
Search for computing posterior
probabilities in Bayesian networks

by
David Poole

Technical Report 92-24
September 1992

Department of Computer Science
University of British Columbia

Rm 333 - 6356 Agricultural Road
Vancouver, B.C.

CANADA V6T 1Z2

..

Search for computing posterior
probabilities in Bayesian networks

David Poole
Department of Computer Science,

University of British Columbia,
Vancouver, B.C., Canada V6T 1Z2

poole@cs.ubc.ca
telephone: (604) 822 6254

fax: (604) 822 5485

September 22, 1992

Abstract

This paper provides a general purpose search-based technique for
computing posterior probabilities in arbitrary discrete Bayesian Net­
works. This is an "anytime" algorithm, that at any stage can esti­
mate prior and posterior probabilities with a known error bound. It
is shown how well it works for systems that have normality conditions
that dominate the probabilities, as is the case in many diagnostic sit­
uations where we are diagnosing systems that work most of the time,
and for commonsense reasoning tasks where normality assumptions
(allegedly) dominate. We give a characterisation of those cases where
it works well, and discuss how well it ca.n he expected to work on
average. Finally we give a discussion on a range of implementations,
an.d discuss why some promising approaches do not work as well as
may he expected.

1

Search for Bayesian networks 2

1 Introduction

This paper provides a general purpose search-based 'technique for computing
posterior probabilities in arbitrary discrete1 Bayesian networks.

Implementations of Bayesian networks have been placed into three classes
[Pearl, 1988; Henrion, 1990):

1. Exact methods that exploit the structure of the network to allow effi­
cient propagation of evidence [Pearl, 1988; Lauritzen and Spiegelhalter,
1988; Jensen et al., 1990].

2. Stochastic simulation methods that give estimates of probabilities by
generating samples of instantiations of the network, using for example
a Monte Carlo technique [Henrion, 1990].

3. Search-based approximation techniques that search through a space of
possible values to estimate probabilities.

At one level, the method in this paper falls into the exact class; if it is
allowed to run to completion, it will have computed the exact conditional
probability in a Bayesian network. It, however has the extra feature that it
can be stopped before completion to give an answer, with a known error. Un­
der certain probabilistic assumptions (Section 6) it is shown that convergence
to a. small error is quick.

While the efficient exact methods exploit aspects of the network structure,
we instead exploit extreme probabilities to gain efficiency. The method in
the paper uses no information on the structure of the network, but rather
has a niche for classes of problems where there are "normality" 2 conditions
that dominate the probability tables (see Section 6).

There are a number of advances over previous search methods for Bayesian
networks [Shimony and Charniak, 1990; Henrion, 1991]. The main advances
over [Shimony and Charniak, 1990] are not necessarily in the algorithm itself

1i.e. all of the variables have a discrete set of possible values. We do not consider cases
where there are continuous variables.

2This should not be confused with "normal" as used for Gaussian distributions. We
consider systems that have normal operating conditions and only rarely deviate from this
normality {i.e., we are assuming abnormality [McCarthy, 1986) is rare). As we are only
considering discrete varjables, there should be no confusion.

Search for Bayesian networks 3

(but see Section 8), but in what we are doing with the algorithm (comput­
ing prior and posterior probabilitiesj rather than just enumerating composite
beliefs), the error estimates we obtain and in the average case analysis of the
algorithm. This paper should be seen as a dual to the TOP-N algorithm
of Henrion [1991]. We have a different niche. We take no account of the
noisy-OR distribution that Henrion concentrates on.

Unlike [Shimony and_ Charniak, 1990) and [Poole, 1991], the algorithm
in this paper directly uses the Bayesian network representation rather than
transforming it into another representation.

We have actually experimented with a number of algorithms. The one
presented here works quite well and is simple to describe and analyse. We
were surprised by some of the results we obtained. For example, the ATMS­
based implementation and the Prolog-based implementation turn out to not
work very well at all. I explain why in Section 8.

2 Background

2.1 Probability

In this section we give a semantic view of probability theory3 and describe
the general idea behind the search method. In some sense the idea of this
method has nothing to do with Bayesian networks - we just have to commit
to some independence assumptions to make the algorithm more concrete.

We assume we have a set of random variables (written in upper case).
Each random variable has an associated set of values. vals(X) is the set
of all possible values of variable X. Values are written in lower case. Both
random variables and values will be primitive, not defined in terms of other
concepts. An atomic proposition is an assignment of a value to a random
variable; variable X having value c is written as X = c. Each assignment of
a value to every random variable is associated with a possible world. Let
n be the set of all possible worlds. Associated with a possible world w is a

3This could have also been presented as joint distributions, with probabilistic assign­
ments to the possible worlds corresponding to joint distributions. If that view suits you,
then please read possible worlds as el~mentary events in a joint distribution [Pearl, 1988,
p. 33].

Search for Bayesian networks

measure µ(w), with the constraint that \:/w, 0 :5 µ(w) :5 1 and

1 = L µ(w).
wen

4

We write w F X = c (read "X has value c in world w") if variable X is
assigned value c in world w. A proposition is a logical formula made up of
atomic propositions and the usual logical connectives. We define the truth
of propositions in a world using the normal truth tables (e.g., w F a I\ /3 if
and only if w Fa and w I= /3).

Probability is a function from propositions to (0, 1], defined by

P(a) = L µ(w).
wEO:wl=o

We can define the conditional probability by

P(1/3) = P(a I\ /3)
a P(/3)

If /3 is a conjunction of observations, then P(al/3) is the posterior proba­
bility of a. P(a) is the prior probability of formula a.

2.2 Searching possible worlds

For a finite number of variables with a finite number of values, we can com­
pute the probabilities directly, by enumerating the possible worlds. This is
however computationally expensive as there are exponentially many of these
(the product of the sizes of the domains of the variables).

The idea behind the search method presented in this paper can be ob­
tained by considering the questions:

• Can we estimate the probabilities by only enumerating a few of the
possible worlds?

• How can we enumerate just a few of the most probable possible worlds?

• Can we estimate the error in our estimates?

• For what cases does the error get small quickly?

• How fast does it converge to a small error?

This paper sets out to answer these questions, for the case where the distri­
bution is given in terms of Bayesian networks.

Search for Bayesian networks 5

2.3 Bayesian Networks

A Bayesian network [Pearl, 1988] is a graphical representation of (in)dependence
amongst random variables. A Bayesian network is a directed acyclic graph
where the nodes represent random variables. If there is an arc from vari­
able B to variable A, B is said to be a parent of A. The independence
assumption of a Bayesian network says that each variable is independent of
its non-descendents given its parents.

Suppose we have a Bayesian network with random variables X1 , ... , Xn.
The parents of X, are written as Ilxi = (X,1 , • • ·, X,,.i). Suppose vals(Xi)
is the set of possible values of random variable X, .

Associated with the Bayesian network are conditional probability tables
which gives the marginal probabilities of the values of X, depending on the
values of its parents Ilxi. This consists of, for each Vj E vals(Xi), probabili­
ties of the form

written as
P(X, = v,IIIxi = 11Ilx.)

where 11IIxi = (v,1 , • • • , Vii.;)

For any probability distribution, we can compute a joint distribution by

n

P(X1, .. ·, Xn) = II P(X,IIIx;).
i=l

This is often given as the formal definition of a Bayesian network.
This is shorthand for the propositions that the variables have particular

values, that is

n

= II P(Xi = v,IIIxi = 11 Ilx;)
i=l

An assignment of values to all the variables corresponds with a possible
world. For the rest of this paper we will equate a possible world with an
assignment of values to all of the variables, and use the two interchangeably
(e.g., in using the complete description on the left hand side of the 'p=').

Search for Bayesian networks 6

2.4 Ordering the variables

Suppose we have a Bayesian network with random variables X 1 , •.• ,Xn, As­
sume that the index respects the ordering of the network so that the indices
form a total ordering with the parents of a node have a lower index than the
node. This can always be done as the nodes in a Bayesian network form a
partial ordering. If the parents of Xi are Ilx; = (Xi1 , ···,Xi";), the total
ordering preserves i; < i.

Given this ordering, we can use the multiplication rule for probabilities:

P(X1, · • · ,Xn) = P(XnlXn-1, ••·,Xi)
xP(Xn-1 IXn-2 • '', X1)

The Bayesian network independence assumption says that

(this relies on the ordering we assumed for the variables).
The reason that we are interested in this ordering is that we can determine

the probability of any conjunction of variable given just their predecessors in
the total ordering.

3 Enumerating possible worlds in order

3.1 Search Tree

We are now in a position to determine a search tree for Bayesian networks4 •

Definition 3.1 A partial description is a tuples of values (v1 , • • •, v;)
where Vi is an element of the domain of variable Xi.

The nodes in the tree are labelled with partial descriptions as follows:

4This search tree will correspond to the semantic trees used in theorem proving [Chang
and Lee, 1973, Section 4.4), but with random variables instead of complementary literals.

Search for Bayesian networks 7

• The root of the tree is the empty tuple ().

• The children of node labelled with (v1 , • · ·, v;) are the nodes labelled
with (v1 , • • •, v;, v) for each v E vals(X;+i)- In other words the children
of a node correspond to the possible values of the next variable in the
total ordering.

• The leaves of the tree are tuples of the form (v1, • · ·, vn),

There is a one to one correspondence between leaves of the tree and
possible worlds (or complete assignments to the variables), with the tuple
(v1, · · ·, vn) corresponding to the complete variable assignment

We associate a probability with each node in the tree. The probability
of the node labelled with (v1 , • • ·, v;) is the probability of the corresponding
proposition which is

;
P(X1 = v1 A··· AX; = v;) = IT P(Xi = vilIIx; = 11Ilx;)

i=l

This is well defined as all of the ancestors of every node have a value in the
partial description, by the ordering of the variables.

The following lemma can be trivially proved, and is the basis for the
search algorithm.

Lemma 3.2 The probability of a node is equal to the sum of the probabilities
of the leaves that are descendents of the node.

This lemma lets us bound the probabilities of possible worlds by only
generating a few of the possible worlds and placing bounds on the sizes of
the possible worlds we have not generated.

3.2 Searching the Search Tree

To implement the computation of probabilities, we carry out a search on the
search tree, and generate some of the most likely possible worlds. There are
many different search methods that can be used [Pearl, 1984).

Search for Bayesian networks

Q:={{)};
W:={};
While Q =/: {} do

choose and remove (v1, · · ·, v;) from Q;
if j = n

then W := WU { (v1 , • • ·, v;)}
else Q := Q U {(vi,••·, v;, v) : v E vals(X;+i)}

Figure 1: Basic search algorithm

8

Note that each node can only be generated once. There is no need to
check for multiple paths or loops in the search. This simplifies the search, in
that we do not need to keep track of a CLOSED list or check whether nodes
are already on the OPEN list (Qin Figure 1) [Pearl, 1984].

Figure 1 gives the generic search algorithms that can be varied by chang­
ing which element is chosen from the queue. The idea of the algorithm is
that there is a priority queue Q of nodes. We remove one (e.g., the most
likely) node at any time, either it is a total description (i.e., where j = n) in
which case it is added to W, the set of generated worlds, or else its chilqren
are added to the queue.

No matter which element is chosen from the queue, this algorithm halts
and when it halts Wis the set of all tuples corresponding to possible worlds.

We can carry out various search strategies, to enumerate the most likely
possible worlds. For example, we can carry out a multiplicative version5 of
A• search [Pearl, 1984] by choosing the node m from the queue with the
highest value of f(m) = g(m) x h(m). Here g(m) is the probability of the
corresponding proposition:

g((v1,···,v;)) - P(X1 =v1/\···I\X; =v;)
j

- IT P(Xi = vilIIxi = 11IIxJ
i=l

5This is an instance of z• where, instead of adding the costs and choosing the minimum
we multiply and choose the maximum. This can be transformed into a more traditional
A• algorithm by taking the negative of the logarithms of the probabilities. We do not do
this explicitly as we want the prooabilities to add after the search.

Search for Bayesian networks 9

- P(Xj = vilIIx, = "IIx,)

xg((v1, · · ·, Vj-1})

One version of the heuristic function h((v1, · · · , Vj}) is the product of the
maximum probabilities that can be obtained by variables Xj+I • • · Xn (for
any values of the predecessors of these variables). These can be computed
by a linear scan (from Xn to X1) keeping a table of the maximum products.

For most of this paper the heuristic function is not used (i.e. h(m) = 1 for
all m). Section 7.1, however, discusses how conflicts can be used to generate
a heuristic function.

Another alternative is an iterative-deepening A• [Korf, 1985]. As we
are not concerned with finding the most likely possible world, but a set of
most likely worlds, we can carry out depth-bounded depth-first searches (not
generating nodes whose probability is below a threshold), without worrying
too much about decreasing the threshold to the maximum value it could
obtain. Appendix B gives an implementation of the depth-bounded depth­
first search.

4 Estimating the Probabilities

If we let the above algorithm run to completion we have an exponential
algorithm for enumerating the possible worlds that can be used for computing
the prior probability of any proposition or conjunction of propositions. This
is not, however, the point of this algorithm. The idea is that we want to stop
the algorithm part way through, and determine any probability we want to
compute.

We use W, at the start of an iteration of the while loop, as an approxi­
mation to the set of all possible worlds.

4.1 Prior Probabilities

Suppose we want to compute P(g). At any stage, the possible worlds can be
divided into those that are in W and those that will be generated from Q.

P(g) = I: P(w)
wEOAwl=o

Search for Bayesian networks 10

- C.EF/(w))

+ C to be gener~d from Q,wt=o P(w))
We can easily compute the first of these sums, and can put both an upper

and lower bound on the second (using Lemma 3.2). This means that we can
put an bound on the range of probabilities of an goal based on finding just
some of the explanations of the goal. Let

Pfv = , ~ P(w)
wEWAwl=g

Pq = ~P(t)
tEQ

We then have

Lemma 4.1

Pfv ~ P(g) ~ Pfv + Pq

As the computation progresses, the probability mass in the queue Pq
approaches ~ero and we get a better refinements on the value of P(g). Note
that Pq is monotonically non-increasing through the loop (i.e Pq stays the
same or gets smaller through the loop). This thus forms the basis of an
"anytime" algorithm for Bayesian networks.

4.2 Posterior Probabilities

The above analysis was for finding the prior probability of any proposition.
If we want to compute the posterior probability of some g given some obser­
vations obs, we can use the definition of conditional probability, and use

P(I b)
= P(g /\ obs)

9 0 8
P(obs)

Thus given our estimates of P(g /\ obs) and P(obs), (namely Pfv"°bs and
P#8

) we can consider what happens to elements of the queue:

Search for Bayesian networks 11

• They can go towards implying obs I\ -.g. If all of them go towards
implying this, the resultant conditional probability is

P,g/\oba
w

Pf;11 + Pq

• They can go towards implying obs/\g. If all of them go towards implying
this, the resultant conditional probability is

pf:obs + Pq
Pf;11 + Pq

• They can go towards implying -.obs. If all of them go towards implying
this, the resultant conditional probability is

P,g/\oba
w
Pf;s

The correct answer is a combination of the three cases. As we can easily
prove the inequality,
Lemma 4.2

RwgAob11 po/\ob11 pg/\obts + R
---- < w < w Q
Pf;11 + Pq - Pf;11

- Pf; 11 + PQ

It can be proved that P(globs) has the following bound:
Theorem 4.3

P,g/\oba pol\obs + P.
w < P(globs) < w Q

Pf;11 + PQ - - Pfj11 + Pq

If we choose the midpoint as an estimate, the maximum error is

! (pf:ob11 + Pq _ pil\ob11)
2 Pfj11 + PQ Pf;11 + PQ

PQ
- 2(Pfj11 + PQ)

What is interesting about this is that the error is independent of g. Thus
when we are generating possible worlds for some observations, and want to
have posterior estimates within some error, we can generate the required
possible worlds independently of the proposition that we want to compute
the probability of.

Search for Bayesian networks 12
i1 -----.--", "Ill:--- x2

i2 ~-----'IQ>-

Figure 2: 1 bit adder

5 Diagnosis Example

The preceding section gave an implementation for arbitrary Bayesian net­
works. In this section we describe how this idea can be applied to diagno­
sis problems (as in [de Kleer, 1991)). The translation of the circuit into a
Bayesian network will follow that of [Pearl, 1988, Section 5.4].

We will do this for a one-bit adder, that can be cascaded to form a
multiple-bit adder6

5.1 Representation

Figure 2 shows a one bit adder. Figure 3 shows the corresponding Bayesian
network.

In this Bayesian network the random variable out-a2 is a binary random
variable that has two values on meaning that the output of gate a2 is on, and
off meaning the output of the gate a2 is off. The random variable a2ok has
4 values: ok meaning that the gate a2 is working correctly, .stuckl meaning

6There is actually an efficient algorithm for such an example using a clique hypertree
representation [Lauritzen and SpiegelhalLer, 1988; Jensen et al., 1990]. This exploits the
local nature of the propagation, which we do not exploit. These would not work so well
when the structure cannot be exploited as well as for the cascaded adders, for example,
if we add to the circuit another circuit to find the parity of the resulting bits. We chose
this example a.s it is simple to extend to large systems and also because it was used in [de
Kleer, 1991).

Search for Bayesian networks 13

Figure 3: Bayesian network for a 1 bit adder

Search for Bayesian networks 14

a2ok i3 out-xl out-a2
on off

ok on on 1 0
ok on off 0 1
ok off on 0 1
ok off off 0 1
stuckl - - 1 0
stuck0 - - 0 1
unknown - - 0.5 0.5

Figure 4: Conditional probability table for variable out-a2.

a2ok
ok stuckl stuck0 unknown
0.99999 0.0000049 0.0000049 0.0000002

Figure 5: Conditional probability table for variable out-a2.

the gate a2 is broken, and always has output on, stuck0 meaning the gate a2
is broken, and always has output off and unknown meaning that it is broken
in some different way.

The value of out-a2 depends on the values of three other variables, i3,
out-xl, and a2ok. The values for the variable out-a2 follow the table in
Figure 4. The tables for the other outputs of gates is similar.

The value of a2ok does not depend on any other variables. The values for
the variable follow the table in Figure 57 • The tables for the status of other
gates is similar.

These one-bit adders can be cascaded for form multiple bit adders, by
connecting the output of gate ol in one adder to input i3 of the following
adder. In the Bayesian network, this is done by having multiple instances

7The numbers are purely made up. It may seem as though these probabilities are very
extreme, but a 1000 bit adder (with 5000 components), is only 95% reliable, if all of the
gates are as reliable as that given in this table.

Search for Bayesian networks 15

out-olk-1 i3k
on off

on 1 0
off 0 1

Figure 6: Conditional probability table for input 3 of adder k.

of the network for the one-bit adder with the value of i3 depending on the
variable out-ol for the previous instance of the adder. The table for the
probabilities is given in figure 6

5.2 Computation

When we apply the algorithm of Figure 1 to our cascaded adder example,
first the world with all gates being ok is generated followed by the worlds with
single (stuck-at) faults. Most of these can be pruned quickly (see Section 7).
Then the unknown faults and then the double stuck-at faults, then other
mixes of faults in order of likelihood are generated. The probability in the
queue converges very quickly. Each of the elements of the queue can be
characterized by what errors are in the partial description. We typically only
generate the partial descriptions with only a few of the errors.

This is essentially the candidate generator phase of [de Kleer, 1991). From
this candidate generation, we can compute all of the probabilities that we
need to. Note that we do not need to find conflicts (but see Section 7.1).
There is no need for the ATMS part of [de Kleer, 1991].

6 Complexity

The problem of finding the posterior probability of a proposition in a Bayesian
network is NP hard [Cooper, 1990]. Thus we should not expect that our
algorithms will be good in the worst case. Our algorithm, when run to com­
pletion, is exponential in computing the exact prior and posterior probability
of a hypothesis.

Because of the the "anytime" nature of our algorithm, which trades search

Search for Bayesian networks 16

time for accuracy, we cannot consider run time independently of error. It is
interesting to estimate (or put bounds on) how long it takes to get within
some average error, or how accurate we can expect (or guarantee as as asymp­
totic behaviour) to be within a certain run time.

Because we have probabilities it is possible to carry out an average case
complexity analysis of our algorithm.

If we make no assumptions about the probability distributions, the av­
erage case of finding the most likely explanation or prior probability within
some error f is exponential in the size n of the Bayesian network. This can
be seen by noticing that the size of complete descriptions are linear inn and
so the probability of explanations is exponentially small in n. This means
that we need to consider exponentially many explanations to cover any fixed
proportion of the probability mass.

This is not always a reasonable distribution assumption, for example,
when using this for diagnosis of a system that basically works we would like to
assume that the underlying distribution is such that there is one assignment
of values (the "normal values") that dominates the probability mass.

For our analysis we assume that we have extreme probabilities for each
conditional probability given. For each value of the parents of variable Xi,
we assume that one of the values for Xi is close to one, and the other values
are thus close to zero.

When we are computing the probability of a node in the search tree,

;
P(X1 = v1 A··· AX;= v;) = II P(Xi = villlxi = 11Ilx;)

i=l

we call those elements P(X, = villlxi = 11Ilxi) that have probability close to
zero "faults". The others we call normality conditions.

Definition 6.1 If we have extreme probabilities (i.e., all of the conditional
probabilities are close to one or zero), then the faults of node (v1 , • • ·, vk) are
those elements v, such that P(X, = v, IITx; = 11Ilx;) is close to zero.

What is a fault is thus context dependent and depends on the values of the
parent variables. The term "fault" is derived from its use in diagnosis, where
deviation from normality is a fault. The non-monotonic reasoning community
has called such things abnormalities [McCarthy, 1986]. The algorithm given
here can be seen as considering the most normal possible worlds.

Search for Bayesian networks 17

Each element of the queue consists of a set of normality conditions and a
set of faults. For each set of faults there can be at most one element of Q or
W whose faults are exactly that set.

For our complexity analysis, let p (p ~ l) be the probability of the least
likely normality condition. We can interpret our analysis as being for the
case where all of the normality conditions have value p or as a bound for the
cases where all normality conditions are greater than p.

Let / = 1 - p. f is a bound on the probability of the faults.
Let b be the average number of fault assumptions for each hypothesis

(i.e., b + l is the number of values for each variable). We assume that bis
fixed, and is not a function of the number of variables in the network (n).

6 .1 Error convergence

Suppose we have n variables in our Bayesian network. Consider the case
where we are about to choose the first k-fault partial description from the
queue. We assume for this analysis that k ~ n.

At this time there can be no (k + l)-fault node on the queue (as we
can only generate (k + 1)-fault nodes from k-fault nodes and we have not

yet expanded out first k-fault node), so there are at most (b;) possible

combinations of faults on the priority queue (choosing k faults from the set
of bn fault assumptions). Each explanation on the queue has a probability
less than J" (not because they all have k faults, but because something with
probability less than J" has been chosen from the priority queue and it was
the element with highest probability). Thus the probability mass in the

queue can be bounded by (7') J". So

Pq < (7) J"

< (bn)" J"
k!

bk(nf)"

kl

Thus, we have convergence bnf < l.

Search for Bayesian networks

In order to interpret the value of nf, we use the following lemma:

Lemma 6.2 if (1 - JY" = l - 6, for small 6 then nf ~ 6.

See Appendix A for proof of this lemma.

18

(1- JY" = pn is the probability that there are no faults. 6 is then the prior
probability of some fault in the system. This is low when we are diagnosing
a system which works most of the time, and has rare errors.

6.2 How fast is convergence?

To see how fast we reach convergence, consider how long it takes to reach
the stage where we are taking the first k-fault hypothesis off the queue. We
assume for this analysis that k <: n.

There are at most (n + l)k-t ways to generate less than k faults. For each
of these combinations of faults, we go through the while-loop of figure 1, at
most n times (for the other normality assumptions). The only thing in the
while loop that depends on the size of n, is removing adding and removing
elements from the priority queue, this can be done in log IQ I time.

log IQ I ::;; log ((b;r) = k(log n + log b) - log k ! = O(log n)

(for fixed band k). Thus we can reach this stage in O(nklogn) time.
We can combine the above results to give us:

Theorem 6.3 For a fixed k, to attain an accuracy of (b:r in the estimate
of prior probabilities, we require O(nk logn) time.

For example, if b = l (there is only one fault mode) we can attain an
accuracy of 6

; in O(n2 logn) time. We can attain an accuracy of ~ in
0(n3 log n) time.

Theorem 6.4 If 6 is small, we can obtain an accuracy of€ in time

(~) 0 nlogU logn

See Appendix A for the proof.
Thus for fixed t, band 6, the solution time is polynomial inn.

Search for Bayesian networks 19

6.3 Posterior Probabilities

When estimating posterior probabilities, the relative error depends on the
relative sizes of PQ and Pft". When Pft 11 ~ PQ the estimate is good.

The error in posterior probability is the difference between the upper and
lower estimates for the posterior probability for any g given obs. This is

~ (Pw"°b' + PQ - Pw"°b/1)
2 Pft8 + PQ PW" + PQ

PQ

This value is independent of g, and only depends on the observations.
To make the posterior error less than t, we require

this occurs when

Pq < 2t
PX 11 +PQ

2tPft"
PQ < 1- t

which can be ensured if we make sure that

PQ < 2tPfJ"

Thus we can use the analysis for the prior probability, but multiplying the
error·bound by a factor that is an estimate of P(obs). As it is unlikely that the
observations have a low probability, it is unlikely to have a situation where
the error term required is dominated by the probability of the observation.

The following gives a PAC {probably approximately correct) characteri­
zation of the complexity8

•

Theorem 6.5 In the space of all systems, to compute the posterior prob­
ability of any proposition (of bounded size) given observation obs, we can
guarantee an error of less than t (t < ½), at least 1 - tp of the cases in time

O (nl::i.1 log n)
8This has the extra property that we know when we are in a case for which we cannot

guarantee the error.

Search for Bayesian networks 20

See Appendix A for a proof of this theorem.
Note that in this theorem we are considering "the space of all systems".

This means that we consider a random artifact. Most of these have no faults;
and presumably would not be the subject of diagnosis. Thus the space of
all systems is probably not the space of all systems that we are likely to
encounter. A more realistic space of systems by which to judge our average­
time behavious is the space of all broken systems, that is those that have at
least one fault9 • We are thus excluding all but 6 of the systems. To exclude
all but tp of the broken systems we have to exclude all but 6¢ of the total
number of systems. We thus have the following corollary.

Corollary 6.6 In the space of all broken systems (with at least one fault),
to compute the posterior probability of any proposition (of bounded size)
given observation obs, we can guarantee an error of less than f (f < ½), at
least 1 - tp of the cases in time

0 nloilTlogn
(

logc6,J,)

7 Refinements

There are a- number of refinements that can be carried out to the algorithm
of Figure 1. Some of these are straightforward, and work well. The most
straightforward refinements are:

• We only need to consider the ancestors of the variables we are interested
in. If we know our query and the conditioning variables, we don't need
to enumerate the values of variables that are not ancestors of these
variables.

• If we are trying to determine the value of P(a), then we can stop enu­
merating the partial descriptions once it can be determined whether o
is true in that partial description. In particular when conditioning on
our observations we can prune any partial description that is inconsis­
tent with the observations.

9It could also be argued that this is also inappropriate; we would rather consider the
space of systems that exhibit faulty behaviour. This would be much harder to analyse
here, as we have no notion of the observable variables developed in this paper. The space
of broken devices seems like a reasonable approximation.

Search for Bayesian networks 21

• We do not really require that we find the most likely possible worlds in
order, as we are just summing over them anyway. One way to improve
the algorithm is to carry out a depth-first depth-bounded search. We
can guess the probability of the least likely possible world we will need
to generate, use this as a threshold and carry out a depth-first search
pruning any partial description with probability less that this threshold.
If the answer is not accurate enough, we decrease the threshold and try
again. This is reminiscent of iterative deepening A* [Korf, 1985), but
we can decrease the bound in larger ratios as we do not have to find
the most likely possible world.

Appendix A gives an implementation in Prolog that incorporates the last
two refinements.

7.1 Conflicts

The consistency-based diagnostic approaches have been based on the use of
conflicts [de Kleer and Williams, 1987; Reiter, 1987]. We did not use conflicts
in the algorithm given above. This turns out to be to the detriment of the
algorithm. For example, in diagnosing a large adder, if the error is in the last
bits of the adder, the above algorithm will generate k-fault nodes for previ­
ous components, even though there cannot beak-fault error involving only
previous components. These earlier values cannot be consistently combined
with normality assumptions on latter components, and so get pruned later
in the search than they need be.

Conflicts can be incorporated into the heuristic function (see Section 3.2).
A conflict here is a set of normality conditions that cannot consistently co­
incide. Conflicts discovered in the search can be used to prune the search
earlier than it could be pruned without the conflict. If we know that the
most likely values of variables Xc1 • • • Xcn cannot co-occur, then the heuristic
function for previous variables (in the total ordering; see Section 3.2) should
incorporate the maximum value of these variables that can co-occur. I have
not implemented this, but it should solve the problem that occurs in the
algorithm when we have a conflict in latter variables in the total ordering.

Search for Bayesian networks 22

8 Other Approaches Tried

Some of the approaches that I thought would work well are not as good as
I had anticipated. We tried an ATMS-inspired approach, and a top-down
approach, which were less satisfactory than anticipated.

8.1 ATMS-inspired Approach

The approach based on the ATMS [de Kleer, 1986] has a partial description
associated with each node (corresponding to an ATMS environment). The
node-ancestor relationship corresponds to a rule that adds a justification
(a variable having a value is justified by the ancestors having particular
variables, and the conditional probabilities associated with that part of the
conditional probability table).

Instead of making label-updating demand driven (as in [de Kleer, 1986]),
we make the label-updating in a branch and bound manner, choosing the
justification with the highest probability at any time to forward chain on.
This approach has been implemented, and while it works, there are a number
of problems with it:

We cannot estimate the probability of the queue from summing over the
elements of the queue. The reason for this is that the partial descriptions
in the labels are not disjoint. This occurs when there are multiple children
for any node. It also occurs initially, when each of the topmost ancestors
has a label that corresponds to a normality assumption. The sum of these
values will typically be greater than one. While this could be solved by not
counting the mass on the queue (e.g., by considering the mass of the possible
worlds generated and those pruned by inconsistency), there is another, more
serious, problem.

The major problem is that the size of the queue grows larger than in the
algorithm in Figure 1. Elements of the queue can have much lower probabil­
ity than those generated by the algorithm in Figure 1 at the corresponding
stage, and there are many more elements in the queue. For example, if node
X has parents Yi and ½, and we are forward chaining on k-fault environ­
ments. Then a k-fault environment supporting Yi and a k-fault environment
supporting ½ will produce a (2k)-fault environment supporting X. The al­
gorithm in Figure 1, only ever produces (k + 1)-fault "environments" when
considering k-faults.

r

Search for Bayesian networks 23

It seems as though the algorithm is fatally flawed because of the last
point. It is unclear to me how to solve this problem.

8.2 Prolog-inspired approach

An alternate method is to do some goal-directed search, as in [Shimony and
Charniak, 1990; Poole, 1992a]. Here we backward chain from the queries
generating as subgoals the set of values that need to be assigned. These are
goal-directed, and so can have the focusing advantage of this. They also do
not suffer from the problem of having more that (k + 1)-fault complexes on
the queue, when considering k-faults.

They still have the problem of having the elements of the queue being
able to sum to more than one. This does not seem to be a severe problem in
practice, however. There is also a standard problem with backward chaining,
and this is in remembering not to recompute what has been computed for
some other subgoal. This is tricky (combining the lemmatization with the
branch and bound search), but it can be done.

The main problem is having subgoals that have a number of possible
normality conditions that are applicable. This can be most easily seen if we
consider generating the 0-fault possible-world. The algorithm in Figure 1
can solve this in linear time; just choosing the normality condition at each
time. The backward chaining system cannot do this. The reason is that one
value of a variable may be the normality condition for more than one state
of the ancestors. We have to search this space. This is like finding a path
from the root of a tree to a leaf; it is much more efficient searching from the
leaf to the root, as there are no choices involved, rather than searching from
the root to find the leaf.

The backward chaining approach offers the advantage of being able to
handle more expressive non-propositional languages [Poole, 1992b], for which
the algorithm of Figure 1, is not really suited.

9 Comparison with other systems

The branch and bound search, this is very similar to the candidate enumer­
ation of de Kleer's focusing mechanism [de Kleer, 1991]. This similarity to a
single step in de Kleer's efficient method indicates the potential of the search

Search for Bayesian networks 24

method. He has also been considering circuits with thousands of components,
which correspond to Bayesian networks with thousands of nodes.

Shimony and Charniak [Shimony and Charniak, 1990] have an algorithm
that is a backward chaining approach to finding the most likely possible
world. The algorithm is not as simple as the one presented here, and has
worse asymptotic behaviour (as it is a top-down approach - see Section 8.2).

· It has not been used to find prior or posterior probabilities.
Peng and Reggia [Peng and Reggia, 1990] and Henrion [Henrion, 1991]

also consider an abductive definition of diagnosis and incorporate probabil­
ities, and best-first search. They however consider different classes of net­
works. They fill different niches to the algorithm presented in this paper.

10 Conclusion

This paper has considered a simple search strategy for computing prior and
posterior probabilities in Bayesian networks. It is a general purpose algo­
rithm, that is always correct, and has a niche where it works very welL We
have characterised this niche, and have given bounds on how badly it can be
expected to perform. How common this niche is, is, of course, an open ques­
tion, but the work in diagnosis and nonmonotonic reasoning would suggest
that reasoning about normality is a common task.

The performance results of this algorithm are similar to that of [de Kleer,
1991] (but it is hard to compare due to the different technologies used). Our
Prolog implementation (Appendix A) can find the leading diagnoses of a
1000-bit adder (5000 components, 13000 node Bayesian network), in about
73 seconds running Sicstus Prolog on a Next. This is for a similar experiment
to [de Kleer, 1991], where all of the inputs were off, and one output bit (in
this example bit 5) was on and all of the others were off. These possible
worlds can then be used to compute arbitrary posterior probabilities with an
error of less than 9% (N.B. the circuit has approximately 5% failure rate).
The experimental performance is that the time is linear with the size of the
circuit (for a fixed bit that fails). The algorithm is n2 in the position of the
error bit (see Section 7.1, for a description of why and how to fix it).

Search for Bayesian networks

A Proofs

Lemma 6.2 if (1 - J)n = 1 - 6, for small 6 then nf ~ 6.

Proof: In particular we prove that nf ~ 6 as 6--+ 0.

1- 6 - (1- ft
_ ((1 _ J)o/)fn

f --+ 0 as 6 --+ 0 (for fixed n). We use the fact that

1 1
(1 - !)7 --+ - as f--+ 0

e

So we have, when 6 is very small

taking logarithms of both sides, and using the Taylor expansion
at h = 0, gives us

-nf ~ log(l - 6)
- 0-6 + c62 + ...
~ -6

From which we derive nf ~ 6. □

Theorem 6.4 If 6 is small, we can obtain an accuracy of f in time

0 (ni~~gbd log n)
Proof: If we require an accuracy of f, we ensure (b!f' < f. This
can be obtained if we ensure (M)k = f . Solving for k, we get

klogM -

k -

log f

log f
logM

This requires O(nk logn) time. Substituting the value fork, the
theorem follows. D

25

Search for Bayesian networks 26

Theorem 6.5 In the space of all systems, to compute the posterior
probability of any proposition (of bounded size) given observation obs, we
can guarantee an error of less than f (f <½),at least 1 - 'I/; of the cases in
time

0 nlogb6 log n (~)
Proof: We can assume that the P(obs) ~ 'I/;. This will be
wrong less than 'I/; of the cases (by definition). If we make sure
that Pq < t, then

To achieve error t:, we make sure PQ < fVJ. Then, as t:'1/; < 2fPi}",
we will have PQ < 2fPtj', which, as described above implies
that the error will be less than f. Thus we have to ensure that
Pq < min(t, €VJ)= ftp.

By Theorem 6.4, this can be done in time

□

B A Prolog Implementation

This code implements a bottom-up depth-first depth-bounded search to find
the most likely possible worlds that are consistent with the observations. Here
we exploit the pattern-matching of Prolog, without utilizing the declarative
nature or the search of the Language. All of the code here is deterministic;
this program does not backtrack. This is done here by the use of the Prolog
cut (!). N.B. we could also write a program that uses Prolog search (and
no cuts) to do the depth-first search. This was not done as the following
code is more efficient (by our tests), and can be more directly translated into
committed-choice parallel logic programming languages or Lisp.

Search for Bayesian networks

B.1 Network representation

The network is described using the relations:

27

nextvar(ll, 12) means that variable 12 is the next variable after 11 in the
total order of variables. The first (dummy) variable is init.

vals(I, V) is true if Vis the list of values of variable I.

parents(!, A, F) is true if F is the set of values of parents of variable I,
given the list A of values of the predecessors of I in reverse order-(so
the first element of A is the value of the variable before I).

prob(E, F, P) is true if proposition E given parents F has probability P.
That is if p(EIF) = P. A proposition E is written as an equality
Variable= Value.

inconsis_obs(E) is true if proposition E of the form Variable= Value is in­
consistent with the observations.

miniscule(P) is true if Pis below the threshold for searching in the depth­
bounded search.

B.2 Representing possible worlds

A possible world is represented as pw(P, Vs) which represents the possible
worid with values given by the list Vs and probability P. Vs is the list of
the values of the variables in reverse order (so the first element of the list is
the value of the last variable in the total ordering).

The found possible worlds that are consistent with the observations are
represented as wf(I M, FM, F ND) where IM is the mass of the possible
worlds pruned by inconsistency, FM is the sum of the probabilities of the
possible worlds found (these are all consistent with the observations) and
F ND is a list of these worlds.

B.3 Search Procedure

The top level procedure is

chain(!, Vis, VAs,PAs,DO,DI)

Search for Bayesian networks 28

where

J is the current variable;

VI s is the list remaining values of J to test;

V As is the list of the values of the ancestors of I (in reverse order, i.e., the
first element of the list is the value of the immediate predecessor of J);

PAs = P(VAs) ;

DO is the worlds found previously in the search;

Dl is the final worlds found.

chain(_ , [] , _ , _ , D , D) .
chain(I,[V1IVIs],VAs,PAs,DO,D1) ·­

parents(I,VAs,Parents),
prob(I•V1,Parents,PV1),
P1 is PAs*PVl, !,
test(I,V1,P1,VIs,VAs,PAs,DO,D1).

The procedure test is to test one of the values of the variable being tested,
and then recurse to find the rest of the possible worlds.

test(], VI, Pl, VI s, V As, P As, DO, DI)

is true when

J is the current variable;

Vl is a possible value for variable J;

Pl is the probability J having value V and all other variables having values
given by V As;

Vis is the list remaining values of J to test (after Vl);

V As is the list of the values of the ancestors of I;

PAs = P(VAs) ;

Search for Ba.yesian networks

DO is the worlds found previously;

Dl is the final worlds found.

test(I,V1,P1,VIs,VAs,PAs,wf(IMO,FM,FND),D2) :-
inconsis_obs(I=V1), !,
IM1 is IMO+ P1,
chain(I,VIs,VAs,PAs,wf(IM1,FM,FND),D2).

test(I,_,P1,VIs,VAs,PAs,DO,D1) ·­
miniscule(P1), !,
chain(I,VIs,VAs,PAs,DO,D1).

test(I,V1,P1,VIs,VAs,PAs,DO,D2) ·­
nextvar(I,I1), !,
va.ls(I1,VI1), !,
chain(I1,VI1,[V1IVAs],P1,DO,D1), !,
chain(I,VIs,VAs,PAs,D1,D2).

test(I,V1,P1,Vls,VAs,PAs,wf(IMO,FM,FND),D2) ·­
FM1 is FM+P1, ! ,
chain(I,VIs,VAs,PAs,

wf(IMO,FM1,[pw(P1,[V1IVAs])IFND]),D2).

B.4 Information Seeking

29

make_worlds(Wlds) searches and returns all the consistent worlds with prob­
ability above the threshold.

make_worlds(Wlds) :-
nextvar(init,10),
vals(IO,VIO),
chain(IO,VI0,[],1,wf(O,O,[]),Wlds).

B.5 Representation of a one thousand bit adder

The following represents a 1000 bit cascaded ripple adder. See Section B.1
for a description of the relations used. The input to the circuit is every bit is
on. The observation is that every output bit; except bit 5, is on and output
bit 5 is off. ,

Search for Bayesian networks

nextvar(init,i1(1)).
nextvar(i1(N),i2(N)).
nextvar(i2(N),i3(N)).
nextvar(i3(N),x1ok(N)).
nextvar(x1ok(N),x1(N)).
nextvar(x1(N),x2ok(N)).
nextvar(x2ok(N),x2(N)).
nextvar(x2(N),a1ok(N)).
nextvar(a1ok(N),a1(N)).
nextvar(a1(N),a2ok(N)).
nextvar(a2ok(N),a2(N)).
nextvar(a2(N),o1ok(N)).
nextvar(o1ok(N),o1(N)).
nextvar(o1(N),i1(N1)) :-

N < 1000,
N1 is N+1.

vals(i1(_),[on,off]).
vals(i2(_),[on,off]).
vals(i3(_),[on,off]).
vals(x1ok(_),[ok,stuck1,stuck0,ab]).
vals(x1(_),[on,off]).
vals(x2ok(_),[ok,stuck1,stuck0,ab]).
vals(x2(_),[on,off]).
vals(a1ok(_),[ok,stuck1,stuck0,ab]).
vals(a1(_),[on,off]).
vals(a2ok(_),[ok,stuck1,stuck0,ab]).
vals(a2(_),[on,off]).
vals(o1ok(_),[ok,stuck1,stuck0,ab]).
vals(o1(_),[on,off]).

parents(i1(~),_,[]) .
parents(i2(_),_,[]).
parents(i3(1),_,[]).
parents (i3(_), L, _, Vo1 I_], [Vo1]).
parents(x1ok(_),_,[]).
parents(x1(_),[X1ok,_,Vi2,Vi1I_],

30

Search for Bayesian networks

[X1ok,Vi2,Vi1]).
parents(x2ok(_),_,[]).
parents(x2(_).[X2ok,Vx1,_,Vi3I_].

[X2ok,Vx1,Vi3]).
parents(a1ok(_),_,[]).
parents(a1(_),[A1ok,_,_,_,_,_,Vi2,Vi1I_].

[A1ok, Vi2, Vi1]).
parents(a2ok(_),_,[]).
parents(a2(_),[A2ok,_,_,_,_,Vx1,_,Vi3I_J.

[A2ok,Vx1,Vi3]).
parents(o1ok(_),_,[]).
parents(o1(_),[01ok,Va2,_,Va1I_].

[01ok,Va2,Va1]).

prob(i1(_)•on,_,O).
prob(i1(_)•off,_,1).
prob(i2(_)•on,_,O).
prob(i2(_)soff,_,1).
prob(i3(1)•on,_,O).
prob(i3(1)•off,_,1).
prob(i3(_)•V,[V],1).
prob(i3(_)•on,[off],O).
prob(i3(_)•off,[on],O).

prob(x1ok(_)•V,_,P) :-
prob_ok(V,P).

prob_ok(ok,0.99999).
prob_ok(stuck1,0.0000049).
prob_ok(stuck0,0.0000049).
prob_ok(ab,0.0000002).

prob(x1(_)•V,Par,Prob) ·-
prob_xorgate(V,Par,Prob).

prob(x2ok(_)=V,_,P) :­
prob:..ok(V,P).

prob(x2(_)•V,Par,Prob) ·­
prob_xorgate(V,Par,Prob).

31

Search for Bayesian networks

prob(a1ok(_)=V,_,P) :­
prob_ok(V,P).

prob(a1(_)=V,Par,Prob) :­
prob_andgate(V,Par,Prob).

prob(a2ok(_)•V,_,P) :­
prob_ok(V,P).

prob(a2(_)=V,Par,Prob) ·­
prob_andgate(V,Par,Prob).

prob(o1ok(_)•V,_,P) :­
prob_ok(V,P).

prob(o1(_)=V,Par,Prob) :-
prob_orgate(V,Par,Prob).

prob_xorgate(on,[ok,on,on],O).
prob_xorgate(off,[ok,on,on],1).
prob_xorgate(on,[ok,on,off],1).
prob_xorgate(off,[ok,on,off],O).
prob_xorgate(on,[ok,off,on],1).
prob_xorgate(off,[ok,off,on],O).
prob_xorgate(on,[ok,off,off],O).
prob_xorgate(off,[ok,off,off],1).
prob_xorgate(on,[stuck1l_],1).
prob_xorgate(off,[stuck1l_],O).
prob_xorgate(on,[stuckOl_],O).
prob_xorgate(off,[stuckOl_],1).
prob_xorgate(on,[abl_],0.5).
prob_xorgate(off,[abl_],0.5).

prob_andgate(on,[ok,on,on],1).
prob_andgate(off,[ok,on,on],O).
prob_andgate(on,[ok,on,off],O).
prob_andgate(off,[ok,on,off],1).
prob_andgate(on,[ok,off,_],O).
prob_andgate(off,[ok,off,_],1).
prob_andgate(on,[stuck1l_],1).
prob_andgate(off,[stuck1l_],O).
prob_andgate(on,[stuckOl_],O).

32

Search for Bayesian networks

prob_andgate(off,[stuckOl_],1).
prob_andgate(on,[abl_],0.5).
prob_andgate(off,[abl_],0.5).

prob_orgate(on,[ok,on,_],1).
prob_orgate(off,[ok,on,_],O).
prob_orgate(on,[ok,off,on],1).
prob_orgate(off,[ok,off,on],O).
prob_orgate(on,[ok,off,off],O).
prob_orgate(off,[ok,off,off] ,1).
prob_orgate(on,[stuckll _],1).
prob_orgate(off,[stuckll_],O).
prob_orgate(on,[stuckO I_] ,0).
prob_orgate(off,[stuck0l_],1).
prob_orgate(on,[abl_],0.5).
prob_orgate(off,[abl_],0.5).

inconsis_obs(x2(N)=on) :- N =\= 5.
inconsis_obs(x2(5)soff).

miniscule(P) :- P < 0.0000001

Acknowledgements

33

Thanks to Xianchang Wang and Nevin Zhang for valuable comments on this
paper. This research was supported under NSERC grant OGP0044121, and
under Project B5 of the Institute for Robotics and Intelligent Systems.

References

[Chang and Lee,. 1973) C-L Chang and R. C-T Lee. Symbolic Logical and
Mechanical Theorem Proving. Computer Science and Applied Mathemat­
ics. Academic Press, New York, 1973.

Search for Bayesian networks 34

[Cooper, 1990) G. F. Cooper. The computational complexity of probabilis­
tic inference using Bayesian belief networks. Artificial Intelligence, 42(2-
3):393-405, March 1990.

[de Kleer and Williams, 1987) J. de Kleer and B. C. Williams. Diagnosing
multiple faults. Artificial Intelligence, 32(1):97-130, April 1987.

[de Kleer, 1986) J. de Kleer. An assumption-based TMS. Artificial Intelli­
gence, 28(2):127-162, March 1986.

[de Kleer, 1991) J. de Kleer. Focusing on probable diagnoses. In Proc. 9th
National Conference on Artificial Intelligence, pages 842-848, Anahiem,
Cal., July 1991.

[Henrion, 1990] M. Henrion. An introduction to algorithms for inference
in belief nets. In M. Henrion, et. al., editor, Uncertainty in Artificial
Intelligence 5, pages 129-138. North Holland, 1990.

[Henrion, 1991) M. Henrion. Search-based methods to bound diagnostic
probabilities in very large belief networks. In Proc. Seventh Conj. on
Uncertainty in Artificial Intelligence, pages 142-150, Los Angeles, Cal.,
July 1991.

[Jensen et al., 1990) F. V. Jensen, S. L. Lauritzen, and K. G. Olesen.
Bayesian updating in causal probabilistic networks by local computations.
Computational Statistics Quaterly, 4:269-282, 1990.

[Korf, 1985) K. E. Korf. Depth-first iterative deepening: an optimal admiss­
able tree search. Artificial Intelligence, 27(1):97-109, September 1985.

[Lauritzen and Spiegelhalter, 1988) S. L. Lauritzen and D. J. Spiegelhalter.
Local computations with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Statistical Society,
Series B, 50(2):157-224, 1988.

[McCarthy, 1986] J. McCarthy. Applications of circumscription to formaliz­
ing common-sense knowledge. Artificial Intelligence, 28(1):89-116, Febru-
ary 1986. ·

[Pearl, 1984) J. Pearl. Heuristics. Addison-Wesley, Reading, MA, 1984.

Search for Bayesian networks 35

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net­
works of Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[Peng and Reggia, 1990] Y. Peng and J. A. Reggia. Abductive Inference Mod­
els for Diagnostic Problem-Solving. Symbolic Computation - AI Series.
Springer-Verlag, New York, 1990.

[Poole, 1991] D. Poole. Representing Bayesian networks within probabilis­
tic Horn abduction. In Proc. Seve1ith Conj. on Uncertainty in Artificial
Intelligence, pages 271-278, Los Angeles, July 1991.

[Poole, 1992a] D. Poole. Logic programming, abduction and probability. In
· International Conference on Fifth Generation Computer Systems (FGCS-
92}, Tokyo, June 1992.

[Poole, 1992b] D. Poole. Probabilistic Horn abduction and Bayesian net­
works. Technical Report 92-2, Department of Computer Science, Univer­
sity of British Columbia, January 1992.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57-95, April 1987.

[Shimony and Charniak, 1990] S. E. Shimony and E. Charniak. A new al­
gorithm for finding MAP assignments to belief networks. In Proc. Sixth
Conj. on Uncertainty in Artificial Intelligence, pages 98- 103, Cambridge,
Mass., July 1990.

