

quantitative aspects. Studies in the first group focus on the factors that determine whether 

a line drawing is perceived as a set of lines or as a three-dimensional structure. Studies in 

the second group are concerned with the perception of the metric properties of the structure 

itself. Reflecting a bias toward viewing line interpretation as a "high-level" activity, both 

kinds of studies tend to rely on verbal reports of consciously perceived structure. 

B. Qualitative Interpretation 

In contrast with computational studies of qualitative structure, psychophysical studies have 

tended to focus on global aspects of the interpretation rather than local properties such as 

the convexity or concavity of individual edges. At least some of this emphasis likely is due 

to the legacy of the Gestalt school, with its emphasis on the minimum energy of the entire 

interpretation. One of the first attempts to put this approach on a more rigorous footing 

was the work of Attneave [Att54], who recast the principle of minimum energy into one of 

"maximal simplicity", where simplicity was based upon the "information" contained in the 

percept. By identifying this information with that used in information theory, it was hoped 

to have a more objective basis for the rules of the interpretation process. 

Since the absolute amount of information depends upon the coding scheme, such rules 

cannot be entirely objective. Nevertheless, a few general principles can be derived. For 

example, maximally simple structures have lines of equal l_ength, symmetry about the origin, 

corners of equal angle, etc. In the case of a cube, this approach correctly predicts that its 

line drawing is interpreted as a symmetric structure with edges of equal length rather than 

as an asymmetrical set of lines of unequal length. 

Although this approach could explain the perception of simple line drawings, it could not 

do so for more complex ones without imposing ad hoc rules on how ~arious regularities could 

be traded off against each other [HM53, Att54]. In turn, this could not be done without the 

specification of a particular coding scheme. 
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Figure 2.4: Penrose triangle. 

Such schemes have been proposed (e.g. [Lee71]). If a la:rge enough set ofrules is imposed, 

it can indeed explain the perception of many kinds of line drawings [Res82, BL86). But such 

"minimal description" approaches suffer from serious drawbacks. First of all, the emphasis 

on global measures means that a drawing that cannot be consistently interpreted must be 

represented as a two-dimensional structure. This is at odds with the finding that globally 

inconsistent figures such as the Penrose triangle (figure 2.4) are perceived as three-dimensional 

objects. (Also see, e.g. [Hoc78, pp 152-155).) It also is difficult to provide a plausible 

mechanism for finding minimal encodings. Even if this could be done, the search for the 

minimal description would still take considerable time [Att82, Res82). Most importantly, 

perhaps, it is difficult to justify why the size of the description itself should be the main 

determinant of the process, rather than some property of the structure being described. 

A rather different approach was taken by Weisstein [WM78], who investigated how various 

line drawings influenced the adaptation of the visual system to sinusoidal gratings. A simple 

blank hexagon placed on a grating extending over the entire visual field resulted in a complete 

lack of adaptation at the locations it covered. At these locations, relatively low-contrast 

gratings could be easily detected, although this was not possible in the rest of the visual 

field. But when a Y-junction was added to the hexagon, adaptation suddenly appeared in 

the blank field, as if that area had been "filled in" by the surrounding gratings. These results 

were explained by a tendency for the early visual system to perceive this figure as a cube, 

which was then separated from the flat background. 

More generally, it was found that line segments can be more accurately identified when 

they are part of a drawing of a coherent three-dimensional object than when they are among 

a set of unstructured lines [WH74]. This was found to hold for junctions as well [BWH75], 

indicating that local properties govern this process. A similar set of results was obtained 
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by Walters, who found lines to be perceptually brightened when interpretable as edges of a 

coherent three-dimensional object. This brightening was found to be unaffected by global 

properties, depending only on junction type and line length ( over distances of less than 1 °) 

[Wal87]. 

C. Quantitative Interpretation 

As computational studies show, line interpretation can be achieved via constraints on the 

quantitative structure of the recovered object. Interestingly, psychophysical studies suggest 

that several quantitative constraints are indeed involved in the human perception of line 

drawings. 

One of these constraints is that of rectangularity, i.e., the requirement that polyhedral 

objects have sid.es at right angles to each other. The projection of rectangular corners yields 

junctions having a particular set of constraints on the angles between their lines (section 

2.2.1). Empirical tests [Per72, She81] have shown that subjects are highly sensitive to these 

constraints, being able to determine accurately whether a line drawing does or does not corre

spond to a rectangular cube. This can be done even when some of the lines are removed from 

the figure, provided that at least one line is kept from each of the three orientations [Per82]. 

In contrast, subjects are far worse at recognizing which structures contain corners with an

gles of 60° or 120° [She81]. Consequently, it is likely that the critical factor is rectangularity 

rather than simple equality among the angles. 

Rectangularity also makes it possible to determine the orientation of an object in three

dimensional space (see section 2.2.1 ). A very high correlation has been shown between actual 

slant and judgements obtained from line drawings of rectangular figures [AF69]. Although 

the perceived slants are less steep than the actual slants, this "flattening" can be lessened 

when contributions from other cues are reduced [Att72]. 

Another useful structural property is that of bilateral symmetry, i.e., symmetry about a 

plane through the center of an object. This property is generally perceived in a line drawing 

whenever it is consistent with the laws of projective geometry ( e.g., [Per76, PC80, Per82]) 

Even when the task itself makes no use of it, subjects spontaneously perceive symmetry 

about half the time. Indeed, it is even possible to alternate between interpretations based on 

symmetry and rectangularity (Per76]. Not all kinds of symmetry can be detected, since equal 

angles of 60° or 120° are not generally perceived as symmetrical [She81]. The preference for 
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bilateral symmetry may have ecological origins - most animals are bilaterally symmetric 

[Per76]. 

Subjects can also detect the coplanarity of two planes in a line drawing, and although the 

accuracy for this is somewhat lower than for the detection of rectangularity, it is still quite 

good [Per82]. This shows that the human visual system can recover at least some quantitative 

spatial relations from line drawings. 

Little is known about the mechanisms that carry out line interpretation in human vision. 

The two extremes have been proposed: "convergence" and "direct computation" mechanisms 

[PC80, Per82]. The former is essentially a general-purpose relaxation process ( section 2.1.1) 

that can incorporate various constraints into its operation. Recovered properties are obtained 

as the computation settles into an equilibrium state. The latter is a special-purpose device 

that computes properties directly (i.e., in a non-iterative way), obtaining its speed at the 

price of decreased flexibility. There is insufficient evidence to determine which of these two 

processes (if either) is responsible for line interpretation, but the sensitivity of the visual 

system to several kinds of geometrical properties has been taken to support the existence of 

the general-purpose "indirect" process [Per82]. 

2.2.3 Computational versus Psychophysical Studies 

As is evident from sections 2.2.1 and 2.2.2, there is considerable agreement between the results 

of computational and psychophysical studies in the areas where they overlap. According to 

computational models, there is enough information in the junctions to allow the recovery of 

almost all qualitative structure from a line drawing. This result is echoed in the finding that 

the perceived three-dimensionality of a line drawing depends on the types of the junction 

involved. The similarities extend to the quantitative aspect of interpretation as well, where 

the importance of structural constraints such as rectangularity has been established in both 

areas of study. 

Agreement, however, is not the same as completeness - many aspects of line interpreta

tion have not yet been investigated by either kind of study. For example, most computational 

and psychophysical studies have been based on perfect or near-perfect line drawings, so that 

interpretation in the presence of noise is a relatively unexplored domain. Another largely 

unexplored area is the complexity involved with interpreting various kinds of line drawings. 

In its most general form, the realizability problem (section 2.2.1) is NP-complete [KP85], 
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and so the interpretation of some drawings must sometimes be difficult and time-consuming, 

regardless of whether the system is artificial or biological. No studies, however, have explored 

the way in which complexity issues are handled by the human visual system. The fact that 

psychophysical studies are usually based on reports of relatively high-level percepts shows a 

tacit agreement that line interpretation requires sophisticated processing. But how then to 

account for rapid line interpretation in early vision? 

Evidently, rapid interpretation must be possible for only a subset of the scene domain, 

one for which the time complexity is very low. A few subdomains of this kind are known to 

exist. One of these is the orthohedral world, where all objects are constrained to have surfaces 

parallel to the x,y, and z planes. Here, the labelling of n lines can be done in O ( n) time on 

a serial processor, and in O(log2 n) time when n3 processors are available [KP88). But this 

result does not necessarily pertain to rapid recovery in human vision, since n3 processors may 

not always be available, and O(log2 n) time may not always be allowed. More generally, it is 

not clear which aspects of scene structure can be rapidly determined, or even which aspects 

should be. These questions can only be examined in the context of a computational theory. 

2.3 High-level versus Low-level Vision 

In order to develop a computational theory of rapid parallel recovery, it is necessary to know 

what role this process could play. This section re-examines the reasons for separating vision 

into high and low levels, and for the particular assignment of various processes to these levels. 

It then examines what can be expected of a rapid recovery process, and shows how it can 

help bridge the gap between the two levels. 

2.3.1 The Structure of Low-level Vision 

Information-processing tasks generally have aspects common to all inputs and aspects ap

plicable only to special cases. In vision, these two aspects take the form of distinct levels: 

a "low" level based on the general constraints of geometry, physics, and information theory, 

and a "high" level based on the more specific relations between individual objects in the scene 

( e.g.,[Mar82, Fel85). The boundary between low- and high-level vision therefore reflects the 

limits of a "common core" believed to be derivable (usually in a bottom-up fashion) from 

general considerations alone. 

Owing to the inverse relation between the generality of a constraint and the structural 
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complexity of the objects it applies to (see, e.g., [Sal85, p. 49)), this common core must involve 

structures of a relatively simple structure. In particular, the common core is usually taken to 

be a viewer-centered map ( or set of maps) of various scalar properties of the image or scene, 

with possibly some explicit representation of structural grouping as well [BT78, Mar82). 

This characterization of low-level vision differs from that of early vision, in that emphasis 

is placed on properties of the input-output mapping itself rather than on properties of the 

process that generates it.16 But processing speed is used (often implicitly) to decompose low

level vision into a sequence of "horizontal" modules. Each of these is concerned with a distinct 

stage of the computation, and is applied to the entire image (see, e.g., [Mar82, Ull84, Uhr87]). 

While there is no consensus on the exact structure of these stages, there is considerable 

agreement on their existence and general operation. 

A. Early Stage 

The first stage of low-level vision is generally identified with early vision, 1.e., based on 

operations carried out rapidly and in parallel across the visual field. This is sometimes 

described as the "image processing" stage, since the representations for both input and output 

are generally arrays of pixels, usually with the same spatial dimensions [Ree84). Early vision 

is believed to provide a quick initial analysis of the image, making explicit those properties 

useful for subsequent stages of processing ( e.g., the locations and orientations of lines in the 

image) [Mar79, Mar82].17 Its primitive elements therefore describe properties that can be 

reliably determined in this way. Typically, this is done by the concurrent application of fixed 

templates to each point in the image ( e.g., spatial filtering [Gra85]). 

This early stage is common to virtually all computational models of low-level vision, 

taking on forms such as the "raw primal sketch" of Marr [Mar82], the "MIRAGE model" of 

Watt and Morgan [WM85, Wat88], and the "cortex transform" of Watson [Wat87]. Although 

the primitives used in these models differ in detail, they generally describe simple properties 

of the image, such as color, orientation, and spatial frequency. It has been recognized ( e.g. 

[Mar82]) that primitives should describe properties of the scene whenever possible ( e.g., using 

16 This distinction between early and low-level vision is not one t l1at is us ually drawn. However, it helps 
to illustrate one of the points being made I.J ere, viz., that computational models must incorporate issues of 
resource use. 

17 h1teres Ung!y, iu his earlier work, (e.g. [M a.r79]), Marr emphasized that "there seems to be a clear 11 eed 
for beiug able to do early vjsual processiug roughly and fast as weU as more slowly and accurately" [M ar79, 
p. 31]. T his idea became less prominent in later work. 
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contrast to obtain changes in surface reflectance). But scene-based properties that can be 

reliably determined with templates are few and far between. For the most part, a complete 

determination of scene properties requires subsequent stages of processing that employ more 

sophisticated and time-consuming operations. 

B. Later Stages 

There are many ways to associate properties of the scene with primitive image elements (see 

[dYvE88]). Because of this, and because of the shortage of relevant information from psy

chophysical and neurophysiological studies, there is no general consensus as to how subsequent 

processing is carried out. 

One possibility is that reconstruction is based directly on the image elements, using con

straints derived from the nature of the scene and the way it is projected to the image plane. 

This is sometimes assumed to be done via separate streams for each kind of visual medium 

( e.g., information obtained via luminance, motion, or texture) or for different scene and image 

properties (see, e.g., [CAT90]). But although some recovery processes can be carried out al

most immediately when parallel processing is available ( e.g. the recovery of three-dimensional 

surface orientation via photometric stereo [Woo81]), much more time is generally required. 

For example, the interpretation of line drawings is an NP-complete problem [KP85), which 

effectively rules out the possibility of always speeding it up sufficiently by parallel process

ing alone ( section 2.1.1 ). Recovery processes described by the frameworks of regularization 

theory [PTK85) or Markov random fields [GG84) also are relatively time-intensive, typically 

requiring several thousand iterations for images of moderate size ( e.g., [Bla89]). Furthermore, 

their close association to relaxation problems makes it likely that the time required increases 

at least linearly with the size of the input. 

An alternative approach is to build up the scene descriptions more gradually, via an 

intermediate stage containing "non-template" properties that can be determined quickly. For 

example, the primitive elements of Marr's raw primal sketch [Mar82) are grouped together 

on the basis of local properties (e.g., common orientation) to form higher-level symbolic 

structures. This grouping is done recursively, so that highly complex elements can be built 

up . The result is a "full" primal sketch that is available to subsequent processes, such as 

those involved with texture segregation [Mar82]. 

Ullman [Ull84] has suggested that many spatial relations (including those described in 

41 



the full primal sketch) are obtained via the application of visual routines to the elements 

of early vision (section 2.1.3). These routines are based on a small set of simple operations 

such as marking and propagation, which are then concatenated together to form the desired 

procedure. This allows many "non-template" properties to be extracted from the image in 

time proportional to the size of the input. But although the complexity of these strategies 

is relatively low, the linear complexity bounds are still insufficient for many purposes, espe

cially if images are large and complex. Furthermore, many of these operations are spatially 

inhomogeneous, suggesting that they may be based on a higher-level serial control (Ull84]. 

Another alternative is to choose a more modest common core, e.g., the image itself, with 

perhaps a few of its properties ( such as the orientations of line fragments) made explicit. Es

sentially, this identifies low-level vision with some variant of early vision, perhaps augmented 

by high-speed grouping processes. This approach is found in many model-based recognition 

schemes ( e.g., (Bro81, Bie85, Low85]), where recognition proceeds via the matching of image 

features to projections of a predefined model onto the image plane. It also is found in tech

niques that use image features to index directly into a large set of predefined models ( e.g., 

(PE90]). But models are not always available, especially for unknown environments. Even 

when they are, occlusion often removes many of the relevant features, raising the possibility 

of confusion with other objects that share the same subset of visible features. Furthermore, 

this approach must be able to handle all possible views of all possible objects at all possible 

orientations in the scene. This makes the system unwieldy as the number of objects to be 

represented increases: memory requirements can become substantial if all possibilities are 

to be stored; if procedures are used to reduce the memory requirements, computation time 

increases. Thus, a "minimal core" based on simple image properties is often too minimal for 

low-level vision. A more complete intermediate description of the scene is therefore required. 

2.3.2 The Role of Rapid Parallel Recovery 

It would appear that low-level vision faces a dilemma of sorts, since a common core based 

on properties of the scene cannot be computed quickly, while simple image-based properties 

are insufficient for general purposes. But there is a way around this dilemma: instead of 

demanding that interpretations make optimal use of available information, demand only that 

they be "reasonably correct". In particular, instead of demanding that interpretations be 

consistent over the entire image, demand only that they be consistent over spatially limited 

zones. 
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Relaxing consistency in this way allows the recovery of scene properties to have a com

plexity far below that of "optimal" recovery: not only is maximal use made of parallelism, 

but the interaction of each processor with its neighbors can be considerably simplified ( cf. 

section 2.1.1). Since nonlocal context provides much of the information for interpretation, 

the outcome is usually suboptimal; in fact, interpretations may exist only over a sparse set 

of locations in the visual field. Thus, a rapid recovery process cannot be expected to produce 

a description that is complete, or even globally coherent. What can be expected, however, is 

that some of this description will be accurate enough for tasks further along the processing 

stream. 

Such "quasi-valid" estimates could be useful in several ways. For example, they could 

help guide processes that cannot afford to wait for a complete analysis of the scene ( e.g., 

active visual processes such as gaze or focus of attention (Bal91]). They could also act as 

precursors to serve as the initial estimates for slower processes that restore some degree 

of global consistency (ER92). They might also be used as (invariant) indexes into higher

level object models, thereby increasing the efficiency of model-based recognition. In any 

event, this view of early vision suggests that parallel processes may play a greater role than 

previously suspected - in essence, the "horizontal" stages of the conventional theories may 

be complemented with "vertical" islands of locally-consistent interpretations. 

Given the plausibility of this viewpoint, the problem now is to develop it into a rigorous 

theory of early visual processing. It is essential to find a way to describe a rapid recovery 

process precisely and to justify its operation. What is required for this is a framework that 

allows it to be given a computational analysis in the sense of Marr (Mar82]. 

2.4 The Analysis of Resource-Limited Processes 

If rapid recovery is to be given a rigorous computational analysis, a general framework must 

exist that allows a clear formulation of the problem and sets the ground rules for its explana

tion. The framework proposed by Marr (Mar82] goes a long way towards this end. However, 

it can only be used to analyze processes for which the limited resource is the information 

available in the image [RP91]. A few studies (e.g., [FB82, Ros87, Tso87]) have grappled with 

the issue of how time and space limitations influence the structure of a visual process, but a 

general framework for the incorporation of resource limitations has not yet appeared. Such 

a framework is therefore developed here, based on a direct extension of Marr's framework. 
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2.4.1 Marr's Framework 

According to Marr [Mar82], the complete analysis of a visual process involves three different 

levels of explanation: 

1. Computational level. This is concerned with the functional aspects of the task. It 

consists of two parts: (i) a description of the constraints between the input and output 

of a visual process, and (ii) a justification of why these particular constraints were 

chosen. 

2. Algorithmic level. Analysis at this level describes and justifies the representations 

and algorithms used. It is essentially a constructive demonstration that an algorithm 
exists capable of generating the required mapping. 

3. lmplementational level. This level is concerned with the description and justifica

tion of the physical substrate on which the algorithms are implemented. An "implemen
tational" explanation provides a constructive demonstration that there exists a physical 

system that can carry out the required computations. 

One of the strengths of this framework is its recognition of a separate "computational" 

level of explanation focusing on both the what and the why of the input-output mapping. The 

what is concerned with the explicit description of the constraints on the form of the mapping. 

This aspect of analysis is complete when the constraints are shown to determine a unique 

mapping. The why is concerned with the justification of these constraints, showing that the 

resulting set of associations between input and output is suitable for the purposes at hand. 

To use an example taken from Marr (Mar82, pp. 22-24], the what of a cash register's function 

is explained by describing its output as the sum of its inputs. The why of this function is 

explained by the need for a pricing mechanism that has a zero value, is commutative and. 

associative, and that allows inverse operations. 

In this approach, constraints on the input-output mapping of a visual process are assumed 

to be machine-indifferent, originating from the laws of optics or from the structure of the 

objects under consideration. As such, it implicitly assumes that the mappings are shaped only 

by the information available in the image, and not by limits on the computational resources.18 

This allows analysis to be completely general, with no dependence on the structure of the 

processor carrying out the computations. When the process is limited primarily by the 

18 Marr [Mar82] does consider efficiency to be important, but only once the task itself has been laid out . 
Efficiency itself is therefore addressed at the algorithmic rather than the computational level of analysis. 

44 



available information, it can be completely explained by this kind of analysis. But when it is 

limited by other factors, something more is needed. 

2.4.2 Extensions 

A. External and Internal Constraints 

If resource limitations are to be incorporated into a computational framework, several im

portant distinctions must first be made. The first is that between external and internal 

constraints. External constraints are those on the "static" aspect of the mapping, i.e., those 

definable without regard to the way the output is generated. These are essentially the con

straints that apply when the processor is viewed as a "black box". In the case of the cash 

register, for example, the requirements of commutativity and associativity are external con

straints, applicable only to the final form of the output function. These constraints can 

operate either directly via relations between input and output elements, or more indirectly 

via relations between the elements of the input or output domains (see, e.g., [RM89]). 

When a process can be analyzed entirely in terms of external constraints, the internal 

details of the processor are irrelevant. But when limited computational resources enter into 

the picture, it becomes important to consider exactly how the process is carried out. This is 

specified by the internal constraints, which apply to the way the output is generated [RP91]. 

More precisely, these are invariants of the information flow that occurs during the course 

of the computation. These constraints include limits on the communication bandwidth and 

architectural constraints on the set of basic operations to be used. Internal constraints can 

therefore influence the complexity of a given operation on various kinds of processors. 

B. Resources and Resource Limitations 

It is important to recognize that when an information-processing task is analyzed, a subset 

of constraints is usually specified that is fixed and not subject to further discussion. For 

example, when analyzing a process to recover shape from shading, the available information 

is determined by the viewing conditions and sensor array specified in the problem formulation. 

Explanation then centers around the constraints used to recover shape from this information, 

but the available information itself remains as a given throughout this analysis, and does not 

need to be explained. As such, the available information is effectively a "boundary condition" 
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for the analysis, limiting the set of input-output mappings that can be considered. Such 

quantities are referred to here as resources, and the corresponding constraints as resource 

limitations. 

Resources can involve either the external or the internal aspects of processor operation. 

External resources are quantities that can be defined independently of processor structure. 

These include not only the available information, but also such things as the total amount 

of time or energy used. The corresponding constraints are referred to as external limitations. 

These generally result from higher-level factors in the surrounding environment. As such, 

they can be considered to be constant over the course of processing ( cf. [Sal85, ch.4]). 

Internal resources can be similarly defined as those quantities relevant to the internal 

structure of the processor. Examples of these include communication bandwidth, the distri

bution of memory buffers within the architecture, and the proportion of matter taking the 

form of processing elements. The corresponding constraints on these quantities are referred 

to as internal limitations. Considering again the example of the cash register, the explanation 

of a particular design may involve an internal limitation such as the requirement that metal 

gears be used for all operations. 

Note that a similar complementarity exists for both kinds of constraint - as a given 

analysis requires fewer resources in its "boundary conditions", it applies to a wider range of 

processes. If an analysis requires the existence of five identifiable points in an image, it also 

is applicable to processes based on six identifiable points. If only four points are required in 

the analysis, it can be applied to an even larger set of processes. In the same way, an analysis 

that explains the operation of a cash register containing twenty gears also applies to a wider 

range of processes than one based on a limitation of forty gears. 

C. Abstractness 

A quantity is said to be abstract to the degree that its physical composition is relevant to the 

analysis. The most abstract quantities are purely formal ones, i.e., those that are independent 

of the properties of the underlying substrate. Such formal quantities include information and 

computational measures of time (section 2.1.1). The corresponding constraints and limita

tions are as abstract as the least abstract quantity involved. For example, the requirement 

of commutativity is a purely abstract constraint on the operation of a cash register, being 

completely independent of its material composition. Similarly, the requirement that a base 
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10 representation be used is also independent of physical structure. As these examples show, 

both internal and external constraints can be completely abstract. 

More concrete quantities contain intrinsic constraints due to the physical properties of 

the underlying substrate, such as its density or thermal conductivity. These properties can 

affect both external and internal aspects of the processor's operation. For example, setting 

an upper limit on the weight of a cash register limits the total value that can be represented. 

This results in an "approximation" of the addition operation in which the output is given 

a definite upper bound. This upper bound may not necessarily be important for practical 

purposes if the cash register is an electronic device, but it may well have a serious effect if 

addition is required to be done mechanically. 

D. Completeness 

An analysis is said to be complete to the extent that the constraints determine the uniqueness 

of the mapping, algorithm, or implementation being analyzed. For example, requiring addi

tion to be based on a positional numeric representation provides only a partial specification 

of its algorithmic structure, since - among other things - the particular base has not been 

specified. The choice of base has no impact on functional properties such as commutativity 

and associativity. It may, however, influence the efficiencies possible for various operations. 

Note that the initial set of limitations assumed in the formulation of a problem already 

sets limits to the kinds of mappings, algorithms, or implementations that are possible. The 

set of constraints obtained from a computational analysis therefore serves to complete this 

original set of specifications. 

2.4.3 A Revised Framework 

The above considerations can be incorporated into a coherent system by a straightforward 

extension of Marr's framework. The resulting system is summarized in figure 2.5. 

As in the original framework, analysis is carried out at three different levels of explanation. 

The most general of these is the computational level, where analysis is centered around the 

description and justification of the mapping between image and reconstructed scene. Analysis 

at this level is complete when it is shown that the mapping described by the constraints is 

(i) unique, and (ii) is consistent with the given limitations. 
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1 _ Comput11t i onal Level 

Constrei nts sufficient to determine input-output mopping 
that is (i) unique, and (ii) exists within given limitations 

External Internal 

Abstract All 

Concrete 

2_ Algorithmic Level 

Constraints sufficient to determine procedural decomposition 
that is (i) unique, and (ii) exists within given limitations 

Internal 

Abstract All remaining 

Concrete 

3_ lmplementotionol Level 

Constraints sufficient to determine physi col i nstanti ati on 
that is (i) unique, and (ii) exists within given limitations 

External Internal 

Abstract 

Concrete 

Figure 2.5: Extended computational framework. 
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If the analysis is to be general, these limitations must be abstract (i.e., involve no physical 

properties) and external (i.e., have no dependence on the internal structure of the processor). 

The constraints derived under these conditions (shown in the upper left quadrant of figure 

2.5) are therefore independent of any assumptions about the processor itself. This essentially 

corresponds to an analysis carried out at the computational level in Marr's framework, except 

that constraints may now be justified by an appeal to abstract resources other than available 

information ( e.g., time or space). 

It may not be possible to explain a mapping in such a general way if it has been shaped 

by the physical properties or internal structure of the processor. Analysis must then be 

completed by invoking limitations that are less general. These may be less abstract or may 

involve the internal structure of the processor to some degree. The corresponding constraints 

are located in the remaining quadrants of figure 2.5. Note that if limitations pertain to only 

a few aspects of the process, they can give rise to only a partial set of constraints on its 

physical substrate or architecture. If so, this still allows the analysis to be applicable to a 

relatively large set of processes. 

Similar considerations apply to the algorithmic level of analysis, where the goal is to 

decompose the given process into a system of more elementary data structures and operations. 

Explanation at this level describes and justifies the constraints that make this decomposition 

unique. If internal constraints exist at the computational level, the two levels of analysis 

will not be completely independent - the algorithmic analysis must not only obtain a set 

of abstract internal constraints, but also ensure that they are consistent with those obtained 

from the computational level (upper right quadrants in figure 2.5). An algorithmic analysis 

is complete to the extent that it specifies a decomposition that is both unique and consistent 

with all other constraints. It is general to the extent that nothing is assumed about the 

physical composition of the processor itself. 

The final level of analysis is that of implementation. As in Marr's framework, the goal is 

to specify a set of constraints that determine a unique physical instantiation of the processor. 

However, there are now two sources of constraint to contend with: external constraints on the 

total amount of material, and internal constraints on its distribution within the processor. 

Nate that the implementational constraints do not determine the physical implementation 

precisely, but only to the "granularity" of the algorithmic analysis. Once a process is under

stood at the three levels, analysis can be recursively applied to each of the components of 

this decomposition. 
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2.5 Rapid Line Interpretation 

Computational models have been most successful when (i) the parameters of the problem 

(such as input, output, and resource use) can be clearly specified, (ii) the problem can be 

solved by a modular process, and (iii) the constraints obtained by the analysis lead to testable 

predictions (see, e.g., [PTK85]). It is evident from section 2.3.2 that the rapid recovery process 

is highly modular, requiring virtually no interaction with other aspects of visual processing. 

It is also evident that knowledge of the constraints on this process can lead to predictions 

about the kinds of line drawings that can and cannot be rapidly detected at early levels of 

human vision. This section shows that the problem itself is well defined, with all relevant 

parameters clearly specified. 

2.5.1 Basic Terms 

A. Time 

In order to keep the analysis as general as possible, the basic unit of time is taken to be that 

required to combine two independent quantities, or to transmit across some unit distance. 

By describing time in terms of O-notation, this basic unit does not need to be specified in 

greater detail ( see section 2.1.1). 

It is also important here to distinguish between serial and parallel measures of time. Serial 

time refers to that required on a serial machine; essentially, this describes the total amount of 

"work" needed. Parallel time is the minimum time required on a given parallel architecture, 

and is often less than serial time.19 Unless otherwise specified, time is identified here with 

parallel time. 

B. Rapid processing 

For many visual processes, it is assumed ( often implicitly) that optimal or near-optimal use 

is made of the information available in the image. This effectively places a fixed lower bound 

on the information to be used for a process, the exact bound depending on the input image. 

Since every problem has an intrinsic complexity, any such "information-limited" problem 

must have a lower bound on the time it requires ( see section 2.1.1). 

19 The solution of some problems cannot be sped up by using a parallel architecture - see section 2.1.1. 
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Similar considerations hold for other resource limitations. In particular, a "time-limited" 

process can be defined by placing upper bounds on the available processing time, these bounds 

depending on the input image. No upper bound is explicitly given for the information used 

by such a process, but complexity considerations imply that such an bound must exist. Given 

the complementary nature of their upper and lower limits, it is seen that - at least in a very 

broad sense - information-limited and time-limited processes are duals of each other.20 

Intuitively, a rapid process is a time-limited process for which the upper bounds on time 

are relatively low. In the interests of precision, the term 'rapid' refers here to any process for 

which the complexity is a sublinear function of the number of lines in the image.21 This choice 

is motivated by two considerations. First, processes that can be carried out in polynomial 

time form a natural complexity class, with all polynomial processes retaining polynomial 

complexity even when carried out on various machines (section 2.1.1). As such, linear

time processes cannot be readily isolated. Given that processes of high-degree polynomial 

complexity cannot be considered as rapid, the sublinear criterion must be imposed if an 

awkward theoretical boundary is to be avoided. 

The choice of the sublinear criterion also is motivated by practical reasons: it is gen

erally impossible to distinguish a linear-time parallel process from a constant-time process 

applied sequentially to each location in the visual field [Tow72]. Consequently, only sublinear 

processes can be readily identified as being carried out in parallel. 

2.5.2 Formulation of the Problem 

In what follows, the expression 'rapid recovery' refers to the rapid interpretation of line 

drawings. The scene domain is a restriction of the blocks world (section 2.2.1) in which 

only three edges can be in contact about the vertex of any corner (section 1.1). The scene 

is assumed to be projected onto the image plane via a monocular orthographic projection. 

The inputs are therefore drawings composed of straight line segments with no dangling ends 

and which meet in junctions composed of either two or three lines. The outputs are viewer

centered dense descriptions (i.e., maps) of the structure of the corresponding polyhedra in 

20 Note that this is completely separate from considerations of efficiency. The efficiency of an information
limited process is a measure obtained by comparing t he time it requires against t he a bsolu te lower bound 
imposed by complexity considera tions. Similarly, th.e effi ciency of a time-limited process is measured by 
comparing the amount of information it extracts from the im age against the m aximum that could be achieved . 
In both cases, efficiency is described in the same terms. 

21 The term 'real-time' has been suggested for processes requiring at most linear time [Vol82] . 
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the scene. 22 An estimate of the relevant properties is assumed to exist at every point along 

these lines. As for rapid processing generally, the available time is limited to a sublinear 

function of the size of the problem, i.e. , the number of the lines and vertices in the drawing. 

The problem is to recover as much of the scene structure as possible within the allocated 

time. 

In what follows, a rather severe limitation is imposed: the recovery process must use 

only a constant amount of time, i.e., the amount of time must be independent of the size or 

content of the input. This is motivated by several considerations. First, if the output of the 

rapid recovery process were the basis for more complex operations at higher levels (section 

2.3), control of this interface would be greatly simplified if it could be assured that recovery 

was always completed within a fixed amount of time. 

Second, constant-time line interpretation is an extreme case of rapid recovery, and there

fore an interesting problem. in its own right. Among other things, any structure recovered 

under these conditions sets a lower bound on what can be expected of any rapid recovery 

process. And given that extremely low limitations are involved, the results obtained would 

be applicable to the widest varie,ty of processes ( section 2.4.2). 

Finally, constant-time interpretation leads in a very natural way to the locally-consistent 

estimates assumed to be provided by rapid recovery (section 2.3). Since transmission speeds 

are finite, a constant-time limitation translates into a constant-distance limit on the trans

mission of information in the output. As such, inconsistencies resulting from violations of the 

underlying assumptions are not propagated throughout the image, but are restricted to rela

tively small regions , or "patches". This consequently avoids the destruction of interpretations 

in areas where these assumptions do hold. 

To make the analysis relevant for the greatest range of processors, relatively severe lim

itations are also placed on the available processing resources ( cf. section 2.4.2). Since the 

rapid interpretation is likely to be done in-place by a spatiotopic array of processing elements 

(section 2.3), the number of processors must be proportional to the number oflocations upon 

which the line drawing falls; accordingly, O(n) processors are assumed to be available for 

an input of size n. The simplest way to coordinate these elements is as a two-dimensional 

array of independent processors. But although this architecture is in some sense a minimal 

22 The term 'structure' refers here to properties of the scene. These are chosen to be the (positive) convexities, 
slant signs and slant magnitudes of the edges, as well as the contiguity relations between edges and surfaces 
(section 4.1.1). 
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one, it requires a considerable amount of wiring for each processing element (section 2.1.1). 

Processors are therefore assumed to be arranged in a mesh, with each element connected 

only to its nearest neighbor. It also is assumed that each processor is simple enough that its 

operation requires only a fixed amount of space and time.23 

Although the particular space and time limitations that apply to rapid recovery are not 

known, most aspects of this process can be analyzed without knowing their exact values. This 

can be done by assuming that the time required for local processing is less than that required 

for transmission across some small fraction of the image. This amounts to an assumption that 

the complexity of rapid recovery is dominated by transmission time, a point of view largely in 

accord with known limits on biological and artificial processors ( section 2 .1.1). Among other 

things, this assumption removes the need to distinguish between time as defined by signal 

propagation and time as defined by the number of switches along the path (section 2.1.1), 

since these two measures are directly proportional to each other for a mesh architecture. 

The interpretation process can therefore be described in terms of the percolation of in

formation through a mesh network at some constant speed. The absolute size of the image, 

the size, speed and spacing of the processors, and the speed of transmission do not need to 

be known - all that is relevant is the ratio of transmission speed to the length of the lines 

in the drawing. Even this can be eliminated by a rescaling of the image ( e.g., setting the 

average line length to some constant). Consequently, the computational analysis is largely 

independent of the details of any particular representation or architecture used. 

23 These assumptions, of course, do not rule out the use of a more complex architecture such as a pyramid. 
Rather, they merely avoid assuming the extra processing power, allowing the analysis to apply to a larger set 
of processes. 
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Chapter 3 

Low-Complexity Recovery 

The success of a rapid recovery system rests upon its ability to recover a large amount of 

scene structure within a small amount of time. Since the interpretation of a line drawing is an 

NP-complete problem (section 2.2.1), a mapping that recovers all possible three-dimensional 

structure is not generally suitable for this purpose. Instead, a low-complexity "approxima

tion" must be used that captures only part of the relevant structure. 

An approximation can differ from a more complete mapping in three ways: (i) fewer 

degrees of freedom in the input, (ii) fewer degrees of freedom in the output, and (iii) fewer 

transformations of the given data. The first way (see, e.g., [Tso87]) essentially reduces the 

input resolution, while the second (see, e.g., [Lev86]) reduces the expressiveness of the output. 

But rapid recovery is assumed to have the same kind of mapping as for optimal interpretation, 

viz., an association of scene properties to each (high-resolution) line in the image (section 

2.5.2). Approximation is therefore based on the third way - fewer transformations of the 

data. 

Because fewer transformations are involved, scene properties cannot always be recovered 

successfully at each zone in the image. If constraints are chosen carefully, however, the 

likelihood of this recovery can remain high. Given the limitations on time and transmission 

distance, this likelihood is highest for those aspects that (i) are easy to compute, and (ii) 

require minimal "nonlocal" input, i.e., minimal input from areas outside the zone. 

This chapter examines the extent to which low-complexity recovery can be carried out 

along concurrent streams, each concerned with a single dimension of scene analysis. Four 

particular dimensions are considered: the contiguity and convexity of edges and the sign and 

magnitude of edge slants. Complexity bounds are derived that show the extent to which each 
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of these properties can be computed in sublinear time and with minimal nonlocal information. 

It also is shown that these streams can be combined to completely recover both qualitative 

and quantitative structure in sublinear time for several subdomains of polyhedral objects, 

including convex polyhedra and polyhedra with rectangular corners. 

3.1 General Issues 

Several general issues are involved in the specification of a mapping for a rapid recovery 

process. This section discusses three of the more important ones: the degree to which pro

cessing power can be increased by concurrent processing streams, the complexity of solving 

the constraints within each stream, and the tradeoffs that exist when approximating a given 

mapping by one of lower complexity. 

3.1.1 Concurrent Streams 

A decomposition into separate processing streams is found in many computational models of 

early vision (see, e.g., [PTK85]). This decomposition often has its origins in the processing 

of different media ( e.g., contours defined by luminance, motion, or texture [CAT90]), or in 

the processing of different aspects of the output ( e.g., motion, color, and binocular dispar

ity). Each of these streams essentially contains a bundle of highly-correlated information ( a 

"dimension") that describes some particular aspect of structure in the image or scene. 

The existence of separate streams is believed to facilitate the development of perceptual 

processes, since natural selection can act independently on each one [Sim81, Mar82]. But 

there also is another reason for their existence - they maximize the sheer amount of data 

transformation that can be done within a given amount of time. If a set of operations are 

independent of each other, they can be carried out faster in parallel rather than in sequence. 

Also, the complexity of each operation is often lower when fewer and less complex variables 

are involved. If the constraints can be reformulated such that each dimension involves only 

a few variables, then a maximum amount of data transformation is possible. 

Such a dimension is readily obtained by coalescing the original variables into a few groups, 

which are then treated as coarse-grained variables governed by a smaller set of "collapsed" 

constraints [MMH85, Mal87]. By grouping the original set of variables in several different 

ways, the original problem can be largely decomposed into several simpler subproblems, each 

of which can be solved by a concurrent processing stream. Note that the sets of properties 
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handled by these streams do not need to be independent of each other - only the systems 

of constraints need to be this way. 

Decomposing a process into concurrent streams can lead to a considerable reduction of 

processing time, but the price of this reduction is a loss of coherence: the solutions obtained 

in each stream are not necessarily compatible with those obtained in the other streams. 

Thus, cross-dimensional constraints must be incorporated if all ( or even much) of the power 

of the original set of constraints is to be retained. An important aspect of developing a 

successful approximation is therefore to maximize the use of cross-dimensional constraints 

without increasing the complexity of the problem. 

One such strategy is based on a hierarchical decomposition of variables [MMH85]. Here, 

the original variables are grouped together into a few sets of coarser-grained variables that 

obey a simple set of collapsed constraints. Once the set of collapsed constraints is solved, the 

result is used as the basis for a new problem involving finer-grained variables. This can in 

turn be applied to yet another set of constraints on even finer-grained variables. In essence, 

the problem has been decomposed into a sequence of simple streams in which the outputs of 

the coarser-grained systems help with the solution of the finer-grained ones. 

More generally, low-complexity interaction is possible if information from an unambigu

ous set of results in one stream can be transmitted to help constrain possible solutions in 

another. Since the transmission is based on unambiguous (local) results, the backward flow 

of information from the second stream to the first one has no further effect on the original re

sult. This essentially corresponds to a unidirectional linkage (section 2.1.1) between streams, 

with linkage now generalized to apply not only to interactions across geometrical space, but 

across more abstract dimensions as well. If the amount of information to be transmitted is 

small, the cross-dimensional constraints will not add to the complexity of the problem. 

3.1.2 Reduction to Canonical Forms 

If an approximation is to capture much of the structure of the original mapping, it must focus 

on those aspects of the scene that are (i) easy to compute and (ii) need a minimal amount 

of information from outside the local zone. One way to help ensure that these conditions 

are met is to select dimensions such that their determination can be reduced to the solution 

of some low-complexity problem. Two problems are of particular importance in this regard: 

2-Satisfiability (2-SAT) and connected components labelling (CCL). 
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In order to simplify the reduction to these problems, only the constraints on arrow-, Y

' and L-junctions are considered explicitly. The constraints on T-junctions are handled by 

a preprocessing step where virtual gaps are introduced between the stems and the crossbars 

of each T-junction, the two lines afterwards treated as unconnected. The crossbar of the 

T-junction then corresponds to an occluding edge, while the stem becomes an unconstrained 

line that has at least one "dangling" end. This reformulation has the advantage that the 

remaining linkages automatically split then lines in the image into separate partitions, each 

of which can be treated separately.1 

A. Reduction to 2-SAT 

One way to ensure that a dimension is easy to compute is to restrict the set of "intra

dimensional" constraints so that they correspond to an instance of the 2-Satisfiability (2-SAT) 

problem. This can be defined in terms of a set of boolean variables2 V = ( v1 , v2 , ••• , vn) and 

a set of clauses C = ( c1 , c2 , ••• , cm), with each Ci containing either one or two variables. The 

problem is to assign truth values to the Vi such that all clauses in C have at least one 'true' 

literal (see, e.g. [GJ79]). Since the clause Ck= {vi,vj} is a disjunction of variables, it has the 

equivalent form Ck = ~ (vi A Vj ). Consequently, any problem involving binary constraints on 

two-valued variables can be treated as an instance of 2-SAT [Mac91]. 

For the line labelling problem, the variables are the possible edge labels, with the set of 

Huffman-Clowes constraints (section 2.2.1) determining their allowable combinations. Since 

these variables are four-valued, reduction to 2-SAT can only be done by decomposing the set 

of variables into sets of simpler elements. 

For the most part, such a reduction occurs via the direct transcription of edge labels 

into two-valued variables and the recasting of the remaining junction constraints into binary 

form (i.e., into a form involving only two variables). For example, edge convexity could 

be expressed in 2-SAT by taking the '+' and '-' labels as the complementary values to be 

attached to the (interior) edges, and - as far as possible - implementing the constraints 

on the junction interpretations via binary constraints on these variables. Because of the 

1 Structures such as holes sometimes lead to separate sets of labels being used for different parts of the 
same object. But this occurs even in Huffman-Clowes labelling. 

2 More precisely, the 2-SAT problem is defined in terms of a set of literals U = ( u 1 , ii 1 , u2 , 'u2, ... , Un, Un). 
These literals are constrained such that only one of the pair u; or u; can he used, allowing them to he treated 
as two-valued boolean variables, the value of variable i being 'true' if u; is selected and 'false' if u; is selected. 
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independence of the partitions, variables in the image can take on more than two values, 

provided that this does not occur within any single partition. 

Bringing together the above considerations yields 

Theorem 3.1 If a line drawing of n lines has one or more partitions, each such that 

1. All variables take on 2 values, and 

2. All constraints on more than one variable are binary, 

then the relevant labelling problem can be reduced to an instance of 2-SAT. 

All 2-SAT problems of size n can be solved in 0(n) time on a serial processor [EIS76], and 

in O(log2 n) time when O(n3 ) processors are available [KP88]. 

B. Reduction to CCL 

The reduction to 2-SAT makes little appeal to the geometrical organization of the constraints 

per se, using them only in regards to the ease of computation. But spatial coherence can 

also be used, both to obtain an approximation of lower complexity, and to help minimize the 

amount of nonlocal input needed for the local interpretations. 

In particular, note that there sometimes exists a coordination among the sets of edge 

labels possible for a junction, or more generally, for some connected subset of lines in the 

drawing. For example, if boundary edges are ignored, all lines in a Y-junction must have 

the same label, either '+' or '-'. To capture this notion of coordination, define a bijective 

constraint on a set of variables Ui as one where the number of possible values for each variable 

is the same, and with a 1:1 linking between the allowable values (figure 3.1). For a bijective 

constraint, therefore, the value of one variable determines the values of the others.3 The 

variables are essentially "locked together", and can be treated as a single quantity, with 

appropriately reformulated constraints being applied to neighboring variables. 

When two bijective constraints apply to a common variable, the resultant set of con

straints is also bijective. This can simplify analysis considerably, allowing sets of junctions 

with bijective constraints on m variables to be treated as a single m-valued complex when 

these junctions are connected to each other by lines in the drawing ( figure 3.1). An example 

3 M
0

ore precisely, the value of any variable is related to that of any other by a bijective function. 
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Figure 3.1: Linking of local constraints. Lines connect values compatible with each other. 

of such a co-ordinated complex is the Necker cube. Here, two globally-consistent interpre

tations are possible, each of which has no local interpretations in common with the other. 

Because the junctions are linked via bijective constraints, the interpretation of any one junc

tion immediately determines those of all the others. 

For a bijective complex, globally inconsistent labellings can be removed by sending a 

signal from locations where legal values are missing and propagating it along the lines of 

the complex, the signal causing the withdrawal of the relevant value at each location along 

the way. This propagation can be stopped at locations where the value has already been 

removed, and so when all propagated signals have stopped, only the consistent labellings will 

remain. This process is essentially a variant of connected component labelling (CCL), with 

connections made on the basis of the bijective constraints found at each junction.4 If only 

one particular interpretation is required, all but one value can be deleted from one of the 

locations, and the interpretations associated with the deleted variables removed. 

The interpretation process for a complex of bijective constraints can therefore be reduced 

to CCL. Since a line drawing may contain several complexes separated or surrounded by 

"free" variables not in a complex, this is not necessarily true of the interpretation of the 

drawing itself. A lower-complexity approximation will only be possible when minimal effort 

is used in assigning values to the free variables and co-ordinating the interpretations of the 

various complexes. At least two such conditions exist: when variables can have only one 

4 More abstractly, this is a unidirectional perimeter-linkage problem {section 2.1.1), since all that is required 
is knowing which of the m labels to attach to each of the lines crossing the boundary of the zone. The result of 
joining together two complexes across adjacent zones is always a single complex, since the constraints across 
the boundary are also bijective. 
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value, or when they are not subject to any constraints at all. This consequently yields 

Theorem 3.2 If a drawing of n lines has one or more partitions, each such that 

1. All variables take on m values, and 

2. All constraints on more than one variable are bijective 

then the problem can be reduced to an instance of CCL. 

The complexity of CCL is 0(n) time for a serial processor, and O(logn) time when n pro

cessors are available5 [SV82, LAN89]. 

Bijective constraints can also simplify the analysis of cross-dimensional interactions. If the 

interpretation in one stream corresponds to a single complex that covers the entire drawing, 

the number of possibilities is fixed, being at most the number of values possible for any local 

variable. And if the interpretation in a different stream also corresponds to such a complex, 

it too will have a fixed number of possible interpretations. Since only a fixed number of 

possible combinations needs to be examined, the interaction between the two streams will 

increase complexity by at most a constant factor. This remains true even if the complexes do 

not cover the entire drawing, or if complexes of different streams are not aligned with each 

other - the important factor is only that at each location in the image only a fixed number 

of combinations is possible. 

3.1.3 Approximation Strategies 

It is often the case that a set of constraints must be altered if a problem is to be reduced to a 

low-complexity form._ Although there are a large number of ways that this can be done, two 

general strategies - each diametrically opposed to the other - can be discerned. 

The first of these is a conservative strategy, which increases the number of constraints 

until all can be re-expressed in the appropriate ( e.g., binary or bijective) form. This approach 

effectively rejects a subset of legal labellings, avoiding those that require greater time ( cf., 

"unsound reasoning" [Lev86]). Loosely speaking, speed is gained by increasing the number of 

"Type I" errors, i.e., increasing the number of realizable drawings (i.e., those that correspond 

5 The number of processors is actually linear in the number of edges and the number of vertices . But since 
all vertices in the line drawings considered here have at least two and at most three edges, only the number 
of edges is used here. 
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to a polyhedral scene) that are not detected as such. The result is a "quick and dirty" estimate 

as to what can exist in the scene. 

The opposite of this is a liberal strategy, which removes constraints until the remainder 

can be put into the appropriate form. Here, low complexity becomes possible by increasing 

the "Type II" error rate, i.e., increasing the number of unrealizable drawings deemed to be 

realizable. Such a strategy can be used as the basis for a quick "preprocessor" that provides 

limits as to what cannot exist in the scene. 

In general, elements of both strategies may be used to develop an approximation, the 

Type I and Type II error rates being traded off against each other. 

3.2 Individual Dimensions 

Given that line interpretation is to be carried out along separate dimensions, which dimen

sions should these be? Several sets of considerations must be taken into account. If the 

determination of a dimension is to have a low complexity, it must involve as few values as 

possible; indeed, if the associated problem is to be reduced to 2-SAT, the variables must 

have only two possible values. Similarly, if use of nonlocal information is to be kept low, 

constraints should be bijective. And if interactions between dimensions is to be minimized, 

each dimension must involve constraints that interact with the others only in a unidirectional 

way. 

It also is assumed that the dimensions involve quantities that are viewer-centered, a 

condition generally assumed for all of early visual processing [Mar82]. Among other things, 

this ensures that the recovery process obeys the more general viewpoint consistency constraint 

[Low87], which assumes that the scene is viewed from a single direction. It also entails that 

three-dimensional orientation must always be defined with respect to the direction of viewing. 

Each dimension must also obey a second constraint used by virtually all theories of line 

interpretation: the general viewpoint constraint (section 2.2.1). This requires any interpreta

tion to be stable under small changes in viewing direction. One of the consequences of this 

constraint is that no two edges in the scene can be contained in a plane at right angles to the 

image plane. This allows accidental alignments to be ruled out - arrow- and Y-junctions will 

always correspond to coherent corners in the scene, and since corners are assumed to involve 

no more than three edges (section 1.1), T-junctions will always correspond to occlusions of 
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Figure 3.2: Separation into individual dimensions. 

one edge by a noncontiguous surface. In general, there are usually only a few viewing direc

tions that give rise to unstable interpretations, and so only a small penalty in interpretative 

power is given up in return for a large gain in performance (see, e.g., [Sug86]). 

In what follows, attention is given to both the qualitative and the quantitative aspects of 

"optimal" line interpretation (section 2.2.1). To further increase the amount of concurrent 

processing ( section 3.1.1 ), each of these is further split, yielding four largely independent 

dimensions: edge contiguity, edge convexity, slant sign, and slant magnitude (figure 3.2). 

3.2.1 Contiguity Labelling 

Much of the effectiveness of processing at early levels depends on knowing whether neigh

boring regions in the image correspond to contiguous or noncontiguous surfaces in the scene 

[Hor86, pp. 354-355]. Consequently, a reasonable candidate for an independent processing 

stream is one concerned with the determination of contiguity. 

To be as independent as possible, the corresponding dimension must avoid quantities that 

describe the internal structure of the objects (e.g., convexity and concavity). Furthermore, 

it would also help reduce complexity if labels can have only two possible values. Thus, 

Huffman-Clowes (HC) labelling cannot be used. A somewhat different scheme is therefore 

proposed - labels indicate only whether the sides flanking a line correspond to surfaces that 
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Figure 3.3: Contiguity labelling. 

are contiguous (C) or noncontiguous (N) with the corresponding edge in the scene6 (figure 

3.3). In contrast with HC labelling, each line therefore has two labels, one for each side. 

A. Constraints on Contiguity Labelling 

In order to exclude doubly discontiguous edges (i.e., wires), contiguity constraints are required 

for the lines. These are subject to the constraint that both sides cannot be labelled with 'N', 

since the polyhedral world contains no wires; however, all other combinations of 'C' and 'N' 

are possible (figure 3.4). 

Constraints on junctions are taken from the Huffman-Clowes scheme by identifying convex 

and concave edges with doubly-contiguous lines, and boundary edges with singly-contiguous 

lines (figure 3.4). This collapses the HC constraints into the set shown in figure 3.4. It is 

apparent that any coherent scene will give rise to a consistent set of labels, and that this can 

be done by a process similar to that used for HC labelling. The result is a segmentation of 

the image into sets of regions corresponding to noncontiguous surfaces in the scene. 

Because these constraints have been derived from the Huffman-Clowes set, any drawing 

which can be given a consistent HC labelling can also be given a consistent contiguity la

belling. The converse situation, however, does not necessarily hold: a consistent contiguity 

labelling may not correspond to a consistent HC labelling (e.g., the drawing in figure 3.5). 

The increased susceptibility of the contiguity system to false labellings stems from the loss 

6 Mackworth [Mac74, MMH85] describes a somewhat similar scheme of "connect" and "nonconnect" edges, 
based on the distinction between interior and boundary edges. However, it differs from the present scheme in 
using one rather than two labels per line. 
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of the correlations between contiguity and convexity, which are not taken into account when 

contiguity alone is considered. Thus, a consistent HC solution that has been "weakened" by 

collapsing the convex and concave labels is only one of perhaps several possible solutions to 

the contiguity labelling problem. 

B. Complexity of Contiguity Labelling 

Since contiguity labelling involves only two values, its reduction to 2-SAT depends entirely 

on the extent to which it can be described by a set of binary constraints. As shown in 

figure 3.6, almost all of these constraints can be converted into binary form. Constraints 

on lines are quite simple, since only a prohibition against double discontiguity is needed. 

For Y-junctions, an additional bijective constraint is imposed: the "inside edges" of a region 

(i.e., lines sharing a common region) must have the same contiguity labelling. Among other 

things, this yields the constraint that at most one of the three faces bordering a Y-junction 

can be noncontiguous. For arrow-junctions, all lines except for those on the "outside" of the 

arrowhead must be marked as contiguous, and the outer sides of these junctions are subject 

to the bijective constraint that both must have the same value. 

There are 16 possible combinations of N and C labels on L-junctions, of which 6 are al

lowed. A constraint against doubly-discontiguous lines leaves 3 x 3 = 9 possibilities. A con

straint against diagonal N labels removes another two. This leaves only one more constraint 

- that against 4-way contiguity (figure 3.6) - to be enforced . This constraint, however, 

cannot be enforced using binary constraints. Low complexity can therefore be guaranteed 

only for approximations in which this constraint has somehow been replaced. 
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Figure 3.6: Reformulation of contiguity constraints. 

Conservative approximation 

One way to remove the need for an explicit constraint against 4-way contiguity is to 

require the inside and outside edges of an L-junction to have identical contiguity values; 

alternatively, one of the inside edges can be constrained to be discontiguous. Via theorem 

3.1, this results in 

Proposition 3.1 When binary constraints are added that prohibit the 4-way contiguity of 

L-junctions, contiguity labelling can be reduced to 2-SAT. 

Liberal approximation 

A low-complexity approximation can also result by omitting the need to exclude 4-way 

contiguity on L-junctions. This leads to 

Proposition 3.2 When the constraint against 4-way contiguity on £-junctions is omitted, 

contiguity labelling can be reduced to 2-SA T. 

Note that similar reductions to CCL are not possible unless extremely severe alterations 

are made to the constraints . 
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3.2.2 Convexity Labelling 

Given that contiguity is concerned with inter-object relations, its natural complement is intra

object structure, viz., edge convexity. As for the case of contiguity, the standard HC labels are 

not suitable for present purposes, and must be replaced. A two-valued system is used here, 

based on that of [Mal87]: '+' for edges of positive convexity (this has the same meaning as in 

the HC system), and 'o' for all others. Note that the label 'o' does not necessary correspond 

to negative convexity, but rather, serves as the complement required in a two-valued system. 

In what follows, the term 'convexity' refers to positive convexity, in the sense defined here. 

A. Constraints on Convexity Labelling 

The constraints on convexity labelling can be determined from those of the Huffman-Clowes 

set by collapsing the labels in a manner similar to that done for contiguity. The resultant set 

is shown in figure 3. 7. Any coherent scene will give rise to a consistent set of labels, which 

can be found by a "standard" labelling process (section 2.2.1). 

Because the convexity constraints are a subset of the HC constraints, any drawing that 

can be given a consistent HC labelling can also be given a consistent convexity labelling. 

As for the case of contiguity, however, the converse situation does not necessarily hold. An 

example of this is shown in figure 3.8, which can be given a consistent convexity labelling 

even though a consistent HC labelling is impossible. 

The results of the contiguity and convexity streams can be combined if the edges marked 

as '+' in the convexity stream match a subset of the doubly-contiguous edges in the contiguity 

stream. The remaining 'o' edges can then be assigned HC labels on the basis of contiguity 

alone. It is evident that combining the results in this way is possible exactly when a solution 

of the HC constraints can be found. But such a co-ordination requires the results in both 

streams to be weakened versions of the HC solution and, since the streams are separated, 

this does not generally occur. 

B. Complexity of Convexity Labelling 

Since convexity labelling involves only two values, its reduction to 2-SAT depends on the 

extent to which the constraints can be put into bijective or binary form. As shown in figure 
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3.9, all of these can be put into this form. Theorem 3.1 therefore yields: 

Proposition 3.3 Convexity labelling of line drawings can be reduced to 2-SAT. 

As is evident from figure 3.9, all of these constraints are also bijective, except for the 

prohibition against the double convexity of L-junctions. This suggests that approximations 

can be derived without a great alteration of the set of constraints. 

Conservative approximation 

A low-complexity approximation to convexity labelling can be obtained by requiring all 

L-junctions to either have both sides labelled with 'o', or else to have only one side labelled 

with 'o'. Theorem 3.2 then leads to: 

Proposition 3.4 If all L-junctions are constrained to have both sides labelled 'o', or to have 

only one side labelled 'o', convexity labelling can be reduced to CCL. 

Liberal approximation 

A liberal approach would be simply to allow interpretations to contain doubly-convex 

L-junctions. Theorem 3.2 then yields: 

Proposition 3.5 If both sides of L-junctions are allowed to be convex, convexity labelling 

can be reduced to CCL. 
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3.2.3 Slant Sign Labelling 

The quantitative aspect of line interpretation considered here is the three-dimensional orienta

tion of the edges of each polyhedron. This property has two aspects: tilt, the two-dimensional 

orientation in the image plane, and slant, the deviation away from this plane. Since tilt is 

already available in the image, processing can focus entirely on the recovery of slant. 

The determination of slant can itself be split into two components, concerned with its 

sign and magnitude respectively. Slant sign (see, e.g., [Kan90]) describes whether the depth 

of the edge increases or decreases as it travels along some direction. It remains invariant 

under any positive rescaling of the depth, i.e., it can represent the "z-affine" structure, which 

may be the most important aspect of the recovered scene [TB90]. In this sense it is similar 

to convexity. But slant sign is viewer-centered rather than object-centered, and so is more 

typical of the properties thought to be handled by early vision (section 2.1.2). 

Slant sign is represented here by a double arrow7 
(~ ), the direction of the arrow indi

cating the direction to follow to increase distance from the viewer (figure 3.10). 8 The only 

consequence of using this representation is that under the general viewpoint constraint ( sec

tion 3.2), the slant sign must remain the same under small changes of viewing position. Zero 

slant is therefore not allowed. This can be stated as a constraint that no edges in the scene 

can be at right angles to the line of sight. It is evident that any polyhedral scene obeying 

this general constraint will give rise to a consistent labelling of the line drawing. 

A. Constraints on Slant Sign Labelling 

Although many approaches ( e.g., [Sug86]) require the qualitative aspects to be solved before 

the quantitative aspects, the demands of rapid processing (section 3.1.1) require that the 

two types of aspects be determined largely concurrently. But if this is to be done, some 

7It may be useful to view the arrowheads as parallel lines receding into the distance. 
8 ln contrast to the other quantities, slant sign can only be defined with respect to a particular direction 

of travel. If slant sign is to be treated as a pure scalar, a canonical direction must therefore be defined. 
A natural choice for a coordinate system is one based on the lines surrounding each vertex, the reference 
direction being that in which the vertex is approached. Represented in this way, slant sign is subject only to 
an additional constraint that the labelling of lines be split, with opposite ends of the lines having opposite 
values. A directional component also exists in the labelling of lines by arrows in the HC system, and the 
splitting required to put it into scalar form has becomes the basis of the contiguity system developed here. 
But because constraints on the slant system are binary and bijective, using a "'split" representation will affect 
neither the power nor the complexity of slant sign labelling. In the interests of clarity, the "directional" form 
is used. 
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Figure 3.10: Slant sign labelling. 

additional a priori assumptions are needed about the structure of the polyhedra in the scene 

- otherwise, any combination of slant signs can be attached to the lines about a junction.9 

Such structural assumptions do indeed seem to be used by the human visual system to 

determine three-dimensional structure ( section 2.2.2). 

Convex polyhedra 

A very general structural assumption is that the polyhedra are convex'. This prohibits 

Y-junctions from having all lines slanted towards the viewer,10 since this would correspond 

to a dent in the surface. Similarly, an arrow-junction could not have its stem slanted away 

from the viewer while its two outer edges had to opposite slant. Constraints also come into 

play via the planarity of the faces: If the face is convex, two "chains" of arrow labels exist, 

which diverge from the junction at greatest distance and converge on the junction nearest 

the viewer. 

Directangular corners 

A more specific assumption is that polyhedra have directangular corners, i.e., corners for 

which two edges are at right angles to a third about which they can "swivel" .11 Constraints 

can be based on the observation that two edges meeting at a right angle in the scene will 

9 For example, a junction can always be interpreted as a very shallow corner, and this can be tilted or 
flipped to achieve any combination of signs. 

10 More precisely, the distance to the viewer cannot be decreased as the distance from the vertex is increased. 
11 For example, a book partway open has directangular angles at points where the spine meets the top and 

bottom of the covers. 
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Figure 3.11: Constraints on isolated L-junctions. 

always give rise to lines of opposite sign when the angle in the image plane is less than go 0
, 

and to lines of the same sign when the image angle is greater than go 0 (figure 3.11). 

Given the line corresponding to the swivel edge, then, the slant signs of the other two lines 

can be immediately determined (figure 3.12). It follows that the constraints on the slant signs 

of arrow- and Y-junctions are bijective (section 3.1.2), the exact constraints depending on 

whether the angles between the line pairs are greater or less than go 0
• However, constraints 

on L-junctions cannot be determined unless the orientation of the swivel axis in the image 

can be identified, since otherwise the angle in the image may not correspond to a go 0 angle 

in the scene. Note that although the orientation must be given, it does not matter on which 

side of the junction the hidden swivel lies - a change of 180°will result in the same set of 

bijective constraints. 

Rectangular corners 

A powerful constraint apparently used by the human visual system is that of rectangu

larity, the assumption that all edges in each corner are at right angles to each other (section 

2.2.2). As in the more general case of directangular corners, knowing the label attached 

to one of the lines on an arrow- or Y-junction immediately determines those of the others. 

But now it is not necessary to know in advance which of the lines corresponds to the swivel 

edge, since all edges are equivalent. The constraints themselves take on a simple form - for 

arrow-junctions, the slant signs of the wings must be opposite that of the stem, whereas all 
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Figure 3.12: Slant sign constraints for arrow- and Y-junctions. 

lines in Y-junctions must be given the same slant signs [Kango]. Requiring a consistent set 

of slant signs for these junctions leads to Perkins' laws (section 2.2.1): for Y-junctions, all 

angles must be greater than goo, while for arrow-junctions, the largest angle must be less 

than 270°, and the second-greatest less than go 0
• 

The set of constraints on slant sign labels for rectangular corners are shown in figure 3.13. 

Note that the slant sign labels on arrow- and Y-junctions become closely matched to the 

convexity labellings: for Y-junctions, edges are convex exactly when they are slanted away 

from the viewer, and are nonconvex when they are slanted towards the viewer. Similarly, an 

arrow-junction will have its stem slanting towards the viewer when it is nonconvex, and away 

when convex, the other lines taking on complementary values. 

The homogeneity of angles also means that there is no ambiguity about the angle be

tween the edges of the L-junctions. And since this angle is goo, the slant sign of one line 

automatically determines that of the other (figure 3.11). Thus, L-junctions can be described 

entirely in terms of bijective constraints, without any need for a priori knowledge about the 

direction of the hidden swivel axis. 
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Figure 3.13: Slant sign labellings for rectangular corners. 

B. Complexity of Slant Sign Labelling 

Directangular corners 

When corners are directangular, they give rise to bijective constraints on arrow- and Y

junctions. And when the directions of the hidden swivel axes are known, L-junctions have a 

similar set of constraints. Thus, from theorem 3.2, 

Proposition 3.6 When all corners are directangular and the directions of the swivel axis at 

all junctions are known, slant sign labelling can be reduced to CCL. 

Rectangular Corners 

When corners are rectangular, a special swivel axis need not be singled out. And since 

L-junctions always have bijective constraints under this condition, this yields 

Proposition 3. 7 When all corners are rectangular, slant sign labelling can be reduced to 

CCL. 

Note that the differences between directangular and rectangular corners do not lead to a 

significant difference in the complexity of slant sign labelling. Rather, the main differences 

are in the amount of a priori information needed from nonlocal sources. 
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3.2.4 Slant Magnitude Labelling 

Slant magnitude is an absolute value which represents the "steepness" of an edge with re

spect to the image plane. This quantity is completely independent of slant sign, being in

variant under inv.ersion about the image plane, but sensitive to the rescaling of depth. It is 

also a quantity that takes on a continuous value. Among other things, this latter property 

means that the particular representation used ( e.g., angle, gradient) is not important from a 

computational point of view, since these quantities can be transformed into each other via 

information-preserving operations. 

A. Constraints on Slant Magnitude Labelling 

As for slant sign, assumptions must be made about the structure of the polyhedra. in the 

scene if this dimension is to be determined independently of the others. 

Known corners 

If the three-dimensional structure of a corner is known and its edges have been identified 

with the corresponding lines in the image, a system of equations can be set up between the 

slants of these edges and the angles between the lines of the junction [Kan90, p.288) 

sin ¢1 sin ¢2 cos ( 81 - 82) + cos ¢1 cos </>2 

sin </>2 sin <P3 cos( 82 - 83) + cos ¢2 cos q>3 

cos 112, 

cos 123, 

sin <P3 sin </>1 cos( 83 - 81) + cos <P3 cos </>1 = cos 131, (3.1) 

where <Pi is the slant of edge i (with zero being along the line of sight towards the viewer), 

Oi the angle of edge i in the plane, and iij the angle between edge i and j. A solution can 

be found for any value of angles chosen. However, this solution requires an iterative scheme 

(e.g., Newton-Raphson) unless additional constraints are introduced [Kan90). In order to 

keep the measure of slant symmetrical about the image plane, the angle o = 7r /2 - </> is used 

for the slant magnitude itself, with o always in the interval ( -11" /2, 7r /2). 

Slant magnitudes cannot be determined for L-junctions in isolation, even when the angle 

between their edges is known. But equation 3.1 shows that if the slant magnitude of one of 

the edges is known, that of the other can be determined. And because this is an equation 

linear in sin </> and cos ¢, ¢ ( and therefore o) can be solved for analytically. If I is not 90°, 

two values are possible, corresponding to edges of greater or lesser slant (figure 3.11). These 
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can take on different slant signs, depending on the particular value of,; if this occurs, slant 

magnitudes must become signed in order to maintain the correct binding between the signs 

and the magnitudes assigned to the edge. Otherwise, the slant sign of the known edge need 

not be given, since the solutions are symmetrical about the image plane. 

Directangular corners 

If the corner is known to be directangular and if the line corresponding to the swivel edge 

can be identified in the image, the set of equations 3.1 takes on the form [Kango, p.28gJ: 

A 

B 

C 2 sin /3 

X = 
-B+ ✓B2 -4AC 

2A 
n1 tr /2 - tan- -/x (3.2) 

n2 
_ cos( 03 - 81 ) 

tr/2-tan ( (B (} )cota1 ), 
cos 3 - 2 

(3.3) 

Q3 = 
- 1 

tr /2 - tan- -------, 
cos(03 - 81) col Q1 

(3.4) 

where /3 denotes the angle about the swivel axis, taken here to be edge 3. These values are 

coordinated sets, and so allow magnitude and sign to be completely separated. Since the 

two solutions of these equations are reflections of each other about the image plane [KangoJ, 

arrow- and Y-junctions have unique magnitude estimates for each edge. 

Although slant magnitudes cannot be determined for L-junctions, one constraint still 

applies - if the angle between corresponding edges is goo, the magnitude of one edge uniquely 

determines that of the other. If the angle is not go 0
, two values are possible (figure 3.11). 

Thus, if the swivel angle cannot be identified, three values are possible for the slant of the 

second edge. 
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Rectangular corners 

For a rectangular corner, all edges are orthogonal to each other, and the relation between 

slant and junction angle can be expressed in the much simpler form [Per68, Kan90] 

cos( 81 - 82) cos( 83 - 81) ' 

cos(83 - 81) 
cos( 82 - 83) cos( 81 - 82) ' 

cos(01 - 02) 
os(03 - 01) cos(02 - 03) · 

(3.5) 

Note that the equality of all angles between edges also eliminates the need to know which 

line is the projection of the swivel axis. 

The rectangularity of the corner also means that there is no ambiguity in identifying the 

angle , between the edges of any corner corresponding to an L-junction. And since I is 90°, 

the slant magnitude of one edge is uniquely determined by the magnitude of the other. For 

rectangular corners, therefore, L-junctions are completely described by bijective constraints. 

B. Complexity of Slant Magnitude Labelling 

Directangular Corners 

When corners are directangular, there are three possible sets of magnitudes for a junction, 

corresponding to the three possible choices of swivel axis. If the direction of the swivel axis 

and the swivel angle /3 are known, unique magnitude estimates can be assigned to edges 

contacting arrow- and Y-junctions ( equations 3.3 - 3.4 ). Furthermore, this condition also 

leads to binary constraints on the magnitudes possible for L-junctions. But a chain of such 

L-junctions could cause the number of possible values to increase exponentially with its 

length, these values being impossible to resolve except by sequentially proceeding along the 

chain. In the worst case, therefore, the determination of slant magnitude for directangular 

corners could require at least linear time, even on a parallel architecture. 

Rectangular Corners 

If all corners are rectangular, the magnitudes for the edges of arrow- and Y-junctions 

can be obtained directly from equation 3.5. Values for L-junctions can be determined from 

the fact that slant magnitude remains invariant under a reflection of one edge by 180°; 
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consequently, only the angle of the hidden edge is needed, and not its direction in respect to 

the vertex. By determining and rebroadcasting the values of all orientations in the partition 

to all junctions, the direction of the hidden edge can be made available to all L-junctions.12 

Once the local estimates of slant magnitude have been obtained, it only remains to check 

their consistency. As discussed in section 3.1.2, such a consistency check can be carried out 

via CCL. Since all other operations can be done in constant time, this yields 

Proposition 3.8 When all corners are rectangular, the determination of slant magnitude 

has a complexity no greater than that of CCL. 

Note that although the computation of the magnitude as given by equation 3.5 can be 

done in constant time, it does involve several trigonometric functions. But this calculation 

can be done quite simply if the slope of the slant rather than its angle is the relevant quantity. 

In particular if the square of the slope ( essentially, a "slope energy") is used, this removes the 

need for both an inverse tangent and a square root function. The only remaining quantities 

then become cosine functions of the angles between junction lines, which can be determined 

quite simply via the dot product ( cf. section 5.2.2). Since slope energy and slope angle are 

related by a monotonic function, the particular quantity chosen is of no great importance 

for most purposes. In the interests of maintaining a parallel between two-dimensional and 

three-dimension·al orientations, slope is represented here by its angle. 

3.3 Integration of Dimensions 

As shown in section 3.2.2, completely separated dimensions are often unable to capture large 

parts of the mapping structure contained in the original set of constraints. For example, 

a drawing may have several different contiguity and convexity labellings, and if these are 

chosen such that the edges with positive convexity correspond to lines that are doubly con

tiguous, the two can be combined into a complete HC labelling. The separation of streams, 

however, means that it will generally be impossible to pick out the appropriate contiguity 

and convexity interpretations from among the alternatives. Instead of yielding a completely 

coherent interpretation, the process will be more likely to yield two partial interpretations 

that are incompatible with each other. 

12 If only two directions exist in the drawing, any magnitudes compatible with equation 3.5 can be assigned 
to the edges. 
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This loss of interpretative power, however, can be lessened by a controlled amount of 

interaction between streams. As discussed in section 3.1.1, this can be done without raising 

the complexity of the process provided that it is based on the unidirectional transmission 

of unambiguous results. In order to quickly achieve unambiguous results, a conservative 

strategy must be employed, based on additional structural constraints which rule out many 

legal interpretations (section 3.1.3). It is shown here that such a strategy can succeed for 

several subdomains of polyhedral objects. 

3.3.1 Convex Objects 

A particularly simple domain in which to begin is that of convex objects. These are polyhedral 

objects in which all edges of the object are convex; consequently, "material" always exists 

along the shortest path connecting any two points on two contacting edges (i.e., two edges 

that meet at a corner). 

A. Constraints on Labelling of Convex Objects 

By definition, the interior edges of convex objects are convex. As such, all arrow- and Y

junctious have a unique interpretation in both the contiguity and the convexity streams. 

Convexity also forces the inner edges of any L-junction to be contiguous; this in turn forces 

a unique convexity labelling of all L-junctions, i.e., all edges nonconvex. The resulting set 

of constraints, shown in figure 3.14, leads to a unique set of convexity labels. The only 

indeterminate quantities are the contiguity labels on the outer edges of arrow-junctions and 

L-junctions. Constraints on the outer edges of arrow-junctions are binary and bijective, 

requiring both edges to have the same value, whereas those on L-junctions are simple binary 

constraints that prohibit more than one side from being contiguous. 

B. Complexity of Labelling Convex Objects 

All convexity labellings are unique, and so the contiguity labels in any consistent interpreta

tion must necessarily be compatible with the convexity labels. Consequently, the determina

tion of a complete qualitative interpretation reduces to the determination of a consistent set 

of contiguity labels. 
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Figure 3.14: Huffman-Clowes labellings for convex objects. 

i) Reduction to 2-SAT 

Since all relevant constraints are binary, and since only two labels apply, proposition 3.1 

leads directly to 

Theorem 3.3 The line labelling of convex objects has a complexity no greater than that of 

2-SAT. 

Note that if the HC labels are required, they can be recovered simply by assigning•'-' to any 

doubly-contiguous non-convex lines, and assigning boundary lines to singly-contiguous lines. 

Similarly, any consistent interpretation based on separate convexity and contiguity labels can 

be put into HC form. 

ii) Reduction to CCL 

For convex objects, the contiguity of the outer edges of the L-junctions results only 

from the contact of adjacent blocks, and not on any intrinsic structural property. It is 

therefore evident that a legal labelling for a drawing exists if and only if it can be assigned 

an interpretation in which all blocks have been moved to a position in which they are "free 

floating". This latter condition can obtained by setting all outer edges of L-junctions to be 

discontiguous; the result is a set of unique contiguity labels on all outer edges. 

Since all constraints are unique, no additional work is required to coordinate the results 

in the contiguity and the convexity streams. The complexity of the interpretation process 

is therefore exactly that needed to check for the presence of inconsistencies in each ( section 
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3.1.2). This depends upon the conditions assumed for the image and scene domains. If only 

one set of connected lines exists in the image, the preprocessing to remove T-junctions can 

be omitted, and the need to maintain partitions eliminated. Under these conditions, the 

complexity of the interpretation process is exactly that of detection. 

But the blocks world generally allows several blocks to exist simultaneously in the scene, 

making it necessary to distinguish between various groups of lines in the image. Since the 

basic HC labellings are unique, so are those of the contiguity and convexity streams. And since 

both these streams involve the same partitions, the integration of values is straightforward, 

leading to 

Theorem 3.4 If objects are assumed to not contact each other, the line labelling of convex 

objects has a complexity no greater than that of CCL. 

In essence, then, a principle of "minimal exterior contiguity" has been invoked to obtain 

a problem of lower complexity by reducing the set of preferred solutions. As opposed to a 

purely conservative strategy (section 3.1.3), however, this strategy does not affect the labelling 

problem in its narrowest sense, viz., a determination if at least one solution exists. 

Nate also that if an interpretation of a partition exists, it is necessarily the only "free 

floating" interpretation possible. Thus, a complete determination of scene structure (i.e., 

solving the realizability problem) can be reduced to finding a solution to a system of linear 

equations and inequalities [Sug86). This can be solved via linear programming, which can 

be carried out in polynomial time [Kha79). Linear programming, however, is a P-complete 

problem [Joh90, p.80], and as such is unlikely to be solvable by a sub-linear algorithm even 

when parallel processing is available (section 2.1.1 ). 

3.3.2 Compound Convex Objects 

Consider now a slightly less restricted domain in which it is still assumed that material 

always exists along the shortest path connecting any points along two contacting edges ( as 

for convex objects), but for which the edges themselves are no longer required to be convex. 

These objects are referred to here as compound convex objects, since they can be readily 

realized by the attachment of convex objects to each other, this attachment being subject to 

the general constraint that only three edges can make contact at any vertex. Examples of 

such objects are shown in figure 3.15. 
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Figure 3.15: Examples of compound convex objects. 
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Figure 3.16: Huffman-Clowes labellings for compound convex objects . 

A. Constraints on Labelling of Compound Convex Objects 

Compound convex objects give rise to almost the same set of arrow-, Y-, and T-junction 

labellings as found in the "standard" HC set. But because of the shortest-path requirement, 

there must always be a common surface on the side formed by the interior angle of any L

junction, and on the surfaces between edges of an arrow-junction. The interpretation process 

can therefore be based on the set of junction labellings shown in figure 3.16. (The conversion 

into separate contiguity and convexity constraints is straightforward.) Note that only four 

constraints have been removed from the original Huffman-Clowes set.13 

13 The interpretation of an arrow-junction with a concave stem should not be allowed if consideration is 
focused on compound convex objects per se, since it. can reduce the ability of the system to detect line 
drawings not obeying the constraints assumed. However, this interpretation can easily be removed, with all 
arguments going through unaffected. It is left in to show that the set of constraints in figure 3.16 potentially 
applies to a slightly larger domain of polyhedral objects. 
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B. Complexity of Labelling Compound Convex Objects 

To establish bounds on the complexity of line labelling, consider first the convexity system. 

From figure 3.16, it is seen that no L-junctions can have a convex edge; consequently, all 

must have a 'o' label attached to both edges. Via proposition 3.4, it follows that convexity 

labelling for this domain can be reduced to CCL, the computation proceeding independently 

for each partition. 

Compatibility between the convexity and contiguity streams can be guaranteed by trans

mitting the identities of any edge marked as '+' and constraining the relevant edges to be 

doubly contiguous. Unique contiguity values can also be assigned to the inside edges of Y

junctions, and to the crossbars of T-junctions. Since the partitions are the same for both 

streams, contiguity labelling needs to be done at most two times for each partition - once 

for each of the two possible convexity interpretations. 

i) Reduction to 2-SA T 

All contiguity constraints on lines and L-junctions in figure 3.16 can be put into the binary 

form described in section 3.2.1. Application of proposition 3.1 then yields 

Theorem 3.5 For compound convex objects, line labelling has a complexity no greater than 

the maximum of that of 2-SAT and CCL. 

ii) Reduction to CCL 

Since the labelling of arrow-junctions, Y-junctions, and T-junctions can all be based on 

bijective constraints, the possibility is raised that the line labelling of compound convex 

objects can be reduced to CCL. This can be done by showing that the bijective constraints 

on L-junctions and lines are unnecessary. 

Notice that each complex of bijective constraints beginning on the outside of an L-junction 

can be considered a "chain" that travels along the sides of arrow-junctions, terminating 

either when it contacts an edge with a unique value ( e.g., the stem of an arrow-junction), 

another outer L-junction edge, or a dangling edge (figure 3.17). These chains can be readily 

determined via CCL. Because the junction constraints preserve contiguity, all values along a 

chain must have the same value. Thus, if a chain terminates at a junction which forces it to 

have a unique value, or contains an edge which is similarly constrained, all of its elements 
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Figure 3.17: Free chain complexes. 

must be set to that value, an operation which can be carried out by CCL. Otherwise, the 

chain is free to take on either contiguity value. As long as it ensures that the basic contiguity 

constraints at its ends are obeyed, the chain can be considered to be essentially decoupled 

from the rest of the interpretation, its values then unaffected by subsequent assignments in 

the rest of the drawing. 

If a free chain has at least one end in contact with an L-junction, interpret its constituent 

variables as discontiguous. This assignment is always compatible with the constraints of 

figure 3.16. An interpretation constrained in these ways is therefore possible if and only 

if it is possible to interpret the drawing as a set of compound convex objects. The use of 

this restriction is essentially a generalized application of the principle of "minimal exterior 

contiguity" used in the analysis of convex objects. Invoking this principle essentially causes 

these objects to be dismantled into separate convex components whenever possible. 

Somewhat similar considerations apply to a chain that has dangling edges at both its 

ends, except that here the chain will be interpreted as contiguous. In a direct parallel with 

the previous principle, this can be seen as a principle of "maximum interior contiguity". Nate 

that the two contiguity principles have been invoked to obtain a problem of lower complexity 

by reducing the set of preferred solutions. As opposed to a purely conservative strategy 

(section 3.1.3), however, this strategy does not affect the labelling problem in its narrowest 

sense, since a restricted solution will be found if at least one more "general" solution exists. 

Having dealt with L-junctions, it must now be shown that an explicit binary constraint 

1s not needed against doubly-discontiguous lines. If no junctions are present, a line can 

immediately be given any legal labelling. Otherwise, as figure 3.16 shows, the prohibition 

against double discontiguity is automatically imposed for all junctions. This proves 

Theorem 3.6 For compound convex objects that are assumed to not contact each other, line 

labelling has a complexity no greater than that of CCL. 
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Figure 3.18: Examples of rectangular objects. 

3.3.3 Rectangular Objects 

Low-complexity interpretation is also possible for rectangular objects, i.e., polyhedral objects 

for which all corners have edges that meet at right angles. These constitute a large domain 

of objects, examples of which are shown in figure 3.18. 

A. Constraints on Labelling of Rectangular Objects 

Rectangular objects impose no additional explicit constraints on the HC labellings of arrow-, 

Y-, and T-junctions. Constraints only apply to L-junctions, the particular choice of con

straints depending on the angle in the image.14 There are two cases to consider here. The 

first is when this angle is acute (i.e., less than go 0
). Because the angles between the corre

sponding edges in the scene are go 0
, the lines of an acute L-junction must have opposite slant 

signs (section 3.2.3). And since the hidden edge of a rectangular corner is always slanted away 

from the viewer [Kan90], the consistency of the slant signs leads to a bijective constraint on 

the convexity labelling (figure 3.19(a)). 

A parallel situation exists for obtuse L-junctions (i.e., those for which the angle is greater 

than 90°). Rectangularity now forces both sides to take on the same slant signs. When 

both edges are slanted away from the viewer, they must be interpreted as a pair of singly

contiguous lines; if they are slanted towards the viewer, three interpretations are possible 

(figure 3.lg(b )). The resultant set of junctions labellings, shown in figure 3.20, is much the 

same as that of Huffman-Clowes, except that the constraints shown in figure 3.19 have been 

added. 

A more quantitative constraint that can also be used is that of planarity: if the planarity 

of the faces is to be maintained, any chain of three connected lines having three different 

14 To avoid possible confusion, this angle is taken to be the smaller of the two possibilities. 
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Figure 3.19: Constraints on L-junctions. 
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Figure 3.20: Huffman-Clowes labellings for rectangular objects. 
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Figure 3.21: Planarity constraint. Surface normals for a common surface must be the same. 
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Figure 3.22: Interior angle constraint. 

directions in the image cannot all be labelled as contiguous (figure 3.21). This constraint ap

plies to both sides of the chain. As figure 3.21 shows, this constraint stems from a prohibition 

against having different surface normals defined from each of the line pairs. 

Another quantitative constraint is the interior angle constraint: if a slant sign is to 

have local consistency, any chain of two connected obtuse L-junctions must alternate in the 

consistency labels attached to the edges on their interior angles (figure 3.22). This arises 

from the close connection between slant sign and contiguity for these L-junctions (figure 

3.19), together with the requirement that slant signs on these junctions must alternate. 
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B. Complexity of Labelling Rectangular Objects 

Since the convexity labelling of edges involves only binary bijective constraints, proposition 

3.4 ensures that this can be reduced to CCL. As for the other domains discussed here, only 

two convexity interpretations are possible for each partition. And as before, compatibility 

can be ensured by first solving for convexity and then requiring lines labelled as '+' to be 

doubly contiguous. 

In order to reduce contiguity interpretation to a low-complexity problem, constraints 

must be put into an appropriate form. The constraints on arrow- and T-junctions are al

ready binary and bijective, as are the constraints on acute L-junctions. Since the contiguity 

constraints on Y-junctions can also be described by a set of binary bijective constraints (sec

tion 3.2.1 ), the reduction of the contiguity labelling problem centers on the constraints for 

obtuse L-junctions and lines, 

i) Reduction to 2-SAT 

Lemma 3.1 For rectangular objects, the planarity and interior angle constraints allow the 

constraint against the 4-way contiguity of obtuse L-junctions to take on binary form, this 

reformulation having complexity no greater than that of CCL. 

Proof: If an obtuse L-junction is isolated, simply assign it one of the legal labellings of 

figure 3.19. Via an exhaustive enumeration of all possibilities, it can be seen that the 

planarity constraint rules out a joining of acute and obtuse junctions. Unique values 

can also be assigned when the shared edge is an "outer" edge of an arrow-junction, with 

the stem pointing away from the interior angle (figure 3.23). When the stem points 

towards the interior angle, a binary ( although not bijective) constraint can be imposed 

on the possible values. A unique set of contiguity labels can also be made possible for 

Y-junctions by invoking the planarity constraint (figure 3.23). 

Otherwise, all shared edges are with others of the same type, and so the junction is 

part of a chain of obtuse L-junctions. These chains can be detected in a preprocessing 

step based on CCL. In such a chain, each interior side of a junction is an exterior side 

of its neighbor. And since the interior angle constraint forces the interior labellings 

of neighbors to be different, it is impossible that such a junction can have both of 

its interior and exterior sides labelled as contiguous. Since only a direct assignment 

of values and constraints to local configurations are involved, the complexity of these 
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Figure 3.23: Contiguity constraints on obtuse L-junction combinations. 

operations are no greater than that of CCL. The proof then follows from the observation 

that the interior angle constraint is both binary and bijective. ■ 

Theorem 3. 7 For rectangular objects, the planarity and interior angle constraints allow line 

labelling to have a complexity no greater than the maximum of that of 2-SAT and CCL. 

Proof: Since lines can be handled by a binary constraint (section 3.2.1), it is only necessary 

to express the constraint against the 4-way contiguity of obtuse L-junctions in binary 

form. From lemma 3.1, it follows that these can be cast into the appropriate form via a 

preprocessing step that assigns unique values to many of the obtuse L-junction labels, 

and binary constraints to the rest. And it follows from the lemma that this step has a 

complexity no greater than CCL. ■ 

These are the same complexity bounds found by Kirousis and Papadimitriou [KP88) for 

the somewhat more restricted case of the orthohedral world, in which all edges are required 

to be parallel to one of the three main axes in the scene. The addition of explicit planarity 

and interior angle constraints, therefore, makes similar low-complexity recovery possible for 

the more general domain of rectangular objects. 
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(a) L-termi nation (A) (b) L -termination (B) (c) V-termination 

Figure 3.24: Termination configurations. 

ii) Reduction to CCL 

As for the case of convex and connected convex objects, it is also possible to show that line 

labelling for rectangular objects is of complexity no greater than that of CCL. This requires 

a careful isolation of the remaining binary constraints on obtuse L-junctions and on lines. 

Lemma 3.2 Bijective constraints can determine the correct contiguity labelling of obtuse 

L-junctions, except for the case of "L-terminations ', in which an L-junction contacts an 

arrow-junction with its stem oriented toward the interior angle (figure 3.24). 

Proof: As lemma 3.1 shows , most values on obtuse L-junctions can either be uniquely as

signed or given bijective constraints, except for the case where it contacts an arrow

junction with its stem pointing toward from the interior angle. 

If the L-termination is of type A (i.e., free variables for both exterior edges), the exterior 

edges require some additional constraint to ensure that they cannot both be contiguous. 

If the L-termination is of type B (i.e., free variables on only one of the exterior edges), 

the side contacting the L-junction is uniquely determined, and so no constraints are 

needed for the other side. ■ 

It must now be shown that there is no need for an explicit binary constraint against 

doubly-discontiguous lines. 

Lemma 3.3 Bijective constraints alone can enforce the prohibition against double disconti

guity, except for the case of a "Y-termination", i.e., a configuration in which a dangling edge 

contacts two arrow-junctions with stems oriented away from that edge (figure 3. 24 ( c)), 
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Proof: If no junctions are present, a line can immediately be given any legal labelling. 

Otherwise, as figures 3.19 and 3.20 show, the prohibition against double discontiguity 

is automatically imposed for all junctions except obtuse L-junctions and Y-junctions. 

As shown in figure 3.23, the constraints on obtuse L-junctions ensure that each line has 

at least one contiguous side. This leaves only Y-junctions to be considered. 

The only constraints on Y-junctions are the set of bijective constraints shown in figure 

3.6, which require that the same value be assigned to lines contacting a common region. 

If a drawing does correspond to a scene containing rectangular objects, however, two 

Y-junctions will never contact each other, for to do so would immediately violate the 

planarity constraint. The constraint against double contiguity can therefore be inherited 

directly from the junctions that the Y-junction contacts. 

Complications arise from the dangling edges arising from occlusion (i.e., the stems of 

T-junctions), but these can be handled by a preprocessing stage: 

If all three edges are dangling: the junction can simply take on any legal inter

pretation. 

If two edges are dangling: the remaining edge necessarily contacts another junc

tion, and so obeys the constraint; the inner edges of the dangling lines are undeter

mined, but without loss of generality the appropriate constraints can be enforced 
by requiring these to be contiguous. 

If only one edge is dangling: An exhaustive examination of all cases ( figure 

3.25) shows that the planarity constraint ensures the appropriate contiguity con
dition for all configurations except the Y-termination. ■ 

Given lemmas 3.2 and 3.3, it must now be shown that the remaining contiguity constraints 

on L- and Y-terminations can be handled appropriately. Any complex beginning at an L

or Y-termination can be seen as a "chain" that travels along the sides of Y-junctions and 

the outer sides of arrow-junctions, and terminates at another L- or Y-termination. These 

chains are similar to those used to analyze the interpretation of compound convex objects 

(section 3.3.2), and are handled in much the same way. Since all other aspects of the line 

interpretation can be handled by bijective constraints, it is only necessarily to show that the 

chains can also be labelled in a consistent way via a process of complexity no greater than 

that of CCL. 
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Figure 3.25: Contiguity constraints on Y-junction combinations. 
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Contiguity labelling can be carried out by first assigning labels to variables constrained 

to take on unique values, and to those chains that contain such a variable. Next, any chain 

with more than two orientations to its set of edges must necessarily be discontiguous if it 

is to obey the planarity constraint; consequently, each free chain that remains cannot bend, 

but must travel in one general direction only. 

The remaining free chains can now be labelled. Note that since these chains are decoupled 

from the rest of the interpretation (section 3.3.2) it does not matter whether this is done before 

or after determining labels for the rest of the drawing. Indeed, it follows from lemma 3.2 and 

the bijective nature of the constraints that all variables outside the chains will have only one 

possible value. 

In order to reformulate the constraints on the remaining free chains, the range of possible 

interpretations is restricted in a manner similar to that employed in the other two domains, 

viz., a restriction such that a solution for the restricted variant exists if and only if a solu

tion exists for the more general case. Consider first the chains that are connected together 

cyclically in a group, i.e., connected by common L- or Y-terminations15 If the number in 

such a group is even, let all termination configurations be contiguous on one side only. If the 

number is odd, pick a termination configuration and set both of its sides to be contiguous 

if it is a Y-termination or discontiguous if it is an 1-termination, and then constrain the 

remaining configuration to be contiguous only on one side. This results in a set of bijective 

constraints that allow all chains in the cycle to be interpreted while continuing to prohibit 

double discontiguity. It is evident that this process can be carried out in parallel for all cyclic 

chains in the partition. 

Those chains that are not cyclic must contact a termination configuration for which one 

side of the central L- or Y-junction has already been assigned a definite contiguity value. If 

there is only a single chain between such junctions, it can be determined in a fixed amount 

of time whether or not it can be given a value consistent with those already assigned; this is 

possible exactly when a legal labelling exists for the drawing. A similar situation holds for 

two connected chains. 

15 The common L-terminations are necessarily of type A . 
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If three or more chains are connected together, a slightly more complex procedure can be 

used: 

1. Determine the values for the endpoints if they are to have a legal labelling of their 

termination configurations. 

2. Constrain all terminations between the chains along this path to have sides of opposite 

contiguity. 

3. If the number of chains is even and the endpoints have different contiguity labels, the 

alternation of contiguity at the terminations will suffice for a legal labelling. A similar 

situation holds when the number of chains is odd and the endpoints have the same 
contiguity labels. Otherwise, pick one of the inner termination configurations: 

If it is an L-termination: it must be of type A; constrain both sides of its central 

junction to be discontiguous. 

If it is a Y-termination: constrain both sides of its central junction to be con

tiguous. 

The result of this process is a sequence of chains that must alternate in value at each ter

mination condition, except at the configurations described above. A solution for this set of 

constraints is possible exactly when a legal labelling can be obtained for the drawing. 

The detection of the chains and the propagation of values along their extent can be carried 

out entirely by CCL. Since the constraints along these chains are bijective, their solution can 

also be obtained via this procedure. And since both convexity and contiguity labelling can 

be reduced to CCL, this yields 

Theorem 3.8 For rectangular objects, the planarity and interior angle constraints allow line 

labelling to have a complexity no greater than that of CCL. 

C. Slant Sign Constraints 

For rectangular objects, constraints exist on the slant sign of each edge in the drawing (sec

tions 3.2.3 and 3.2.4). The resultant set of constraints are shown in figure 3.13. Since all 

constraints are bijective, the entire drawing is implicitly linked together in one entire com

plex with only two possible interpretations. From proposition 3.7, it then follows that the 

determination -of slant signs can be reduced to CCL under these conditions. 
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(a) Drawing detected as 1mposs1ble 
rectangular object 

- cannot be given consistent 
set of slant sign labels 

(b) Drawing not detected as impossible 
rectangular obi ect 

- con be given consistent 
set of slont sign lobels 

Figure 3.26: Slant sign constraints applied to impossible figures. 

Described in this way, the determination of slant sign does not rely on any other system, 

and so can serve as an independent source of constraint on the final interpretation. Indeed, 

the use of slant sign yields a process of higher accuracy that that obtained from qualitative 

labelling alone [Kan90], since it permits a greater rejection of drawings that cannot correspond 

to a rectangular object (figure 3.26(a)). However, because only local orientations about 

the junctions are involved, these additional constraints are not sufficient to eliminate all 

impossible figures (figure 3.26(b )). 

Constraints on slant sign not only provide more information about the corresponding 

polyhedron, but can also speed up the interpretation process itself. For example, if a Y

junction has all three edges slanted away from the viewer, it must correspond to a convex 

corner. Similarly, if the stem of an arrow-junction slants away from the viewer, it must 

be concave and the other edges convex. As shown in figure 3.19, the slant sign determines 

the labelling of acute L-junctions and of obtuse L-junctions for which the edges slant away, 

allowing all contiguity constraints to be put immediately into binary form. Note also that if 

the slant sign stream is used ( together with the convexity stream) as the basis for contiguity 

interpretation, it eliminates the need for explicit planarity and interior-angle constraints. 

D. Slant Magnitude Constraints 

Slant magnitudes are constrained via equation 3.5 . It follows from this equation that the 

magnitude of one edge immediately determines that the other (section 3.2.4). When only 

two line directions are present in a partition, slant magnitude is underconstrained; the slant 

magnitudes of the edges can then be fixed simply by assigning some arbitrary value to one of 
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the directions. Since the parallel lines in each partition represent parallel edges in the scene, 

once the particular magnitudes have been chosen, CCL can be used to propagate them to all 

lines in the partition. 

A similar situation exists when three different line directions exist in the image, except 

now the slant magnitudes are uniquely determined. As discussed in section 3.2.4, the deter

mination of the slant magnitudes for this situation can also be reduced to CCL. 

E. Robustness 

i) Image perturbations 

The qualitative and quantitative interpretation of rectangular objects relies on a special 

form of the general viewpoint assumption, viz., the assumption that slants in the scene are 

never zero, and consequently, that lines in the image are never perpendicular to each other. 

Although this assumption is sufficient for theoretical purposes, any practical system must be 

able to compensate for errors that arise from the measurement of image properties. As such, 

an additional set of techniques is required to ensure that the interpretation process remains 

robust against small perturbations of the input image. 

For the interpretation ofrectangular objects, perturbations have their greatest effect when 

one or two edges have a slant differing only slightly from zero. When only one of the edges 

is very shallow, the other two are in a plane closely aligned with the line of sight; as a 

consequence, their projections onto the image are be nearly at right angles to the projection 

of the shallow edge (figure 3.27(a)); among other things, this makes it difficult to distinguish 

arrow- and Y-junctions from T-junctions. If two of the edges are shallow, their projections are 

nearly at right angles to each other (figure 3.27(b )), making it difficult to distinguish between 

acute and obtuse L-junctions. As such, shallow edges can cause a potential instability in the 

labelling of convexity, contiguity, and slant sign. Furthermore, from equation 3.5 it also 

follows that estimates of slant magnitude are also sensitive to small errors in line orientation 

angle (Ji under these conditions. 

One way to obtain robustness against such perturbations is to alter slightly the angles of 

the lines in the junctions, setting them to values that are all the same. This helps both to 

remove the effect of local perturbations, and to reduce the effects of perturbations introduced 

at any later stage of processing. The exact procedure depends on which of the two situations 
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Lines A' and B' 

Shallow edge 

Lines A' and B' 
nearly perpendicular 

Shallow edges 

(a) One edge sha 11 ow (b) Two edges shallow 

Figure 3.27: Conditions of shallow slant. 

Figure 3.28: Combinations of angles into corners. 

is encountered. 

In both cases, the procedure begins by obtaining the distribution of line directions in the 

partition. Ideally, only three directions would exist, corresponding to the three directions of 

the edges of the corresponding object. If more than three exist, a procedure ( e.g., taking the 

mean of each of the three distributions) can be used to remap the lines onto a smaller set of 

angles. Once determined, these new values can be broadcast to all junctions. This remapping 

applies to all possible corners (figure 3.28), since it follows from equation 3.5 that slant 

magnitude is indifferent to the particular combination chosen. Since a similar reassignment 

can also be used for the final set of directions obtained, alteration of line direction can be 

based entirely on a pair of canonical junctions, obtained from the appropriate rearrangement 

of lines in the image (figure 3.29). 

Consider first the case where one edge has a shallow slant. As figure 3.27( a) shows, this 

is signalled by the existence of two nearly-parallel line directions in the image. Using the 
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Figure 3.29: Rescaling of image angles. 

normal to the shallow edge to complete a local coordinate frame, the slopes of the other two 

lines can be rescaled until at least one has a value 8min (figure 3.29(a)). 

Such a rescaling of orientations corresponds to a rotation of each corner of the object 

about an axis perpendicular to the shallow edge, with the slant of the shallow edge being 

increased. Note that this is not a true rotation of the object as a whole, since this requires a 

change in the distances between junctions as well. But if the rotation is small, the change in 

foreshortening is negligible, and the transformation can be interpreted as a shift in viewing 

position that results in more robust interpretation. 

A similar technique can be used when two shallow edges exist. From figure 3.27(b ), it is 

seen that this condition is signalled by the existence of two line orientations that are nearly 

perpendicular to each other. As for the case of one shallow edge, slopes can be rescaled, 

except that now the rescaling is done with respect to an axis perpendicular to the edge which 

is not shallow (figure 3.29(b)). The resulting transformation corresponds to a rotation about 

an axis at right angles to the nonshallow edge, the rotation serving to increase the slant of 

the two shallow edges. 

If it is necessary to apply both transformations to the lines of an image, this can be done 

simply be applying the required corrections in some fixed way. Thus, provided that three 

different line directions can be distinguished in a partition, they can always be remapped 

into a new set of orientations that can disambiguate any local ambiguities caused by small 

perturbations in the input image, and that minimize the effects of any other perturbations 

that might be introduced by subsequent processing stages. 
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ii) Perspective distortion 

The results obtained here assume the scene-to-image projection to be orthographic, i.e., 

rays from the scene contact the image plane at right angles. Since the scene-to-image mapping 

is the same at all points in the image, a spatially-uniform set of rules can therefore be used 

to recover the scene structure. This greatly simplifies the development and analysis of the 

recovery process. 

Orthographic projection is almost always a good approximation of the perspective projec

tion that actually governs the mapping of objects onto the image plane. However, it breaks 

down when an object extends over a large fraction of the visual field. In such a case, only one 

point corresponds to a perpendicular projection from the object to the image plane, and a "ra

dial" distortion arises that is centered about this point. Although this distortion complicates 

the recovery process, it does not affect its interpretative power - a global transformation 

of the image can always be found that maps each junction to its equivalent under ortho

graphic projection (see, e.g., [Kan90, ch.8]). Consequently, both qualitative and quantitative 

structure can always be recovered. 

Since the emphasis of this work is primarily on rapid recovery and not on robustness per 

se, special corrections for perspective distortion are not developed here. Note that perspective 

distortion alters only the angles and lengths of lines in the image, and so the basic qualitative 

aspects of the recovery process are largely unaffected. Furthermore, if these distortions 

are small, the angles can be realigned by the broadcast mechanism used to handle small 

perturbations in the input. Thus, the only situation not encompassed by this approach is the 

relatively rare case where the projection of an object extends over a considerable fraction of 

the visual field. 
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Chapter 4 

Computational Analysis 

A computational analysis describes and justifies an image-to-scene mapping that is (i) unique, 

and (ii) possible within the given external and internal limitations (section 2.4). For the 

mapping considered here, the external limitations are that the information comes from a 

single orthographic projection of a blocks world scene of the type described in section 1.1, 

and that a constant amount of time is available for its operation (section 2.5.2). Internal 

limitations are that a mesh architecture is used, and that the processors have a fixed number 

of states. This chapter develops a set of constraints that defines a process capable of recovering 

a large amount of the scene structure within these limitations. 

To ensure that local computation is relatively simple, a set of external constraints is 

chosen that limit the range of possible mappings to those that can be determined in sublinear 

time.1 A set of internal constraints is developed to control the search through the space of 

possible solutions. These constraints are chosen so that a reasonable chance exists of finding 

a plausible interpretation within the allotted time. 

The constraints developed here, of course, are not necessarily those used by the human 

early vision system. Many factors are potentially involved in the rapid recovery of three

dimensional structure, not all of which are known or fully appreciated at the present time. 

As such, this analysis is not intended primarily as a definitive treatment of the rapid recovery 

process, but rather as an illustration of how a computational analysis of this process can be 

carried out. 

1 More precisely, the complexity of the mapping must be a. sublinear function of the number of lines in the 
image (see section 2.5.1.) 
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4.1 External Constraints 

As discussed in section 2.5.2, the output of a rapid recovery process is a dense set of estimates 

assigned to each spatially-limited patch ( or "zone") in the image. 2 These estimates must be 

both locally consistent and computable in a constant amount of time. If they are to have a 

good chance of corresponding to the actual structure of the scene, the corresponding property 

must be easy to compute and use minimal information from outside the zone. 

Given the correlation between the amount of nonlocal information that must be trans

mitted and the complexity of an operation (section 2.1.1), it follows that recovered quantities 

must be computable by a low-complexity process, ideally one of no more than logarithmic 

complexity (cf. ch~pter 3.1.2). This can be ensured by an appropriate choice of external con

straints (section 2.4) on the final form of the mapping. These constraints serve to eliminate 

those mappings that cannot be computed in sublinear time. 

4.1.1 Image-to-Scene mapping 

For a rapid recovery process, the goal is to reconstruct as much of the three-dimensional 

scene as possible, with interpretations required to be consistent only over spatially-limited 

zones (section 2.3.2). This goal is somewhat different from that of the "classical" problem of 

line interpretation, which assigns unambiguous interpretations to each line , and completely 

rejects drawings that cannot be given a globally consistent interpretation. Consequently, the 

image-to-scene mappings need not be the same for the two types of tasks. 

Possible differences in the image-to-scene mapping include not only differences m the 

particular associations between input and output quantities, but also differences in the quan

tities themselves. The first step to find a mapping suitable for rapid recovery is therefore to 

determine an appropriate set of inputs and outputs. 

A. Basic Quantities 

A fixed limit on time translates into a fixed limit on the distance over which information 

can be transmitted . If recovery is to be robust with regards to this limit, it cannot be based 

on global properties (e.g., the number of features present in the image), or on extensive 

2 The exact size of these zones is not critical, the main constraint being that they are small enough that 
each contains no more than a few line segments (sectiol\ 4.3.1) . 
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properties ( e.g., the lengths of lines and edges). Instead, it involves only those properties 

that can be determined locally, i.e., over arbitrarily small areas of the visual field ( cf. section 

2.1.1). Locality applies to properties of both the input and the output. 

In what follows, the basic quantities in the image domain are taken to be the two

dimensional orientations of the lines and the locations of their endpoints.3 The quantities in 

the scene domain are taken to be the (positive) convexities, slant signs and slant magnitudes 

of the edges, as well as the contiguity relations between edges and surfaces. In particular, 

the form of the output is taken to be exactly that used in chapter 3.1.2 - a set four spa

tiotopic maps, one for each property, in which the variables describe the absence or presence 

of the corresponding quantity. All properties are assumed to be "dense", being attached to 

all points along the lines in each zone. Note that this differs from the "sparse" form used in 

the "classical" problem of line interpretation (section 2.2.1), where properties are attached 

to individual lines, rather than points (see, e.g., [Mal87]). 

This choice of properties is motivated not only by the requirement that the properties 

be local, but also by the results of chapter 3.1.2, which show that these quantities can in

deed be rapidly recovered for several sub-domains of polyhedral objects. Note that these are 

not "template" properties, which can be calculated reliably on the basis of local information 

(section 2.1.1), but instead require at least some nonlocal information for their complete 

determination. However, the low complexity indicates that relatively little nonlocal informa

tion is needed. This is the key to the effectiveness of a rapid recovery process - even though 

nonlocal information is generally needed for a complete local interpretation, at least some of 

this structure can be rapidly recovered if the amount of information needed is small. 

Of course, other quantities (such as the slants of the surfaces) could also be used, and 

conversely, some of the quantities used here may not actually be recovered by the human 

early visual system. But the quantities chosen here encompass both the qualitative and 

quantitative aspects of line interpretation (section 2.2.1), and are therefore adequate for 

present purposes, viz., illustrating how rapid parallel recovery can be done. 

B. Isolation of Indeterminate Values 

Since the interpretation provided by a rapid-recovery process does not need to be consistent 

over the entire image (section 2.3.2), the surrounding interpretations do not need to be 

3 Locations are always relative to a particular zone, so that absolute coordinates are not needed . 
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Figure 4.1: Isolation of inconsistency in .contiguity labelling 

removed when a local inconsistency is found. Indeed, this is not even desirable, for the 

propagation required for this removal can take considerable time ( cf. section 3 .1.2), and also 

results in information being lost from those areas which do obey the assumptions. Similarly, 

the limited time available may be insufficient to completely determine all interpretations, so 

that ambiguities also must be explicitly handled in some way. 

In order to allow these possible outcomes to be explicitly signalled, the set of output 

states is expanded to include an 'I' label for inconsistencies, and an 'A' label for ambiguities. 

These can be applied to any variable in any dimension. 

By careful application of these labels, indeterminate values can be isolated so as to allow 

a definite interpretation to be given to the other parts of the drawing. An example of this 

is shown in figure 4.1. If the contiguity constraints of section 3.3.3 are used on this figure, a 

globally consistent labelling is not possible. Attaching an 'I' label to one of the lines on the 

central notch, however, allows the remaining edges to be given a definite interpretation. 

In order that these labels can be used wherever needed, no explicit constraints are placed 

on their application; if necessary, they can be assigned to all lines in drawing. However, the 

use of these labels must be minimized if the greatest amount of information is to be obtained 

about the three-dimensional structure of the scene. Since this cannot be done by constraints 

on the static assignment of the labels, it must be done via constraints on the process that 

generates these assignments (section 4.2). 

4.1.2 General Principles 

Chapter 3.1.2 shows that low-complexity approximations can be formed in many different 

ways, depending on the constraints selected. It is now necessary to select one particular set 

of constraints, and to justify this selection. Three general principles are relevant here. 
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A. Separation of Dimensions 

As shown in chapter 3.1.2, a low-complexity mapping can be obtained when external con

straints apply primarily to simple variables within separate dimensions, with only a limited 

amount of interaction between the corresponding streams. This strategy is taken as a basic 

principle here. In particular, all constraints that are nonbijective (i.e., do not have a 1:1 

mapping between allowable values - see section 3.1.2) must involve only two variables, each 

with two possible values.4 This ensures that the problem is easy to solve ( section 3.1.2). 

Since it has been shown to lead to low-complexity mappings for many subdomains (section 

3.3), the set of dimensions used here is exactly that of chapter 3.1.2: contiguity, positive 

convexity, slant sign, and slant magnitude. 

B. Locality of Constraints 

Most constraints used in line interpretation (sections 2.2.1 and 3.3) are local, pertaining to 

individual lines and junctions. An example of this is the requirement that all edges in a Y

junction must be labelled as '+' or 'o' (section 3.2.2). Constraints such as the interior angle 

constraint (section 3.3.3), however, involve relations between junctions, and so are not of this 

form. Since nonlocal constraints require image-based as well as scene-based information to be 

transmitted, they increase the demands on computational resources. They are also awkward 

to enforce on a mesh processor, where information travels at a constant speed across the 

image (section 2.5.2). Only local constraints must therefore be used. 

As a special case of this principle, note that it is impossible to ensure that a single label 

can be attached to any line (section 2.2.1), since a line can extend over a considerable distance 

in the image. Consequently, constraints on junction labellings are still allowed, but they now 

apply to line segments of fixed length rather than lines of arbitrary length. An auxiliary set 

of constraints is required to constrain neighboring segments to take on the same values. 

4 Note that more values are possible for these variables, but that only two must enter into the nonbijective 
constraints. This allows 'I' and 'A' labels to be used in addition to the two definite values, since they do not 
enter into any explicit constraint. 
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C. Local Coordination of Dimensions 

Much of the power of the original mapping can often be captured by a low-complexity approx

imation only if there is an interaction between the interpretations in the separate dimensions 

(section 3.3). Ideally, this would be carried out by a globally-coordinated sequencing between 

the different streams. Since global coordination is not feasible here, however, the interactions 

between dimensions must be reformulated to occur at a local level. 

As discussed in section 3.3, the key to the successful integration of dimensions is the 

unidirectional transmission of information. But global coordination is not needed - this 

can be achieved by transmitting information from a local interpretation after it has been 

assigned an unambiguous value. For example, when the edges of a Y-junction have a unique 

labelling as convex, they are necessarily contiguous, and so can determine the corresponding 

interpretation in the contiguity stream. This kind of interaction allows local constraints 

to assist the interpretation process without any danger of increasing the complexity of the 

process . 

4.1.3 Structural Assumptions 

As shown in section 3.3, approximations of sublinear complexity can exist when appropriate 

restrictions are placed on the contiguity and convexity interpretations of L-junctions. These 

restrictions can be achieved via assumptions about the structure of the polyhedra, and as 

discussed in section 3.3, there are several sets of assumptions which can be used towards this 

end. In what follows, interpretation is based on constraints obtained from the assumption of 

rectangular corners (section 3.3.3). 

There are several reasons for this choice. First of all, the visual system is exceptionally 

good at detecting junctions corresponding to rectangular corners, and using the rectangularity 

assumption to determine the three-dimensional orientations of the corresponding edges (see 

section 2.2.2). There is no reason to suppose that this preference is limited only to the higher 

stages of visual processing. 

A second set of reasons involves issues of symmetry and structure. If an angle between 

two edges in a corner is unknown, 90° is a natural default, simply because it is midway on 

the range of all possible angles;5 in some sense, it may be considered to be an expected 

5 If edges are assumed to be unmarked, a rotation of 180° is an identity transform. Attaching an edge to a 
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value. Furthermore, the fact that all edges are perpendicular to each other makes it simple 

to convert between the slants of the edges and the slants of the faces: for rectangular corners, 

the normal to the surface corresponding to a region is parallel to the edge that is opposite it 

in the junction. 

Finally, there are reasons based on computational complexity. The interpretation of 

rectangular objects requires relatively little in the way of processing resources, since it is 

among the least complex of all line interpretation problems. Rectangularity also allows edge 

slant to be determined rapidly by local processes, something not generally possible for the 

other domains considered in section 3.3. Indeed, the estimation of edge slant does not even 

need to wait for the qualitative analysis to be completed ( cf. [Sug86]), but can proceed in 

tandem with the determination of contiguity and positive convexity. 

4. 1.4 System of External Constraints 

Bringing together the requirements outlined above, the rapid recovery of three-dimensional 

structure is assumed here to be governed by the external constraints shown in figure 4.2. 

These involve four quasi-independent dimensions: contiguity, positive convexity, slant sign, 

and slant magnitude. The intra-dimensional constraints are given by the permissible la

bellings of the junctions; these are essentially the constraints developed in section 3.3.3. 

Interactions between dimensions, shown by the arrows in figure 4.2, are readily derivable 

from this same set of constraints. 

This system of constraints is largely a reformulation of those of section 3.3.3. In partic

ular, the nonlocal planarity and interior-angle constraints have been replaced by local con

straints on slant sign, which then influence contiguity via. the inter-dimensional interactions. 

There also exists a more direct local (nonbijective) constraint against doubly-discontiguous 

lines. Although not required to attain a process of logarithmic complexity when global co

ordination is possible (section 3.3.3), this constraint can improve the speed and power of the 

interpretation process when only local processing is allowed. 

Note that the contiguity constraints on obtuse L-junctions cannot in general be put into 

binary or bijective form. In the absence of a. definite interpretation for the two inner or two 

outer lines, only a single common constraint (that requiring both inner lines to take on the 

same value) can be applied. But the remaining constraints can be put into binary form if 

corner does mark it, but two adjacent edges that differ by 180° are still effectively the same edge. 
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a dependency on the state of particular "trigger" variables is introduced so that constraints 

are put into effect only after a definite interpretation has been assigned.6 

Consequently, all bijective and binary constraints on the junctions have been kept and 

the rest reformulated to take on one of these two forms. Although global co-ordination of the 

type required to achieve the results of section 3.3.3 is no longer possible, these constraints 

do allow the three-dimensional structure of the scene to be recovered. Given sufficient time, 

a consistent interpretation without ambiguities or inconsistencies is possible whenever the 

drawing corresponds to a set of rectangular objects. Because of the 'I' and 'A' labels, however, 

the requirements of section 2.3.2 are also met: a scene that does not contain rectangular 

objects everywhere may still give rise to local interpretations in those regions where the basic 

structural assumptions are obeyed. 

4.2 Internal Constraints 

Although external constraints limit the range of interpretations which can be given to a line 

drawing, they are not generally sufficient to determine its form completely. For example, the 

marking of edges as inconsistent or ambiguous must be kept to a low level (section 4.1.1), 

but this requirement conflicts with the prohibition against global measures (section 4.1.1). 

More generally, the interpretation process must operate within a fixed amount of time, and 

while the external constraints developed in section 4.1 do select a set of solutions that can 

be calculated quickly and with a minimum of nonlocal information, they do not provide any 

guidance as to what should be done when such limits are imposed. 

To complete the specification of this mapping, therefore, an independent set of internal 

constraints must be imposed to help ensure that the best use is made of the available pro

cessing time. 7 These are constraints on the generation of the interpretation itself ( section 

2.4.2). For the process here, these constraints are required to lead to a subset of interpre-

6 These constraints, obtained from figure 4.2, are as follows: 

1. If one of the inner edges is contiguous, no more than one outer edge can be contiguous. 

2. If one of the outer edges is discontiguous, both inner edges must be contiguous. 

3. If both inner edges are discontiguous, both outer edges must be contiguous. 

4. If both outer edges are contiguous, both inner edges must be discontiguous. 

7The use of such constraints is essentially an elaboration of Marr's principle of graceful degradation [Mar82, 
p. 10~], extended to cover not only reductions of available information, but reductions of other resources as 

well. 
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tations that have a relatively high likelihood of corresponding to the structure actually in 

the scene. Although the probabilities of various image-to-scene associations depend on the 

particular scene domain under consideration, exact knowledge of these probabilities is not 

generally necessary - all that is required is an ordering of the various candidates. As such, 

it is possible to provide a set of principles that are potentially applicable to many domains 

encountered in the natural world. 

4.2.1 Processing Architecture 

Internal constraints act on the flow of information that occurs during the course of computa

tion. In order to develop such constraints it is first necessary to specify - at least at a general 

level - an "abstract architecture" that describes the way in which information processing 

and information transmission are carried out. 

A. Processing over Zones 

From the definition of the rapid recovery problem (section 2.5.2), the only processing resources 

assumed to be available are a spatiotopic mesh of processors, with each processor having a 

relatively small set of states. If good use is to be made of these resources, each processor ( or 

group of processors) in the mesh must be assigned to a separate zone in the image, i.e., to a 

compact contiguous area of limited spatial extent (section 2.1.1). 

This requirement stems primarily from considerations of efficiency. When only a fixed 

amount of time is allowed, each processor can only act on a fixed number of inputs.8 Since 

the number of processors increases with the size of the input ( cf. section 2.5.2), effectiveness 

can be maintained by assigning each processor to a separate region of the image. And if 

processors are uniform in regards to their processing power ( as assumed here), it is best if 

these regions have the same size. 

Since transmission delays within a zone must be kept to a low level, regions must also be 

contiguous and compact.9 (This is related to the preference for local quantities described in 

section 4.1.1.) The demand for contiguity is forced not only by the need for compactness, but 

8 This is a generalization of an order-limited perceptron [MP69], with the output function being any function 
that can be calculated in a fixed amount of time. 

9This restriction means that the process can be carried out by a generalized version of a diameter-limited 
perceptron [MP69]. 
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by the recognition that the external constraints are highly sensitive to breaks in the lines, 

and since line drawings may fall anywhere, no part of the image can afford to be skipped. 

Contiguity also reduces the computational power required of the individual processors, since 

it is easier to handle a small set of unbroken lines than a large set of disconnected line 

fragments. 

B. Communication between Neighboring Zones 

If the mapping between input and output could be described entirely in terms of non

interacting zones, recovery could be carried out on an array of processors, each of which 

calculates only simple template properties of its corresponding zone. But if anything be

yond the most rudimentary line interpretation is to be carried out, communication between 

processors is required. In what follows, it is assumed that the assignments of processors to 

zones maintains a spatiotopic organization and that neighboring processors in the mesh are 

assigned to neighboring zones in the image. 

Once again, this is motivated by considerations of efficiency. Since all constraints between 

the local interpretations are themselves local, there is relatively little to be gained by hav

ing some other assignment of zones to processors. Furthermore, the operation of the local 

processors ( as well as the analysis itself) is simplified, since the transmission of information 

takes place only via the zone-to-zone percolation of information through the "virtual mesh" 

formed by the lattice of zones over the image. 

In particular, this information flow originates from zones containing an interpretable 

junction, and propagates at a constant rate along the connecting lines. Internal constraints 

therefore act by controlling the initial assignment of interpretations with a zone, and by 

controlling the propagation of these values along the lines of the drawing. 

4.2.2 General Principles 

At the most general level, internal constraints can take effect in two ways: (i) constraints on 

the basic operations used, and (ii) constraints on the representations operated upon. These 

effectively provide general constraints on the propagation of information around the "virtual 

mesh" that occurs during the interpretation process. Four general principles are used here 

to provide constraints on this propagation. 
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A. Maintenance of Interpretive Power 

If the process is to have a good chance of recovering some part of the scene structure, it must 

not be too quick to throw away possible interpretations. Consequently, a liberal interpretation 

strategy is used: a candidate interpretation is kept unless an inconsistency is detected. Since 

inconsistencies are determined by the set of external constraints, this becomes the requirement 

that internal constraints must not exclude any interpretation consistent with the external 

constraints. In other words, internal constraints must not have any eliminative power -

they must be entirely concerned with the ordering of the various possible solutions. 

In order to allow all possible interpretations to be handled in a systematic way while 

keeping true to the demand that only two values exist in each constraint (section 4.1.2), the 

outputs of each of the four streams are split into two separate subsystems: 

Contiguity: Two complementary subsystems to represent the possibility of contiguity 
and noncontiguity. 

Convexity: Two complementary subsystems to represent the possibility of convexity and 

nonconvexity. 

Slant Sign: Two complementary subsystems to represent the possibility of the two types 

of slant sign.10 

Slant Magnitude: Two different subsystems - a quantitative subsystem to carry the 

value of the estimate, and a qualitative subsystem to represent the possibility that this 
value can legitimately be assigned. 

For the complementary subsystems, the existence of a possible interpretation is signalled by a 

'possible' state attached to the relevant edge, while its impossibility is likewise signalled by an 

'impossible' state (figure 4.3).11 The use of these subsystems allows all possible interpretations 

to be represented quite simply: 

Definite: assignment of 'possible' to an edge in one of the subsystems and 'impossible' 
to its complement. 

Ambiguous: assignment of 'possible' in both subsystems. 

Inconsistent: assignment of 'impossible' in both subsystems. 

10 Slant towards or away from the viewer is not a pure scalar like the other two quantities - it has a 
directional component that must be taken into account ( cf. section 3.2.3). This can be handled simply by 
having each subsystem represent an increase in depth as the line segment is traversed from one of the ends. 

11 This is somewhat analogous to the use of relevance logic in reasoning (see, e.g., [Lev86]. 
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Contiguity Subsystem Non con ti gui ty Subsystem 

u1 E { possible, impossible} Y; E { possible, impossible} 

Figure 4.3: Example of complementary labelling. 

B. Locally Irreversible Computation 

If a process is to make good use of available time, it must avoid doing and undoing the same 

operations without any net effect. This requirement - essentially a form Marr's principle of 

least commitment [Mar82, pp. 106-107] - rules out hypothesize-and-test strategies, favoring 

instead "one-shot" processes that require only a few steps for their completion. In the absence 

of global control, this must be done by a local mechanism that forces the process to avoid 

redundant processing while simultaneously ensuring that it will not exclude any consistent 

interpretation. 

To combine this principle with that of maintaining interpretative power, the following 

scheme is used: 

1. A 'possible' state is initially assigned to all values of all complementary subsystems as 

well as the qualitative subsystem of the slant magnitude stream. 

2. Whenever a local inconsistency is found, the corresponding value is marked as 'impos

sible', and this value will never be withdrawn. 

This is essentially a simple form of Waltz filtering (section 2.2.1), with an initial maximum 

uncertainty steadily reduced to the point where no local inconsistencies remain. Given the 

structural assumptions that have been made, little nonlocal information is required for a local 

interpretation. Convergence to a definite interpretation in each zone is therefore likely to be 

fast. Even if only a limited amount of time is available, the result is likely to provide at least 

some information to higher stages of processing. 

The situation is similar for the slant magnitude stream, except that the qualitative sub

system serves to indicate the confidence of the corresponding magnitude estimate. When 
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local inconsistencies are found in the estimates of slant magnitude, an 'impossible' label is 

assigned to the variables involved, and then propagated along the line. 

Note that the state of the interpretation can be described in terms of the distribution of 

the 'possible' states over the edges in the complementary subsystems. More precisely, local 

uncertainty exists only when a value and its complement are both possible. This allows the 

overall uncertainty attached to an interpretation to be described by an "entropy" measure 

that includes all the individual local uncertainties. Although never used by the actual process 

itself, this measure can provide a way to describe the overall state of uncertainty in the 

interpretation at any given moment. 

Local irreversibility can be incorporated into complementary labelling by a reformulation 

of the constraints found at the local junctions. In order to preserve the power of the original 

set of constraints, this reformulation is subject to the following condition: any set of definite 

values ruled out by the original constraints of figure 4.2 must also be ruled out by the new 

set of constraints. 

From figure 4.2, it is seen that all constraints except the contiguity constraints on ob

tuse L-junctions are "context free", i.e., the particular set of constraints depends only on 

the geometrical configuration in the image, and not on the set of labels attached ( cf. figure 

4.2). Reformulation is based on the idea that once such constraints have been set up, elim

ination of possible interpretations can occur by a simple priority mechanism that allows an 

'impossible' state to replace any 'possible' state. Since 'possible' states are initially assigned 

to all variables, the reformulation involves only the ways in which 'impossible' states are to 

be transmitted. 

The situation for state-dependent junctions is similar, except that no constraints are 

applied until definite assignments have been made to the inner or outer edges. Consequently, 

it is possible to reformulate the constraints in a way that allows the process to be locally 

irreversible while maintaining the complete set of external constraints: 

i} Unary constraints 

Since only two values can exist in a subsystem, a unary constraint (i.e., a constraint 

that acts on a single variable) necessarily requires the variable to have a unique value. For 

example, a unary constraint exists on the inside edges of an arrow-junction that force them 

to be contiguous. 
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Given two complementary subsystems, unary constraints can be easily enforced by mark

ing the corresponding value in the complementary subsystem as 'impossible'. The value in 

the original subsystem, however, remains unaffected. This leaves a definite interpretation 

which can only be altere,d by becoming inconsistent (i.e., the value in both subsystems being 

'impossible'). For an arrow-junction, therefore, the inside edges in the non-contiguity subsys

tem are marked as 'impossible' and the corresponding edges in the contiguity system retain 

their original state of 'possible'. 

ii} Bijective constraints 

Bijective constraints are such that a 1:1 correspondence exists between the values of the 

variables involved (section 3.1.2). For example, a bijective constraint exists on the contiguity 

labels of the inside edges of an acute L-junction, since both of these edges must be either 

contiguous or discontiguous (section 3.2.1). 

Since only two values exist for each variable, bijective constraints take on a simple form: 

either the variables have the same values, or else they have opposite values. If two adjacent 

lines are required to have the same values, both must have the same definite values, i.e., 

the corresponding variables in the complementary subsystem must be 'impossible'. This 

constraint can be enforced by the requirement that if one of the corresponding variables 

in a subsystem is 'impossible', so must be the other variable in the same subsystem. If two 

adjacent lines are required to have opposite values, their corresponding variables are similarly 

constrained, except that now the constraint applies to variables in "opposing" subsystems 

(figure 4.4). Note that this latter type of constraint provides a binding between the two 

subsystems, which are otherwise largely independent. 

iii) Nonbijective constraints 

The intradimensional constraints that are not bijective involve a single prohibition against 

a particular combination of values (figure 4.2). These constraints can be reformulated quite 

simply. If one of these values in such a prohibited combination definitely occurs (i.e., its 

complement is 'impossible'), then the other value must be excluded (i.e., its "direct" state is 

'impossible'). Otherwise, nothing else is done. Note that in contrast to bijective constraints, 

only a one-way transmission of 'impossible' states is involved. 

For example, if one side of a line has been marked as definitely discontiguous (i.e., its 

value in the contiguity subsystem is 'impossible') then the other side must be contiguous 
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Figure 4.4: Example of reformulation of bijective constraint. 
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Figure 4.5: Example of reformulation of nonbijective constraint. 

(i.e., its value in the discontiguity subsystem is 'impossible'). But if one side is marked as 

contiguous, nothing else necessarily follows, and so no transmission results (figure 4.5). 

iv) State-dependent constraints 

The contiguity constraint to be applied to obtuse L-junctions depends on the interpreta

tion attached to its edges. This kind of constraint can be reformulated in a straightforward 

way by imposing the appropriate set of constraints when the "trigger" variables take on 

definite values, i.e., when their values in the noncontiguity subsystem are 'impossible'. 

v) Interdimensional constraints 

Since information from one dimension is sent to another only when a definite interpreta

tion has been achieved (section 4.1.2), the reformulation of the relevant constraints is fairly 
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straightforward: when a particular set of values has been definitely assigned to the edges 

about a junction (i.e., the corresponding complementary values are 'impossible'), the associ

ated values in the other stream can be given definite values (i.e., their complements are set 

to 'impossible'). 

Note that if a variable is deemed to be inconsistent, its value in both subsystems is 

'impossible'. Consequently, the transmission of information across dimensions can cause the 

corresponding variable in some other dimension to also be labelled as inconsistent. Since 

processing time is limited, however, the propagation of these inconsistencies is unlikely to 

affect greatly the quality of the final interpretation, an assumption borne out by tests on a 

variety of line drawings ( chapter 6). 

C. Minimization of Inconsistency 

It is important to control the propagation oflabels so that minimal inconsistency results, i.e., 

'impossible' are assigned to no more variables than necessary. This condition is automati

cally obeyed if the drawing corresponds to a rectangular object, for the constraints are such 

that appropriate values can always be assigned to the variables. Indeed, when redundant 

constraints are added, more routes become available for propagation, and the faster spread 

of 'impossible' states then speeds up the interpretation process. 

However, when the scene contains objects that do not conform to the underlying structural 

assumptions, inconsistencies can arise in the resulting interpretation. Consequently, the more 

routes available for propagation, the greater the spread of inconsistent interpretations. 

In order to limit the spread of such inconsistencies, therefore, some care must be taken 

when selecting the particular set of constraints to be used. In particular, if a variable is 

subject to a unary constraint, no other constraints must be applied to it. 

For example, the inner edges of an arrow-junction are constrained to be contiguous. If 

they are also constrained to have the same value, the interpretative power of the system is not 

affected regarding rectangular objects, since no interpretation exists in which these lines can 

be assigned definite interpretations as discontiguous. However, if an 'impossible' label has 

been transmitted to one of these lines, such a constraint will cause it to be propagated to the 

others and assign them values that could never exist in any polyhedral scene. By disallowing 

such a constraint, the opportunity for inconsistencies to spread is minimized while the power 

of the original system of constraints is maintained. 
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D. Priority Marking 

The preceding principles have brought with them a shift in emphasis from individuals to 

ensembles. But human perception tends towards individual interpretations. When viewing 

a Necker cube, for example, perception alternates between single unambiguous cubes, rather 

than being a superimposed set of all possible interpretations. If the recovery process is to 

reduce the set of interpretations that are simultaneously possible, and if it is to remain 

effective, it must focus on those that have the greatest likelihood of corresponding to the 

structure in the scene. 

This can be done by marking such preferred interpretations as distinct. If this marking 

does not otherwise affect the interpretation process, it can allow priority to be given to the 

most likely candidates while still keeping available all other possible interpretations. 

The simplest way to incorporate priority marking is to extend the set of values that 

can be given to a variable - in addition to 'possible' and 'impossible', include a 'preferred' 

state, which has priority over a 'possible' state.12 In regards to all constraints developed 

so far, the 'possible' and 'preferred' states can be treated as equivalent. The introduction 

of this distinction can be viewed as a way to split the recovery process into two concurrent 

substreams, dealing with ensembles and individuals respectively. As such, the additional 

constraints required for priority marking must be limited entirely to 'possible' and 'preferred' 

values. The only exception is a requirement that when the complement of a 'possible' value 

is marked as 'impossible', the value itself must be upgraded to 'preferred'. However, this 

"inLra-stream" transmission does not affect the set of constraints dealing with ensembles, 

since these are involved entirely with the propagation of 'impossible' states. Consequently, 

the introduction of the possible-preferred distinction has no adverse effects on the ability of 

the recovery process to eliminate inconsistent interpretations. 

If desired, the final output can be represented using "standard" labels that express the two 

definite interpretations, the inconsistent interpretation, and the ambiguous interpretation: 

1. If one subsystem has a 'preferred' state and the other does not, take its value as a 
definite interpretation. 

2. Otherwise, if both subsystems have 'preferred' or 'possible', set the interpretation to 
be ambiguous. 

12 Although interpretations can be even better distinguished by the use of several different priority levels, 
selection is usually from just a few alternatives, so that this system is sufficient for present purposes. 
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3. Otherwise, both subsystems must have 'impossible' states. Set the interpretation to be 
inconsistent. 

Priority marking is a "dual" to the interpretation of ensembles. Instead of using a liberal 

strategy to eliminate impossible interpretations, it uses a conservative strategy to generate 

likely ones. It is therefore based on the same set of external constraints as the "ensemble" 

system, except that it involves 'preferred' and 'impossible' labels. Initially, all variables are 

set to 'possible', with the exception of a small initial set that are assigned a 'preferred' state. 

Constraints are enforced in much the same way as those of the ensemble substream, except 

that they involve the transmission of 'preferred' states to the "direct" subsystems instead 

of 'impossible' states to the complementary subsystems. Consequently, the complexity of 

priority marking is the same as that of the ensemble substream. 

The only asymmetry between the two processes is that interpretations in the ensemble 

substream can override those of the priority substream, but not vice versa. In particular, when 

an 'impossible' state is assigned to a variable in some subsystem, it is effectively withdrawn 

from priority marking. In addition, the value of the corresponding variable in the complemen

tary subsystem is upgraded from 'possible' to 'preferred'. This asymmetry reflects the basic 

difference underlying the assignment of the two kinds of label: possible-impossible distinc

tions are based on necessary consequences of the set of assumptions, while possible-preferre<l 

distinctions are generally based on considerations of likelihood. 

Since complementary subsystems are not used for slant magnitude, there is no need to 

distinguish between 'possible' and 'preferred' values. However, 'preferred' labels can be used 

to signal when there is some evidence for a definite assignment of magnitude ( e.g., magnitudes 

obtained via Perkins' laws). This proves especially useful in distinguishing slants that are 

zero by default from those that have been determined to be zero, since the latter can be 

treated equivalently to any nonzero slant magnitude. 

4.2.3 Selection of Initial Candidates 

The course of processing is controlled not only by constraints on the dynamic flow of informa

tion, but also by constraints on the initial interpretations that are considered. In particular, 

the priority marking mechanism developed in the previous section provides a way to dis

tinguish a subset of selected candidates, but does not itself provide any principles to guide 

this selection. Although the most appropriate selection of initial candidates depends on the 
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particular domain being modelled, a, few general principles appear to be widely applicable. 

A. Contiguity 

The first of these principles is that of maximum interior contiguity, which assumes that the 

inner surfaces of corners are contiguous whenever possible. This principle is an extension of 

the one used to reduce the complexity of labelling convex and compound convex objects by 

selecting a preferred set of interpretations (sections 3.3.1 and 3.3.2). It may also be a basis 

for the human perception of line drawings [Mac74][Hor86, p. 355] . 

The principle of maximum interior contiguity applies only to the contiguity stream. The 

particular set of junction markings, shown in figure 4.6, is as follows: 

Arrow-junctions: Contiguity is preferred for all lines except for the outer pair, which 

do not generally form an interior angle. Since contiguity is necessary for inner lines, 
noncontiguity is impossible. 

Y-junctions: Contiguity is preferred for all lines. 

L-junctions (obtuse): Contigo.ity is preferred for the msid clges siJ1c most of t h ~ 

possibl interpretations assign them t his valu . Th outer edges of th s jun t i ns, 

however, cannot be given preferred interpretations, for although one of thes edges can 
be contiguous, the other cannot, and the symmetry of t be situation mak s it impossible 

to prefer one over the other. 

L-junctions (acute): Outer eclg s are necessarily contiguous, while symmetry makes it 

impossibl to prefer auy interpr tations of their inner edges (figure 4.2). 

T-junctions: The crossbars have a necessary con tiguity relation, so that pr ferred valu s 

follow immediately. No prei rence is given to values on T-junction stems since th se 

are effectively isolated lines.13 

B. Convexity 

Preference in the convexity stream is determined by the principle of maximum convexity, in 

which assumes that all trihedral corners in the scene have positive convexity. This principle 

13 Strict)y speaking this is not true for more realistic surfaces, where the stem represents not only an edge 
of a different surface, but can also represent a crack or thin surface marking on the same surface. To address 
this issue more fully would require the development of a rapid-recovery system based on a more extensive set 
of labels, and this is beyond the scope of the present work. 
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Figure 4.6: Initial contiguity interpretations. 
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stems from the observation that convex corners are more common than concave ones; indeed, 

concave corners do not necessarily correspond to actual structures of the object itself, but 

may instead result from contact between adjacent objects [Bie85]. 

The initial set of junction markings in the convexity stream, shown in figure 4. 7, is as 

follows: 

Arrow-junctions: Convexity is preferred for the stems, while non-convexity is preferred 

for the outer wings. 

Y-junctions: Convexity is preferred for all lines. 

L-junctions (obtuse): All lines are necessarily non-convex, leading to preferred values 

in the nonconvexity subsystem. 

L-junctions (acute): Although constrained to have one convex and one nonconvex side, 

symmetry makes it impossible to assign a preference. 

T-junctions: The crossbars of the T-junctions correspond to occluding edges, and so are 

necessarily non-convex. 

C. Slant Sign 

Owing to the close connection that exists between convexity and slant sign when the corners 

are rectangular (section 3.2.3), the principle of maximum convexity can also determine pre

ferred states for values in the slant sign stream. These are shown in figure 4.8. Since the 

corners are assumed to be rectangular, the convex edges in arrow- and Y-junctions corre

spond directly to edges that are slanted away from the viewer, and non-convex edges to edges 

slanted towards the viewer. Consequently: 

Arrow-junctions: Slant toward the viewer is preferred for the stems, while slant away 

is preferred for the outer wings. 

Y-junctions: Slant away from the viewer is preferred for all lines. 

Other junctions do not contain enough information to determine slant sign directly, and so 

no preference can be assigned on their account. 
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Figure 4.7: Initial convexity interpretations. 
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Figure 4.8: Initial slant-sign interpretations'. 
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D. Slant Magnitude 

If an arrow- or Y-junction obeys Perkins' laws (section 3.2.4), the values in its quantitative 

subsystem are assigned the corresponding slant magnitudes, and the values in the qualitative 

subsystem are set to 'preferred' to show that a definite interpretation has been made. Oth

erwise, the magnitude of the edges is set to a default value of zero, and the corresponding 

qualitative label is set to 'possible' so that it can be overridden by any definite interpretation. 

4.3 The Rapid Recovery Process 

Taken together, the external and internal constraints developed above go a long way towards 

specifying a mapping that allows a large amount of scene structure to be recovered in very 

little time. Minimal assumptions have been made about processing resources - it is assumed 

only that a mesh of relatively simple processors is available, and that the time required for 

local computation is less than that of data transmission to nearby locations. Consequently, 

these constraints are largely independent of the details of the underlying mechanism. 

If the theory is to be complete, however, it must lead to a mapping that is uniquely 

specified. Several architectural parameters must therefore be specified. It must also be 

shown how the external and internal constraints can be smoothly combined into a rapid 

recovery process that is robust to small perturbations in the input. 

4.3.1 Architectural Specifications 

The constraints developed in the previous sections have the advantage that they are applicable 

to a range of possible processors. Because they depend on a few aspects of the processor, 

however, these aspects must be given a definite specification if the resultant mapping is to 

be unique. The choices made here are intended to be as general as possible, and to reflect 

what is known of the human visual system when the specification of particular parameters is 

unavoidable. 

To begin with, the processing elements are assumed to be finite-state, making it necessary 

to convert continuous quantities such as two-dimensional orientation and slant magnitude into 

discrete form. Spatial location must be represented with a high degree of precision, reflecting 

the high acuity possible even at early stages in human vision (see, e.g., [WB82]). Each cell 
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is therefore assumed to be able to represent location to within 1/16th of its own size.14 On 

the other hand, the measurement of line orientation in the early visual system is based on 

channels of a half-amplitude bandwidth of about 10- 20° [TG79], and so is much less precise. 

Consequently, orientation measurements are quantized to intervals of 10°. 

The estimates of slant magnitude must also be quantized. Like two-dimensional orienta

tion, these are given a relatively coarse-grained representation, with magnitude quantized to 

intervals of 20°, centered around values of 0°, 20°, 40°, 60°, and 80°, 

Another issue is the way in which the zones can be arranged over the image. Three main 

types of regular tesselation are possible: rectangular, triangular, and hexagonal. The partic

ular choice does not greatly matter when processing does not involve coordinate-dependent 

quantities, but this must be made definite for purposes of analysis. In order to simplify the 

implementation as much as possible, it is assumed that all zones have the same shape and 

size, and that they form a rectangular lattice over the image. 

The coordination of communication between zones must also be specified. Processing over 

each zone is carried out by a separate processor or group of processors, and communication 

between these processors may proceed either synchronously ( coordinated by a global clock) 

or asynchronously. Since the process acts via an irreversible priority override mechanism, 

and since the available propagation paths are constant,15 precise temporal coordination of 

operation is not important. Consequently, the issue of synchronous communication has little 

impact on the performance of the process. The major difference between the two types of 

communication is therefore in the ease of implementation and analysis . In what follows, 

synchronous communication is assumed. 

Finally, an appropriate size must be chosen for the zone themselves. This depends in part 

on the absolute number of available processors, or more precisely, on the ratio of processors 

to the size of the input. It is assumed here that each zone can be made small enough to 

contain at most three lines (i.e., enough for a single junction). Beyond these requirements, 

the exact size of the zones is unimportant for present purposes - since processing sp'eed is 

dominated by transmission time (section 2.5.2), changing the size of the zones only leads to 

14 Since each cell is later assumed to correspond to a visual area of roughly 10 min a;rc (section 5.3), this 
yields an precision of less than 1 min arc, roughly comparable to the limits of human visual acuity [WB82). 

15 State-dependent constraints are similar, the only difference being that a delay is introduced by the re
quirement tl1at a defini te set of labels be assigned to the cri tical variables. 
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a rescaling of the time course of the process.16 

4.3.2 Robustness 

The assumption of rectangularity carries with it an obligation to protect the process from the 

instabilities that result when lines in the image are nearly parallel or are nearly at right angles 

to each other. For arrow- and Y-junctions, techniques similar to those of section 3.3.3 can be 

applied in a straightforward fashion, at least locally. In particular, an arrow- or Y-junction 

containing a 90°angle is treated as if the angle were slightly larger. 

Since a global broadcast of the reassigned angles is not feasible using a mesh architecture, 

ambiguous L-junctions cannot be immediately resolved. They are consequently treated here 

as junctions containing constraints common to both acute and obtuse L-junctions (see, e.g., 

[Mal87]). One such constraint is that at least one edge must be nonconvex (see figure 4.2). 

The sensitivity of slant magnitude estimation can be reduced by a few additional measures. 

For junctions in clear violation of Perkins' laws (section 3.2.4), edges are given no initial 

preferred slant magnitude (i.e., the values in the qualitative system are set to 'possible'). 

Constraints are also weakened so that neighboring estimates are acceptable only if they are 

within adjacent ranges. Finally, to limit the accumulation of errors that would result if 

estimates of slant magnitude were propagated via L-junctions, estimates are taken only from 

direct sources (i.e., at the arrow- and Y-junctions), with values propagated only as far as the 

next junction. 

4.3.3 Basic Operation 

Given the additional refinements of the sections 4.3.1 and 4.3.2, the process is completely 

specified. Since many of the constraints apply to the generation of the interpretation, and not 

simply its final form, the image-to-scene mapping cannot be given a closed-form description. 

Instead, the interpretation of a given line drawing can only be obtained by carrying out the 

process itself. 

The detailed operation of the recovery process is discussed in chapter 5, where art algo-

16 Note that the absolute scale is important for any real system, leading to a preference for cell sizes that 
are as large as possible. Thus, the absolute size of a cell involves a time-space trade-off (cf. section 5.1.3): a 
larger number of smaller, simpler cells increases computational simplicity, while a smaller number of larger, 
more complex cells reduces transmission time (when internal transmission is not a factor). The choice of 
appropriate size is likely to be based on some compromise between these two sets of conflicting requirements. 

126 



rithm is developed that embodies all the relevant external and internal constraints. However, 

the recovery process itself is slightly more abstract than this, since it is completely specified 

without the additional details of the algorithm. The basic elements of its operation, taking 

place in each zone concurrently, are as follows: 

1. Initial measurements are made of the termination locations and the orientations of the 
line segments within the zone. Terminations include not only true endpoints of the 
lines, but also crossings of the zone boundaries. The locations of these terminations are 
represented with high precision (1/16 of the zone size). Orientation measurements are 
quantized in units of 10°. 

2. The type of junction present (if any) is the zone is established, and the angles between 
its lines determined. 

3. Initial interpretations are assigned to all variables in all substreams. If the zone con
tains one or more disconnected lines, all values are assigned 'possible'. If it contains a 
junction, the lines are labelled according to the rules described in section 4.2.2. This is 
done separately for the values and complementary values in each of the streams. 

4. Values are propagated along connecting lines to neighboring zones via the priority 
mechanism described in section 4.2.2. This is done in tandem for both subsystems in 

all streams. Since communication is only possible between zones that are immediate 
neighbors (section 4.2.1), this leads to a percolation of information along the lines at 
a constant speed. Propagation of labels proceeds by assigning 'impossible' states to 
eliminate inconsistent interpretations, and by assigning 'preferred' labels to select a 
preferred subset of the remaining possibilities. 

5. Simultaneous with this "intra-dimensional" process, an "inter-dimensional" propaga
tion is also occurring, transmitting information from zones that contain a variable with 
a definite interpretation. This transmission applies only to zones at the same location 
in the image, and follows the rules given in figure 4.2. 

6. The transmission of information along lines and between dimensions continues until the 
time limit is reached. Inconsistent interpretations are identified by the assignment of 
'impossible' to an edge in both subsystems. Ambiguous interpretations are identified 

by the assignment of 'possible' in both subsystems. Of the remaining interpretations, 
those deemed to be most likely are distinguished by the 'preferred' state. 

An example of this process is shown in figure 4.9, which illustrates how the initial convexity 

estimates assigned to a drawing evolve into a more complete interpretation. 
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Figure 4.9: Example of the rapid recovery process. 
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Chapter 5 

Algorithm and Implementation 

The computational analysis of chapter 4 has yielded a set of external constraints on the 

"static" associations between image and recovered scene, and a set of internal constraints on 

the "dynamic" aspects of the recovery process itself. These specify a unique image-to-scene 

mapping, and provide some general limitations on the transformations that are to be used. 

What is now required is to show that these constraints can be incorporated into a complete, 

well-defined system. In particular, the process must be decomposed to the point where it 

can be carried out via the operations available on a device having the processing limitations 

assumed in the computational analysis (section 2.4). 

The analysis here is based on a device called the cellular processor. This is a type of 

cellular automaton (section 5.1.2) formed by partitioning a dense mesh of processors into a 

relatively sparse set of disjoint "cells", each of which is assigned a simple processing element 

to carry out the local interpretations. It is shown that the basic operations of this mechanism 

can be implemented on a mesh of simple finite-state processors. The algorithm itself is then 

developed via a simple program based on these basic operations. The general properties of 

this mechanism are shown to be compatible with what is known of primate cortical structure, 

and a tentative suggestion put forward regarding the way in which it might be implemented 

in human visual cortex. 

5.1 The Cellular Processor 

If it is to be effective, a rapid recovery process must be based on estimates made over regions 

of the image that are contiguous and compact, i.e., over zones (section 4.2.1). This introduces 

two different spatial scales into the recovery process: (i) a fine-grained scale that supports the 
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Control Layer 

Figure 5.1: Cellular processor architecture. 

high resolution of the input and output representations, and (ii) a coarser-grained scale based 

on the size of the zone. A useful mechanism to handle this situation is the cellular processor. 

This is a device consisting of two spatiotopic meshes: (i) a dense mesh of measurement 

elements that determine basic image properties (e.g., color, contrast, and orientation), and 

a sparser mesh of more complex control elements that carry out the local interpretations 

(figure 5.1 ). 

5.1.1 Basic aspects 

The cellular processor allows algorithmic analysis to be carried out in a straightforward way, 

with issues of measurement and control separated as much as possible. Each measurement 

element (ME) can be loosely identified with a mechanism that measures some template 

property, such as the color or orientation of lines. These MEs are assumed to have a small set 

of possible output values that are determined entirely by the contents of a spatially-limited 

neighborhood around the corresponding point in the image. As such, they have no internal 

states and operate independently of each other. 

The spatiotopic order of the set of inputs is assumed to be maintained in the set of ME 

outputs, so that the array of MEs and the array of their outputs can both be referred to as 

the "measurement layer", the distinction between the MEs and their outputs being clear from 

context. Adjacent elements in this layer may or may not have overlapping input regions. It 

is assumed that the density of MEs is sufficiently high that that no information in the image 

is lost. 1 

1This layer has some interesting similarities with the dense set of localized filters found in the striate cortex 
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To carry out more complex operations, the measurement layer is partitioned into a num

ber of compact, contiguous sections (or "cells"),2 with the outputs in each cell assigned to 

a control element (CE) at the corresponding location in a higher-level "control layer". Each 

CE is assumed to be sufficiently complex that it can respond to all possible combinations of 

outputs in its cell. Towards this end, each CE is given a small finite memory to hold interme

diate quantities derived from the ME outputs ( e.g., the number of line segments it contains, 

their location, and the areas of any region bounded by them). Note that these quantities 

need not be determinate - in situations where space or time is extremely limited, or where 

there is some inherent uncertainty in the measurements themselves, statistical quantities may 

be preferred (see, e.g., [Ros86]). 

It also is assumed that each CE can control at least some of its MEs via backprojections 

that override the ME output.3 In addition, each CE is assumed to have a small set of 

operations that it can perform on its memory locations and on a its MEs. These operations 

form the basis of the local processing carried out by the processor. 

In contrast to the isolated elements of the measurement layer, elements in the control 

layer are able to interact with their nearest neighbors, having access to at least some aspects 

of their neighbor's current state. This adds a degree of "lateral" control to the "bottom-up" 

and "top-down" strategies generally employed in visual processing. 

5.1.2 Cellular Processors as Cellular Automata 

Since each ME is an isolated mechanism performing a single operation, all interesting aspects 

of the recovery process are carried out by the processors in the control layer. Consequently, 

the evolution of a cellular processor can be completely described by a rule that maps the 

current state of each control element onto a new state, the new value being determined 

by (i) the outputs of the MEs within its cell, (ii) the contents of its memories, and (iii) 

the states of its immediate neighbors. Since processing must be indifferent to the absolute 

spatial coordinates in the image, this mapping must be spatially uniform. Furthermore, the 

process is assumed to operate via synchronous communication between all zones (section 

of primates (see section 5.3). 
2 The meaning of the term 'cell' corresponds to that of 'zone', but at the level of architecture rather than 

that of image. 
3 This can be accomplished by special internal memories, each capable of overriding the outputs of one 

particular ME. In this formulation, the output of the CE can be expressed either as the set of ME outputs or 
as the set of CE memory states. 
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4.3.1). Described in this way, a cellular processor (or more precisely, its control layer) is seen 

to be a special type of cellular automaton. 

Cellular automata are discrete deterministic systems formed by a d-dimensional grid of 

identical processors operating according to a fixed local law. More precisely, a cellular au

tomaton (CA) can be defined as a quadruple [Kar90] 

A= (d,S,N,f), ( 5.1) 

where d is a positive integer describing the dimension of A, S is a finite set of states, N is a 

set of n neighborhood vectors ( each of the form x = ( x1, ... xd) ), and f is the local transition 

function from sn to S. The cells of A are arranged along an infinite d-dimensional grid, their 

positions indexed by elements zd, the d-dimern;ional space of integers. 

Cellular automata were developed originally by Ulam and von Neumann as tractable 

approximations of highly nonlinear differential equations in biological systems (see [TM90]). 

But they are also interesting in their own right, since local rules can lead to a variety of 

complex, spatially-extended structures (see, e.g., [CHY90, Smi90, TM90]). Cellular automata 

have been used for simple image operations, including thresholding, pointwise arithmetic on 

image pairs, and convolution (see, e.g., [Gol69, PDL +79, Ros83]). Other operations include 

the shrinking and expansion of elements in the image, and the formation of their convex 

hull [PDL +79]. Indeed, it is likely that CAs can do considerably more than this, since given 

the appropriate transition functions and initial configurations, they are capable of universal 

computation, i.e., computing any function that can be computed by a Turing machine (see, 

e.g., [CHY90]). 

In order to conform with the general constraints of the recovery process, a two-dimensional 

grid is used, and the neighborhood set N is the set of cells at most a unit distance away in 

the horizontal or vertical direction.4 Thus, the neighborhood is composed of nine cells: the 

cell itself, and a layer formed by overlapping 3 x 1 arrays of cells immediately to the top, 

bottom, right, and left. Consequently, the transition function f is described by a mapping 

S9 -+ S that associates each possible pattern of neighborhood states to the new state of the 

center cell. 

~ A rectangular tesselation is not necessary for celluJar automata. that operate on images - several appli
cations (e.g., (Gol69]) are based on a hexagonal a.nay. Indeed, any CA wit}, an arbitrary neighborhood N is 
eqniva.lent in its computi.ng power to one with a vou Neumairn 11 eighborl1ood, Le., on wit h neighbors to the 
top, bottom, left, and right (see [POL+ 79]). 
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5.1.3 Programming 

A. Basic Considerations 

Viewing the control layer of a cellular processor as a cellular automaton, its programming 

reduces to the design of an appropriate transition function and selection of an appropriate 

initial configuration of values. There are, however, three important constraints particular to 

its operation. 

First, to rule out the necessity for any kind of higher-level global mechanism, the initial 

value of each CE must be determined entirely by the MEs within its corresponding cell. 

This means that the initial configuration of values must be in spatial register with the input 

image, thereby prohibiting the use of the special-purpose initial patterns or auxiliary elements 

often used in general CA design. Similarly, the final configuration also is required to be in 

register with the image, since the output is required to be a spatiotopic map. This rules out 

algorithms that deform the spatial organization found in the input, such as the shrinking 

process used to count the number of items in an image [Gol69). Finally, the operation of the 

processor itself must be in-place, i.e., the memory in inactive cells cannot be used as scratch 

space for intermediate calculations. The use of scratch space is a viable option when the 

initial configurations are such that known subsets of the grid can be guaranteed to remain 

inactive (see, e.g., [Arb87, ch. 7]). However, this condition cannot in general be met when an 

arbitrary set of input images ( and therefore initial configurations) is possible. 

The power of a cellular architecture cannot therefore be harnessed in the manner used for 

many classes of general CA problems, viz., by designing an appropriate initial configuration. 

Instead, the appropriate information must be stored locally in each cell. This can be done 

by increasing the number of states in S (i.e., increasing the number of states in each control 

element). Increasing power in this way also allows the transition function to have a more 

natural structure, simplifying the design and analysis of the system's behavior [Arb87, ch. 7]. 

At the lowest possible level, therefore, the programming of a cellular processor reduces 

to the selection of a set of states for each CE, together with a transition function that 

operates on these states. But to help ensure that the processor respects the constraints 

described above, it is convenient to program at the slightly higher level of simple operations 

on particular properties accessible by the CE. Once such a set of operations has been specified, 

any particular recovery process can then be specified by the appropriate concatenation of 
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operations. This is effectively a general mechanism for the "abstract programming" of parallel 

processes, with the resultant program loaded into each of the CEs, where it acts somewhat 

like parallelized version of a visual routine (Ull84]. 

B. Elementary Structures and Operations 

The data structures to be used in programming the control elements are straightforward: the 

values of the MEs in the corresponding cell, the contents of the internal CE memories, and 

the accessible properties of the adjacent CEs. These are all simple scalars, with only a small 

set of possible values. As such, they can be handled in a uniform way. 

More latitude exists in the choice of elementary operations. There is in some sense a 

"natural" set of basic operations - if too few exist, it may not be possible to carry out all 

the intra-cell operations within a single time step; if too many exist, they merely add to the 

space required by the CE. The elementary operations chosen here are simple forms of data 

input, output, and transformation: 

1. Input of information from MEs to memory elements. Connectivity within a 
cell is assumed to be high enough to allow a CE to establish direct access from any ME 
to any of its internal memory elements. 

2. Output of information from memory elements to MEs. Connectivity also is 

assumed high enough to allow a CE to establish backprojections from any of its in
ternal memory to at least some of its MEs. The interpretation output by the processor 
takes the form of values of these latter MEs ( or equivalently, of the corresponding 

memory elements that override them). 

3. Simple operations on information in memory elements. It is assumed that 
each CE can add, subtract, multiply, and perform integer division on the contents 
of the memory elements. It also is assumed that a two numbers can be compared to 

determine the higher value. Inputs and outputs for these operations are always taken 
from the memory elements; transfer of contents between memory elements is simply a 
special case where no operation is performed. 

In addition, each CE is assumed to have an input from higher levels that provides a 

simple control on its operation. Depending on the value of this signal, the CE either resets 

its memories to some default state, begins/ continues its operation, or halts its operation. 
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C. Combining Basic Operations 

The cellular processor is programmed by creating an appropriate transition function and set 

of states from the elementary structures and operations described above. This can be done 

most simply by concatenating elementary instructions together into a sequence, an operation 

which corresponds to the composition of the corresponding transition functions. Both simple 

and compound operations can be concatenated into new compound operations. Note that 

the resultant transition need not be carried out in a sequence of separate transitions - it 

can be "fused" into a more complex function that can be carried out in one step. 

The replacement of a sequence of simple operations by a single transition corresponds 

to the use of a lookup table ( cf. section 7). In this sense the process is consistent with 

the loading-in of a complete object model based on its features in the image ( e.g. [PE90]). 

However, the approach here involves items of a smaller "local models" composed entirely of 

locally-definable properties. Note that the issue here here centers around the advantages of 

a larger sequence of simple transitions as opposed to a smaller sequence of more complex 

transitions - an instance of the basic time-space tradeoff found in more general models of 

computing (see, e.g., [Har87]). 

Operations can similarly be combined via the "if-then" conditional construct, the result 

simply formed from the two alternative functions. The loop construct of conventional pro

gramming languages also is allowed, but only if the body of the loop is carried out a limited 

number of times. As used here, the loop is a simple programming convenience, which is 

"unrolled" in the actual implementation of the transition function. A loop controlled by a 

variable can be translated into several separate unrolled loops, which are then selected via 

conditional constructs. In a similar fashion, procedures can also be used to help specify the 

process, but each is to be treated as a macro that is replaced in the actual transition function 

by the set of instructions it contains. As such, procedures cannot call each other recursively. 

Finally, the program given to the cellular processor does not need an explicit 'halt' com

mand, since it is assumed that the processor is suspended (as well as started) by an explicit 

command from higher levels. 
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5.2 Algorithm for Rapid Recovery 

Given the set of operations available to the cellular processor ( section 5.1.3), it remains to 

use these as the basis of an algorithm capable of carrying out the recovery process sketched 

in section 4.3. Although the constraints on the recovery process and on the cellular processor 

are not sufficient to specify a unique algorithm, this is not important for the present purpose, 

which simply is to show that such an algorithm can exist. The algorithm used here can be 

summarized as follows: 

For each control element: 

1. Obtain from the measurement elements the locations of all line terminations and the 
orientations of all line segments within the cell. Terminations include not only true 
endpoints of the lines, but also points at which the zone boundaries are crossed. As 
required by the specifications of section 4.3.1, orientation measurements are quantized 
in units of 10°. 

2. Determine the type of junction(if any) that is present, and make explicit several of its 
properties, such as the values of the angles involved. 

3. Assign initial labels to the lines according to the rules described in section 4.2.2. 

4. For each subsystem of each stream, repeat the following: 

a. Read the relevant values from any neighboring CE that shares one of the lines. 
Update the current values via the priority mechanism described in section 4.2.2. 

b. Read the relevant values from those streams containing a variable with a definite 
interpretation, and update the current values according to the rules given in figure 
4.2. Since this transmission applies only to zones at the same location in the 
image, only the internal memories of the CE are involved. 

c. Apply the intra-line constraints according to the rules given in figure 4.2.2. These 
eliminate any local inconsistencies that may have arisen in the new set of values. 

5. Stop iteration when the time limit is reached. The final interpretations are determined 
from the assignment of the 'possible', 'preferred', and 'impossible' labels in each sub
system, according to the rules given in section 4.2.2. 

The following sections describe in greater detail how these operations are carried out by the 

cellular processor. 
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5.2.1 Determination of Basic Image Properties 

The measurement elements in each cell describe the image basic properties available to the 

control element. These include the locations of the line terminations and the orientations of 

the line segments in the area subtended by the cell. There are a variety of ways this can be 

done. Here, each ME is assumed to signal the existence of a line centered at the corresponding 

location in the image array. Line segments of different orientation, horizontal length, and 

vertical length are represented by different sets of MEs, each signalling the presence or absence 

of its particular type of segment by a simple binary output. As required by the architecture 

specifications given in section 4.3.1, these elements represent length and position to a high 

degree of precision, with orientation represented only coarsely. 

These outputs contain a complete (in fact, redundant) description of all line segments in 

the cell, and can therefore support the determination of all the image properties needed by 

the control element. Three properties are of particular interest, all of which are represented 

via a bank of finite-state memory elements: 

Number of lines in the cell: This can be determined from a count of the number of 

ME outputs that are active. A maximum of three is assumed (section 4.3.1). 

The endpoints of each segment: These are calculated for each segment from the 

knowledge of the relevant center point and the horizontal and vertical lengths. No 
more than six endpoints need to be stored. 

The orientation of each segment: These can be taken directly from the orientation 

label of the appropriate ME. No more than three values need to be stored. 

5.2.2 Determination of Junction Properties 

The next step is to obtain those properties of the junction useful for subsequent interpretation. 

These only need to be calculated once, their values then stored in an appropriate bank of 

memory elements. Five particular sets of properties are used here: junction position, junction 

angles, junction type, junction rectangularity, and an auxiliary set of line descriptions ( two 

for each line) used for the interpretation of contiguity. As required by the recovery process, 

all quantities are finite. 
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A. Junction Position 

Junctions are detected simply by finding the intersection point of the lines in the cell. It 

is assumed that each cell is sufficiently small that at most one junction ( and therefore one 

intersection point) can exist within the area it subtends. The existence of the intersection 

point is determined by testing for the identity of the endpoints. For the case of T-junctions, 

a slightly different procedure is used, based on a unique zero distance from an endpoint of 

one line segment to a different line segment. 

If no intersection point is found, no junction exists within the cell. Note that this is 

possible even if the junction contains several lines, since these lines may be noncontacting. If 

an intersection point is found, its location is stored into an appropriate memory element. 

B. Junction Angles 

The angle Oij between each pair of connected lines iii and iij is simply the absolute value 

of the difference of the two orientations. The only real difficulty here is to determine how 

the lines are connected - as seen from figure 5.2, each pair of lines can be combined in two 

different ways, corresponding to acute and obtuse forms. 

These can be distinguished via the dot product of the two lines, defined to be (see, e.g., 

[Tho72]) 

The disambiguation of acute and obtuse junctions can be based on the sign of the cosine: 

positive for acute angles, negative for obtuse. If the difference between two line orientations 

actually corresponds to angle Oij, it will therefore have a value between 0° - goo for pairs 

with a positive dot product, and between goo - 180° for a negative dot product. If these 

conditions do not hold, the angle must be 180° minus this value (figure 5.2). 

Since only the sign of the dot product is important, division by the magnitudes need not 

be performed, and so can be readily carried out by the control element. Note also that the 

dot product is a true scalar quantity (see, e.g., [Tho72]), so that no artifacts are introduced 

by the selection of any particular co-ordinate system. Among other things, this takes care 

of any problems introduced by the discontinuity in orientations at 180°. It also means that 

orientation can be taken with reference to any co-ordinate system, the only requirement being 

that the same system is used locally for any junction. 
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Figure 5.2: Calculation of orientation differences. 

Junctions are classified by a two-stage process. The initial classification based on their arity, 

i.e., the number of lines existing at the common intersection point. This value can be obtained 

simply by counting the lines that have an endpoint identical with the intersection point. 

Junctions are then marked as follows: 

No junction: No intersection point exists 

T-junction: One endpoint contacts the intersection point 

L-junction: Two endpoints contact the intersection point 

Arrow-, Y-junction: Three endpoints contact the intersection point 

Further disambiguation can be based on the values of the angles between the lines: 

L-junction (acute): angle is less than 90°) 

L-junction (obtuse): angle is greater than 90°) 

Arrow-junction: angles sum to less than 360° 

Y-junction: angles sum to exactly 360° 

Complications can arise when junction angles are nearly orthogonal, since the uncertainty 

in the sign of the dot product makes it difficult to discriminate acute L-junctions from obtuse 

ones in a reliable way. It also becomes difficult to distinguish arrow- from Y-junctions if two 

such angles are present in a junction (i.e., one of the line pairs is almost collinear with an

other). Various techniques can lend robustness to the recovery process under these conditions 
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( cf. section 3.3.3), but in the interests of simplicity, only a few are used here (section 4.3.2) . 

In particular, L-junctions with angles determined to be goo (based on the quantized estimates 

in memory) are treated as a separate type of L-junction that has the constraints common 

to both obtuse and acute L-junctions. As for the other kinds of L-junctions, right-angled 

L-junctions can be determined by a simple test of junction angles. 

D. Junction Rectangularity 

An important basis for the recovery of slant magnitude is the assumption that the junction 

corresponds to a rectangular corner in the scene, with slant magnitudes assigned only to 

those edges belonging to a junction obeying Perkins' laws (section 4.3.2). Consequently, it is 

important to indicate whether or not a junction can correspond to such a corner. This can 

be done via a simple test based on the angles and type of the junction: 

L-junction: no 

T-junction: no 

Arrow-junction: one angle > go0 and two angles < go 0 

Y-junction: three angles > go 0 

Rectangularity is flagged simply by assigning a zero value to all angles in junctions that do 

not pass this test. 

In the interests of robustness, this procedure must be extended to handle right angles as 

well. Note that since two angles of go 0 in a junction form a T-junction, only one right angle 

is allowed in any arrow- or Y-junction, allowing the extension to be done in a simple way: 

Arrow-junction: one angle>= go0 and and two angles <= go0
• 

Y-junction: three angles>= go 0
• 

E. Contiguity Lines 

In contrast to the other interpreted properties, the contiguity of lines with their flanking 

regions requires the assignment of two values per line, one for each side ( section 3.2.1 ). 

Contiguity is therefore represented here by a pair of contiguity lines ( "c-lines") obtained by 
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Figure 5.3: Determination of contiguity relations. 

offsetting the original "parent" line a few pixels on either side (figure 5.3). The value of each 

c-line indicates whether its corresponding region is contiguous with the parent line in the 

junction. In all respects, c-lines are treated as regular junction lines, taking on the states of 

'possible', 'preferred', and 'impossible'. 

Because several constraints apply to c-lines that share a common region, it is useful to 

have a record of which c-lines are connected to each other inside the junction. Since almost 

all connected c-lines are the inside edges of adjacent lines ( cf. section 3.2.1 ), the test for 

connectedness r~duces almost completely to a search for these inside edges.5 The problem, 

then, is to determine which c-lines are on the "inside", i.e., which c-line faces the junction 

line opposite its parent (figure 5.3). 

A simple way to solve this problem is based on the cross product, which for lines ii and b 
is defined as the determinant (see, e.g., [Tho72]) 

ii X b 
ex ey ez 
ax ay az 
bx by bz 

where the ei are unit vectors in the x, y, and z directions. In the case of two dimensions, 

the cross product describes the area swept out by the two vectors, its sign depending on the 

sense of the rotation required to align ii with b. 

Consider first one of the junction lines. The cross product of this line with an adjacent 

junction line can be readily determined by the control element, the sign of this quantity 

describing the sense ( either clockwise or counterclockwise) in which this line must be rotated 

5 The only exception is for the outer edges of the arrow-junction, and these can be handled straightforwardly, 
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to line up with the adjacent line. Consider now thl: associated c-lines, together with the 

lines formed by joining their outer points to the junction intersection. Only the c-line on the 

inside edge (i.e., the c-line facing the adjacent junction line) can give rise to a line in the 

same rotational direction as that of the adjacent junction line (figure 5.3). Repeating the 

same procedure for the c-lines of the adjacent line then yields the pair of inside edges. 

The cross product is a quantity independent of the co-ordinate system (see, e.g., [Tho72]). 

It therefore allows processing to be unaffected by the particular co-ordinates used in repre

senting the orientation of the lines. 

5.2.3 Initial Assignment of Interpretations 

Once the basic image and junction properties have been determined, the next step is to assign 

the initial interpretations to the variables in each of the four streams. The states of these 

variables are held in eight separate banks of memory elements, one element per subsystem. 

Only three possible values can be attached to any complementary variable, and only five are 

possible for slant magnitude (section 4.3.1). Consequently, these memory elements only need 

to take on a few possible states. 

The assignment operation itself is a straightforward procedure that sets the values of the 

relevant memory elements, the particular choice of values depending only on the junction 

type (section 4.3). This can be carried out by using a set of conditional statements. Together 

with the values describing the structure of the junctions, the resulting set of CE memory 

states provides the initial configuration for the iterative part of the interpretation process. 

5.2.4 Propagation of Interpretations 

Given an array of initial interpretations, it remains to transmit these values to neighboring 

locations and streams. As discussed in section 4.2.2, this is done by an iterative process that 

at each iteration replaces values of low priority with values of higher priority, i.e., 'preferred' 

replacing 'possible', and 'impossible' replacing 'possible' and 'preferred'. The constraints at 

each junction guide the local transmission of these values, resulting in "waves" of higher

priority states circulating around the lines in the image. The propagation of these waves 

continues until an equilibrium state is reached or until the process is timed out. 

The way the propagation process is carried out is much the same in all subsystems: all 
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variables sharing constraints with the "target" variable are accessed, and if any of these has 

a value of higher priority than the value of the target variable, the memory element is set to 

this value. This can be done even for the case of state-dependent constraints (section 4.2.2, 

since only an additional conditional construct is required to put the appropriate constraints 

into effect. 

Information access occurs via four different avenues: neighboring cells, neighboring 

streams, intra-junction constraints, and intra-line constraints (section 4.3). Since transmis

sion is based on a simple priority mechanism, the order of the access operations within each 

stream is unimportant. This allows the propagation process to be carried out by a relatively 

simple set of operations. 

A. Updates from Neighboring Cells 

The updating of values from sources outside the cell can be done concurrently for each line 

segment. To access the appropriate values from neighboring locations, first determine which 

neighbors contain a continuation of the relevant line segment. This is done by reading the 

set of endpoint locations stored in each neighboring control element and testing for equality 

against the endpoints of the local line segment. Since a line crossing a cell boundary is divided 

into two segments that terminate at the same point (i.e., the boundary), this test succeeds if 

and only if the segment continues into the neighboring cell. 

For each cell containing a continuation of the segment, access the relevant set of memory 

elements and compare their values against those of the current cell. Since continuations are 

required to have the same values, updating follows the rules for bijective constraints described 

in section 4.2.2. 

B. Updates from Neighboring Streams 

Just as information is transmitted from neighboring locations, it also is transmitted from 

neighboring streams. The only difference between the two situations is that whereas inter-cell 

transmission is based simply on priority, inter-stream transmission usually has an additional 

dependence on the particular type of junction and on the particular line in that junction 

(section 4.2.2). This dependence is fixed for each junction type, with updating carried out 

by a set of conditional assignments between the appropriate variables. Since this updating is 

based on simple priority, the order in which streams are evaluated is unimportant. 
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C. Updates from Intra-junction Constraints 

After assigning new values to the lines based on sources external to the junction, the next step 

is to impose the set of local constraints on the lines of the junction itself. Updating follows 

the rules described in section 4.2.2, with the particular constraints depending on junction 

type. Consequently, it can be carried out by a set of conditional constructs. Since the final 

result depends only on priority of the values involved, the order of evaluation of the lines is 

unimportant, and can even be done in parallel. 

D. Updates from Complementary Subsystems 

A final path of information transmission originates in the constraint between the values in 

complementary subsystems: if any value in a subsystem has been set to 'impossible', the 

value of its complement is upgraded to 'possible' (see section 4.2.2). Since thjs constraint 

holds for all lines at all times, it can be carried out via a conditional assignment incorporated 

into the assignment mechanisms used in the other access paths. 

5.2.5 Final Assignment of Results 

After the propagation of valuei; has been halted, a final "postprocessing" phase can be used 

to transform the states of the sets of complementary variables into a more "standard" repre

sentation that expresses the two definite interpretations, the inconsistent interpretation, and 

the ambiguous interpretation. The rules of this transformation are given in section 4.2.2. The 

transformation itself can be carried out straightforwardly on the relevant memory elements 

since only a simple remapping of values is involved. 

5.3 Neural Implementation 

The final requirement of a computational analysis is that it demonstrate the existence of a 

physical system capable of carrying out the process - in particular, one compatible with the 

neural mechanisms believed to underlie human vision [Mar82]. But the detailed knowledge 

about the neurophysiology of vision is limited mostly to processes that measure simple image 

properties such as contrast and orientation (see, e.g., [Bis84, Sch86]). An detailed analysis of 

the neural implementation of rap'id recovery is therefore not possible at the present time. 
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However, the cellular processor developed in section 5.1 is largely compatible with what 

is known about the anatomy and physiology of primate visual systems. The main stream 

believed to be involved in form vision begins with retinal cells that measure simple properties 

such as the contrasts and motions of luminance gradients in the image. The outputs of 

these cells extend to the lateral geniculate nucleus, and the geniculate cells in turn extend 

to the visual cortex, with a spatiotopic order maintained at all points along the way ( e.g., 

[Bis84]). The visual cortex serves as the location where the outputs of this stream are brought 

together with those of the other streams. It contains cells sensitive to a variety of simple 

properties, including contrast, color, and line orientation (e.g., [dYvE88]). These form a 

dense spatiotopic map, with each point in the array containing a description of the various 

image properties at the corresponding point in the input image. As such, this map is an 

array similar in many respects to the measurement layer of the cellular processor. 

The spatiotopic ordering of cells in the primate visual cortex is not quite point-to-point. 

Rather, it is "patch-to-patch", with each set of ganglion cells in a retinal patch projecting 

to a separate module (or "hypercolumn") in the visual cortex [HW74, Hub81, Bis84]. Each 

hypercolumn is a vertical section of the cortex with an area of approximately 1mm X 1mm; 

the primate visual cortex is thought to have about 2000 such columns, each containing at 

least several thousand cells [Hub81]. The corresponding patch of the visual field increases 

with eccentricity from the fovea, but around the fovea itself it has dimensions of about 10' 

arc (i.e., 1/6°) [Hub81). All the measurements made over each patch are brought together 

in the corresponding hypercolumn, allowing it to completely analyze its section of the visual 

field. A similarity with the control layer of the cellular processor is evident. This similarity 

is reinforced by the observation that most connections between cells are vertical ones within 

the column itself, lateral connections to other areas being much sparser and shorter, often 

with lengths of only 1-2 mm (i.e., extending only to nearest neighbors) [Hub81). 

If hypercolumns can be identified with the control elements of the cellular processor, it 

would imply that hypercolumn operation is more sophisticated than generally believed. But 

such sophistication would not be implausible given the number of cells in each hypercolumn 

and the density of their internal connections. In this context it is important to note that 

hypercolumn organization is extremely common, being found in most parts of the cortex 

in virtually all mammalian species [GJM88). Thus, it is not absolutely essential that rapid 

recovery is carried out in the hypercolumns of the visual cortex - the hypercolumns of the 

extra-striate visual areas ( see, e.g., [MN87]) could also be used for this purpose. 
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Chapter 6 

Tests of the Theory 

The final stage of the analysis is to test the theory on actual line drawings of polyhedral 

objects. Two sets of issues are of interest here. The first is how well the recovery process 

handles various kinds of line drawings. The process is tested on drawings of objects that 

violate the underlying assumptions about scene structure, and on drawings that cannot be 

given a consistent global interpretation. It is shown that a substantial amount of three

dimensional structure can be recovered under a wide range of conditions. 

The second set of issues concerns the ability of the theory to explain the recovery of 

three-dimensional structure at the preattentive level of human vision. It is shown that the 

theory can explain - at least in broad outline - how early visual processing can recover 

three-dimensional orientation from some kinds of line drawings, and why it cannot do so for 

others. 

6.1 Performance on Line Drawings 

To examine the power and the limitations of the recovery process, it is tested on a range 

of line drawings, including those in which all underlying assumptions are obeyed as well as 

those in which various assumptions are violated. Although the resulting interpretations are 

not perfect indicators of the overall effectiveness of the process, they do provide an idea of 

the relative ease or difficulty of interpreting the various kinds of line drawings. 

Since the speed of the process is determined primarily by the speed of information trans

mission, the absolute size of the line drawing has virtually no influence apart from a rescaling 
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of the time course (section 2.5.2).1 The effects of size are therefore eliminated by rescaling 

all drawings so that their average line length is the same. For the drawings considered here, 

the average line length is set to 5 cell widths. 

Transmission speed can be similarly factored out by measuring time in terms of the 

number of transitions between adjacent cells, or equivalently, by the number of iterations. 

This value is essentially a free parameter, which can have different values when recovery 

is used in different situations or for different purposes. However, in order to obtain an 

indication of the relative difficulty of recovery for various kinds of line drawings, it is useful 

to base comparison on one particular time limit. 

As a representative value, the number of transitions is such that information is propagated 

along a distance of twice the average line length. This allows enough time ( on average) for 

the estimates from each junction to be transmitted to their nearest neighbors, and for any 

updated values to be transmitted back. Since the average length is 5 cell widths, 10 transitions 

are used. 

6.1.1 Rectangular Objects 

When scenes contain only rectangular objects, all assumptions about the structural con

straints (section 3.1.1) are true, giving the process the best chance to obtain a globally con

sistent interpretation of all scene-based properties. The corresponding line drawings therefore 

test the ability of the process to obtain such interpretations under ideal conditions. 

i) Convex objects 

The objects most amenable to rapid recovery are simple convex rectangular blocks 

(figure 6.1), since these not only obey all structural assumptions, but also obey the principle 

of maximum convexity that is used to select the initial set of interpretations (section 4.2.2). 

As figure 6.1 shows, ahnost all the three-dimensional structure has been recovered, with un

ambiguous preferred values assigned to all the lines in all four streams, and with almost all 

the alternatives ruled out as impossible. 

A remnant of uncertainty remains in the center of the drawing, where the alternative con

vexities and slant signs are not yet completely ruled out. The propagation of the 'impossible' 

1 Performance does change as the size of the entire object app:l'Oaches the dimensions of a zone, since the 
assumption of no more than three lines per cell (section 4.3.1) can no longer be held. However, drawin gs here 
are assumed to be large enough that this is of no concern. 
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values from neighboring cells does, however, provide these areas with a definite interpretation 

after a few more iterations. This illustrates a common feature of the process - ambiguity 

is typically eliminated by proceeding from the outside of the drawing to the inside. This 

is largely due to the low ambiguity of the L-junctions, which are most often found on the 

outside border of the drawing. 

. The other area of uncertainty is the· assignment of contiguity to the outer edges of the 

drawing. This is due to the inherent ambiguity of the line drawing itself, which can be 

interpreted as a block attached to various surfaces (floor, wall, ceiling) or as a block without 

any attachments at all. The recovery process has no means for preferring one over the other, 

and so the interpretation of these values remains ambiguous. 

ii) Nonconvex objects 

Nonconvex rectangular objects obey all structural constraints, but contain nonconvex 

corners that are initially assumed to be convex (section 4.2.2). As seen from figure 6.2, the 

initial assignment of an incorrect set of values to the nonconvex junction does not seriously 

affect the final interpretation. Contiguity is assigned unambiguously and correctly to almost 

all surfaces, with the exception of the outer edges, which - as for the case of the convex block 

- cannot be given an unambiguous interpretation. Note that the preference for contiguity 

of the edges ofY-junctions (section 4.2.2) has caused the lower edge to be given a 'preferred' 

value, although the opposite interpretation has not been definitely ruled out. The other 

streams similarly contain edges that either have a definite interpretation or involve preferred 

interpretations. 

Ambiguous convexity and slant sign interpretations exist on the edges of the concave Y

junction in the center of the drawing. This is due to its initial preference as a convex junction 

and to the subsequent assignment of preferred complementary values based on values from its 

neighbors. The corresponding ambiguity in these neighbors (i.e., the convex Y-junctions) is 

removed via the certainty in the L-junction interpretations. This again illustrates that many 

of the unambiguous interpretations are first formed on the outside of the drawing and then 

propagated inward. 

Because slant magnitude does not depend on the convex/concave distinction, it is unam

biguously assigned to all lines, limited only by the transmission distance. 
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Figure 6.1: Interpretation of convex rectangular object. Slant angle (in degrees) obtained by 
multiplying slant magnitude number by 20. 
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Figure 6.2: Interpretation of nonconvex rectangular object. Slant angle (in degrees) obtained 
by multiplying slant magnitude number by 20. 
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iii) Occluded objects 

When several objects exist in the scene, projection to the image plane often results in the 

partial occlusion of one object by another. Information from the occluded junctions is lost, 

a loss which is only partially compensated for by the constraints from the T-junctions. 

As figure 6.3 shows, however, the recovery process is fairly robust against the effects of 

occlusion. Assignments of contiguity are as good as those for individual blocks; indeed, they 

are somewhat less ambiguous, since the T-junctions have added extra information to the 

crossbars. Convexity and slant are almost unimpaired, with only a slight increase in the area 

of uncertainty around the central Y-junctions. 

The only significant loss of information occurs in the line connected to an occluded arrow

junction on one end, and to an L-junction on the other. The L-junction can provide an 

assignment of slant sign, but cannot transmit slant magnitudes. Consequently, the line must 

remain uninterpretable within this stream. 

6.1.2 Nonconforming Objects 

Another test of rapid recovery concerns its ability to interpret line drawings of "nonconform

ing" objects, i.e., those that do not conform to all the structural assumptions that underlie 

the recovery process. The ability of the process to recover various scene properties under 

such conditions provides an indication of its robustness in domains beyond those for which 

it is optimal ( cf. section 2.3). 

i) Nonrectangular objects 

Given the importance of rectangularity for the initial assignment of slant magnitudes 

(section 3.2.4) and the constraints on convexity (section 3.2.2) and slant signs (section 3.2.3), 

it is important to determine how recovery is affected when these assumptions are no longer 

true of the scene. From figure 6.4, it is seen that the process can still recover a fair amount 

of structure. The inner edges of all lines are interpreted unambiguously as contiguous. The 

outer edges of the drawing remain largely uninterpreted. When more iterations are allowed 

the contiguity interpretation assigned to the acute L-junction spreads around the outside of 

the drawing. 

Most of the trilinear junctions have been given unambiguous interpretations in the con

vexity and slant sign dimensions. Although a contradiction in slant magnitude has been 
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Figure 6.3: Interpretation of occluded rectangular objects. Slant angle (in degrees) obtained 
by multiplying slant magnitude number by 20. 
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found for one of the edges, and cannot be assigned to two others (since the junctions violate 

Perkins' laws), the remaining four edges have been assigned definite values. 

ii) Origami objects 

Another class of objects that do not conform to the structural assumptions are the origami 

objects (Kan80], formed by joining extremely thin polygonal plates to each other along their 

edges. Although they are similar to polyhedra in having planar surfaces, origami objects are 

never solid, and so their projections cannot be interpreted as solid polyhedra. An example 

of such a drawing is the chevron shown in figure 6.5. 

As seen from figure 6.5, the interpretation process is fairly robust to the violation of this 

assumption. Most of the outer edges are interpreted as contiguous, an interpretation at odds 

with that given to the convex block. But three of the four inner edges of the rectangles are 

still interpreted unambiguously as being contiguous. The results in the other three streams 

are largely unaffected by the violation of this assumption, with the interpretations matching 

almost exactly with those of the solid convex block. 

iii) Nonplanar objects 

Much of the power of a line interpretation process stems from a basic assumption that 

the surfaces of the corresponding object are planar (see section 2.2.1). The drawing in figure 

figure 6.6 violates this basic assumption, the upper surface being uninterpretable as a plane. 

The local nature of the rapid recovery process, however, allows much of the structure of 

nonplanar objects to be recovered, since global consistency is not enforced. This is illustrated 

in the interpretations shown in figure 6.6. Contiguity is assigned correctly almost everywhere, 

with inconsistent interpretations assigned only to the inner edges of the not.ch in the upper 

surface. Similar considerations apply to convexity and slant sign. Furthermore, slant magni

tudes are unambiguously assigned to all lines, a result due to the absence of a check on slant 

magnitude at Ldunctions (section 4.1.3). 
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Figure 6.4: Interpretation of nonrectangular object. Slant angle (in degrees) obtained by 
multiplying slant magnitude number by 20. 
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Figure 6.5: Interpretation of origami object. Slant angle (in degrees) obtained by multiplying 
slant magnitude number by 20. 
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Figure 6.6: Interpretation of non planar object . Slant angle (in degrees) obtained by multi
plying slant magnitude number by 20. 
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6.1.3 Impossible Objects 

Objects are said to be "impossible" if they cannot exist under the assumption that connecting 

lines in the image correspond to connecting edges in the scene. If accidental alignments are 

allowed, connecting image lines can correspond to disconnected edges in the scene, so that a 

corresponding object can be found for any line drawing [Kul87]. But the conditions required 

for this are extremely unstable, violating the general viewpoint constraint (section 3.2), so 

that such interpretations are not generally allowed. Instead, the drawing is interpreted as an 

impossible figure containing a set of globally inconsistent interpretations. 

As a final test of its abilities, the rapid recovery process is applied to drawings of these 

impossible objects. To keep the influence of other factors to a minimum, all junctions are 

such that they can be consistently interpreted as rectangular corners. The application of 

the recovery process to these drawings consequently provides a good test of how well it can 

handle global inconsistency. 

i) Objects of inconsistent contiguity and convexity 

The first class of impossible objects are those that correspond to drawings that cannot 

be given a consistent set of contiguity and convexity labellings. The example considered here 

is shown in figure 6. 7. Such drawings violate the basic assumption that a surface contiguous 

with a given edge remains contiguous throughout its entire length; among other things, this 

eliminates the distinction between object and background [Kul87]. In addition, several of 

the lines cannot be given a consistent convexity interpretation along their length, providing 

a second source of inconsistency. 

Because the interpretation process involves only local sections of the drawing, however, 

it is relatively robust to such inconsistencies. This is illustrated in figure 6. 7. Here, almost 

all lines are given an unambiguous contiguity interpretation that is correct locally. The only 

exceptions in this stream are two horizontal lines that have been interpreted as inconsistent. 

Inconsistencies in convexity and slant sign are also picked up, but these are restricted 

entirely to the inner lines, the outer sections having a completely unambiguous interpretation. 

Slant magnitude is completely unaffected by the inconsistencies in contiguity and convexity, 

with unambiguous interpretations assigned to virtually all lines. 
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Figure 6.7: Interpretation of object of inconsistent contiguity and convexity. Slant angle (in 
degrees) obtained by multiplying slant magnitude number by 20. 
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ii) Objects of inconsistent slant 

Another class of impossible objects give rise to drawings in which the lines cannot be given 

a consistent set of slant estimates. An example is shown in figure 6.8. Such inconsistency 

negates the basis for the propagation of slant estimates along common edges. 

The results of the recov:ery process are shown in figure 6.8. As seen from this figure, much 

of the (local) three-dimensional structure is still recovered. Contiguity is assigned correctly to 

all lines, the only uncertainty existing in the outer edges. Convexity also is largely unaffected, 

although inconsistencies have begun to appear in the Y-junctions. These inconsistencies are 

more severe in the slant sign stream, although the arrow-junctions and L-junctions retain 

unambiguous interpretations. Because the estimation of slant magnitudes is independent of 

slant sign, unambiguous magnitude estimates are assigned to all the lines. 

iii) Objects of inconsistent depth 

Part of the reason for the speed of the rapid recovery process is that it avoids global checks 

of the resulting description, using the consistency of the world itself as the basis for coherent 

interpretations. One important example of this is the complete lack of any check on depth 

information (section 3.1.1). This renders the process susceptible to a number of "illusions" on 

drawings for which the corresponding surfaces have globally inconsistent depths. An example 

of such a drawing is the Penrose triangle, shown in figure 6.9. 

As seen from this figure, all four streams result in interpretations that are largely unam

biguous for all lines. The only exceptions are uncertain contiguity estimates for the outer 

lines of the drawing, and uncertain slant estimates for the innermost lines. Both of these are 

to be expected, since the uncertainty in outer contiguity occurs for almost all drawings, and 

the uncertainty in slant estimates is a consequence of the inner lines contacting only L- and 

T-junctions, neither of which can give rise to a magnitude estimate. Virtually all local struc

ture is therefore recovered, with no inconsistencies being detected. The interpretation is an 

illusion of exactly the type expected, with virtually all edges assigned definite interpretations 

even though the corresponding object cannot be realized. 
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Figure 6.8: Interpretation of object of inconsistent slant. Slant angle (in degrees) obtained 
by multiplying slant magnitude number by 20. 
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Figure 6.9: Interpretation of object of inconsistent depth. Slant angle (in degrees) obtained 
by multiplying slant magnitude number by 20. 
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6.2 Preattentive Recovery of Scene Structure 

The ultimate goal of the theory developed here is to explain the rapid recovery of three

dimensional structure in human early vision. In particular, the goal is to explain why certain 

kinds of line drawings can be rapidly detected in visual search tasks, and why others cannot. 

Figure 6.10 shows the set of results considered. The search items, together with the search 

rates, are taken from [ER91) and [ER92). In all cases, two search rates are presented - those 

for displays in which the target is present, and those for which it is absent. The recovery ratio 

p is the measure developed in section 6.2.1 to explain these rates. Although not exhaustive, 

this set is representative of what is known about search rates for various kinds of line drawings. 

By making several relatively simple assumptions about the relation of recovered structure 

to search rates, the theory is able to explain the relative difficulty of search for all cases 

examined. Because these assumptions are fairly general, they also allow predictions to be 

made for drawings not yet tested. 

6.2.1 Basic Assumptions 

Time and Space Parameters 

To carry out the analysis, it is necessary to specify both the size of the drawings and the 

amount of time to be allocated. In what follows, drawings are scaled to have the same 

maximum extension. This is done so that the relative sizes match those of the drawings used 

for the experiments described in [ER91) and [ER92). The extent of the drawings is taken to 

be 5 cells. If cells are related to hypercolumns (section 5.3), this will correspond closely to 

the actual number of hypercolumns involved. 

The time limit is set at 5 iterations - enough for a one-time propagation of information 

across the maxi.mum extent of the drawing. This is only meant to be a representative value, 

useful as the basis for a comparison of the difficulty of interpretation for various kinds of 

drawings. 

Relating structure to search rates 

Since the goal of this work is to explain the relative preference for certain kinds of line 

drawings over others, and not the phenomenon of rapid detection per se, no commitment is 
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Search Items Rotes (ms/item) 

Condition Target D1stractor Present Absent .P-

A. ~ ~ 7 12 00 

B. e;J ~ 51 96 0.4 

C. ~ ~ 6 9 00 

D. ILJILJ ~ 22 31 0.0 

E. ~ ~ 35 65 1.2 

F. © © 37 66 0.0 

r"'1\ "'""' G. ~'"' 'i " \-~ 52 80 1.1 
'-~ ""- .J 

I _,, ,,, 
H. ,~, ,,-, 63 101 0.0 

Figure 6.10: Results e:Kplained by theory. Th sear b items and sear b rat s are taken from 
[ER91] and [ER92]. The re ·overy ratio p1 discussed in sectiou 6.2.l describes the difl:'e ren ·e in 
th recovered thre -dimensional structur of the targ t and clistractor items. Th correlation 
between p and search rate is evident. 
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made here to any particular model of visual attention or visual search. Instead, a set of four 

relatively general assumptions is used to relate recovered structure to search rates: 

1. Search rates increase with greater target-distractor distinctiveness. This 
assumes that search rates are largely governed by a signal-to-noise ratio that com
pares the relative number of distinctive features in the target to the number of features 

it shares with the distractors. This is a widely-accepted assumption used to explain 
search rates for many kinds of visual stimuli (e.g., [TG88, DH89]). 

2. Target-distractor distinctiveness is based on differences in slant. It 
is assumed that the slant sign and slant magnitude of each line in the interpreted 
drawing are combined into a single quantity that acts as an irreducible feature, capable 
of being detected almost immediately when sufficiently distinct (section 2.1.2). This as
sumption is supported by the finding that the speed of search for line drawings can be 
better explained in terms of three-dimensional rather than two-dimensional orientation 
[ER90b]. 

3. Common uninterpretable lines increase target-distractor similarity. 
Uninterpretable lines are assumed to be part of the "noise" that interferes with the 
process of distinguishing target from distractor in visual search tasks. Such interfer
ence could exist for a variety of reasons. If, for example, the rapid-recovery system 
acted only to eliminate impossible interpretations, lines without a definite slant es
timate would be assigned all possible values. This set of values would therefore be 

common to both target and distractor. 

4. Slant is represented as a departure from zero. This takes slant to be a quantity 
like two-dimensional orientation, which is represented as a departure from the canonical 

orientations of vertical or horizontal [TG88]. Here, the canonical value is assumed to 
be zero, i.e., a three-dimensional orientation perpendicular to the line of sight. 

To obtain a quantitative measure of target-distractor similarity, additional assumptions 

are needed to refine the original set: 

1'. Search rates increase with the recovery ratio p. The quantity p is defined here 

as the ratio of the target-distractor difference over the target-distractor similarity. Al
though this is a considerable simplification that among other things completely ignores 
configurational effects among two-dimensional features, it nevertheless provides a rough 
quantitative measure that captures something of the trade-off between distinctiveness 
and similarity. 

2'. Differences are based on unambiguous slant estimates. Unambiguous 
estimates are those for which a slant magnitude has been assigned to the line (sec
tion) and for which one of the slant signs is preferred. In light of assumption 4, only 
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as 

differences in nonzero slants contribute to the distinctiveness measure - since target 
I 

and distractor always differ by a 180° rotation in the image; the slants of corresponding 
lines differ in their sign. Consequently, the slant difference is always twice the value 
of the slant itself. Since the exact location of a feature is not important in visual 
search (section 2.1.2), ambiguity may also arise if two lines of the same orientation have 

different slants. 

31
• Similarities are based on ambiguous slant estimates. If an ambiguous inter
-pretation exists for the slant sign, or if a slant magnitude is not possible, the couespond
ing line s gment is consid red to add to similadty in the same way as unint rpr tel 
lines. 

41
• Slant signals are proportional to line length along each orientation. 
In effect, each small section of line is assumed to signal the value of the slant at its 

location, and to pass this value on to the mechanisms governing visual search. Since the 
location of a feature is not important for this purpose ( cf. section 2.1.2), all signals from 
a common orientation can simply be summed together. The total signal is therefore 
proportional to the CllllluJative lengt.h along a particular direction. In order to avoid 
specifying different weigMs for different slants, each nonzero slant and slant difference 
are assigned the same value. 

In summary, then, search rates are assumed to increase with the recovery ratio p, defined 

Ee Lj ( segment CT0j has unambiguou nonzero slant) 
p= . ' Lo Lj ( segnient aoj has ambiguous slant) 

where aej denotes a line segment of orientation () in the image. Because of the asymmetry 

between upward and downward slants [ER90b] (also see fig 1.1), this ratio is taken to apply 

only to cases where the object corresponding to the target is slanted upward. Again, it should 

be emphasized that the theory developed here is not addressed towards explaining such an 

asymmetry, but rather is only intended to explain the relative difficulty of search. 

6.2.2 Explanation of Psychophysical Results 

Context Effects 

The first test of the theory is to see if it can explain why different contexts influence the 

detectability- of a Y-junction among a set of similar junctions rotated by 180°. The de

tectability of this junction is greatly affected by the presence and shape of the surrounding 

outline, as shown in figure 6.10, taken from [ER91]. When Y-junctions are surrounded by a 
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Figure 6.11: Slant estimates for Condition A. Slant angle (in degrees) obtained by multiplying 
slant magnitude number by 20. 

quasi-hexagonal frame (Condition A) they are detected quite rapidly (7 ms/item for target 

present; 12 ms/item for target absent). But a square surround (Condition B) causes search 

to slow down considerably (51 ms/item for target present; 96 ms/item for target absent). 

A comparison of the interpretations for Condition A (figure 6.11) and for Condition B (fig

ure 6.12) shows that this effect is readily explained in terms of the recovered three-dimensional 

structure. The interpretation of Condition A contains no ambiguity in regards to slant, with 

a considerable difference between target and distractor. Since there a.re no nonzero slants in 

common, the recovery ratio p is infinite, accounting for the fast search that occurs for this 

condition. 

The drawing of Condition B, on the other hand, has ambiguous estimates for several lines. 
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Figure 6.12: Slant estimates for Condition B. Slant angle (in degrees) obtained by multiplying 
slant magnitude number by 20. 
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Although the long stem of the Y-junction is assigned a unique slant, this is only one-third 

the "signal" obtained from the drawing of Condition A. Furthermore, a considerable amount 

of uninterpretable structure exists. The recovery ratio therefore has a relatively low value (p 

= 0.4), which explains the much lower search rate. 

Contiguity 

To determine whether the slow search found in Condition B is due to the failure of the recovery 

process or simply due to the presence of T-junctions, consider the drawings of Condition C 

and Condition D, taken from [ER92]. As seen from the figure, search for the target in 

Condition C is fast, with about the same speed as for that of Condition A. Consider now the 

drawings of Condition D. Since targets composed of two items can be easily detected in a 

background of single items [TG88], the target should be easy to detect if the distractor is not 

segmented into two groups. The target also differs in overall shape in the image, which can 

only help to speed search. But the search rates (22 ms/item for target present; 31 ms/item 

for target absent) clearly show that search is relatively difficult. 

The interpretation of the drawing in Condition C is shown in figure 6.13. The T-junctions 

have partitioned the drawing into two groups, each of these being interpreted as a complete 

block with unambiguous slants assigned to all lines. The high recovery ratio is therefore high 

(p = oo ), explaining the high speed of search. 

The distra.ctors in Condition D, being identical to those of Condition C, have likewise 

been interpreted as a pair of blocks. Since all nonzero slants match those of the separate 

blocks in the target item, however, no slant differences exist, and so p is zero. Target and 

distractor differ only in the relative location of their parts. and since relative location cannot 

be determined at early levels (e.g., [Jul84a., Tre88], search is to be expected to be relatively 

slow. Although search is faster than in Condition B, this can easily be attributed to some 

weak effect resulting from the overall difference in two-dimensional shape. 

Rectangu ,_;_rity 

Conditions E and F (ta.ken from [ER91]) provide a direct test of the rectangularity constraint. 

These drawings have been distorted so as to violate the assumption of rectangularity in two 

different ways. In Condition E, the internal Y-junction has been altered so that the system 

of junctions cannot be consistently interpreted as rectangular; indeed, the top surface is no 
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Figure 6.13: Slant estimates for Condition C. Slant angle (in degrees) obtained by multiplying 
slant magnitude number by 20. 
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Figure 6.14: Slant estimates for Condition E. Slant angle (in degrees) obtained by multiplying 
slant magnitude number by 20. 

longer even planar. This condition leads to slow search. To control for the possibility that 

parallelism rather than rectangularity is the key property, Condition F uses a cube stretched 

vertically, so that parallel lines remain parallel while both the Y-junction and arrow-junction 

now violate Perkins' laws. Search is again slowed. 

The interpretation of the drawing in Condition E is shown in figure 6.14. Here, the 

distortions of the junctions have created conflicts in both slant sign and slant magnitude 

along several lines. The low value of the recovery ratio (p = 1.2) then explains the slow search 

speeds found. The results of Condition F are also easily explained - since the junctions violate 

Perkins' laws, an initial assignment of slant magnitude is not even attempted. Consequently, 

p is zero and search is slow. 
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Connectedness 

To test the possibility that rapid recovery is based on the direct lookup of complete objects 

rather than via the interaction of more local structures ( cf. section 2.3), search rates were 

determined for the drawings of Conditions G and H (taken from [ER91]). Condition G 

corresponds to the rectangular block of Condition A, with gaps introduced midway along the 

lengths of the lines. If lookup depends on the presence of local features alone, search rates 

should be similar to those for Condition A. However, search slows down dramatically for this 

condition (52 ms/item for target present; 80 ms/item for target absent). A similar situation 

arises in Condition H, where the junctions themselves have been removed, leaving only a 

set of isolated lines in place. Again, search slows down considerably (63 ms/item for target 

present; 101 ms/item for target absent). These results show that junctions are necessary for 

three-dimensional orientation to be recovered, but that they are not sufficient. 

Although difficult to account for by a process based on the lookup of complete objects, 

these results are readily explained by the rapid-recovery process developed here. The inter

pretation of the drawing in Condition G is shown in figure 6.15. The introduction of the gaps 

results in two major differences from the estimates for Condition A: (i) instead of a single 

object, the drawing gives rise to a number of smaller parts scattered about the image, and 

(ii) the isolation of the L-junction prevents them from receiving any kind of slant estimate. 

Two sources of slowdown therefore emerge: not only are there a larger number of items to be 

considered, but the recovery ratio itself has a low value (p = 1.1) due to the uninterpreted 

L-junctions.2 

An even simpler explanation can be given for the results of Condition H. Here, the absence 

of junctions prevents any slant estimate from being assigned to the lines. As such, they are 

left as sets of simple two-dimensional objects, which require higher-level processing to be 

grouped into assemblies corresponding to three-dimensional objects. 

2 A scatter in slant estimates would also result if lines in the drawings are sufficiently small that accurate 
orientation measurements cannot be mad!,!, This scatter could only reduce search rates further. 
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Figure 6.15: Slant estimates for Condition G. Slant angle (in degrees) obtained by multiplying 
slant magnitude number by 20. 
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Chapter 7 

Summary and Conclusions 

A computational theory is developed to explain the rapid interpretation of line drawings at 

early levels of human vision. This is done by first extending the framework of Marr [Mar82) 

to allow processes to be analyzed in terms of limits on their computational resources. The 

problem of rapid line interpretation is then examined along two dimensions: (i) reducing the 

total amount of information to be transmitted, and (ii) making effective use of the information 

that is processed. The first of these is addressed by developing constraints on the structure 

of the recovered object that allow it to interpreted in sublinear time. The second is handled 

by constraints on the dynamic operation of the recovery process so that it considers the most 

likely interpretations first. It is shown that the resulting process can be implemented on a 

mesh of simple processing elements, and that it can recover a considerable amount of three

dimensional structure in very little time. It also is shown that such a process can explain the 

ability of human vision to recover three-dimensional orientation at preattentive levels. 

These results are relevant to several areas of study. First, the extension of Marr's frame

work developed in section 2.4 provides a way to discuss the various factors involved when a 

process is to be explained in term of limited computational resources. This extension has ele

ments contained in previous attempts to incorporate resource limitations ( e.g., [FB82, Tso87]) 

into a computational framework, but it also puts forward several new distinctions ( e.g., exter

nal vs. internal constraints, constraint vs. limitation), and treats these in a more systematic 

way. Although still in rudimentary form, this framework can help guide the development of 

computational theories for other resource-limited processes. 

Another, more concrete framework is the taxonomy of image mappings proposed in sec

tion 2.1.1. Here, mappings are grouped on the basis of information flow across the image, 
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which in turn is related to lower bounds on their computational complexity. The structure of 

this framework remains conjectural at the moment. If proven, these results would be inter

esting extensions of the work of Minsky and Papert [MP69) on the abilities of simple parallel 

architectures to carry out various kinds of operations on images. 

The developments in chapter 3 provide several interesting results concerning the complex

ity of collapsed constraint satisfaction problems. These results support earuer observations 

( e.g., [Mac74, Mal87]) that such systems can often be solved quite easily. They also show that 

careful selection and coordination of such "collapsed" subsystems can lead to approximations 

that are not only soluble in sublinear time, but that also retain much of the information in the 

original set of constraints. It would be interesting to see whether the approach developed here 

( viz., separation into weakly interacting subsets of binary and bijective constraints) could be 

usefully applied in other domains. 

The complementary subsystems developed in chapter 4 provide an interesting way to 

handle local inconsistencies and ambiguities. In particular, their incorporation into a pair 

of liberal and conservative interpretation schemes suggests a general way to handle interpre

tation problems that require inconsistency and ambiguity to be explicitly represented and 

treated in a systematic fashion. 

Finally, the results of chapters 5-6 provide support for the view of early vision sketched 

in section 2.3.2 - that the "horizontal" modules formed by different levels of processing 

can be complemented by "vertical" columns capable of providing interpretations that are 

locally consistent. This has implications for the study of both machine and biological vision 

systems. The algorithms developed in chapter 5 show that this style of processing can be 

easily incorporated into a machine vision system, allowing it to obtain rapid estimates of 

scene-based properties at all points in the image. It is seen from the results of section 6.1 

that a considerable amount of scene structure can often be recovered this way. Consequently, 

a rapid recovery process can greatly facilitate the overall operation of a machine vision system. 

The results of section 6.2 hold a similar implication for biological vision systems - rapid 

recovery at early levels can be used to help quickly construct higher-level descriptions of the 

world. Furthermore, given that line interpretation is relatively difficult at early levels ( cf. 

section 1.1 ), the results of chapter 6 make it plausible that other kinds of rapid recovery 

processes may also exist at these levels. 
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Open Questions and Future Directions 

Many of the results concerning the actual performance of the rapid recovery process are 

based on time and space parameters assumed to be representative of early visual processing. 

Although suitable as a first approximation, the selection of these values is nevertheless some

what arbitrary. It would therefore be useful to carry out a set of psychophysical experiments 

to examine the time course of this process in greater detail, and to see if these values truly 

are representative. Among other things, such experiments might be able to confirm or refute 

the theory in regards to the order in which various properties are actually recovered. 

A related set of issues applies to the recovery ratio of section 6.2, used to relate recovered 

structure to search rate. This quantity is sufficient for present purposes, but is only a rough 

indicator of search difficulty, and ideally would be replaced by a more reliable measure. The 

general idea that a signal-to-noise ratio largely governs search speed is widely accepted ( e.g., 

[TG88, DH89]), but a more precise measure is not currently known. As such, this problem 

is not limited to explaining the results of search for line drawings. But as data accumulates 

from more search experiments, it might at least be possible to refine the recovery ratio to 

take into account such possibilities as several canonical slant values, and different weights for 

different slant magnitudes. 

A more general set of concerns involves the way in which rapid recovery is related to 

object recognition. One of the main roles assumed for rapid recovery is to provide early 

estimates of scene-based properties that facilitate later processes, including those involved 

with object recognition ( section 2.3.2). It is entirely possible, however, that object recognition 

proceeds by a lookup mechanism that uses simple image properties to retrieve a complete 

globally-consistent model of the object ( e.g., [PE90]). If so, rapid recovery at early levels 

could be accounted for entirely in this way. The results of section 6.2, however, show that 

recovery is destroyed by nonrectangular corners and by the introduction of gaps into the 

drawings, something rather difficult to account for in terms of this mechanism. Furthermore, 

a theoretical objection can also be raised against the indiscriminate use of lookup tables, 

since an enormous amount of memory would be required to store all possible views of each 

object at all possible angles (see section 2.3). 

Lookup for a limited number of objects, however, is entirely possible. Indeed, the process 

developed here can itself be viewed as using a simple form of lookup ( cf section 5.1.3), the 

initial interpretations based on a small number of "local" models invoked by the junctions 
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and the resulting interpretations then weeded out by in situ constraints. Since even the 

consistency of global models with each other must also be established in some way, the 

issue is therefore one of determining the appropriate granularity of the models involved. An 

interesting direction for future research is to ascertain the various levels of granularity that 

might be used, and to determine how models of different granularity might interact. 

In any event, it has been shown here that smaller-grained "local" models are sufficient to 

allow a substantial amount of three-dimensional structure to be recovered in very little time. 

It has also been shown that the properties recovered in this way can be used to explain why 

particular kinds of line drawing are or are not interpreted at early levels of human vision. 

As such, the central point of this work has been established - substantial amounts of scene 

structure can be recovered in very little time by splitting a process into quasi-independent 

streams that are each concerned with a single aspect of scene structure. This principle is, of 

course, not limited to rapid line interpretation, and it will be interesting to see if it can be 

applied to other forms of rapid perception and rapid cognition. 
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