
A Correct Optimized IP A

by
Alex Kean

and
George Tsiknis

Technical Report 92-12
June 1992

Department of Computer Science
University of British Columbia

Rm 333 - 6356 Agricultural Road
Vancouver, B.C.

CANADA V6T 122

'

.

A Correct Optimized /PIA

ALEX KEAN and GEORGE TSIKNIS

Department of Computer Science, University of British Columbia,
Vancouver, British Columbia, Canada V6T 1Z2

Technical Report 92-12
5th June 1992

Email: kean@cs.ubc.ca, tsiknis@cs.ubc.ca

In response to the demand of some applications, we had developed an algorithm,
called JPIA, to incrementally generate the prime implicates/implicants of a set of
clauses. In an attempt to improve IPIA some optimizations were also pre ented.
It was pointed out to us that some of these optimizations, namely the subsumption
and history restriction, are self conflicting. Subsumption is a necessary operation to
guarantee the primeness of implicates/implicants and history restriction is a scheme
that exploits the history of consensus operation to avoid generating non prime impli­
cant/implicates. The original IPIA, where history restriction was not consider, was
proven correct. However, when history restriction was introduced later in lhe opti­
mized version, it interacted with the subsumptionoperation to produce an incomplete
set of prime implicants/implicates. This paper explains the problem in more details,
proposes a solution_and provides a proof of its correctness.

1 Introduction

1

The problem of computing prime implicates or implicants has been extensively studied
in switching theory as part of the Boolean function minimization problem (Bartee et al.
1962; Biswas, 1975; Kohavi, 1978; Tison, 1967). In the study of artificial intelligence
an incremental method for generating prune implicates/implicants is appropriated for
applications like the clause management system and assumption ba ed reasoning (Kean
and Tsiknis, 1993; Kean and Tsiknis, 1992).

Hereafter, we shall assume a propositional language with vocabulary V; a set oflogical
connectives {/\, V, •,---+ }; and sentences formed using only the vocabulary and the set
of logical connectives. Additionally, a literal is either a or ,a; a disjunctive clause is

1 INTRODUCTION 2

a disjunction of literals; and a conjunctive normal form (CNF) formula is a conjunction
of disjunctive clauses. A disjunctive normal form (DNF) formula is a disjunction of
conjunctive clauses, in which a conjunctive clause is a conjunction of literals. We shall
conveniently treat a clause as a set of literals and a formula as a set of clauses.

Informally, given a set of propositional sentences, a prime implicate of E is a minimal
sentence entailed by E while a minimal sentence that entails E is a prime implicant of it.
Traditionally, the notion of implicant is associated with formulas in disjunctive normal
form while implicate is used with formula in conjunctive normal form. In these cases,
they are formally defined as follows.

Given a conjunctive clause Q and a DNF formula F, Q is an implicant of F if
F Q --+ F. Q is a prime implicant of F if Q is an implicant of F and there is no other
implicant Q' of F such that F Q --+ Q'.

Conversely, given a disjunctive clause Q and a CNF formula F, Q is an implicate of
F if F F --+ Q. Q is a prime implicate of F if Q is an implicate of F and there is no
other implicate Q' of F such that F Q' --+ Q.

In this exposition we deal with sets of disjunctive clauses that is, formulae in conjunc­
tive normal form, and implicates only. Since the notion of an implicate is a dual to that
of an implicant, similar results can be obtained for the latter. For legibility, a clause is
represented by the juxtaposition of its literals (eg. xyz). If M1, M2, ... , Mk are clauses,
then for convenience the juxtaposition M1M2 ... Mk will represent the clause Ut=I Mi.

The problem of computing prime implicates incrementally is defined as follows:
Given a set of clauses E (a formula), its corresponding set of prime implicates PI(E)
and a clause C, compute the set of prime implicates of E U { O}, or alternately the set
Pl (Pl(E) U { C}). There are two criteria for such an algorithm. First, the algorithm
should not rely on canonical form 1 of the formula as most of the conventional methods
do except those by Slagle et al. (1970) and Tison Method (1967). Second, the algorithm
should exploit the properties of prime implicates so that the generation of prime implicates
will be efficient.

An incremental method for generating prime implicates that satisfies the above tw
criteri~ was developed in (Kean and Tsilcnis, 1990)2. The algorithm is called IPIA and j

reproduced below for reference.

The algorithm works in stages. At each stage i, it performs consensus operations3

between the new clauses generated at previous stages and existing clauses in II, the input
set of prime implicates, on the i-th biform variable of C that is, the literal Xi E for
which Xi E P for P E II. It never performs consensus among existing clauses in II and

1 Let S be a set of clauses over a set of variables V. A clause C E S is said to be in canonical form if
every variable in V occurs in C.

2Familiarity with the definitions in (Kean and Tsiknis, 1990) is assumed.
3 A consensus operation between two clauses is like a resolution operation between them with the

exception that it is defined only if its resolvent is fundamental (i.e. non-tautological).

1 INTRODUCTION

Algorithm: Incremental Prime Implicant/Implicate Algorithm(IPIA)

Input: A set of prime implicants II of a formula F and a clause C.
Output: The set E U II is the set of prime implicants of II U { C}.

3

Step 1.0 Initialize E = { C}. Delete any D E E U IT that is subsumed by another
D' E E U II. If C is deleted then STOP.

Step 2.0 For each biform variable x occurring in C do

end
end

Step 2.1 For each S E E and P E II such that S, P have consensus on x do
Step 2.1.1 T = CS(S,P,x)
Step 2.1.2 E = E U T.

end

Step 2.2 Delete any D E EU IT such that there is another D' E EU IT that subsumes
D.

Algorithm 1.1: IPIA

among the newly generated clauses in E. Because of this pattern, the algorithmic process
of IPIA can be represented by a tree, called a consensus tree or CTree(IT, C). The root of
CTree(II, C) is C and every other node n is a clause generated by a consensus operation
between the parent of n, say m and the clause of IT that labels the edge (n, m).

The correctness of the IPIA algorithm, also shown in (Kean and Tsiknis, 1990) implied
that the imposed restrictions described above on the consensus operations were justified. A
further analysis of the problem revealed that some additional optimization is also possible.
A number of optimizations were also examined in the same paper including the one known
as history restriction. According to this, each clause S in E was assigned the set of biform
literals of Con which consensus operations had been performed in order to generate S.
Then a consensus operation between a clause S in E and a P in IT was not allowed if P
was introducing biform literals already in the history of S. This optimization was aiming
at prohibiting the generation of non-prime implicates.

Unfortunately, this restriction is too strong because not only it prohibits the generation
of non-prime implicates, it also prohibits certain prime implicates from being generated.
This error occurs when subsumption and history restriction interact in certain way. The
error was first reported by Peter Jackson 4 and later by Johan de Kleer 5•

In Peter Jackson's example, PI(E) = { bdf, bdf} and the input clause C = { bedf}.

4CADE90
5de K.leer's counter example was reported to us through electronic mail.

1 INTRODUCTION 4

The CTree is shown in figure 1 where the history of a clause is displayed on the left of
the clause, enclosed in"< >".

bdf /

. .
<bJ>bed G

'
'

<>bedf
. -> 0

.......

\ ... ~df

missing

~
Figure 1: Jackson's Example

Starting from the root with an empty history, we first resolve on the biform literal b
with the prime implicate bdf to yield < b > edf. At this point, it subsumes its parent
and therefore the right branch (denoted by a dotted line) is not present. At the next
stage, according to the history restriction the other prime implicate b df is prohibited from
resolving with < b > edf on the biform literal l because bdf contains b which is in
the history of df. Since there are no other possible consensus, the history restriction
produces an incomplete set of prime implicates of PJ(E U { C}), missing out bed.

The second example, due to Johan de Kleer, has a similar structure but it is much
simpler and is shown in figure 2.

The intuition behind the history restriction is that whenever a clause S is generated by
a consensus operation that reintroduces biform literals of C that were previously resolved
away, there is a great chance that this clause is not minimal. More specifically, it was
believed that another clause S', generated in a way not violating the history restriction,
must exists and subsumes S.

The proof of the existence of such a clause S' in the proof of lemma 7 .1 of (Kean and
Tsiknis, 1990) fell short in the sense that it did not take into account the case when such
a consensus might not exists due to subsumption. In this paper, we propose a solution to
the above reported error and prove its correctness. The solution is simply to separate the
concept of a history and restriction. Thus, the history remains the same as in (Kean and
Tsiknis, 1990) and the restriction changes according to subsumption. Hence, a consensus
can be prohibited by the restriction set and not the history.

2 DEFINITIONS

<>xy
• • ,> 0

............ ,
~; -

'§! xy \~ __ Y
t.,:

' ' zy l
missing

~

.
C <y>x

Figure 2: de Kleer's Example

2 Definitions

5

Once again, we assume the algorithm is applied to II U { C} and the biform part of C is
denoted as [C] = { x1, ... , Xn }. The correct and non-optimized version of IPIA (or simply
IPIA) was presented in algorithm 1.1 as appeared in (Kean and Tsiknis, 1990, pp 190).
The history and restriction definitions presented below have not been accommodated in
the IPIA algorithm. These definitions are used to demonstrate some properties about non­
minimality. When the result of these properties are derived, we shall integrate them into
IPIA to derive a new corrected version called the Corrected Optimized /PIA (algorithm
4.1).

The definition of a history of a consensus remains the same as appeared in (Kean and
Tsiknis, 1990) and is duplicated here for ease of reference.

Definition 2.1 (History) For each clause SE Ethe history ofS (history(S)) is defined as
follows:

a) history(C) = 0

b) If instep 2.1.1 of/PIA, S = CS(S',P,xi)forsome S' EE, PE II and xi E [CJ, then
history(S) = history(S') U {xi}.

Thus, the history of a clause S contains all the biform literals of C that were involved
in the chain of consensus operations that generates S. In addition to the notion of a history,
we shall define a variant of it called a restriction.

2 DEFINITIONS 6

Definition 2.2 (Restriction) For each clause S E E the restriction of S (restriction(S)) is
defined as follows:

a) restriction(C) = 0

b) In step 2.1.1, if S = CS(S',P,xi)for some S' E E, PE II and Xi E [C], then set
restriction(S) = restriction(S') U {xi} and

c) Instep 2.2, ifD' is the clause that subsumes D then set restriction(D) = restriction(D)n
restriction(D').

Note that history and restriction are defined for the clauses in E, that is the clauses
generated by chains of consensus operations starting at the input clause C. In order to
have history and restriction defined for every clause, we set for every clause P E II,
history(P) = 0 and restriction(P) = 0. The above settings are intuitively acceptable
since elements of II were given as input to the algorithm and no consensus operations
using the root C were involved in generating them.

As a notation, if history(S) = 'Hs and restriction(S) = Rs, we shall denote the
clause S as <Hs,n8-:>S. Thus, when using the algorithm IPIA, we shall compute the
restriction for each clause generated and update its restriction if subsumption occurs. The
restriction of a clause will be used to demonstrate that in any stage of the IPIA algorithm,
if a clause S is generated and contains literals which are in the restriction (S) that is,
Sn restriction(S) =/:- 0, the clause Sis subsumed by another clause S' that is generated
in the same stage and does not violate the restriction. This implies that clauses like S can
be avoided if the algorithm prohibits consensus operation that introduces literals in the
restriction of S.

Note that the notion of a restriction is similar to that of a history and the only difference
is at step (c) of the restriction definition that changes (restricts) the restrictions of a clause
whenever it subsumes another. The use of the intersection operation at this step is justified
by the following observation. When a clause <Hs,ns-:>S subsumes <HT,nT>T at step 2.2
of IPIA, T is deleted because the presence of S ensures that any implicate generated by
T will be subsumed by an implicate generated by S. However, such assurance is not
there when the mentioned restriction is enforced. if Rs and RT are different sets there
may exists consensus operation allowed by RT but prohibited by Rs. By updating Rs
to become the intersection of the old Rs and RT, such assurance is reinstated.

Note that when S subsumes T, the operation of updating the restriction of S implies
that the update is performed to a particular clause S. The reason is that there may be
many clauses that subsume T but we only choose one such S. We shall define the notion
of a proxy to facilitate the reference to such a clause.

Definition 2.3 (Proxy) For any clause S generated by !PIA, we define a proxy of Sas
follows:

2 DEFINITIONS 7

1. When <Hs,'R:PS is the clause T generated at step 2.1.1, the proxy of <Hs,Rs-;S is itself;

2. If <Hs,'Rs-;S is the clause D at step 2.2, then the clause <Hv,,'Rv,.)[)' E EU IT in the same
step is the proxy of <Hs,R:PS and because of the subsumption and the intersection of
restriction operations, the restriction RD, ~ Rs.

3. If Q is the proxy of S and S is the proxy ofT, then Q is the proxy of T. For the same
reason, RQ ~Rs~ Rr.

As a corollary to the definition, every clause in E has a proxy.

Corollary 2.1 At any stage of /PIA, if S is a clause in E, there is a proxy of S in E U IT.

Finally, a simple property of subsumption says that if A subsumes B and there is
a consensus CS (B, P, x), then using the same clause P and resolving on the same
biform literal x, either A subsumes CS (B, P, x) or the consensus CS (A, P, x) subsumes
CS(B, P, x).

Lemma 2.1 Let A, B and P be clauses and CS (B, P, x) not be nu/1 6 . If A subsumes B then
either (l) A subsumes CS(B,P,x) or (2) CS(A,P,x) subsumes CS(B,P,x).

Proof: Let B = xMB and P = xMp. Assume that A subsumes Band there is a consensus
CS(B,P,x) = MBMp.

1. If x ~ A, since A ~ B, A ~ MB Mp. Therefore (i) holds.

2. If x EA, since A ~ B, there is a consensus CS(A,P,x) = MAMP such that
MA ~ MB, Thus, (ii) holds. QED

We shall denote a chain of consensus operations

by the generalized consensus G CS (C, Pi , ... , P n, < x1 , ... , Xn >) or without the biform
variables as in GCS(C, Pi, ... , Pn), Note that in the latter, the biform variables are left
unspecified.

6Iftwo clauses B andP have exactly one bifonn literalx then their consensus CS(B, P,x) is defined (and
it is their resolvent); otherwise it is null.

3 RBSTRICTIONOPTIMlZATION 8

3 Restriction Optimization

Let the biform part of the input clause C be [C) = { x1 , ••. , Xn} and the C-variable order
(the order in which the biform variables of Care selected at step 2.0 ofIPIA) be x1, ... , Xn.

Therefore, for each i, 1 ::; i ::; n, stage i consists of all the consensus operations with
respect to Xi that are performed by the algorithm.

The goal of this section is to prove that any clause generated by IPIA that violates the
restriction condition is not minimal that is, another clause is also generated and subsumes
the first. First, we need the following lemma.

Lemma 3.1 Let <HQ,nQ-;:Q = GCS(C,Pq1 , ••• ,Pqm, < Xq 1 , ••• ,Xqm >) where Pq; E IT and
1 ::; q1 < Q2 • • • < Qm ::; n. Then at the end of stage Qm of /PIA, there is a clause
<Hr,'Rr>T E :E such that <Hr,'Rr>T subsumes <HQ,nQ-;:Q and Rr ~ {Xq1 , ••• ,Xqm}.

Proof: By induction on the stages m.

When m = 0 then Q is the input clause <Hc,'Rc>C. By the definition of restriction,
Re = 0, and <HT,'RT>T is either <Hc,'Rc>C or the proxy of <Hc,'Rc>C. In either case
RT= 0 and the lemma is true.

Assume it is true for all stages < m and we prove it for m. We assume that at
the end of stage qm-1, there is a clause <HTm_

1
,nTm_

1
>T m-I that subsumes Qm-I =

GCS(C, Pq1, ... , Pqm-J) < Xq1, ... , Xqm-1 >) and nTm-1 ~ { Xq1, ••• , Xqm-1 }.

By the assumption, Q = CS(Qm-I, P9m, Xqm) and by lemma 2.1, either T m-1 or
CS (T m-1 , P qm , Xqm) subsumes Q. If Tm- I subsumes Q, the lemma is true because
nTm-1 ~ { Xq1,.,,, Xqm_J. Otherwise, <HTm ,nTm>T m = CS(Tm-I, Pqm, Xqm) subsumes
Q. The following cases need to be considered.

1. If <HTm-1 ''R,Tm-l>T m-1 E IT, then <HTm ,nTm>T m = CS(Tm-I, Pqm, Xq m) must also
be in TI. Since by the definition of restriction, all clauses in P have empty history
and restriction, nTm ~ { xq1 , • •• , xqm} and the lemma is true.

2. If T m-1 E :E and <HTm ,nTm>T mis generated at stage qm and since nTm = nTm-1 u
{ Xqm } , therefore n Tm ~ { Xq1 , . • • , Xqm } and the lemma is true.

3. If <HTm ,nTm>T m is deleted, at the end of stage qm there is a clause <HT,'RT>T, the
proxy of <HTm ,nTm>T m, such that <HT,'RT>T subsumes <HTm ,nTm>T m and nT ~
nTm• Therefore <HT,'RT>T subsumes <Hq,'Rq>Q and nT ~ { Xq1, ... , Xqm} and the
lemma is true. QED

Next, we show that at the end of any stage, any clause generated by IPIA will
have empty intersection with its own restriction. Intuitively, this means that the clauses
generated and remain at the end of each stage do not reintroduce biform literals that are
in their restriction.

3 RESTRICTION OPTIMIZATION 9

Lemma 3.2 (Corrected Lemma 7.1 of (Kean and Tsiknis, 1990))
At the end of each stage of IPIA,for any clause <Jts,ns>S E :E, Rs n S = 0.

Proof: By induction on stage i.

When i = 0, the only clause in :E is <Jtc,'Rc>C and by the definition restriction,
Re= 0. Therefore the lemma is true.

Assume it is true for all stages < i and assume that at stage i, a clause Sexists such
that <Jt5 ,n5-:>5' = CS(Si, P, xi) and Rs n S =/- 0 where <Jtsi,'R. s/;,Si is a clause generated
prior to stage i. We also assume that <Jts . ,n5 ,-;Si is the generalized consensus of <Jtc ,'Rc>C

J J

and the set of prime implicates P = { P1, ... , Pi} denoted by

<Hsj ,ns
1

-:>Sj = GCS(C, P1 = Xri B1M1, ... , Pj = Xrj Bj Mj, < Xri, ••• , Xrj >)

where, for each k, 1 ~ rk < i, Pk resolves on the biform variable Xrk at stage rk, Bk ~ [CJ
(positive biform literals) and Mi n [CJ = 0 (monoforms). Let Lk = { Xr1;, . .. , xr1 } for
each k, 1 ~ k ~ j. (i.e. the future yet to be resolved positive biform on stage rk). Then,
by the consensus definition

If the prime implicant P = x; BM, then CS (Si, P, x;) is

j j

<Jts,ns-:>S = Xi+I, ... , Xn LJ B LJ (Bk - Lk) LJ M LJ Mk
k=l k=l

and Hs = 1is1 U {xi}, Rs= Rs1 U {xi}.

We want to prove that if Rs n S =/- 0 then there is a clause <1iT',nT,>T' generated
by IPIA at the end of stage i that subsumes Sand has the property that Rr, n T' = 0.
Notice that by the inductive hypothesis, since j < i, Rs

1
n Si = 0. Hence Rs n S =/- 0

iff Rs n B =/- 0, i.e. B reintroduces biform literals that are in the restriction of S.

Let 1{'" = Hsi - B = { Xq1 , ••• , xqm}. Obviously, 1{* ~ { x1, ... , x;_ 1} and assume that
these literals appear in ?-{* in the same order they got resolved in generating <Jts ,n5 .>5i

J J

from <Hc,'Rc>C. Let P' = {Pq" ... , Pqm} be the corresponding subset of the prime
implicates that were involved in the consensus operation. Note that P' ~ P.

By theorem 5.1 (the correctness of IPIA) and lemma 6.1 (every clause in TI is
used exactly once in IPIA) of (Kean and Tsiknis, 1990), the fact that <Jts. ,n5 .-:>Si =

J J

GCS(C,Pi, ... ,Pi) is defined, and {Pqi,•·•,Pqm} ~ {Pi, ... ,Pj}, the generalized
consensus <HQ,'RQ>Q = GCS(C, Pq1 , ••• , Pqm) is defined.

By lemma 3.1, at the end of stage qm, there is a clause <1iT,'RT>T such that <JtT,nT>T
subsumes <1iQ,nQ>Q and RT ~ { Xq1 , ••• , xqm }. Similarly, at the end of stage i - 1, there

'

3 RESTRICTION OPTIMIZATION

is a clause <HT',nT,>T' which is the proxy of <HT,nT>T, in which nT' ~ { Xq1 , •• • , xqm}

according to the definition of proxy (definition 2.3). Hence,

(1)

Now we want to prove that Q ~ (Si U B). First, let

m m

<HQ,nQ>Q = Xi,•··,xnLJB LJ(Bqk -{xqk, ••• ,Xqm}) LJ Mqk and (2)
k=l k=l

j j

<Hsi ,nsj-:>Sj = Xi, ... , Xn LJ (Bk - { Xrk, ... , Xrj}) LJ Mk (3)
k=l k=l

a) Notice that each Bqk, 1 :s; k s; min (2) is identical to a Brs for some s, 1 :s; s s; j in
(3) (i.e. each qk in (1) is equal to some rs in (2)). Therefore, in order to prove

m j

LJ (Bqk - { Xqk, • .. , Xqm}) ~ LJ (Bk - { Xrk, .. . , Xrj}) U B
k=l k=l

it is sufficient to prove that for each k, l :s; k s; m

Let,

Therefore,

Xz E (Bqk - { Xqk, Xqk+1 , ... , Xqm}) and
Xz ¢ (Bqk - { Xqk' Xqk + l, ... ' Xj}) and Xz ¢ B.

Xz E { Xqk' Xqk + l, ... ' Xj} and

Xz ¢ { Xqk, Xqk+I , ..• , Xqm}.

(4)

(6)

(7)

This means that xz is not in Si, i.e. it was resolved away by some Pz and it was not
reintroduced by any one of Pz+I, ... , Pi. Hence, xz E Hsi and since Xz ¢ B, by the
construction of 1{*, xz E 1{* or simply

(8)

But then (6) and (8) imply that Xz E { x9k, x9k+i, ... , Xqm} which contradict (7). Therefore
(4) and (5) hold.

b) It now remains to show that

m 1 u Mqk ~ u Mk (9)
k=l k=l

4 OPTIMIZED IPIA 11

Since { q1 , </2, •.• , qm} ~ { 1, 2, ... , k }, relation (9) holds.

Consequently, (4) and (9) imply that Q ~ (Si U B). So, according to (1)

<HTt,'RT1>T' ~ <HT,'RT>T ~ <Hq,'Rq>Q ~ (Sj u B).

Since T' is the proxy of T, we have

(10)

and by the inductive hypothesis,

'Rr1 n T' = 0. (11)

Then at stage i, the operation CS (T', P, Xi) is defined. For otherwise T' and P must have
more than one biform variables which implies (using (10)) that Si and P have the same
property, which contradict the hypothesis that GS (Si P, Xi) is defined. Thus, the clause
<HT1 U{xi},'RT1U{x;}>T

11 = CS(T', P, Xi) is generated. In this case, ('R r 1 u {xi}) n T" = 0
because nT' n T' = 0 (from 11) and 'Rr, ~ { Xq1' ••• 'Xqm} (from 10). QED

As a consequence of the above lemma, only the proxy's restriction needs be updated
even though there may be many other clauses that subsume a clause.

4 Optimized IPIA

The previous lemma suggests that clauses in E that violates the restriction condition
need not be generated. Therefore, the optimized algorithm first must keep track of the
restriction of each clause it generates and second, it must check if P and 'Rs have non­
empty intersection before it generates the consensus of a clause <Hs ,n,8-;S E E and P E II.
If so, the consensus should not be generated since it will be subsumed latter. On the other
hand, if Rs n P = 0 the consensus is generated.

The new algorithm that accommodates this optimization together with the root and
subsumption optimization as suggested in (Kean and Tsiknis, 1990) is shown in algorithm
4.1. Note that history is not used in the algorithm. Obviously this notion is not needed
there; it was only used in the proof of the lemmas for which it was introduced.

In the sequence we briefly discuss the behavior of the new algorithm on the examples
presented in the introduction.

Example 4.1 In Peter Jackson's example, PI(E) {bdf, bdf} and the input clause
C = {bedf}. The set of biform literals ofC and II is [C] = {b,f}.

Step 1: E = { <> bedf}, biform = b, CS(<> bedf, bdf, b) =< b > edf.

At this point,< b > edf subsumes <> bedf and updating its restriction results in<> edf.

4 OPTIMIZED IPIA 12

Algorithm: Corrected Optimized IPIA

Input: A set of prime implicants IT of a formula :F and a clause C.
Output: The set :E U II is the set of prime implicants of II U { C}.

Step 0.0 Delete any D E IT U { C} that is subsumed by another D' E II U { C}. If C is
deleted, STOP.
Step 1.0 (Root optimization) For each P E IT do

end

Step I.I If CS (C, P, x) = C' for some x E [C) and C' subsumes C then set
C = C' and delete any PE IT that is subsumed by C.

Step 2.0 Set :E = { C}.
Step 3.0 For each biform literal x E [C) do

end
end

Step 3.1 Set :E_ Children = 0 and IIx = { P E IT I P n C = { x}}
Step 3.2 For each clause S in :E do

Step 3.2.1 If

then

else

end

restriction(S) n P = 0 and CS(S, P, x) = S' for some PE ITx and S'
subsumes S

delete S from :E, restriction(S') = restriction(S) and set S _Children =
{S'}

setS_Children = {CS(S,P,x) IP E ITx and restriction(S)nP = 0}
and restriction(S') = restriction(S) U { x }VS' E S_Children.

Step 3.2.2 Delete any D E ITU S_Children that is subsumed by another
D' E IT U S _ Children.
Step 3.2.3 Add S_Children to :E_Children.

end
Step 3.3 Check subsumption among the clauses in :E_ Children that have been
generated by the same clause in ITx, If a clause Dis subsumed by D' then delete
D and set restriction(D') = restriction(D') n restriction(D).
Step 3.4 Add the remaining :E_Children to :E.

Algorithm 4.1: Corrected Optimized IPIA

5 CONCLUSIONS 13

Step 2) E = { <> edf} , biform = f, CS(<> edf, bdf ,J) =<f > bed.

Since there is no more biform literals, the algorithm terminates with the correct set of
prime implicates. Johan de Kleer's example is similar and is omitted.

5 Conclusions

An optimization to the algorithm for incrementally generating prime implicates has been
presented. The optimization is simple in the sense that the additional information required
to keep when a clause is generated (called the restriction of this clause) can be maintained
by simple operation of finite set union and intersection throughout the life time of the
clause. This additional information is used to avoid generating unnecessary clauses and
subsequent subsumption operations on them. The new technique, by using the notion of

· restriction instead of that of history, avoids the problems discussed in the introduction.

As a final remark, we note that although the worst case complexity of the algorithm
remains the same, the number of subsumption operations performed by the new algorithm
is expected to be much lower on the average. The following example shows that in this
case, the restriction strategy saves a fair bit of work by not generating implicates that are
to be subsumed latter.

Figure 3 shows the CTree of II U { C}. The set of biform literals is [C] = { x1 , :vi, x3 , X4}
and the algorithm is executed according to that ordering. Initially, there is exactly one
consensus between the root and the prime implicate x1 x4 a on the first biform literal x1•

At stage 2, E = { <> x1xzx3x4, < x1 > :vix3x4a} and the only prime implicate that has
the negative biform :vi is Xz ac. The consensus between the root and the prime implicate
is CS (<> x1 Xz x3 X4, :vi ac, Xz) = < Xz > x1 x3 X4 ac and the other consensus CS (< x1 >
XzX3a:,ia, xiac, xi) =< x1Xz > x3a:,iac. The latter consensus subsumes the first and hence
the restriction is updated to become < :vi > x3 X4 ac as denoted in figure 3 with the labels
old and new. After stage 3, the prime implicate a:,ix1 a reintroduces the already resolved
biform literal x1• According to the restriction condition four of the nodes (denoted by
the dotted lines and crossed nodes in the figure) are prohibited from consensus operations
because x1 is in their restriction. In fact, these prohibited consensus are repeated on the
right branch of the tree. If we did not prohibit these four nodes from consensus, there
will be duplicated consensus and if there are more consensus after stage a:,i, the wasteful
duplication can be enormous.

Acknowledgement: We are indebted to Peter Jackson and Johan de Kleer for reporting
the error to us and many thanks to Johan de Kleer for providing helpful comments in
helping us to derive a fix for the error. We are also very grateful to Alan Mackworth, Jane
Mulligan and Paul Gilmore for their comments and support.

<
>

 X
1~

:li.
JX

-l
X-

lX
1

a

<
 :l

i.i
>

 X
1X

iX
4a

b1

o
ld

-+
-

<
 X

1 X
i>

 :l
i_

i X
-l a

c
n

e
.
_

_
 <

X
i>

 :l
i_

iX
4a

C

¾X,
{

<
 X

3
~

 >
 X

1 X
i a

b1

<X
1:

li.J
>

X
iX

-l
a

b
~

"b

 ~
<

X
1

:l
i.

i>
 a

:ix
.ia

b3

:
<X

1:
li.

i>
 a

:ix
~a

ui
 ,:

X-
lX

1
a:

X4
X1

 a:

X-
lX

1
a

:

)(

J(

)(

<
X

i:l
i.i

>
 X

4a
c

b1

<
Xi

X3
>

 ~
a

c
b~

<

X
i:l

i.i
>

 x
.ia

cl
½

~·r
,~~·

<X
iX

3X
4>

 a
c
~

 b
 <

X
i:

li.
iZ

i>
 a

cb
3

x.
ix

1a

<
X

i:l
i.i

Z
i>

 a
cb

1

F
ig

ur
e

3:
 C

Tr
ee

 f
or

 E
xa

m
pl

e
5.

1

<
 X

-l
>

 _l
:1

 X
i:li

.i
a

<
:l

i.
i>

~
X

iX
-l

a
~

-1
 -

:
<
~

~
>

~
X

ia
~

<
~

~
>

~
X

ia
~

V
i 8 ~ r ~ 0 ~ ,....
.
~

5 CONCLUSIONS 15

References

[1] T.C. Bartee, LL. Lebow, and I.S. Reed. Theory and Design of Digital Machines.
McGraw-Hill Book, 1962.

[2] N.N. Biswas. Introduction to Logic and Switching Theory. Gordon and Breach
Science, 1975.

[3] Alex Kean and George Tsiknis. An Incremental Method for Generating Prime
Implicants/Implicates. Journal of Symbolic Computation, 9:185-206, 1990.

[4] Alex Kean and George Tsiknis. Assumption based Reasoning and Clause Manage­
ment Systems. Computationallntelligence, 8(1):1-24, 1992.

[5] Alex Kean and George Tsiknis. Clause Management Systems. To appear in the
Computational Intelligence Journal, 1993.

[6] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, second edition,
1978.

[7] J. R. Slagle, C. L. Chang, and R. C.T. Lee. A New Algorithm for Generating Prime
Implicants. IEEE Trans. on Computers, 19(4), April 1970.

[8] P. Tison. Generalized Consensus Theory and Application to the Minimization of
Boolean Functions. IEEE Trans. on Computers, 16(4):446--456, 1967.

