
The Raven System 1

Donald Acton, Terry Coatta and Gerald Neufeld

Technical Report TR 92-15

August 31, 1992

Abstract

This report describes the distributed object-oriented system, Raven. Raven is both a dis-

tributed operating system as well as a programming language. The language will be familiar

to C programmers in that it has many constructs similar to the C programming language.

Raven uses a simple, uniform object model in which all entities, at least conceptually, are

objects. The object model supports classes for implementation inheritance and type check-

ing. Both static and dynamic typing as well as static and dynamic method binding is

supported. Object behavior is de�ned by the class of the object. The language is compiled

(rather than interpreted) and supports several features that improve performance. Sup-

port also exists for parallel and distributed computing as well as persistent data. Raven is

designed speci�cally for high-performance parallel and distributed applications.

1This work was made possible by grants from the Natural Sciences and Engineering Research Council of
Canada.

1

1 Introduction

The primary goal of Raven is to provide an object-oriented development environment for

building high-performance distributed and parallel applications. Such an environment must

be easy to use, making the task of building distributed and parallel applications relatively

simple. Many design decisions were considered in accomplishing this goal. As a result,

the Raven system was based on the C programming language primarily because many

programmers are already familiar with C. Raven di�ers from other C-based languages in

that it maintains, at least conceptually, a consistent object model. All items in Raven,

including code and data, are objects. Special support in the language is provided for the

built-in types Int, and String.

The Raven class system is similar to that of Objective C [Cox86], Smalltalk [GR83] or

Calico [EFM+91], rather than C++ [Str86]. However, unlike Objective C and Smalltalk,

Raven is statically typed. A form of dynamic typing can be accomplished by using the Any

type. Method binding is normally done at runtime, resulting in dynamic method invocation.

However, it is also possible to obtain static method binding, resulting in greater e�ciency.

Raven's class system is used both for implementation inheritance as well as type checking.

Like Smalltalk and Calico, all variables are references to objects. Hence references are

implied in the language.

Raven di�ers from many object-oriented programming languages in that notions of con-

currency and distribution are part of the language (analogous to Concurrent Smalltalk).

Raven incorporates the properties of persistence, concurrency, security, recovery and distri-

bution orthogonally to the class de�nition. That is, a class can be de�ned independently

of these properties. Properties are assigned to an instance of a class when the instance is

�rst created. Any combination of these properties can be speci�ed. Hence, for example,

objects from the same class may be persistent, concurrent, secure and atomic or volatile,

sequential, unsecure and nonatomic. The language also supports several novel constructs

for concurrent and parallel object execution.

1.1 A Raven Example

It is likely easiest to introduce Raven by example. We assume that the reader is familiar

with C.

Figure 1 presents the classic pencil cup example. The class Weighable is an abstract class

used only for type checking. Via Raven's type compatability rules only objects whose class

implements the weight method can be added to a pencil cup. The cup class is simply a

2

class Weighable { // define an abstract class for type checking

behavior Int weight();

}

class Cup <- Object {

Int size; // number of items in pencil cup

Array[Weighable] cup; // array holding weighable cup elements

constructor();

behavior Int insert(Weighable item);

behavior Weighable remove();

behavior Int empty();

behavior Int weight();

}

constructor Cup {

cup = Array::new(MAX_SIZE);

size = 0;

}

behavior insert {

if(size >= MAX_SIZE)

return ERROR;

else {

cup::PutAt(item, size);

size++;

return OK;

}

}

behavior remove {

if(size == 0) return nil;

size--;

return cup::ItemAt(size);

}

behavior empty {

if(size == 0) return true;

else return false;

}

behavior weight {

Int total_weight, i;

total_weight = 0;

for(i = 0; i<size; ++i)

total_weight += cup::ItemAt(i)::weight();

return total_weight;

}

// The following is a fragment of code that uses the pencil cup class.

// Pencil is a class type that is subtype of Weighable.

Cup pencil_cup;

Pencil pencil;

pencil_cup = Cup::new();

if(pencil_cup::insert(pencil) == ERROR)

"Cup overflow"::print();

else {

"Cup weight = "::print();

pencil_cup::weight()::print();

}

Figure 1:
3

stack (implemented as an array of weighable objects) that inherits directly from the top

class Object. The class description is introduced by the keyword class. The instance

variables are next, followed by the method de�nitions. The behavior of each method is

de�ned immediately following the class construct.

Note that the formal parameters are not repeated (i.e. they are de�ned in the interface but

not in the implementation). This implies that the formal parameters must also include the

parameter names as well as their types. The constructormethod is a special method that

is automatically invoked whenever an instance of the class is created. (Instance creation is

done via the new method being invoked on the desired class.)

Object invocation is de�ned by the object identi�er followed by \::", followed by the method

name. Inside a method behavior, instance variables are referenced in a manner similar to

method invocation.

2 Object model

Within Raven all entities (code and data) are objects. The term class de�nes the unit of

abstraction for objects. Object behavior is encapsulated and preserved within a class. Only

single inheritance is currently supported. The root of the class hierarchy is the class Object.

Each class c is an instance of a meta class with the name *c. For example, class Set is an

instance of class *Set. Meta classes are instances of class **Class which is an instance of

itself. All classes (including the meta classes) inherit from the root Object. As such, it is

possible to have arbitrary class variables or methods in the created classes.

Every class also has an (implicit) type, called the class type. The type name is the same

as the class name. Hence when we de�ned class Cup in the previous example, a type with

name Cup was also implicity created.

New instances or objects are created via the newmethod and removed via garbage collection.

new is a method of *Class that cannot be overridden. Each class de�nition may specify a

constructor method. The constructor method is implicitly called after the new method

completes. Its role is to initialize the newly created object.

Objects can only be accessed via method invocations. Normally, instance variables are

private and not directly accessible. It is possible, however, to indicate that an instance

variable is public. In this case, the compiler automatically generates put/get methods for

the public variable for dynamic binding. Access to public instance variables is via the

appropriate method invocation. The appropriate method is implied by how the variable is

4

accessed. If it is accessed on the left-hand-side of an assignment then the put method is

used; if on the right-hand-side, the get method is used. If the class is de�ned as public,

all its instance variables can be referenced externally. Also, an object's private instance

variables can be directly accessed by any of its subclasses.

Classes are de�ned statically via the compiler and run-time system. There is currently no

support for dynamically (at run-time) creating new classes or methods.

An object is referenced via a variable. All variables are typed. A variable of type T can

reference any object whose class type is equal to or a subtype of T. The only permissible

variables are references to objects. The language is therefore safe in the sense that no

pointers exist. A variable always refers to a valid object. Variables are initially set to the

nil object. The system has a builtin type called Any. A variable of type Any may reference

an object of any class.

In Raven, a reference to an object is called a capability. As the name implies, a capability

indicates that it has rights to access the behavior of an object. An object may have more

than one capability, where each capability has di�erent access rights. Access rights are on

a per method basis. That is, a capability indicates whether or not it has the right to invoke

the object's methods. The capability returned from the new method is called the primary

capability. It contains the default access rights. Additional capabilities with di�erent access

rights can be created via the alias method.

2.1 Class Interface

In the simplist case, the interface of a class includes the complete class de�nition. This is the

case in Figure 1. However, it is possible to separate the interface from the implementation.

This is particularly useful in a distributed environment where the implementation of a class

is not replicated at all of the machines. The interface is simply the class de�nition minus

any implementation code. For instance, an interface to the Cup class is:

class Cup <- Object {

constructor Cup(); // constructor method

behavior Int insert(Any item); // add an item to a cup

behavior Any remove(); // remove an item from a cup

behavior Int empty(); // check if cup is empty

behavior Int weight(); // determine weight of cup

}

5

This interface can be include via the preprocessor (using #include). Invocation can then

be performed on any instance of Cup. It is required that either the interface or the entire

class de�nition (interface and implementaion) be included in the compilation. This applies

to all of the classes that are inherited as well.

It is also possible that several di�erent interfaces to a class can exist. For instance, if only

the method weight is to be visible to a user, we could export the following interface.

class Cup <- Object {

behavior Int weight(); // determine weight of cup

}

This would restrict the user to just the weight function. Many such interfaces to a class

may be de�ned. It is also common to create classes that do not contain any behavior code.

Such classes can never be instantiated and are only used for type checking. In Figure 1

for example, the class Weighable was de�ned. No code was given for the weight method.

The sole funtion of this class was to only permit an object whose class implements the

weight method to be added to a pencil cup object. Classes like Weighable can also use

inheritance, however in such cases inheritance is used for interface inheritance rather then

implementation inheritance.

2.2 Parameterized Classes

Raven also supports static type parameterization of classes. For example, consider the

following parameterized array class with a sample of how it might be used:

class Array[X] {

behaviour X atGet(Int index);

behaviour atPut(X item, Int index);

constructor(Int size);

}

// now a segment of code which makes use of the class

behaviour SomeBehaviour {

Array[Int] anIntArray;

Array[String] aStringArray;

6

anIntArray = Array::new(10);

aStringArray = Array::new(5);

anIntArray::atPut(5, 0);

aStringArray::atPut(``hello'', 2);

aStringArray::atGet(2)::print();

}

The identi�er X enclosed in brackets following the class name is a type parameter. Once

it has appeared in the opening of the class de�nition, then it may be used as a legitimate

type name throughout the de�nition of the class. For example, the atGet behaviour

takes an integer index and returns the item stored at that index. The return type of this

behaviour is declared to be X. Later in the example, the atGet behaviour is invoked

on the variable aStringArray, which is declared as having type Array[String]. The

declaration establishes a binding between the type parameter X and the concrete type

String for this variable. The return type of atGet when invoked on aStringArray is,

thus, String.

Programming languages such as C have traditionally provided a certain number of built-

in parameterized types. Facilities for programmer-de�ned parameterized classes are often

quite weak (e.g. the use of void * in C to implement generic data types). In Raven,

there are no built-in parameterized types having special properties. The programmer has

complete access to the facilities required to create parameterized types. Currently, Raven

does not support constrained type parameterization.

2.3 Distribution and parallel objects

The example in Figure 1 shows a typical sequential object as one might expect to see in

C++ or Objective C. The system also supports access to objects distributed across the

network, parallel threads of control through objects and concurrent object invocation. The

underlying design goal in all of this support is transparency.

Within Raven, transparency is viewed both as static and dynamic. By static transparency

we mean that the programmer can write object speci�cations with no knowledge of whether

the object will be accessed locally or remotely. By dynamic transparency we mean that

object invocation is identical for local and remote objects.

In Raven it is possible to create multiple threads of control. Each thread can access any

object. If more than one thread accesses the same object, then concurrency control is used

to coordinate access. It is also possible to suspend execution inside an object and have a

di�erent thread resume the suspended execution (thread) at a later time.

7

The normal model for object invocation is that the thread that invokes a method blocks

until the method returns control. It is, however, possible to start an invocation and some

time in the future to access the result, while continuing to execute. Using this mechanism

it is possible to invoke several methods in parallel.

2.4 Object Properties

Each object is assigned a set of system properties. These properties de�ne how the object

is managed by the system. Properties are divided into �ve categories: storage, concurrency,

security, recovery and distribution. Properties can be speci�ed statically as part of the class

de�nition or dynamically when an instance of a class is created.

The storage category includes the properties persistent and volatile. If an object is per-

sistent, the Raven object store makes sure that the object is written to disk after any

invocation modi�es the object's instance data. Whether an object is persistent or volatile

is determined at the time the object is created.

The concurrency category includes the properties controlled and uncontrolled. These prop-

erties indicates the system support for concurrent access to the object's instance data. If

the object is controlled then the system makes sure that multiple threads accessing the

object are subject to concurrency control, otherwise no control is implied. In this situation

it is the programmer's responsibility to provide concurrency control as required.

The security category consists of the properties restricted and unrestricted. If an object

is unrestricted, then a capability for that object may access any of the object's behaviors.

If the object is restricted, then a capability may only have restricted access to the object.

That is, only a subset of the behaviors may be permitted.

The recovery category consists of the properties atomic and nonatomic. If the object has

the atomic property, its behavior maintains the characteristics of atomic transactions such

as \all-or-nothing" and \isolation".

Finally, the distribution category indicates how an object is maintained. It includes the

properties; local, migrate, and replicate. If an object is local then it is only resides within

its local domain (address space or machine). Local objects may be referenced remotely.

The migrate property indicates that the object may move from domain to domain. While

replication indicates that the object is replicated within several domains.

Instances of a class are not required to have the same set of properties. It is possible, for

example, to have one instance of a class be persistent, controlled, restricted, atomic and

8

replicated while another instance of the same class is volatile, uncontrolled, unrestricted,

nonatomic and local. Objects with this later set of properties are called \basic" objects.

2.5 Primitive classes

The Raven language provides special support for two primitive classes. These classes are

String, and Int. Integer objects are unique in that the declaration of a variable of type

Int allocates space for a capability as well as creating an integer object and initializing the

variable to refer to that object:

Int i;

allocates an object of class Int and assigns its capability to i. Additionally, integer variables

support the usual C arithmetic operators in their standard pre-, post-, or in�x forms.

The specialized support for class String is not as extensive (String is much more like an

programmer de�ned class). All that is provided is an intuitive handling of string constants.

For example, in:

String myString;

myString = ``hello'';

the string constant creates an object of type string and initializes it with the value \hello".

Generally, a Raven programmer is provided with a set of basic utility classes in addition

to these primitive classes. These additional classes do not, however, require any particular

compiler support. They are standard Raven classes which have been compiled and and

converted into a library simply for e�ciency. Di�erent users of the Raven system may

replace the provided library with one more suited to their own needs.

2.6 Type checking and invocation

Raven supports static and dynamic type-checking, as well as static and dynamic method

binding. In order to support static typing, all variables, parameters and return values must

be given a type. This type is the implicit class type which is simply the name of the class or

the built-in Any type. Either way a variable, return values or parameter may only reference

objects that are of the designated type or subtype. Invocations on variables are checked

by the compiler to ensure that the invoked method exists, that the parameters are of the

9

correct type, and that the return value is appropriately typed for the context. The Raven

compiler uses contravarient type-checking (a conservative type equivalence policy).

Informally, Raven's type checking rules are de�ned as follows: A variable of type S can

reference any object of class T, if T is a subtype of S. (The de�nition of subtype is given

in Section 3.6.) The subtype relationship is not explicity de�ned as part of the inheritance

relationship. The subtype relationship is de�ned by the above rules. For example, going

back to Figure 1, any class that includes a weight behaviour as de�ned by class Weighable

is a subtype of Weighable even though that class may not be a subclass of Weighable.

Static type-checking should not be confused with static method binding. Type information

allows the compiler to verify that invocations are made in a manner consistent with their

de�nitions, but it does not allow the compiler to determine the precise code which will be

run when a given method is invoked. Since a typed variable may contain a capability for

a given class or any of its sub-classes, and since methods may be overridden in sub-classes,

type alone is not su�cient to identify at compile time the code associated with a given

invocation. Method binding is therefore usually done at run-time in Raven.

If the programmer can guarantee that a given variable will be assigned capabilities for

objects from a particular class and will not be assigned capabilities for objects of any of its

sub-classes, then the compiler can determine which code is associated with a given method

invocation on that variable and can generate code to call it directly, bypassing the dynamic

method lookup scheme.

In order to indicate that a variable will contain capabilities only for objects of a particular

class, a $ (dollar sign) is prepended to the variable name. Of course, it does not make sense

to use static method binding with variables of type other then a class type. To see how

static/dynamic type-checking and method binding interact, consider the following:

Any x;

Set y, $z;

x = y = z = Set::new();

x::add(item); // use dynamic typing and dynamic method binding

y::add(item); // use static typing and dynamic method binding

z::add(item); // use static typing and static method binding

Static method binding may also be used on method parameters and instance variables.

Variables declared with static method binding may only be assigned capabilities which

reference basic objects. This is because all non-basic property support is by-passed (Note:

10

this restriction is not currently enforced by the compiler).

3 Raven Language

In this section we describe the Raven language. Since Raven is a derivative of C, we assume

the reader is familiar with the basic C syntax. The syntax is given in extended BNF.

Keywords (terminals) are given as would appear in a Raven program. Non-terminals are

given using <non-terminal> notation. Optional syntax is enclosed in square brackets [].

Zero or more occurrences are given in braces fg. If a square bracket or brace exists as a

terminal, it is enclosed in quotes (i.e. \[", \]", \f", \g").

3.1 Class Speci�cation

As seen in the example in Figure 1, classes are de�ned using the class construct as follows:

[public] class <class name> [<parameters>] [<- <supertype>] [<properties>]

"f" <instance data> <method defn> "g"

All class names must be globally unique. The <supertype> clause is a <type> declaration

which indicates the class being inherited from. Section 3.6 describes the structure of type

declarations. If the super-type de�nition is omitted, then it is assumed that the class exists

directly under the top object class, Object. Currently only single inheritance is supported.

If the keyword public is used before the class de�nition then all the instance variables are

assumed to be public. Public variables can be read or written directly (See below.)

Classes may optionally be type parameterized. The syntax for the type <parameters> is:

``['' <identifier> , <identifier> ``]''

The identi�ers listed within the brackets then become legitimate type names while in the

context of de�ning the current class, that is, until the next class declaration is encountered.

See section 3.6 for an explanation of the type checking rules for parameterized classes.

An object is normally created with a default set of basic properties (See Section 3.11). The

option <properties> permits the basic set of properties to be overridden with a new set

11

of mandatory properties.2 These mandatory properties apply when an object is created

and may not be overridden via the pnew method. Only properties which are not explicitly

speci�ed as part of the class de�nition may be used in the pnew method. If a non-mandatory

property is not speci�ed at object creation time then the object will be created with the

default property as speci�ed in Section 3.11.

3.2 Instance Data

The syntax for the instance data is:

<type> [$] <identifier> [public] [class];

Type speci�cations, <type>, are described in section 3.6. The $ (dollar sign) implies that

static invocation will be used. This is only valid if <type> is not a Any. In this case it

is assumed that identifier refers to a basic object. If the keyword public is used, then

other objects are permitted access to that instance variable through method invocation.

For example:

Int priority public;

de�nes a public instance variable which could be accessed as:

object::priority = HIGH;

value = object::priority;

In this notation, the name of the instance variable implicitly de�nes the name of a method

for getting or setting the instance data. No arguments are passed. If the access is on the left-

hand-side of an assignment then the instance variable is set. If it is on the right-hand-side

the current value of the instance variable is returned.

This notation is also used when programming the methods within the class. Refer to

Figure 1 for an example. In this case, it is not necessary to place the keyword public after

the instance variables since they are only accessed by the member methods. Within the

method de�nitions of a given class, instance variables may be accessed simply by name.

Thus, if the class List is declared with an instance variable size which records the number

of elements in the list, then a behaviour which returns the size of the list could be de�ned

as:

2Only a list (white space separated) of property keywords is valid in the class construct.

12

behaviour Size {

return size;

}

The keyword class indicates that the instance variable in question is part of the instance

data of the class object being de�ned, rather than of the individual objects of that class.

Access to class instance variables occurs via instance objects. For example, if mySet refers

to an instance of class Set, and if Set were de�ned with an instance variable mode indicating

something about the mode of operation of the class, then the value of mode could be obtained

by examining mySet::mode. Despite the fact that class instance variables are accessed

through individual instances of a given class, the actual values are stored in the class object

itself, and hence are shared amongst all instances of that class. Class variables are read-only

except in the context of the class constructor, which is described in section 3.4.

3.3 Methods Declaration

There are two di�erent types of method de�nitions. They are:

behaviour [copy] [<return type>] <name> (<parm list>)

[no lock | read lock | write lock] [private] [class];

constructor(<parm list>) [class];

The �rst de�nition de�nes a \normal" method. A behaviour always returns a value.

<return type> is a <type> declaration which indicates the return type of the behaviour.

If it is omitted, then the type of the return value is assumed to be Any. The return type

speci�cation should also be omitted for behaviours which do not return a value, however,

the compiler cannot correctly check that the return values of such behaviours are not used.

The behavior de�nition includes a variety of keyword modi�ers. The copy keyword indicates

that when a value is returned, rather than simply returning the capability provided on

the return statement, the object referred to by that capability should be copied and the

capability for this copy should be returned to the invoker.

If private is used, then the method may only be used within the methods for this class.

The nolock and writelock options are described in section 3.13.

The class keyword indicates that the given behaviour is part of the interface for the class

13

object of the class being de�ned, rather than part of the interface for instances of the class.

As with class variables, class methods are accessed via an instance of the given class.

The syntax for <parm list> is:

[<argument>] {, <argument>}

where <argument> is de�ned as:

[copy] <type> [$] <identifier>

When a capability is passed in a method invocation only the reference is passed. If the

method crosses an address domain (within or between machines) then it is possible to pass

a copy of the entire object rather than a reference to the object. This is primarly done for

reasons of e�ciency and is indicated by the copy keyword. If copy is used used then all

objects that are referenced in the instance data of the �rst level object are also copied. This

copying operation is applied recursively. Copying does not imply migration or replication.

What is implied by copying is that an entirely new object(s) is created inside the destination

address space.

The $ (dollar sign) has the same meaning as before. That is, invocation on identifier

will be be static bound.

3.4 Object Creation / Destruction

The second form of behaviour declaration provides the interface for two initializer methods

which can be associated with each class. The constructormethod is called when an object

is �rst created and is typically used to initialize the instance variables. The optional class

keyword indicates that the constructor is for the class object being de�ned rather than

instances of that class. Currently, in the Raven system, all classes are created at startup

time so it is only during this initialization phase that a class constructor will be called.

Being called during the initilization phase places certain restrictions on class constructors.

A class constructor can invoke pre-de�ned classes (those given in the Appendix), however

if it invokes another user-de�ned class then that class can not invoke it back either directly,

indirectly or implicity. The direct and indirect case means no recursive calls that start at

a class constructor. The implicit case is when a class A's constructor invokes a method in

14

class B and class B's constructor invokes a method in class A. Even though this case does

not imply recursion, it does imply that both class A and B must exist before they can be

used. However, in this case, the creation of both depends on each other.

Objects are created by using the method new. Objects are removed via garbage collection.

<var> = <class name>::new([<constructor args>])

<var> = <class name>::pnew(<properties> [, <constructor args>])

The <class name> is the capability for the class. <constructor args> are optional. The

<constructor args> must match one for one to the formal arguments de�ned for the

constructor method in the class de�nition.

There are two variations of the new method. The �rst, new, creates an object of class

<class name> as de�ned by the class de�nition. The pnew method creates a non-basic

object by overriding the default properties.

The <properties> argument in pnew is one or more of the properties de�ned in Section

3.11 separated by the & symbol. The keyword basic may also be given.

3.5 Method Invocation

We have already seen several examples of method invocation. The complete syntax for

method invocation is:

[forward] <cap> :: <method> ([<method args>])

where <cap> is an expression which evaluates to the capability for an object. It is this

object upon which invocation is being performed. <method> is an identi�er which names the

behaviour being invoked. <method args> is an optional comma separated list of parameter

expressions which will be provided to the invoked behaviour. The type checking rules for

these parameters are described in section 3.6.

Raven also provides a mechanism for dynamic method invocation:

[forward] <cap> ::* <var> ([<method args>])

This is similar to above except that <var> must be the name of a variable of type String.

The value of the variable determines which method is invoked. Because the compiler cannot

15

determine which method is being invoked with this style of invocation there is no type

checking of either the parameters or the return value.

Any method invocation can have the keyword forward preceding it. If this keyword is used

then the method will not return to the statement immediately following the invocation.

That is, the call activation stack will be detached at this point; i.e. a method call without

a return. When the invoked method issues a return statement, control is returned to the

method or procedure that is \one higher" in the call activation stack. If that method was

also called with forward it will be \two higher" and so on. forward is particularly useful

in implementing up-calls where there are many method invocations and each invocation is

the last statement in the invoking method (and no return value is expected). If the invoked

object is controlled, then the detach is not performed until the lock is obtained. This

implies that if the invoking object is controlled, the invoked object's lock is obtained before

the invoking object's lock is released.

3.6 Type Checking

In Raven, a <type> speci�cation has the following form:

<type name> [``['' <type> , <type> ``]'']

where <type name> is an identi�er which is either Int, Any, or the name of Raven class which

has already been declared. Forward references are not permitted in Raven. The optional

bracket-enclosed type list contains the type parameters assuming that <type name> is a

parameterized class. Suppose that Car has been declared as a non-parameterized class and

that List has been declared as a class taking a single parameter, then the following would

be legal type speci�ers:

Int

Car

List[Car]

List[List[Car]]

A non-parameterized type is called a simple type. The type rules for simple types are

developed �rst and the rules for parameterized types presented as en extension of these.

Every value and every variable in Raven has a type. The types of variables are speci�ed

when those variables are declared, and the types of values are computed by the compiler

based on the types of the components of the value. If the compiler has su�cient type

16

information, then it will ensure that variables and values are used in a type-consistent

manner. The type rules used by the Raven compiler create a contravariant type system.

As implied in the previous paragraph it is not always possible for the compiler to perform

type checking. The circumstances under which type checking is not possible are well-de�ned.

The built-in type Any is e�ectively a type which indicates \unknown type". If an expression

has type Any it indicates that virtually all type checking is disabled. In fact, the only rule

which the compiler enforces with regard to this type is that an expression of type Any may

not be assigned to an expression of type Int (for the purposes of this and all further type

checking rules, the passing of parameters on method invocations is treated as though an

assignment of each actual to its corresponding formal parameter were being peformed).

As noted in section 2.5, the type Int also receives some special treatment. No class may

inherit from Int. The standard C arithmetic operators are provided in their normal form

and may be used only with integers. This includes all of the C assignment operators. No

support is provided for overloading these operators for other classes. Certain features of

the language also rely upon built-in support for integers. The expressions used in the if,

while, do, for switch, and casemust all be integers. Integers may be assigned to variables

of type Any, but the built-in operators may not be used on these variables.

Any simple type other than Int or Any is a reference to a class de�ned within Raven. The

rules for such types are derived from their class declarations. A class declaration for class

<name> de�nes which methods may be invoked on an expression of type <name>, the type

of the value returned by that invocation and the number and type of parameters that must

be supplied on that invocation. Since there are no built-in operators in Raven, aside from

assignment and the arithmetic operators for integers, the type system can be fully described

simply by addressing these issues.

Informally, Raven's type checking rules are de�ned as follows: A variable of type T can

reference any object of class S, if S is a subtype of T. S is a subtype of T if S is identical to

T or:

1. S provides at least the behaviours of T.

2. For each behaviour in S, the corresponding behaviour in T has the same number of

arguments and results.

3. The type of the result of S's behavior is a subtype of the type of the result in T's

behavior.

4. The types of the arguments of T's behaviors are subtypes of the arguments in S's

behavior.

17

5. S contains at least the public instance variables as T.

6. For each public instance variable in S, the corresponding public instance variable in

T has the identical type.

Note that the subtype relationship is not explicity de�ned as part of the inheritance rela-

tionship. An exception to these rules is: If the variable is declared as having static method

binding ($) and type type1, then an expression of type2 may be assigned to it i� type1

and type2 are idential (i.e., the same class)

The rules for checking of returned values and checking of parameters can both easily be

reduced to rules for assignment. Returned values are checked as though performing an as-

signment of the value to be returned to a variable of the declared return type. Parameters

are checked as though performing an assignment of each actual parameter to its correspond-

ing formal parameter. Of course, the number of parameters provided must agree with the

number declared.

When an invocation of method name is performed on an expression of type object type,

the compiler must verify that name is a valid method for object type and must retrieve the

speci�ed return type and the formal parameter list in order to perform further type-checking.

In order for name to be a valid method for object type there must be a declaration for

behaviour name in the class referred to by object type, or in one of the classes from which

it is descended. Behaviour name may, in fact, be declared in more than one class in the

chain of class de�nitions leading from Object to the class referred to by object type. Rules

de�ning when such overriding of behaviours is legal are described below. For the purposes

of type-checking an invocation the behaviour de�nition used is the �rst one encountered

when following a path upwards from object type through the inheritance tree.

When class2 is declared as inheriting from class1, then class2 may contain declarations

for behaviours which are declared in class1 or in any of its ancestors in the inheritance

tree. However there are certain restrictions when overriding a behaviour in this fashion.

Suppose that the behaviour being overridden is name. Furthermore, let orig return be the

return type for the �rst behaviour declared as name, found when traversing the inheritance

tree upwards from class1. Finally, let org p1, org p2,... be the types of the parameters

of that behaviour. A behaviour override is legal i� the return type for name as declared

in class2 is a sub-type of orig return and for the types of each of the parameters p1,

p2... as declared in class2, p1 is a super-type of org p1, p2 is a super-type of org p2,

etc. In this context, super/sub-type are true of equal types. Of course, it is assumed that

the number of parameters is the same in the orginal and the new declaration.

Instance variables are also inherited in Raven and can be similarly overridden. As with

overriding behaviours there are restrictions on the type that can be assigned to the variable

18

being overridden. The new type must be identical to the overridden type.

Like C, Raven allows the programmer to override the type information computed by the

compiler with a cast operation. The syntax for casts is:

(<type>) <expr>

This informs the compiler that <expr> is to be treated as though it had type <type>.

3.7 Parameterized Classes

As stated elsewhere, Raven permits the de�nition of parameterized classes. The most

intuitive approach to parameterized classes is to consider a single parameterized class as a

template for an entire set of related classes. For example, consider the external interface

for the classic stack object:

class Stack[X] {

behaviour Push(X item);

behaviour X Pop();

}

As noted in section 3.1, [X] appended to the class name indicates that this is a parameterized

class. Note that within the class de�nition the type parameter X can be used as though it

were a valid type name. Now consider the type declaration which refers to this class:

Stack[String] myVar;

Note that the type parameter has been replaced with valid type name. This declaration

establishes a binding between the type parameter X and the type String. In performing

type checking involving the variable myVar, the compiler essentially creates a \virtual" class

declaration by taking the original declaration for Stack[X] and replacing all occurences of

X with String. Type checking then proceeds according to the rules given in section 3.6.

Within the context of a parameterized class de�nition, variables or expressions whose type

is a type parameter (e.g. a variable within Stack[X] having type X) are treated for purposes

of invocation as if they had type Any. This allows the programmer to invoke any method

on such a variable as type-checking is e�ectively disabled. The reason for this is that Raven

does not allow constrained type parameters, in which the programmer speci�es a minimum

set of requirements on the type(s) used to parameterize a given class.

19

The only additional type-checking rules required by the introduction of parameterized types

are those which govern when one class is a sub-class of another.

If X and Y are type parameters, that is, if in the context of the current class de�nition

they appear in the list of comma separated identi�ers following the class name, then X is a

sub-class of Y i� X and Y are lexically equivalent (i.e. the same identi�er). Intuitively, the

reason for this is that X and Y may be bound to arbitrary types, hence, it is impossible to

establish any relationship between them unless they are guaranteed to be identical. A type

parameter is never a sub-class of a non-type parameter and vice-versa.

If C1[X1, X2...] and C2[Y1, Y2,...] are both parameterized types, then C1[X1,

X2,...] is a sub-class of C2[Y1, Y2...] i� the virtual class corresponding to C1[X1,

X2...] is a sub-class, using the rules of section 3.6, of the virtual class corresponding to

C2[Y1, Y2...]. For example, consider the following class de�nitions:

class Foo[X] {

...

}

class Fee[Y] <- Foo[Y] {

...

}

Parameterized type Fee[String] corresponds to virtual class Fee String which inherits

from virtual class Foo String. Thus, Fee[String] is a sub-class of Foo[String]. Note

that the compiler never actually generates a class with the name Fee String. That name is

used simply as an aid to understanding the type checking rules which the compiler enforces.

The current Raven compiler has a subtle limitation with respect to parameterized types.

Intuitively, the manner in which objects of a parameterized class should be created would

be like:

newList = List[String]::new();

The Raven compiler cannot accept this form of invocation, however. Instead, the following

form is used:

newList = List::new();

Since the type parameterization information is lacking on this invocation, the compiler

cannot perform type checking for the constructor parameters.

20

3.8 Choices

Raven supports one other form of type de�nition. This de�niton permits a variable to refer

to a choice of types. The general syntax is:

choice <name> "f" <a comma separated list of type name> "g"

A variable de�ned as a choice can refer to any object whose class type is type compatable

with one of the choices. The choice statement is similar to the Any type, however you can

use choice to restrict the number of possible classes a variable can refer to.

For example,

choice Result { String, Int }

Result r;

In this example, r can refer to any object of class String, or of class Int. The behavior

isClass can be used to determine the class of the object that is actually being refered to.

A variable that is de�ned as a choice type can assigned to another variable if their types

are compatible. The following examples indicate what is or is not valid.

Result s,r;

Int i;

String q;

// the following assignments are legal

s = r;

r = s;

r = i;

r = q;

// the following are illegal

i = r;

q = r;

The above can be accomplised however by:

21

i = (Int) r;

q = (String) r;

3.9 Miscellaneous Language Features

Raven has a small collection of prede�ned identi�ers and other miscellaneous features. The

identi�er nil evaluates to a capability for the nil object. The identi�er me evaluates to a

capability for the current thread of execution. The type of me is Thread. The identi�er self

evaluates to the capability for the object within which the current method is executing. The

expression `<class name>` evaluates to the capability for the meta-class of class <class

name>. Note that parameterized classes are represented at run time by a single class and

meta-class (at least, in the context of a single machine), so that type parameters are not

speci�ed in this expression. Finally, an expression of the form super::<method>(<parms>

) performs an invocation of behaviour <method> as it is de�ned by the current object's

super-class. This allows access to behaviours that have been overridden in a sub-class.

3.10 Access Controls

An object can be created with or without access controls. If it is created with access

controls, then it is possible to create multiple references to the object, each with di�ering

invocation rights. Access control is based on the right to invoke the object's methods. The

granularity of control is on a per method bases.

When an object is �rst created, the capability returned has complete access rights. Via

the alias method, alternate capabilities for the object can be created that have restricted

rights. The syntax for the alias method is:

<alias cap> = <cap>::alias(<rights-list>)

where <rights-list> is de�ned as a list of behavior names that may be invoked using the

alias capability. The alias is treated in the same way as the primary capability. An object

cannot be garbage collected until all references to the object, including those through aliases

are removed.

An example where this kind of access control is useful is in connection-based servers. A mail

server, for instance, could advertise access via a public directory. The capability returned

from the public directory has only the rights to \sign-on" to the mail server. The \sign-on"

method accepts the capability of the client, validates it in its local directory and creates

22

an alias which permits further further access via methods such as post or deliver. The

alias capability can be disposed of at any time, terminating access from the client, without

removing the mail server itself.

3.11 Object Properties

When an object is created it is given properties based on the properties speci�ed as part

of the class de�niiton or provided explicitly as an argument to the pnew method described

in section 3.4. There are �ve categories of properties. Each of these categories has two or

more mutually exclusive properties. Any combination of properties, one from each of the

�ve categories, is acceptable. In the de�nitions below, the property that is underlined is the

property assigned to that object at creation time provided no property for that category

was given as part of the class de�nition or supplied as an argument to pnew. A property

that was explicitly speci�ed as part of the class de�nition may not be overridden.

Properties are assigned dynamically at object creation time. It is therefore possible to have

objects from the same class that have di�ering properties. In some cases, the class de�nition

\hard codes" a property. Most classes, however, are de�ned independently of any particular

property.

Category: storage

[volatile | persistent]

An object is either volatile or persistent. If an object is volatile its instance data is kept

only in RAM. If the system fails or is restarted volatile objects no longer exist. Most

objects will be volatile. A persistent object is one that is kept permanently on disk. As

such, a persistent object survives system failures and restarts. An object that is de�ned as

persistent is written to disk automatically whenever a method modi�es its instance data.

It is not guaranteed, however, that the current state of the object will be on disk at the

time of system failure. Persistent objects are only written out periodically by the system.

These are the same semantics as the Unix �le system. A persistent object's capability also

survives system failure or restart.

When a persistent object is written to disk, all its instance data is serialized via the im-

plicit (compiler generated) or explicit (programmer generated) class encoding and decoding

routines. If the instance data references other objects that are volatile and exist within

the same address space as the persistent object { such objects are called dependent { then

23

these objects are also written to disk along with the persistent object. In fact, the transitive

closure of all dependent object originating from the persistent object are written out.

Once a dependent object is written to disk it is marked as inaccessible. That is, method

invocation is not permitted on dependent objects that have been moved to disk. When a

persistent object is mapped back into memory (as a result of a method invocation), the

inaccessible ag of all its dependent objects is removed. This implies that the method call

chain must include the persistent object before a dependent object.

Category: concurrency

[uncontrolled |controlled]

An object that is de�ned as uncontrolled has no system locking associated with it and it

would be expected that only a single thread of control would be accessing the object, or

that concurrent access to the object without system level locking is acceptable. If a class

is explicitly designated as uncontrolled then it is the class implementor's responsibility to

ensure that the object performs appropriately when it is accessed concurrently. If instead an

object is created as uncontrolled, through the use of pnew, and has no concurrency property

speci�ed as part of the class de�nition, then it becomes the object user's responsibility for

controlling concurrent access to the object.

A controlled object is one that is expected to have several threads attempting simultaneous

access. If an object is created as controlled then the system automatically generates a lock

for the instance data. Additionally the methods on the object are de�ned as read if they

only access the instance variables and write if they modify the instance data. When a

method is invoked on a controlled object the system will automatically request a read or a

write lock depending on how the method accesses the instance data. If the lock is granted

then execution continues, otherwise the thread is blocked until such time as the lock can be

granted. See Section 3.13 for a more detailed discussion of concurrency.

Category: security

[unrestricted | restricted]

An object that is restricted is subject to access controls. The access controls are based on

the right to invoke the methods of the object. If the object is unrestricted, all methods are

accessible. See Section 3.10 for more information.

24

Category: recovery

[nonatomic | atomic | top-atomic]

An atomic object has the \all-or-nothing" property. That is, only when a method ter-

minates normally are any of the changes to the instance variables kept. If the method

terminates abnormally, the state of the instance variables are reset to their state just before

the method started. Terminating normally implies that the method executed a return state-

ment (either implicitly or explicitly). A method terminated \abnormally" if it executed the

abort statement or if the Raven system decided unilaterally to abort the method before its

completion.

The syntax for abort is simply,

abort;

This statement can be used even if the object is de�ned as nonatomic. In this case, the

statement acts as an immediate exit from the method and the instance data is not reset.

Raven uses a simpli�ed variant of nested atomic actions. When a top-level action is started

(see below) all invocations on atomic objects are considered part of the top-level action.

Therefore modi�cations to an atomic object are not made permanent until the top-level

object completes normally. The locks of all objects are held until the top-level action

completes.

If the top-atomic property is used, then a new top-level atomic action is started. A top-level

action will also occur if an atomic object is invoked and no top-level action is active. A

current action is maintained even though nonatomic objects are involved. When an atomic

object invokes a nonatomic object, the nonatomic object temporarily becomes atomic for

the duration of the invoke.

Atomic objects normally would also have the properties; persistent and concurrent, however

this is not required. For example, a volatile, sequential, atomic object is possible. In this

case, the atomic property behaves more like a recovery-block. That is, a method could

make many changes to its instance variables and then execute an abort statement which

would have the e�ect of resetting the instance variables to the state just before the method

was started.

25

Category: distribution

[local | migrate | replicate | strong-replicate]

Objects that are local cannot be migrated or replicated. If a capability for a local object

is passed as an argument on a remote invocation, Raven builds a global reference that can

then be used to access the object remotely. If the formal parameters indicate copy then the

instance data of the local object is duplicated and transmitted to the destination address

space. A complete duplicate object is then created at the destination.

If a method invocation on a migratable remote object occurs, then the object may be moved

to the calling site. Migration is an execution time optimization and as a result there is no

requirement that a migratable object be moved when an invocation is performed on it.

Migration is also subject to access control constraints. If the capability for the object does

not have migration rights, the object is not moved and a remote invocation occurs. Access

rights are not implemented in the current release of Raven.

If an object is created as replicated then a replica of the object should exist at any site that

can invoke a method on the object. The mechanism by which objects are replicated and

by which the desired level of consistency of the object instance data is maintained across

replicated objects are maintained is still very fuzzy. An object can be replicated using

strong or weak consistency.

3.12 Control Statements

Most of the common control statements found in the C language are available in Raven.

The syntax of the control statements is the same as the C syntax. Statements which are

supported include: if, switch, for, do, while, for, continue, and the null statement ;.

The if statement is supported with/without the else clause. Compound statements are

also supported.

The only statement which is not supported is goto. The switch statement syntax is more

restrictive then in C. i.e. control statements can not cross case boundaries. Finally, the

general (expr),(expr) syntax is not supported.

26

3.13 Concurrency

This section discusses the facilities available in Raven to support concurrent and parallel

access to objects.

3.13.1 Instance data locking

In Section 3.11 we saw that concurrent is one of the property categories of an object.

The concurrency category has properties, controlled and uncontrolled. If an object

is controlled the system automatically generates a lock to control the access the object's

instance data. Then when a method is invoked on the object a lock for the instance data is

automatically acquired. The type of lock acquired (read or write) depends on whether or

not the method modi�es the instance data. When the method returns the lock is released.

A lock will also be released when a forwarded method invocation is used. The locking

system supports multiple readers or a single writer.

A programmer of a controlled class may override the automatic lock generation for a method

by using the keyword nolock after the behavior de�nition in the class construct. In this

case, no locking will be done on entering the method. Another keywork writelock can be

used to force a method to acquire a write lock. The ability to do this is required to help

reduce the problems associated with a number of simultaneous invocations on an object

which then proceed to upgrade their read lock to a write lock either explicitly or by an

invocation of a write method on self. If these execution threads proceed through the object

together, a deadlock will occur when they all try to get a write lock. By explicitly allowing

a method to acquire a write lock, even though it doesn't need it, it is possible to to fend o�

some of these types of deadlock scenarios.

When a method is marked as nolock, the correct behavior of the method when concurrent

access are made to the object becomes the explicit responsibility of the programmer. The

statements readlock, writelock and unlock are provided to permit the programmer to

explicilty lock and unlock the object's instance data. The syntax of these three statements

is simply:

readlock | read lock | writelock | write lock ;

unlock;

In all cases these statements only accomplish some action on a controlled object. If the

object is uncontrolled they have no e�ect. The locking statements work in the following

manner:

27

read lock If the object's lock in not held then a read lock is acquired. If the lock is

currently held as a write lock it is demoted to a read lock. A read lock will remain as

a read lock.

write lock If the object's lock isn't currently held then a write lock is acquired. In the case

when the currently held lock is a read lock, this statement results in the promotion of

the read lock to a write lock. A write lock remains a write lock. If a read lock is held

and a write lock cannot be immediately granted then execution will block waiting for

the write lock, but the read lock will not be relinquished.

unlock If a lock has been acquired explicitly by the method, then it can be released with

this statement. An implicit unlock of user acquired locks is performed when a method

completes.

In all cases when a lock cannot be acquired immediately the thread of execution is suspended

until the lock can be granted. A thread of execution does not release any locks it holds

when it is suspended waiting for a lock. It should also be noted that each method in a

threads execution may hold at most one lock. When read and write locks are performed

in a method which already has a lock the exisiting lock is converted to one of the speci�ed

type. Within a method locks do not stack or form blocking regions like a blocking constuct

in a programming language does.

3.13.2 Mutliple threads of execution

When a program starts, it runs in a thread created by the Raven kernel. It is possible to

create multiple threads of execution by using the Threads class. The following example

demonstrates its use.

Thread thread = Thread::new(priority); // create a new thread object

thread::start(object,method); // start thread running in object @ method

thread::kill(); // kill thread

Each thread of execution can refer to itself via the keyword me. me is of type capability; it is

the thread equivalent of self. It is always possible for a thread to suspend its own execution

via the statement:

me::suspend(lock | unlock);

28

The currently executing thread is suspended and optionally unlocks the object. Another

thread can later execute the statement:

<cap>::resume();

Since me can be accessed as a regular capability it can be placed in any user de�ned data

structure. The stored value can can then be accessed and used to identify the thread to

resume. Of course, it may be necessary for the lock (either read or write) to be reclaimed

before execution can really begin.

3.13.3 Early Result

In C the return statement conceptually serves two functions, one it returns execution

control to the caller and two, it optionally returns a result. In Raven these two functions

can be separated. By separating these two functions it is possible for an object to return

a result, thus unblocking the invoking object, while maintaining its thread of control until

performing a return. During an early result scenario, execution control is transferred to

the invoking object as expected and, after some period of execution, the invoked object

returns a result. In returning this result the invoking object is unblocked for execution and,

in addition, the originally invoked object continues its execution. This results in both the

invoked and invoking object executing in parallel. To issue an early result the following

construct is used:

result [<cap>];

After executing result the object continues to execute and keeps any locks that it had. The

value of the me variable changes in the invoked object after a result statement is executed

to reect the fact that a new thread of execution has commenced. To terminate this new

thread of execution in the invoked object, the object must either execute a speci�c return,

or an implicit return by running o� the the end of the code. Once a result statement has

been executed, the value associated with any return statement is ignored.

3.13.4 Delayed Result

The complement to early result is delayed result. With a delayed result the method releases

all its locks and terminates without issuing a response. It is expected that another method

within the object will perform the result. To exit a method with the intention of performing

a delayed result the object uses the following statement:

29

leave;

Leave will cause the method to release any locks it has implicitly acquired and the method

to terminate. Execution control, however, is not returned to the initiating object and its

execution remains suspended until some other thread performs the result that the invoking

object is waiting for. Since there may be multiple threads of control waiting on a a delayed

result, a way to identify each of these delayed result threads is required. Each thread

has a me variable associated with it, (page 37) which is a capability identifying the thread

of execution. To accomplish a delayed result the method must save the value of the me

variable before doing the leave so that the suspended thread can be identi�ed. Assuming

that the me variable has been appropriately saved the actual delayed result is accomplished

in another thread in the following way:

result "["<cap> [<behaviour name>] "]" [<cap>];

Where <behavior name> optionally identi�es the behavior. This is only required if type-

checking is desired. The �rst capability is the one identifying the thread of control to

perform the result to and the second capability is the result to be returned.

When result is executed control is delivered to the associated waiting object and its ex-

ecution thread is resumed. The thread of control responsible for completing the delayed

result also continues to execute.

3.13.5 Certi�cate and Companions

In sequential object-oriented languages, an object making a method invocation on another

object must wait for a result before continuing. As pointed out in the previous section

one way to introduce parallelism into a sequential object oriented language is to allow for

an early result within a method. In this situation an invoked method sends back a result

but continues its own processing. This allows the original invoker to proceed in parallel

with the invoked object. For some objects it may not be possible to construct an operation

that can respond with an early result; consequently, no parallelism is even possible for

interactions with this type of object. Additionally, relying upon the remote object to

provide the parallelism isn't in keeping with the object-oriented design philosophy of hiding

the implementation details of a method from the user of the method. Furthermore, it is

a somewhat risky endeavor to trust parallelism to another object since a change in the

implementation technique of the methods for that object could eliminate or reduce the

amount of parallelism within the system. To combat this problem it is essential that the

30

invoker of an operation have the ability to specify whether or not the invocation of a

particular method should be allowed to proceed in parallel with the object's own execution.

It is the desire to provide a facility to permit this form of parallelism that supplies the

impetus for certificates and companions.

A companion is a separate thread of execution that runs in parallel with the thread of

execution it was derived from. A companion is compromised of a set of method invocations

and these methods will all be executed in parallel when the companion is started. The net

e�ect of starting a companion is that all the methods speci�ed in the companion run in

parallel with themselves and the thread of control which started the companion.

Once a companion has been created, a certificate, and its associated methods, can

be used to track the progress of the companion. Each time a companion is created a

corresponding certi�cate is generated and can be obtained by the programmer. A certi�cate

is an object which responds to a number of methods that can be used to monitor the created

companion. The syntax for the creation of a companion is:

<companion> ::= !{ <method_invoke_list> }! [<tag>] ;

<method_invoke_list> ::= <method_invocation> |

<method_invocation> <method_invocation_list>

<method_invocation> ::= [<cap> =] <cap>::<method>(<method_args>);

<tag> ::= "["basic type"]"

The only type of statements that may appear in the companion are method invocations.

The capabilities being invoked upon must appear as simple variable names (i.e. identi�ers),

as must the variables on the left hand side of the assignment if present. For the purposes of

determining the values of the arguments to the method invocations the initiator's execution

is suspended until all the parameters for the methods have been evaluated. This insures that

the variables used in the evaluation cannot be changed unexpectedly by the initiator. Just

as in C, the order of parameter evaluation for a method invocation is unde�ned and within

a companion the evaluation order of the set of parameters of all the method invocations is

unde�ned.

Within a companion it is possible to specify multiple invokes on the same object. When

this is done the requests are presented to the object in the order in which they are speci�ed

within the companion. This, however, says nothing about the ultimate order of execution

of the requests. The object itself may delay or postpone the method execution implicitly

because of locking restrictions in force at the method level or explicitly through the delayed

result facility.

As indicated previously the creation of a companion has implicitly associated with it the

31

generation of a certi�cate. The syntax for acquiring a certi�cate is:

<cap> = <companion>

In this situation the capability returned is of class Certi�cate. There is no requirement that

the certi�cate generated by the activation of a companion be assigned to a variable, it may

simply be ignored. An example use of the companion and certi�cates facilities is shown

below:

cert = !{ result_1 = object_1::method(arg1, ...);

.

.

.

result_n = object_n::method(arg1, arg2, ...); }! tag_value

In this example the variable cert is assigned the capability that identi�es the companion

that is created. This certi�cate is given an initial tag value. The optional tag �eld is a

recognition that a parallel request needs some way of being tagged for later identi�cation.

Although the certi�cate itself partly serves this purpose the tag extends this by acting as

a grouping function. It is easier to make a classi�cation and include it as a tag at the time

the certi�cate is generated then to have to build special data structures to perform the

unmapping later.

In addition to an individual certi�cate, there are objects of class Certificates which are

simply groups of certificates. A certi�cate object is more than just the object identi�er

for the companion: it contains within itself additional data to aid the programmer in using

companions and certi�cates. Each certi�cate has the following properties:

1. A certi�cate object is uniquely identi�ed because it is a capability.

2. It can hold a tag value that is reserved for the exclusive use of the programmer.

3. It maintains a status part, which gives some indication of the execution status of the

companion.

The usefulness of certi�cates is a function of the methods that can be invoked on them. The

following is an outline of the certi�cate methods and an indication of whether they apply

to a single certi�cate or a group of them. (See Appendix for details.)

32

1. Assignment - (certi�cate and certi�cates) - Assuming proper class compatibility, the

right-hand side is assigned to the left-hand side. An object of class certi�cate may be

assigned to a certi�cate group, but not the reverse.

2. add/delete - (certi�cates) - These methods allow for the dynamic manipulation and

updating of objects of class certi�cates. The addition operation will augment the

existing object with all the certi�cate objects speci�ed which are part of the current

object. Deletion operates in the same manner, only it deletes a certi�cate object.

3. getStatus - (certi�cate) - This method takes a single certi�cate as its value and

returns the current status of the companion.

4. getTag - (certi�cate) - This method takes a certi�cate and returns the integer tag.

5. setTag - (certi�cate) - This method takes a certi�cate and sets the tag value to the

integer value.

6. equals - (certi�cate and certi�cates) - The equality operator returns TRUE if the

certi�cate identi�er part of the right and left hand sides of the equals sign identify

the same companion, otherwise FALSE is returned.

7. Iteration - (certi�cate and certi�cates) - The iterator operator is the mechanism

used to block and wait for a companion or collection of companions to complete.

Classes in Raven which support iteration are expected to adhere to a set of standards

designed to provide a uniform way of accomplishing iteration. The technique being

used requires an initial method invocation to initialize the iteration and retrieve the

�rst item. Subsequent items of the iteration are retrieved through method invocations

to get the next item. The usage of the iterator operator in conjunction with certi�cates

and companions is best illustrated with an example.

For the example assume that two variables, g of class Certi�cate, and G of class Certi�-

cates exist and that G has some certi�cate objects in it. (For the sake of completeness

G may also be an object of class certi�cate.) To iterate on the certi�cates the following

example of Raven code illustrates the process.

for (g = G::firstItem(); g != nil; g = G::nextItem()) {

execute the body of the for loop;

}

The basic behavior of the iterator is that each item that is a component of the thing

being iterated on is retrieved once. Briey then, the behavior of the iterator on class

certi�cate and certi�cates is de�ned as follows:

� Unless an explicit break is done out of the iterator loop, each certi�cate in G will

be selected once and only once.

33

� g will have the value of the current certi�cate selected by the iterator operator.

� A certi�cate can be selected only if the companion operation it is associated

with has completed. If a companion contains multiple method invocations then

all the invocations must be complete for the companion to be viewed as being

completed.

� When there are no completed certi�cate operations, the invocation of the nex-

tItem() method on G will block waiting for a companion to complete.

� The iterator will not block waiting for the companion associated with an element

of G to complete when other completed members of G have not been returned by

the iterator yet.

Together, the facilities of thread creation, suspend and resume, early and delayed result,

combined with certi�cates and companions provide a powerful set of tools to exploit paral-

lelism when programming in Raven.

3.13.6 Locking Revisited

The facilities for parallelism combined with the automatic locking described in section 3.13.1

produce some interesting problem scenarios. The three problem areas are:

� An object does an invocation on itself.

� An object holding a lock does an invocation on itself and the the invoked method does

an early result.

� An object holding a lock invokes on itself and the invoked method does a delayed

result.

Recursive method invocations on an object only present a problem when a write lock is

already held or is requested. If only read locks are involved no problem exists. To minimize

the e�ects of recursive invocations, each execution thread is assigned a globally unique ID

that can be used to track chains of invocations. The main purpose of this ID is to make it

possible to determine when a method invocation attempts to acquire a lock on an object

that is already locked within the invocation chain. When a recursive invocation involves a

write lock, the lock will be granted if the releasing of all the locks held on this object by

the invocation chain would permit the lock to be granted.

The problems are more complicated when a recursive invocation involves an early result.

Since an early result could result in two threads of execution, unexpected changes to the

34

instance data through these recursive invocations are a possibility. To eliminate this for

early result, the result is only returned and a separate thread created if no other locks are

held on this object in the invocation chain, or all the locks are read locks. When there are

a mixture of read and write locks held on the object by the invocation chain the result of

the early result is delayed until the method with the early result in it does its return. This

eliminates the parallelism between the invoker and invokee that early result provides, but

maintains the proper invocation semantics.

A similar problem exists when a recursive invocation has a delayed result. When the leave

statement is executed the method terminates and the instance data lock acquired to enter

the method is released. The execution of the invoking method blocks waiting for the leave

to be completed. However, locks on this object could be held by other methods in the

invocation chain and this could prevent another invocation chain from invoking the method

that would result in the completion of the delayed result. To avoid this, when the leave is

done all the locks in the invocation chain that are associated with the object are temporarily

released. This permits other methods to acquire locks on the object with the expectation

that one of them will complete the delayed result. When the delayed result is completed

the suspended thread can be restarted provided all the locks it held on the object can be

granted. If the locks can't be regranted the \delayed" thread will remain suspended until

they can.

4 Building an application

This section provides a brief overview of how a Raven application can be built. The pro-

cedure to build an application, as much as possible, tries to follow the steps that would be

undertaken if one were writing the application in C.

If a program is to be executed it must have a well known location to begin execution at. In

C this is the main() procedure. Raven has this C equivalent in the form of the Main class

with the well known behavior start. For every Raven program, the programmer must de�ne

a class Main and the method start. When the Raven system starts it automatically creates

one instance of the class Main and then invokes the start method on that instance. The

start behavior provides the same functionality as the main body of a regular C program.

Further information on how to use the Raven compiler can be found in Appendix C.

35

5 Syntax

The current syntax for the Raven language is provided below. A form of extended BNF is

used to express the grammar. Since the compiler has been constructed using YACC/LEX,

a standard LALR(1) grammar can be obtained by contacting the authors. The extended

BNF form was thought to be easier to read. Terminal symbols are presented in bold face.

Usually these correspond to the keyword with the same name as the terminal symbol, or

to the punctuation symbol named. Optional terms are enclosed in brackets []. Terms

enclosed in braces fg may be repeated zero or more times. The terminal ident indicates an

identi�er (alphanumeric string beginning with an alphabetic character). The terminal type

indicates an identi�er which has previously been used as the name of a class. Formatting

is not signi�cant { it is intended to improve readability.

program : unit

unit : classDecl behaviourDefn

classDecl: [public] class ident [[ident , ident]] [< � typeDecl] property

f instVarDecl behaviourDefn g

typeDecl: type j type [typeDecl , typeDecl] j * type

instVarDecl : varDef [public] [class] ;

varDef : type varName , varName

varName : [$] ident

behaviourDefn : behaviourDecl compoundStmt

behaviourDecl : behaviour [copy] [typeDecl] ident (parm) j [lock] [private] [class] j

constructor (parm) [class]

parm : [copy] typeDecl varName

compoundStmt : f varDef stmt g

stmt : ; j compoundStmt j expr ; j return [expr] ; j

result [expr [ident]] [expr] ; j leave ; j
break ; j lock ; j readlock ; j read lock ; j

36

writelock ; j write lock ; j continue ; j
if (expr) stmt [else stmt] j

while (expr) stmt j
do stmt while (expr) ; j

for ([expr] ; [expr] ; [expr]) stmt j
switch (expr) f case [default] g

case : case expr : stmt

default : default : stmt

expr : expr ? expr : expr j expr (= j += j -= j *= j /= j
%= j <<= j >>= j ! = j &= j XOR=) expr j binary

binary : binary (== j != j < j > j <= j >= j !! j && j

xor j & j j j * j / j % j >> j << j + j -) binary j unary

unary : (j - j ++ j - - j forward) unary j
(typeDecl) unary j unary :: ident [(expr , expr)] j

super :: ident [(expr , expr)] j
unary :: * ident (expr , expr)] j

type :: new (expr , expr)] j
type :: pnew (properties , expr)] j
factor

factor : (expr) j intconst j ident j stringconst j self j nil j

super j !f companion ; companion g! [[expr]]

companion : [ident =] ident :: ident(expr , expr)

properties: property & property j basic

property : volatile j persistent j restricted j unrestricted j controlled j
uncontrolled j atomic j nonatomic j topatomic j local j migrate j
replicate

37

Appendix A. Class Library

The following class library can be used when building an application. All classes are in-

stances of class *Class, except for class Class itself which is an instance of class **Class,

and class **Class which is an instance of itself.

class Object

{

constructor();

behaviour Int getInstanceDataPtr(*Class classCap);

behaviour *Class myClass();

behaviour String myClassName();

behaviour Int isMemberOf(*Class classCap);

behaviour doesNotUnderstand(Int methodID);

behaviour isNotImpl(String message);

}

class Class

{

behaviour Class createNewClass(Class parent, String Name, Int instanceSize,

Int properties) class;

behaviour cap new() class;

behaviour Int canUnderstand(String meth) class;

behaviour cap pnew() class;

behaviour String name() class;

}

class ByteArray

{

constructor(Int ssize);

behavior Int getByte(Int location);

behavior Int putByte(Int location, Int value);

behavior Int get4Bytes(Int location);

behavior Int put4Bytes(Int location, Int value);

behavior Int putNBytes(cap from, Int start, Int count);

behavior Int getNBytes(Int start, cap to, Int count);

behavior Int size();

behavior Int basicAddress();

behavior cap basicAddressOfElement(Int index);

}

38

class String <- ByteArray

{

constructor (Int size);

behavior print();

behavior printStderr();

behavior Int hash();

behavior String strcat(String s2); // Concatenate s2 to this string

behavior String strncat(String s2, Int count);

behavior Int strcmp(String s2);

behavior Int strncmp(String s2, Int count);

behavior Int strcasecmp(String s2);

behavior Int strncasecmp(String s2, Int count);

behavior String strcpy(String s2);

behavior String strncpy(String s2, Int count);

behavior Int strlen();

}

class List <- Object uncontrolled

{

behavior add(cap item) nolock;

behavior push(cap item) nolock;

behavior append(cap item) nolock;

behavior head() nolock;

behavior tail() nolock;

behavior Int size() nolock;

behavior cap deleteFirst() nolock;

behavior Int deepDeleteFirst() nolock;

constructor();

behavior cap nextItem() nolock;

behavior firstItem() nolock;

behavior cap deleteItem(cap item) nolock;

behavior cap findItem(cap item) nolock;

}

class Thread uncontrolled

{

constructor(Int pprio);

behaviour starter();

behaviour Int start(cap obj, String mmethod, cap aarg1, cap aarg2,

cap aarg3, cap aarg4);

behaviour Int attach(cap obj);

39

behaviour Int getPid();

behaviour Int threadRunnable();

behaviour Int kill();

behaviour String threadName();

behaviour Int resume();

behaviour Int stackSize();

behaviour suspend();

behavior sleep(Int duration);

}

#define IDLE 0

#define RUNNING 1

#define FINISHED 2

class Certificate <- Object controlled

{

behavior addThread(cap thread);

behavior threadFinished();

behavior wait() nolock;

constructor();

behavior Int getTag();

behavior Int setTag(Int value);

behavior Int equals(cap other_cap);

behavior Int setNotify(cap cert);

}

public class CertificateThread <- Thread uncontrolled

{

cap cert_to_notify public;

cap return_value_addr public;

constructor () ;

behavior certStart(cap obj, String mmethod, cap return_addr, cap certificate,

cap parm1, cap parm2) nolock;

behavior certStarter();

}

40

Appendix C. Raven Compiler Manual Page

NAME

rvc { Raven language compiler

SYNOPSIS

rvc [options] [�le ...]

DESCRIPTION

rvc is the compiler for the Raven language. It accepts Raven source code and

converts it to C. Upon conversion, the resulting C code is compiled and linked for

execution.

rvc accepts numerious options and �le formats to provide exibiliy for both compi-

lation and linking. Any errors or warnings from rvc are sent to stderr. The Raven

compiler expects �les speci�ed on the command line to have one of the following

su�xes:

.r The su�x for a Raven source �le.

.c A C �le.

.o An object �le.

OPTIONS

{v Print out the compiler version number and exit.

{o�le Place output in �le. This option does not work in conjunction with the {r

option. The default output �le name is rv.out.

{r Compile to C only. The resulting C code is passed through an C beauti-

�cation program in an attempt to make the output more readable (mostly

41

a lost cause). For each �le with a .r su�x, the compiler will produce a

corresponding �le with the su�x .c.

{n Do not generate #line directives. The compiler will normally generate pre-

processor directives which indicate which line of the Raven source corre-

sponds to a given location in the resulting C code.

{g Pass the {g option (produce symbolic debugging information) along to the

C compiler. This implies the -k option.

{k Do not delete the generated C �les. For each �le given on the command

line with the su�x .r the compiler will produce a corresponding �le with the

su�c .c. This C code is not passed through the C beauti�er.

{c Do not link the object �les to produce an executable. For each �le on the

command line with su�x .r or .c, the compiler will produce a corresponding

object �le with su�x .o.

EXAMPLES

rvc a.r b.r c.c d.o

Convert a.r and b.r to their .c �les respectively, compile the resulting �les along

with c.c and �nally link all the �les with the d.o �le, producing an executable in

�le rv.out.

rvc -v

Print information about which version of the Raven compiler is being used.

BUGS

Not all the features of the Raven language are currently supported, while other

features are supported in a very strict way.

References

[Cox86] Brad Cox. Object-Oriented Programming: An Evolutionary Approach. Addison-

Wesley, Reading, Mass., 1986.

42

[EFM+91] Steve Engelstad, Keith Falk, Warren Montgomerry, Joe Neumann, Ralph

Straubs, Jim Vanendorpe, and Mike Wilde. A Dynamic C-Based Object-

Oriented System for Unix. IEEE Software, 8(3):73{85, May 1991.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Langauge and its Imple-

mentation. Addison-Wesley, Reading, Mass., 1983.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Read-

ing, Mass., 1986.

43

