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Abstract 

This paper provides a general purpose search-based technique for 
computing posterior probabilities in arbitrary discrete Bayesian Net­
works. This is an "anytime" algorithm, that at any stage can esti­
mate prior and posterior probabilities with a known error bound. It 
is shown how well it works for systems that have normality conditions 
that dominate the probabilities, as is the case in many diagnostic sit­
uations where we are diagnosing systems that work most of the time, 
and for commonsense reasoning tasks where normality assumptions 
(allegedly) dominate. We give a characterisation of those cases where 
it works well, and discuss how well it ca.n he expected to work on 
average. Finally we give a discussion on a range of implementations, 
an.d discuss why some promising approaches do not work as well as 
may he expected. 
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1 Introduction 

This paper provides a general purpose search-based 'technique for computing 
posterior probabilities in arbitrary discrete1 Bayesian networks. 

Implementations of Bayesian networks have been placed into three classes 
[Pearl, 1988; Henrion, 1990): 

1. Exact methods that exploit the structure of the network to allow effi­
cient propagation of evidence [Pearl, 1988; Lauritzen and Spiegelhalter, 
1988; Jensen et al., 1990]. 

2. Stochastic simulation methods that give estimates of probabilities by 
generating samples of instantiations of the network, using for example 
a Monte Carlo technique [Henrion, 1990]. 

3. Search-based approximation techniques that search through a space of 
possible values to estimate probabilities. 

At one level, the method in this paper falls into the exact class; if it is 
allowed to run to completion, it will have computed the exact conditional 
probability in a Bayesian network. It, however has the extra feature that it 
can be stopped before completion to give an answer, with a known error. Un­
der certain probabilistic assumptions (Section 6) it is shown that convergence 
to a. small error is quick. 

While the efficient exact methods exploit aspects of the network structure, 
we instead exploit extreme probabilities to gain efficiency. The method in 
the paper uses no information on the structure of the network, but rather 
has a niche for classes of problems where there are "normality" 2 conditions 
that dominate the probability tables (see Section 6). 

There are a number of advances over previous search methods for Bayesian 
networks [Shimony and Charniak, 1990; Henrion, 1991]. The main advances 
over [Shimony and Charniak, 1990] are not necessarily in the algorithm itself 

1i.e. all of the variables have a discrete set of possible values. We do not consider cases 
where there are continuous variables. 

2This should not be confused with "normal" as used for Gaussian distributions. We 
consider systems that have normal operating conditions and only rarely deviate from this 
normality {i.e., we are assuming abnormality [McCarthy, 1986) is rare). As we are only 
considering discrete varjables, there should be no confusion. 
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(but see Section 8), but in what we are doing with the algorithm ( comput­
ing prior and posterior probabilitiesj rather than just enumerating composite 
beliefs), the error estimates we obtain and in the average case analysis of the 
algorithm. This paper should be seen as a dual to the TOP-N algorithm 
of Henrion [1991]. We have a different niche. We take no account of the 
noisy-OR distribution that Henrion concentrates on. 

Unlike [Shimony and_ Charniak, 1990) and [Poole, 1991], the algorithm 
in this paper directly uses the Bayesian network representation rather than 
transforming it into another representation. 

We have actually experimented with a number of algorithms. The one 
presented here works quite well and is simple to describe and analyse. We 
were surprised by some of the results we obtained. For example, the ATMS­
based implementation and the Prolog-based implementation turn out to not 
work very well at all. I explain why in Section 8. 

2 Background 

2.1 Probability 

In this section we give a semantic view of probability theory3 and describe 
the general idea behind the search method. In some sense the idea of this 
method has nothing to do with Bayesian networks - we just have to commit 
to some independence assumptions to make the algorithm more concrete. 

We assume we have a set of random variables (written in upper case). 
Each random variable has an associated set of values. vals(X) is the set 
of all possible values of variable X. Values are written in lower case. Both 
random variables and values will be primitive, not defined in terms of other 
concepts. An atomic proposition is an assignment of a value to a random 
variable; variable X having value c is written as X = c. Each assignment of 
a value to every random variable is associated with a possible world. Let 
n be the set of all possible worlds. Associated with a possible world w is a 

3This could have also been presented as joint distributions, with probabilistic assign­
ments to the possible worlds corresponding to joint distributions. If that view suits you, 
then please read possible worlds as el~mentary events in a joint distribution [Pearl, 1988, 
p. 33]. 



Search for Bayesian networks 

measure µ(w), with the constraint that \:/w, 0 :5 µ(w) :5 1 and 

1 = L µ(w). 
wen 
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We write w F X = c (read "X has value c in world w") if variable X is 
assigned value c in world w. A proposition is a logical formula made up of 
atomic propositions and the usual logical connectives. We define the truth 
of propositions in a world using the normal truth tables (e.g., w F a I\ /3 if 
and only if w Fa and w I= /3). 

Probability is a function from propositions to (0, 1], defined by 

P(a) = L µ(w). 
wEO:wl=o 

We can define the conditional probability by 

P( 1/3) = P(a I\ /3) 
a P(/3) 

If /3 is a conjunction of observations, then P( al/3) is the posterior proba­
bility of a. P( a) is the prior probability of formula a. 

2.2 Searching possible worlds 

For a finite number of variables with a finite number of values, we can com­
pute the probabilities directly, by enumerating the possible worlds. This is 
however computationally expensive as there are exponentially many of these 
( the product of the sizes of the domains of the variables). 

The idea behind the search method presented in this paper can be ob­
tained by considering the questions: 

• Can we estimate the probabilities by only enumerating a few of the 
possible worlds? 

• How can we enumerate just a few of the most probable possible worlds? 

• Can we estimate the error in our estimates? 

• For what cases does the error get small quickly? 

• How fast does it converge to a small error? 

This paper sets out to answer these questions, for the case where the distri­
bution is given in terms of Bayesian networks. 
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2.3 Bayesian Networks 

A Bayesian network [Pearl, 1988] is a graphical representation of (in)dependence 
amongst random variables. A Bayesian network is a directed acyclic graph 
where the nodes represent random variables. If there is an arc from vari­
able B to variable A, B is said to be a parent of A. The independence 
assumption of a Bayesian network says that each variable is independent of 
its non-descendents given its parents. 

Suppose we have a Bayesian network with random variables X1 , ... , Xn. 
The parents of X, are written as Ilxi = (X,1 , • • ·, X,,.i ). Suppose vals(Xi) 
is the set of possible values of random variable X, . 

Associated with the Bayesian network are conditional probability tables 
which gives the marginal probabilities of the values of X, depending on the 
values of its parents Ilxi. This consists of, for each Vj E vals( Xi), probabili­
ties of the form 

written as 
P(X, = v,IIIxi = 11Ilx.) 

where 11IIxi = ( v,1 , • • • , Vii.;) 

For any probability distribution, we can compute a joint distribution by 

n 

P(X1, .. ·, Xn) = II P(X,IIIx;). 
i=l 

This is often given as the formal definition of a Bayesian network. 
This is shorthand for the propositions that the variables have particular 

values, that is 

n 

= II P(Xi = v,IIIxi = 11 Ilx;) 
i=l 

An assignment of values to all the variables corresponds with a possible 
world. For the rest of this paper we will equate a possible world with an 
assignment of values to all of the variables, and use the two interchangeably 
(e.g., in using the complete description on the left hand side of the 'p='). 
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2.4 Ordering the variables 

Suppose we have a Bayesian network with random variables X 1 , •.• ,Xn, As­
sume that the index respects the ordering of the network so that the indices 
form a total ordering with the parents of a node have a lower index than the 
node. This can always be done as the nodes in a Bayesian network form a 
partial ordering. If the parents of Xi are Ilx; = ( Xi1 , ···,Xi";), the total 
ordering preserves i; < i. 

Given this ordering, we can use the multiplication rule for probabilities: 

P(X1, · • · ,Xn) = P(XnlXn-1, ••·,Xi) 
xP(Xn-1 IXn-2 • '', X1) 

The Bayesian network independence assumption says that 

(this relies on the ordering we assumed for the variables). 
The reason that we are interested in this ordering is that we can determine 

the probability of any conjunction of variable given just their predecessors in 
the total ordering. 

3 Enumerating possible worlds in order 

3.1 Search Tree 

We are now in a position to determine a search tree for Bayesian networks4 • 

Definition 3.1 A partial description is a tuples of values (v1 , • • •, v;) 
where Vi is an element of the domain of variable Xi. 

The nodes in the tree are labelled with partial descriptions as follows: 

4This search tree will correspond to the semantic trees used in theorem proving [Chang 
and Lee, 1973, Section 4.4), but with random variables instead of complementary literals. 
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• The root of the tree is the empty tuple (). 

• The children of node labelled with (v1 , • · ·, v;) are the nodes labelled 
with (v1 , • • •, v;, v) for each v E vals(X;+i)- In other words the children 
of a node correspond to the possible values of the next variable in the 
total ordering. 

• The leaves of the tree are tuples of the form (v1, • · ·, vn), 

There is a one to one correspondence between leaves of the tree and 
possible worlds (or complete assignments to the variables), with the tuple 
(v1, · · ·, vn) corresponding to the complete variable assignment 

We associate a probability with each node in the tree. The probability 
of the node labelled with (v1 , • • ·, v;) is the probability of the corresponding 
proposition which is 

; 
P(X1 = v1 A··· AX; = v;) = IT P(Xi = vilIIx; = 11Ilx;) 

i=l 

This is well defined as all of the ancestors of every node have a value in the 
partial description, by the ordering of the variables. 

The following lemma can be trivially proved, and is the basis for the 
search algorithm. 

Lemma 3.2 The probability of a node is equal to the sum of the probabilities 
of the leaves that are descendents of the node. 

This lemma lets us bound the probabilities of possible worlds by only 
generating a few of the possible worlds and placing bounds on the sizes of 
the possible worlds we have not generated. 

3.2 Searching the Search Tree 

To implement the computation of probabilities, we carry out a search on the 
search tree, and generate some of the most likely possible worlds. There are 
many different search methods that can be used [Pearl, 1984). 
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Q:={{)}; 
W:={}; 
While Q =/: {} do 

choose and remove (v1, · · ·, v;) from Q; 
if j = n 

then W := WU { (v1 , • • ·, v;)} 
else Q := Q U {(vi,••·, v;, v) : v E vals(X;+i)} 

Figure 1: Basic search algorithm 
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Note that each node can only be generated once. There is no need to 
check for multiple paths or loops in the search. This simplifies the search, in 
that we do not need to keep track of a CLOSED list or check whether nodes 
are already on the OPEN list (Qin Figure 1) [Pearl, 1984]. 

Figure 1 gives the generic search algorithms that can be varied by chang­
ing which element is chosen from the queue. The idea of the algorithm is 
that there is a priority queue Q of nodes. We remove one ( e.g., the most 
likely) node at any time, either it is a total description (i.e., where j = n) in 
which case it is added to W, the set of generated worlds, or else its chilqren 
are added to the queue. 

No matter which element is chosen from the queue, this algorithm halts 
and when it halts Wis the set of all tuples corresponding to possible worlds. 

We can carry out various search strategies, to enumerate the most likely 
possible worlds. For example, we can carry out a multiplicative version5 of 
A• search [Pearl, 1984] by choosing the node m from the queue with the 
highest value of f(m) = g(m) x h(m). Here g(m) is the probability of the 
corresponding proposition: 

g((v1,···,v;)) - P(X1 =v1/\···I\X; =v;) 
j 

- IT P(Xi = vilIIxi = 11IIxJ 
i=l 

5This is an instance of z• where, instead of adding the costs and choosing the minimum 
we multiply and choose the maximum. This can be transformed into a more traditional 
A• algorithm by taking the negative of the logarithms of the probabilities. We do not do 
this explicitly as we want the prooabilities to add after the search. 
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- P(Xj = vilIIx, = "IIx,) 

xg( (v1, · · ·, Vj-1}) 

One version of the heuristic function h( ( v1, · · · , Vj}) is the product of the 
maximum probabilities that can be obtained by variables Xj+I • • · Xn (for 
any values of the predecessors of these variables). These can be computed 
by a linear scan (from Xn to X1 ) keeping a table of the maximum products. 

For most of this paper the heuristic function is not used (i.e. h( m) = 1 for 
all m). Section 7.1, however, discusses how conflicts can be used to generate 
a heuristic function. 

Another alternative is an iterative-deepening A• [Korf, 1985]. As we 
are not concerned with finding the most likely possible world, but a set of 
most likely worlds, we can carry out depth-bounded depth-first searches (not 
generating nodes whose probability is below a threshold), without worrying 
too much about decreasing the threshold to the maximum value it could 
obtain. Appendix B gives an implementation of the depth-bounded depth­
first search. 

4 Estimating the Probabilities 

If we let the above algorithm run to completion we have an exponential 
algorithm for enumerating the possible worlds that can be used for computing 
the prior probability of any proposition or conjunction of propositions. This 
is not, however, the point of this algorithm. The idea is that we want to stop 
the algorithm part way through, and determine any probability we want to 
compute. 

We use W, at the start of an iteration of the while loop, as an approxi­
mation to the set of all possible worlds. 

4.1 Prior Probabilities 

Suppose we want to compute P(g). At any stage, the possible worlds can be 
divided into those that are in W and those that will be generated from Q. 

P(g) = I: P(w) 
wEOAwl=o 



Search for Bayesian networks 10 

- C.EF/(w)) 

+ C to be gener~d from Q,wt=o P( w)) 
We can easily compute the first of these sums, and can put both an upper 

and lower bound on the second (using Lemma 3.2). This means that we can 
put an bound on the range of probabilities of an goal based on finding just 
some of the explanations of the goal. Let 

Pfv = , ~ P(w) 
wEWAwl=g 

Pq = ~P(t) 
tEQ 

We then have 

Lemma 4.1 

Pfv ~ P(g) ~ Pfv + Pq 

As the computation progresses, the probability mass in the queue Pq 
approaches ~ero and we get a better refinements on the value of P(g). Note 
that Pq is monotonically non-increasing through the loop (i.e Pq stays the 
same or gets smaller through the loop). This thus forms the basis of an 
"anytime" algorithm for Bayesian networks. 

4.2 Posterior Probabilities 

The above analysis was for finding the prior probability of any proposition. 
If we want to compute the posterior probability of some g given some obser­
vations obs, we can use the definition of conditional probability, and use 

P( I b ) 
= P(g /\ obs) 

9 0 8 
P(obs) 

Thus given our estimates of P(g /\ obs) and P(obs), (namely Pfv"°bs and 
P#8

) we can consider what happens to elements of the queue: 
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• They can go towards implying obs I\ -.g. If all of them go towards 
implying this, the resultant conditional probability is 

P,g/\oba 
w 

Pf;11 + Pq 

• They can go towards implying obs/\g. If all of them go towards implying 
this, the resultant conditional probability is 

pf:obs + Pq 
Pf;11 + Pq 

• They can go towards implying -.obs. If all of them go towards implying 
this, the resultant conditional probability is 

P,g/\oba 
w 
Pf;s 

The correct answer is a combination of the three cases. As we can easily 
prove the inequality, 
Lemma 4.2 

RwgAob11 po/\ob11 pg/\obts + R 
---- < w < w Q 
Pf;11 + Pq - Pf;11 

- Pf; 11 + PQ 

It can be proved that P(globs) has the following bound: 
Theorem 4.3 

P,g/\oba pol\obs + P. 
w < P(globs) < w Q 

Pf;11 + PQ - - Pfj11 + Pq 

If we choose the midpoint as an estimate, the maximum error is 

! (pf:ob11 + Pq _ pil\ob11 ) 
2 Pfj11 + PQ Pf;11 + PQ 

PQ 
- 2(Pfj11 + PQ) 

What is interesting about this is that the error is independent of g. Thus 
when we are generating possible worlds for some observations, and want to 
have posterior estimates within some error, we can generate the required 
possible worlds independently of the proposition that we want to compute 
the probability of. 
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i1 -----.--", "Ill:--- x2 

i2 ~-----'IQ>-

Figure 2: 1 bit adder 

5 Diagnosis Example 

The preceding section gave an implementation for arbitrary Bayesian net­
works. In this section we describe how this idea can be applied to diagno­
sis problems (as in [de Kleer, 1991)). The translation of the circuit into a 
Bayesian network will follow that of [Pearl, 1988, Section 5.4]. 

We will do this for a one-bit adder, that can be cascaded to form a 
multiple-bit adder6 

5.1 Representation 

Figure 2 shows a one bit adder. Figure 3 shows the corresponding Bayesian 
network. 

In this Bayesian network the random variable out-a2 is a binary random 
variable that has two values on meaning that the output of gate a2 is on, and 
off meaning the output of the gate a2 is off. The random variable a2ok has 
4 values: ok meaning that the gate a2 is working correctly, .stuckl meaning 

6There is actually an efficient algorithm for such an example using a clique hypertree 
representation [Lauritzen and SpiegelhalLer, 1988; Jensen et al., 1990]. This exploits the 
local nature of the propagation, which we do not exploit. These would not work so well 
when the structure cannot be exploited as well as for the cascaded adders, for example, 
if we add to the circuit another circuit to find the parity of the resulting bits. We chose 
this example a.s it is simple to extend to large systems and also because it was used in [de 
Kleer, 1991). 
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Figure 3: Bayesian network for a 1 bit adder 
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a2ok i3 out-xl out-a2 
on off 

ok on on 1 0 
ok on off 0 1 
ok off on 0 1 
ok off off 0 1 
stuckl - - 1 0 
stuck0 - - 0 1 
unknown - - 0.5 0.5 

Figure 4: Conditional probability table for variable out-a2. 

a2ok 
ok stuckl stuck0 unknown 
0.99999 0.0000049 0.0000049 0.0000002 

Figure 5: Conditional probability table for variable out-a2. 

the gate a2 is broken, and always has output on, stuck0 meaning the gate a2 
is broken, and always has output off and unknown meaning that it is broken 
in some different way. 

The value of out-a2 depends on the values of three other variables, i3, 
out-xl, and a2ok. The values for the variable out-a2 follow the table in 
Figure 4. The tables for the other outputs of gates is similar. 

The value of a2ok does not depend on any other variables. The values for 
the variable follow the table in Figure 57 • The tables for the status of other 
gates is similar. 

These one-bit adders can be cascaded for form multiple bit adders, by 
connecting the output of gate ol in one adder to input i3 of the following 
adder. In the Bayesian network, this is done by having multiple instances 

7The numbers are purely made up. It may seem as though these probabilities are very 
extreme, but a 1000 bit adder (with 5000 components), is only 95% reliable, if all of the 
gates are as reliable as that given in this table. 
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out-olk-1 i3k 
on off 

on 1 0 
off 0 1 

Figure 6: Conditional probability table for input 3 of adder k. 

of the network for the one-bit adder with the value of i3 depending on the 
variable out-ol for the previous instance of the adder. The table for the 
probabilities is given in figure 6 

5.2 Computation 

When we apply the algorithm of Figure 1 to our cascaded adder example, 
first the world with all gates being ok is generated followed by the worlds with 
single (stuck-at) faults. Most of these can be pruned quickly (see Section 7). 
Then the unknown faults and then the double stuck-at faults, then other 
mixes of faults in order of likelihood are generated. The probability in the 
queue converges very quickly. Each of the elements of the queue can be 
characterized by what errors are in the partial description. We typically only 
generate the partial descriptions with only a few of the errors. 

This is essentially the candidate generator phase of [de Kleer, 1991). From 
this candidate generation, we can compute all of the probabilities that we 
need to. Note that we do not need to find conflicts (but see Section 7.1). 
There is no need for the ATMS part of [de Kleer, 1991]. 

6 Complexity 

The problem of finding the posterior probability of a proposition in a Bayesian 
network is NP hard [Cooper, 1990]. Thus we should not expect that our 
algorithms will be good in the worst case. Our algorithm, when run to com­
pletion, is exponential in computing the exact prior and posterior probability 
of a hypothesis. 

Because of the the "anytime" nature of our algorithm, which trades search 
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time for accuracy, we cannot consider run time independently of error. It is 
interesting to estimate (or put bounds on) how long it takes to get within 
some average error, or how accurate we can expect (or guarantee as as asymp­
totic behaviour) to be within a certain run time. 

Because we have probabilities it is possible to carry out an average case 
complexity analysis of our algorithm. 

If we make no assumptions about the probability distributions, the av­
erage case of finding the most likely explanation or prior probability within 
some error f is exponential in the size n of the Bayesian network. This can 
be seen by noticing that the size of complete descriptions are linear inn and 
so the probability of explanations is exponentially small in n. This means 
that we need to consider exponentially many explanations to cover any fixed 
proportion of the probability mass. 

This is not always a reasonable distribution assumption, for example, 
when using this for diagnosis of a system that basically works we would like to 
assume that the underlying distribution is such that there is one assignment 
of values ( the "normal values") that dominates the probability mass. 

For our analysis we assume that we have extreme probabilities for each 
conditional probability given. For each value of the parents of variable Xi, 
we assume that one of the values for Xi is close to one, and the other values 
are thus close to zero. 

When we are computing the probability of a node in the search tree, 

; 
P(X1 = v1 A··· AX;= v;) = II P(Xi = villlxi = 11Ilx;) 

i=l 

we call those elements P(X, = villlxi = 11Ilxi) that have probability close to 
zero "faults". The others we call normality conditions. 

Definition 6.1 If we have extreme probabilities (i.e., all of the conditional 
probabilities are close to one or zero), then the faults of node (v1 , • • ·, vk) are 
those elements v, such that P(X, = v, IITx; = 11Ilx;) is close to zero. 

What is a fault is thus context dependent and depends on the values of the 
parent variables. The term "fault" is derived from its use in diagnosis, where 
deviation from normality is a fault. The non-monotonic reasoning community 
has called such things abnormalities [McCarthy, 1986]. The algorithm given 
here can be seen as considering the most normal possible worlds. 
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Each element of the queue consists of a set of normality conditions and a 
set of faults. For each set of faults there can be at most one element of Q or 
W whose faults are exactly that set. 

For our complexity analysis, let p (p ~ l) be the probability of the least 
likely normality condition. We can interpret our analysis as being for the 
case where all of the normality conditions have value p or as a bound for the 
cases where all normality conditions are greater than p. 

Let / = 1 - p. f is a bound on the probability of the faults. 
Let b be the average number of fault assumptions for each hypothesis 

(i.e., b + l is the number of values for each variable). We assume that bis 
fixed, and is not a function of the number of variables in the network (n). 

6 .1 Error convergence 

Suppose we have n variables in our Bayesian network. Consider the case 
where we are about to choose the first k-fault partial description from the 
queue. We assume for this analysis that k ~ n. 

At this time there can be no ( k + l )-fault node on the queue ( as we 
can only generate (k + 1)-fault nodes from k-fault nodes and we have not 

yet expanded out first k-fault node), so there are at most ( b; ) possible 

combinations of faults on the priority queue ( choosing k faults from the set 
of bn fault assumptions). Each explanation on the queue has a probability 
less than J" (not because they all have k faults, but because something with 
probability less than J" has been chosen from the priority queue and it was 
the element with highest probability). Thus the probability mass in the 

queue can be bounded by ( 7' ) J". So 

Pq < ( 7) J" 

< (bn )" J" 
k! 

bk(nf)" 

kl 

Thus, we have convergence bnf < l. 
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In order to interpret the value of nf, we use the following lemma: 

Lemma 6.2 if (1 - JY" = l - 6, for small 6 then nf ~ 6. 

See Appendix A for proof of this lemma. 
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(1- JY" = pn is the probability that there are no faults. 6 is then the prior 
probability of some fault in the system. This is low when we are diagnosing 
a system which works most of the time, and has rare errors. 

6.2 How fast is convergence? 

To see how fast we reach convergence, consider how long it takes to reach 
the stage where we are taking the first k-fault hypothesis off the queue. We 
assume for this analysis that k <: n. 

There are at most ( n + l )k-t ways to generate less than k faults. For each 
of these combinations of faults, we go through the while-loop of figure 1, at 
most n times (for the other normality assumptions). The only thing in the 
while loop that depends on the size of n, is removing adding and removing 
elements from the priority queue, this can be done in log IQ I time. 

log IQ I ::;; log ( ( b;r) = k(log n + log b) - log k ! = O(log n) 

(for fixed band k). Thus we can reach this stage in O(nklogn) time. 
We can combine the above results to give us: 

Theorem 6.3 For a fixed k, to attain an accuracy of (b:r in the estimate 
of prior probabilities, we require O(nk logn) time. 

For example, if b = l (there is only one fault mode) we can attain an 
accuracy of 6

; in O(n2 logn) time. We can attain an accuracy of ~ in 
0( n3 log n) time. 

Theorem 6.4 If 6 is small, we can obtain an accuracy of€ in time 

( ~ ) 0 nlogU logn 

See Appendix A for the proof. 
Thus for fixed t, band 6, the solution time is polynomial inn. 
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6.3 Posterior Probabilities 

When estimating posterior probabilities, the relative error depends on the 
relative sizes of PQ and Pft". When Pft 11 ~ PQ the estimate is good. 

The error in posterior probability is the difference between the upper and 
lower estimates for the posterior probability for any g given obs. This is 

~ (Pw"°b' + PQ - Pw"°b/1 ) 
2 Pft8 + PQ PW" + PQ 

PQ 

This value is independent of g, and only depends on the observations. 
To make the posterior error less than t, we require 

this occurs when 

Pq < 2t 
PX 11 +PQ 

2tPft" 
PQ < 1- t 

which can be ensured if we make sure that 

PQ < 2tPfJ" 

Thus we can use the analysis for the prior probability, but multiplying the 
error·bound by a factor that is an estimate of P(obs). As it is unlikely that the 
observations have a low probability, it is unlikely to have a situation where 
the error term required is dominated by the probability of the observation. 

The following gives a PAC {probably approximately correct) characteri­
zation of the complexity8

• 

Theorem 6.5 In the space of all systems, to compute the posterior prob­
ability of any proposition (of bounded size) given observation obs, we can 
guarantee an error of less than t ( t < ½), at least 1 - tp of the cases in time 

O ( nl::i.1 log n) 
8This has the extra property that we know when we are in a case for which we cannot 

guarantee the error. 
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See Appendix A for a proof of this theorem. 
Note that in this theorem we are considering "the space of all systems". 

This means that we consider a random artifact. Most of these have no faults; 
and presumably would not be the subject of diagnosis. Thus the space of 
all systems is probably not the space of all systems that we are likely to 
encounter. A more realistic space of systems by which to judge our average­
time behavious is the space of all broken systems, that is those that have at 
least one fault9 • We are thus excluding all but 6 of the systems. To exclude 
all but tp of the broken systems we have to exclude all but 6¢ of the total 
number of systems. We thus have the following corollary. 

Corollary 6.6 In the space of all broken systems (with at least one fault), 
to compute the posterior probability of any proposition (of bounded size) 
given observation obs, we can guarantee an error of less than f ( f < ½), at 
least 1 - tp of the cases in time 

0 nloilTlogn 
( 

logc6,J, ) 

7 Refinements 

There are a- number of refinements that can be carried out to the algorithm 
of Figure 1. Some of these are straightforward, and work well. The most 
straightforward refinements are: 

• We only need to consider the ancestors of the variables we are interested 
in. If we know our query and the conditioning variables, we don't need 
to enumerate the values of variables that are not ancestors of these 
variables. 

• If we are trying to determine the value of P(a), then we can stop enu­
merating the partial descriptions once it can be determined whether o 
is true in that partial description. In particular when conditioning on 
our observations we can prune any partial description that is inconsis­
tent with the observations. 

9It could also be argued that this is also inappropriate; we would rather consider the 
space of systems that exhibit faulty behaviour. This would be much harder to analyse 
here, as we have no notion of the observable variables developed in this paper. The space 
of broken devices seems like a reasonable approximation. 
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• We do not really require that we find the most likely possible worlds in 
order, as we are just summing over them anyway. One way to improve 
the algorithm is to carry out a depth-first depth-bounded search. We 
can guess the probability of the least likely possible world we will need 
to generate, use this as a threshold and carry out a depth-first search 
pruning any partial description with probability less that this threshold. 
If the answer is not accurate enough, we decrease the threshold and try 
again. This is reminiscent of iterative deepening A* [Korf, 1985), but 
we can decrease the bound in larger ratios as we do not have to find 
the most likely possible world. 

Appendix A gives an implementation in Prolog that incorporates the last 
two refinements. 

7.1 Conflicts 

The consistency-based diagnostic approaches have been based on the use of 
conflicts [de Kleer and Williams, 1987; Reiter, 1987]. We did not use conflicts 
in the algorithm given above. This turns out to be to the detriment of the 
algorithm. For example, in diagnosing a large adder, if the error is in the last 
bits of the adder, the above algorithm will generate k-fault nodes for previ­
ous components, even though there cannot beak-fault error involving only 
previous components. These earlier values cannot be consistently combined 
with normality assumptions on latter components, and so get pruned later 
in the search than they need be. 

Conflicts can be incorporated into the heuristic function (see Section 3.2). 
A conflict here is a set of normality conditions that cannot consistently co­
incide. Conflicts discovered in the search can be used to prune the search 
earlier than it could be pruned without the conflict. If we know that the 
most likely values of variables Xc1 • • • Xcn cannot co-occur, then the heuristic 
function for previous variables (in the total ordering; see Section 3.2) should 
incorporate the maximum value of these variables that can co-occur. I have 
not implemented this, but it should solve the problem that occurs in the 
algorithm when we have a conflict in latter variables in the total ordering. 
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8 Other Approaches Tried 

Some of the approaches that I thought would work well are not as good as 
I had anticipated. We tried an ATMS-inspired approach, and a top-down 
approach, which were less satisfactory than anticipated. 

8.1 ATMS-inspired Approach 

The approach based on the ATMS [de Kleer, 1986] has a partial description 
associated with each node (corresponding to an ATMS environment). The 
node-ancestor relationship corresponds to a rule that adds a justification 
( a variable having a value is justified by the ancestors having particular 
variables, and the conditional probabilities associated with that part of the 
conditional probability table). 

Instead of making label-updating demand driven (as in [de Kleer, 1986]), 
we make the label-updating in a branch and bound manner, choosing the 
justification with the highest probability at any time to forward chain on. 
This approach has been implemented, and while it works, there are a number 
of problems with it: 

We cannot estimate the probability of the queue from summing over the 
elements of the queue. The reason for this is that the partial descriptions 
in the labels are not disjoint. This occurs when there are multiple children 
for any node. It also occurs initially, when each of the topmost ancestors 
has a label that corresponds to a normality assumption. The sum of these 
values will typically be greater than one. While this could be solved by not 
counting the mass on the queue (e.g., by considering the mass of the possible 
worlds generated and those pruned by inconsistency), there is another, more 
serious, problem. 

The major problem is that the size of the queue grows larger than in the 
algorithm in Figure 1. Elements of the queue can have much lower probabil­
ity than those generated by the algorithm in Figure 1 at the corresponding 
stage, and there are many more elements in the queue. For example, if node 
X has parents Yi and ½, and we are forward chaining on k-fault environ­
ments. Then a k-fault environment supporting Yi and a k-fault environment 
supporting ½ will produce a (2k)-fault environment supporting X. The al­
gorithm in Figure 1, only ever produces (k + 1)-fault "environments" when 
considering k-faults. 

r 
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It seems as though the algorithm is fatally flawed because of the last 
point. It is unclear to me how to solve this problem. 

8.2 Prolog-inspired approach 

An alternate method is to do some goal-directed search, as in [Shimony and 
Charniak, 1990; Poole, 1992a]. Here we backward chain from the queries 
generating as subgoals the set of values that need to be assigned. These are 
goal-directed, and so can have the focusing advantage of this. They also do 
not suffer from the problem of having more that ( k + 1 )-fault complexes on 
the queue, when considering k-faults. 

They still have the problem of having the elements of the queue being 
able to sum to more than one. This does not seem to be a severe problem in 
practice, however. There is also a standard problem with backward chaining, 
and this is in remembering not to recompute what has been computed for 
some other subgoal. This is tricky ( combining the lemmatization with the 
branch and bound search), but it can be done. 

The main problem is having subgoals that have a number of possible 
normality conditions that are applicable. This can be most easily seen if we 
consider generating the 0-fault possible-world. The algorithm in Figure 1 
can solve this in linear time; just choosing the normality condition at each 
time. The backward chaining system cannot do this. The reason is that one 
value of a variable may be the normality condition for more than one state 
of the ancestors. We have to search this space. This is like finding a path 
from the root of a tree to a leaf; it is much more efficient searching from the 
leaf to the root, as there are no choices involved, rather than searching from 
the root to find the leaf. 

The backward chaining approach offers the advantage of being able to 
handle more expressive non-propositional languages [Poole, 1992b], for which 
the algorithm of Figure 1, is not really suited. 

9 Comparison with other systems 

The branch and bound search, this is very similar to the candidate enumer­
ation of de Kleer's focusing mechanism [de Kleer, 1991]. This similarity to a 
single step in de Kleer's efficient method indicates the potential of the search 
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method. He has also been considering circuits with thousands of components, 
which correspond to Bayesian networks with thousands of nodes. 

Shimony and Charniak [Shimony and Charniak, 1990] have an algorithm 
that is a backward chaining approach to finding the most likely possible 
world. The algorithm is not as simple as the one presented here, and has 
worse asymptotic behaviour (as it is a top-down approach - see Section 8.2). 

· It has not been used to find prior or posterior probabilities. 
Peng and Reggia [Peng and Reggia, 1990] and Henrion [Henrion, 1991] 

also consider an abductive definition of diagnosis and incorporate probabil­
ities, and best-first search. They however consider different classes of net­
works. They fill different niches to the algorithm presented in this paper. 

10 Conclusion 

This paper has considered a simple search strategy for computing prior and 
posterior probabilities in Bayesian networks. It is a general purpose algo­
rithm, that is always correct, and has a niche where it works very welL We 
have characterised this niche, and have given bounds on how badly it can be 
expected to perform. How common this niche is, is, of course, an open ques­
tion, but the work in diagnosis and nonmonotonic reasoning would suggest 
that reasoning about normality is a common task. 

The performance results of this algorithm are similar to that of [de Kleer, 
1991] (but it is hard to compare due to the different technologies used). Our 
Prolog implementation (Appendix A) can find the leading diagnoses of a 
1000-bit adder (5000 components, 13000 node Bayesian network), in about 
73 seconds running Sicstus Prolog on a Next. This is for a similar experiment 
to [de Kleer, 1991], where all of the inputs were off, and one output bit (in 
this example bit 5) was on and all of the others were off. These possible 
worlds can then be used to compute arbitrary posterior probabilities with an 
error of less than 9% (N.B. the circuit has approximately 5% failure rate). 
The experimental performance is that the time is linear with the size of the 
circuit (for a fixed bit that fails). The algorithm is n2 in the position of the 
error bit (see Section 7.1, for a description of why and how to fix it). 
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A Proofs 

Lemma 6.2 if (1 - J)n = 1 - 6, for small 6 then nf ~ 6. 

Proof: In particular we prove that nf ~ 6 as 6--+ 0. 

1- 6 - (1- ft 
_ ((1 _ J)o/)fn 

f --+ 0 as 6 --+ 0 (for fixed n ). We use the fact that 

1 1 
(1 - !)7 --+ - as f--+ 0 

e 

So we have, when 6 is very small 

taking logarithms of both sides, and using the Taylor expansion 
at h = 0, gives us 

-nf ~ log(l - 6) 
- 0-6 + c62 + ... 
~ -6 

From which we derive nf ~ 6. □ 

Theorem 6.4 If 6 is small, we can obtain an accuracy of f in time 

0 ( ni~~gbd log n) 
Proof: If we require an accuracy of f, we ensure (b!f' < f. This 
can be obtained if we ensure (M)k = f . Solving for k, we get 

klogM -

k -

log f 

log f 
logM 

This requires O(nk logn) time. Substituting the value fork, the 
theorem follows. D 

25 
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Theorem 6.5 In the space of all systems, to compute the posterior 
probability of any proposition (of bounded size) given observation obs, we 
can guarantee an error of less than f (f <½),at least 1 - 'I/; of the cases in 
time 

0 nlogb6 log n ( ~ ) 
Proof: We can assume that the P(obs) ~ 'I/;. This will be 
wrong less than 'I/; of the cases (by definition). If we make sure 
that Pq < t, then 

To achieve error t:, we make sure PQ < fVJ. Then, as t:'1/; < 2fPi}", 
we will have PQ < 2fPtj', which, as described above implies 
that the error will be less than f. Thus we have to ensure that 
Pq < min(t, €VJ)= ftp. 

By Theorem 6.4, this can be done in time 

□ 

B A Prolog Implementation 

This code implements a bottom-up depth-first depth-bounded search to find 
the most likely possible worlds that are consistent with the observations. Here 
we exploit the pattern-matching of Prolog, without utilizing the declarative 
nature or the search of the Language. All of the code here is deterministic; 
this program does not backtrack. This is done here by the use of the Prolog 
cut (!). N.B. we could also write a program that uses Prolog search (and 
no cuts) to do the depth-first search. This was not done as the following 
code is more efficient (by our tests), and can be more directly translated into 
committed-choice parallel logic programming languages or Lisp. 
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B.1 Network representation 

The network is described using the relations: 

27 

nextvar(ll, 12) means that variable 12 is the next variable after 11 in the 
total order of variables. The first (dummy) variable is init. 

vals(I, V) is true if Vis the list of values of variable I. 

parents(!, A, F) is true if F is the set of values of parents of variable I, 
given the list A of values of the predecessors of I in reverse order-(so 
the first element of A is the value of the variable before I). 

prob(E, F, P) is true if proposition E given parents F has probability P. 
That is if p(EIF) = P. A proposition E is written as an equality 
Variable= Value. 

inconsis_obs(E) is true if proposition E of the form Variable= Value is in­
consistent with the observations. 

miniscule(P) is true if Pis below the threshold for searching in the depth­
bounded search. 

B.2 Representing possible worlds 

A possible world is represented as pw(P, Vs) which represents the possible 
worid with values given by the list Vs and probability P. Vs is the list of 
the values of the variables in reverse order ( so the first element of the list is 
the value of the last variable in the total ordering). 

The found possible worlds that are consistent with the observations are 
represented as wf(I M, FM, F ND) where IM is the mass of the possible 
worlds pruned by inconsistency, FM is the sum of the probabilities of the 
possible worlds found ( these are all consistent with the observations) and 
F ND is a list of these worlds. 

B.3 Search Procedure 

The top level procedure is 

chain(!, Vis, VAs,PAs,DO,DI) 
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where 

J is the current variable; 

VI s is the list remaining values of J to test; 

V As is the list of the values of the ancestors of I (in reverse order, i.e., the 
first element of the list is the value of the immediate predecessor of J); 

PAs = P(VAs) ; 

DO is the worlds found previously in the search; 

Dl is the final worlds found. 

chain(_ , [] , _ , _ , D , D) . 
chain(I,[V1IVIs],VAs,PAs,DO,D1) ·­

parents(I,VAs,Parents), 
prob(I•V1,Parents,PV1), 
P1 is PAs*PVl, !, 
test(I,V1,P1,VIs,VAs,PAs,DO,D1). 

The procedure test is to test one of the values of the variable being tested, 
and then recurse to find the rest of the possible worlds. 

test(], VI, Pl, VI s, V As, P As, DO, DI) 

is true when 

J is the current variable; 

Vl is a possible value for variable J; 

Pl is the probability J having value V and all other variables having values 
given by V As; 

Vis is the list remaining values of J to test (after Vl); 

V As is the list of the values of the ancestors of I; 

PAs = P(VAs) ; 
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DO is the worlds found previously; 

Dl is the final worlds found. 

test(I,V1,P1,VIs,VAs,PAs,wf(IMO,FM,FND),D2) :-
inconsis_obs(I=V1), !, 
IM1 is IMO+ P1, 
chain(I,VIs,VAs,PAs,wf(IM1,FM,FND),D2). 

test(I,_,P1,VIs,VAs,PAs,DO,D1) ·­
miniscule(P1), !, 
chain(I,VIs,VAs,PAs,DO,D1). 

test(I,V1,P1,VIs,VAs,PAs,DO,D2) ·­
nextvar(I,I1), !, 
va.ls(I1,VI1), !, 
chain(I1,VI1,[V1IVAs],P1,DO,D1), !, 
chain(I,VIs,VAs,PAs,D1,D2). 

test(I,V1,P1,Vls,VAs,PAs,wf(IMO,FM,FND),D2) ·­
FM1 is FM+P1, ! , 
chain(I,VIs,VAs,PAs, 

wf(IMO,FM1,[pw(P1,[V1IVAs])IFND]),D2). 

B.4 Information Seeking 
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make_worlds(Wlds) searches and returns all the consistent worlds with prob­
ability above the threshold. 

make_worlds(Wlds) :-
nextvar(init,10), 
vals(IO,VIO), 
chain(IO,VI0,[],1,wf(O,O,[]),Wlds). 

B.5 Representation of a one thousand bit adder 

The following represents a 1000 bit cascaded ripple adder. See Section B.1 
for a description of the relations used. The input to the circuit is every bit is 
on. The observation is that every output bit; except bit 5, is on and output 
bit 5 is off. , 
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nextvar(init,i1(1)). 
nextvar(i1(N),i2(N)). 
nextvar(i2(N),i3(N)). 
nextvar(i3(N),x1ok(N)). 
nextvar(x1ok(N),x1(N)). 
nextvar(x1(N),x2ok(N)). 
nextvar(x2ok(N),x2(N)). 
nextvar(x2(N),a1ok(N)). 
nextvar(a1ok(N),a1(N)). 
nextvar(a1(N),a2ok(N)). 
nextvar(a2ok(N),a2(N)). 
nextvar(a2(N),o1ok(N)). 
nextvar(o1ok(N),o1(N)). 
nextvar(o1(N),i1(N1)) :-

N < 1000, 
N1 is N+1. 

vals(i1(_),[on,off]). 
vals(i2(_),[on,off]). 
vals(i3(_),[on,off]). 
vals(x1ok(_),[ok,stuck1,stuck0,ab]). 
vals(x1(_),[on,off]). 
vals(x2ok(_),[ok,stuck1,stuck0,ab]). 
vals(x2(_),[on,off]). 
vals(a1ok(_),[ok,stuck1,stuck0,ab]). 
vals(a1(_),[on,off]). 
vals(a2ok(_),[ok,stuck1,stuck0,ab]). 
vals(a2(_),[on,off]). 
vals(o1ok(_),[ok,stuck1,stuck0,ab]). 
vals(o1(_),[on,off]). 

parents(i1(~),_,[]) . 
parents(i2(_),_,[]). 
parents(i3(1),_,[]). 
parents (i3(_), L, _, Vo1 I_], [Vo1]). 
parents(x1ok(_),_,[]). 
parents(x1(_),[X1ok,_,Vi2,Vi1I_], 
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[X1ok,Vi2,Vi1]). 
parents(x2ok(_),_,[]). 
parents(x2(_).[X2ok,Vx1,_,Vi3I_]. 

[X2ok,Vx1,Vi3]). 
parents(a1ok(_),_,[]). 
parents(a1(_),[A1ok,_,_,_,_,_,Vi2,Vi1I_]. 

[A1ok, Vi2, Vi1]). 
parents(a2ok(_),_,[]). 
parents(a2(_),[A2ok,_,_,_,_,Vx1,_,Vi3I_J. 

[A2ok,Vx1,Vi3]). 
parents(o1ok(_),_,[]). 
parents(o1(_),[01ok,Va2,_,Va1I_]. 

[01ok,Va2,Va1]). 

prob(i1(_)•on,_,O). 
prob(i1(_)•off,_,1). 
prob(i2(_)•on,_,O). 
prob(i2(_)soff,_,1). 
prob(i3(1)•on,_,O). 
prob(i3(1)•off,_,1). 
prob(i3(_)•V,[V],1). 
prob(i3(_)•on,[off],O). 
prob(i3(_)•off,[on],O). 

prob(x1ok(_)•V,_,P) :-
prob_ok(V,P). 

prob_ok(ok,0.99999). 
prob_ok(stuck1,0.0000049). 
prob_ok(stuck0,0.0000049). 
prob_ok(ab,0.0000002). 

prob(x1(_)•V,Par,Prob) ·-
prob_xorgate(V,Par,Prob). 

prob(x2ok(_)=V,_,P) :­
prob:..ok(V,P). 

prob(x2(_)•V,Par,Prob) ·­
prob_xorgate(V,Par,Prob). 
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prob(a1ok(_)=V,_,P) :­
prob_ok(V,P). 

prob(a1(_)=V,Par,Prob) :­
prob_andgate(V,Par,Prob). 

prob(a2ok(_)•V,_,P) :­
prob_ok(V,P). 

prob(a2(_)=V,Par,Prob) ·­
prob_andgate(V,Par,Prob). 

prob(o1ok(_)•V,_,P) :­
prob_ok(V,P). 

prob(o1(_)=V,Par,Prob) :-
prob_orgate(V,Par,Prob). 

prob_xorgate(on,[ok,on,on],O). 
prob_xorgate(off,[ok,on,on],1). 
prob_xorgate(on,[ok,on,off],1). 
prob_xorgate(off,[ok,on,off],O). 
prob_xorgate(on,[ok,off,on],1). 
prob_xorgate(off,[ok,off,on],O). 
prob_xorgate(on,[ok,off,off],O). 
prob_xorgate(off,[ok,off,off],1). 
prob_xorgate(on,[stuck1l_],1). 
prob_xorgate(off,[stuck1l_],O). 
prob_xorgate(on,[stuckOl_],O). 
prob_xorgate(off,[stuckOl_],1). 
prob_xorgate(on,[abl_],0.5). 
prob_xorgate(off,[abl_],0.5). 

prob_andgate(on,[ok,on,on],1). 
prob_andgate(off,[ok,on,on],O). 
prob_andgate(on,[ok,on,off],O). 
prob_andgate(off,[ok,on,off],1). 
prob_andgate(on,[ok,off,_],O). 
prob_andgate(off,[ok,off,_],1). 
prob_andgate(on,[stuck1l_],1). 
prob_andgate(off,[stuck1l_],O). 
prob_andgate(on,[stuckOl_],O). 
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prob_andgate(off,[stuckOl_],1). 
prob_andgate(on,[abl_],0.5). 
prob_andgate(off,[abl_],0.5). 

prob_orgate(on,[ok,on,_],1). 
prob_orgate(off,[ok,on,_],O). 
prob_orgate(on,[ok,off,on],1). 
prob_orgate(off,[ok,off,on],O). 
prob_orgate(on,[ok,off,off],O). 
prob_orgate(off,[ok,off,off] ,1). 
prob_orgate(on,[stuckll _],1). 
prob_orgate(off,[stuckll_],O). 
prob_orgate(on,[stuckO I_] ,0). 
prob_orgate(off,[stuck0l_],1). 
prob_orgate(on,[abl_],0.5). 
prob_orgate(off,[abl_],0.5). 

inconsis_obs(x2(N)=on) :- N =\= 5. 
inconsis_obs(x2(5)soff). 

miniscule(P) :- P < 0.0000001 
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