
The EAN X.500 Directory Servicet

Gerald Neufeld, Barry Brachman, Murray Goldberg
Dept. of Computer Science

University of British Columbia
Vancouver, B.C. V6T 1Z2

Duncan Stickings
OSiware Inc.

4370 Dominion Street, Suite 200
Burnaby, B.C. V5G 4L 7

Technical Report 91-29
November 21, 1991

Abstract

The OSI directory system manages a distributed directory information database
of named objects, defining a hierarchical relationship between the objects. An object
consists of a set of attributes as determined by a particular class. Attributes are tuples
that include a type and one or more values. The directory database is partitioned among
a set of directory system agents. The directory service is provided by a collection of
agents and incorporates distributed algorithms for name resolution and search, resulting
in a network transparent service. The objects can represent many real-world entities.
The service is intended to serve a very large and diverse user community. This paper
describes experiences gained in implementing the directory service. It also points out a
number of areas in the current OSI directory design that require further work and then
describes how the EAN directory system has addressed these difficulties.

tThis work was made possible by grants from the Natur&I Sciences and Engineering Research Council of
Canada. ·

1 Introduction

X.500(6] is a set of ISO and CCITT recommendations for an OSI (Open Systems Inter­

connection) distributed directory service. The directory manages a distributed information

database containing all the objects to be named. It also defines a hierarchical relationship

between the objects.

The directory database is partitioned among a set of directory system agents. The collec­

tion of agents provides the directory service. The directory service incorporates distributed

algorithms for name resolution and search, resulting in a network transparent service.

The service is intended to serve a very large and diverse user community spanning many

countries and organizations. It is also expected to support multiple applications. The kinds

of applications supported determines the kinds of objects maintained. An application such

as electronic mail (X.400) is an obvious one. Others, such as library systems[3), however,

can also be supported. Since the directory supports multiple applications, it is possible

to take advantage of the commonality between them. That is, objects in common among

applications can be shared.

This paper describes experiences gained during the design and implementation of the

X.500 directory service. It also points out a number of areas in the current OSI directory

design that are inadequate and hence require further work. We describe how the EAN

directory service has provided solutions to some of these problems.

The paper is structured as follows. The next section provides a brief overview of the

ISO /CCITT X.500 directory services and concludes with a set of unresolved issues that a

production directory service must handle. Section 3 describes the OSI development envi­

ronment used in the EAN directory service. The process structure of the EAN Directory

System Agent is given in Section 4 and is followed by a section on how the directory in­

formation tree is represented and implemented, including a discussion on how knowledge

information is represented. Section 6 describes the distributed search algorithm used by the

1

EAN directory service. Section 7 discusses three naming methods: distinguished names,

descriptive names, and typeless names. Sections 8 and 9 describe how the EAN system

has implemented security and directory system agent maintenance operations, respectively.

Neither access control nor maintenance have been addressed by the current standard. Some

performance figures are presented in Section 10. Finally, we conclude with a summary of

the current state of the system.

2 The X.500 Directory Model

The X.500 directory model consists of a set of active agents called DSAs (Directory System

Agents); a directory information database which is· distributed among the DSAs, called the

DIB (Directory Information Base); and a set of DUAs (Directory User Agents) through

which the DSAs containing the DIB are accessed.

The DIB is organized using a hierarchical, tree-structured object model. In fact, the

DIB is normally referred to as the Directory Information Tree, or DIT. In the DIT, each

node or entry represents an OSI object such as a country, organization, · person, machine,

document, or application. Each entry belongs to a particular class and consists of a set

of attributes as defined by its class. An attribute is composed of a type and one or more

values. For example, a class "Person" may have a set of mandatory attributes, such as the

person's surname, as well as a set of optional attributes, such as the person's telephone

number, e-mail address, and photo (a Group 3 fax image).

The syntax of an attribute value is determined by the attribute type. The syntax

indicates how the value is represented and how it is compared. For example, the syntax of

the UTCTime2 attribute follows the ASN .1 definition of UTCTime and matches for equality

if two values represent the same time. Two UTCTime attributes may also be matched for

order; that is, an earlier time is considered "less" than a later time. Another example is the

telephone attribute, which matches for equality but not order.

2 A representation of Coordinated Universal Time (Greenwich mean time).

2

Within an entry, one or more att.rihute values are designated as distinguished. The set

of such attributes and their distinguished values form a Relative Distinguished Name, or

RDN. It is required that the RDN he unique among the entry's siblings. Therefore, given

some entry, an RDN uniquely identifies an immediate descendant of that entry.

Although the DIT is a tree, it is possible to have alternative,names for the same object

by using aliases. An alias entry points to an object entry. It does this by storing the

distinguished name of the object in the alias' entry. As such, it is a symbolic link to the

object entry. Figure 1 illustrates these concepts.

A distinguished name for an object is the sequence of RDNs from the root of the DIT to

the object. When a user presents a possible distinguished name to the directory system, the

system must first determine whether the purported name is indeed valid. The purported

name is presented as a sequence of RDNs, where each RDN consists of a set of AVAs (At­

tribute Value Assertions). An AVA is a possible attribute type and value that is purported

to be a distinguished value. It is the function of the name resolution algorithm to validate

the purported distinguished name and if successful, to locate the entry with that name.

When the DIB is distributed, each DSA typically holds one or more fragments of the

DIB called naming contexts. The distinguished name of the initial vertex of a naming

context is called the context prefix. For directory' requests to be performed independently of

where the request originates, DSAs must be able to identify and interact with each other.

A DSA accomplishes this by maintaining several kinds of knowledge references about other

DSAs. The access point (presentation address) of a DSA responsible for the part of the DIT

located immediately beneath a particular entry is represented by a subordinate reference.

Similarly, a superior reference represents the access point of a DSA immediately above a

particular entry. A cross reference is a type of knowledge that improves name resolution by

associating a context prefix with an access point.

Figure 2 gives a hypothetical example of a DIT. In this example there are two country

objects below the root, representing Canada and Great Britain. Under each country object

3

,1lias
entrv

values

f cti;t·i~g~i~-h~~; · 1 other
values : value . ······-············ ._ _____ _,

Figure 1: Structure of the DIT

4

exists an organization object. Under the Canada object is a university organization and

under the Great Britain object is a business organization. Within organizations we can

have one or more organizational. units. For example, under UBC we have the Science

faculty and within Science is the Computer Science department, abbreviated as "CS". The

leaves represent several physical objects.

I

C'-=l'ax • C~=Laser Pnnter ~

Figure 2: Example of a DIT

\
\
I

If we assume that each attribute beside the entry in Figure 2 is the RDN for that object.

then we can form valid distinguished names for the objects. For instance the name { C•CA,

Org=UBC, OU=Science, OU=CS, CN=Peter Smith} identifies the person ··Peter Smith" who

works in the Computer Science department at UBC.3 The fax machine in Sales at XYZ

would have the name {C=GB, Org=XYZ, OU=Sales, CN=fax}. This object would contain

the fax telephone number for the physical object. There is no ambiguity since the order

of the attributes in the distinguished name is significant. As we have seen. distinguished

names in X.500 are not very different from names in a hierarchical file system, or in other

naming systems such as DNS (the Domain Name System [12)) or Clearinghouse [19]. A

3 Attribute types can be abbreviated; e.g., "C" for CoW1try, aorg'' for Organization. "DU" or "OrgUnit"
for Organizational Unit. "CII" for Co-on Haae.

5

D NS address for Peter Smith would look like 'peter-smith. cs. science. ubc. ca' and

'peter smithClcsClubc' might be a Clearinghouse name for him. In X.500, the DIT may

be arbitrarily deep and there is only one root for all objects.

The directory operations defined by the X.500 recommendations are listed in Figure 3.

With the exception of Abandon, each operation takes a distinguished name among its

arguments. An assortment of service controls are available for the user to direct or constrain

operations. For example, it is possible to place a limit on the number of entries returned

by List or Search or forbid the use of cached information.

j Operation Name Function

Abandon Cancel an active Read, Compare, List, or Search operation.
AddEntry Add a leaf entry to the DIT.
Compare Compare a given value with the value(s) of a particular at-

tribute type in a particular entry.
List List the immediate subordinates of a particular entry.
Modify Entry Perform a sequence of one or more modifications to a single

entry.
ModifyRDN Change the RDN of a leaf entry.
Read Extract information from a particular entry.
Remove Entry Remove a leaf entry from the DIT.
Search Search a portion of the DIT, starting from a particular entry,

returning selected information from entries of interest.

Figure 3: Directory Operations

Distinguished names are considerably more complex than simple hierarchical names such

as in DNS. The reason is that an RDN can be a set of AVAs, where each AVA includes the

type name as well as the value. This complexity often gets in the way of a simple, clean

naming structure. It is still an open question whether this complexity provides sufficient

functionality to warrant its disadvantages. Some work has been done to alleviate this

problem (see Sections 7.2 and 7.3).

There are a considerable number of issues that have not been resolved in the 1988 version

6

of the X.500 directory. Fortunately, many are currently being addresseci for the 1992 version.

These issues include replication (for both performance and reliability), dynamic schema

management, maintenance and network management, access control, and alternative name

forms such as descriptive naming. The EAN X.500 implementation provides solutions to

several of these concerns. These solutions are presented in the following sections.

3 The EAN OSI Development Environment

The EAN implementation of the X.500 directory is based on the EAN DAPE (Distributed

Application Programming Environment) (18). This is a generalized environment for build­

ing OSI applications. The DSA, an interactive terminal-oriented DUA. a non-interactive

command-line oriented DUA. and a multi-threaded DUA for the X Window System were

built using DAPE.

DAPE is composed of four tools: a.light-weight threads kernel, an ASN.1 compiler, a

communications service, and a persistent object store. Many of these tools are interrelated

and therefore provide a coherent development environment. The tools were built with two

major design principles in mind: portability and efficiency. These principles helped guide ·

the design decisions from the many different possibilities. We describe each of these tools

in greater detail in the remainder of this section.

3.1 Light-weight threads kernel

To gain the greatest efficiency and portability, it was felt that we should not rely heavily on

the operating system's process management and interprocess communication mechanisms.

When building interactive OSI servers such as a DSA, however, it is dearly necessary to

have multiple concurrent threads of control. The solution that we have adopted is to build

our own user-level process kernel, called Threads. Threads resides within a single host

operating system user process; hence, there are no changes required to the host system.

This technique 1s not a new concept and many such sub-kernels have been built.

7

Using our own threads kernel rather than the host system's is efficient for a variety of

reasons. First, thread creation is fast and simple. This is mainly because a thread does

not contain a large amount of context. Second, all threads operate in a single, shared

address space. This results in efficient interprocess communication since pointers can be

passed between threads, reducing the need to copy data. Also, code can be shared by all

threads. Third, threads scheduling is non-preemptive, resulting in easier and more efficient

concurrency control. Fourth, calls to Threads are efficient since they are simple procedure

calls rather than traps. And finally, context switching is inexpensive since the amount of

threads state is minimal.

Threads communicate using blocking Send/Receive/Reply primitives [7]. Since these

threads share one memory space, no copying of data is done. Concurrency control is pro­

vided both through traditional semaphores and ~ lock manager that supports operations

on shared and exclusive locks.

Two kinds of dynamic memory management are provided by Threads: global mem­

ory and frame-based memory. Global memory is similar to memory obtained by Unix's

malloc() except that requests are rounded up to the nearest "chuck siz~". For each chunk

size, a cache of chunks is maintained so that allocation and deallocation are fast.

In frame-based memory, all memory allocations are associated with a "memory frame".

Frames can be linked together to form a stack, one stack per thread. Frames can be

created, popped, and pushed; allocations are implicitly associated with the top frame of the

requesting thread's stack. The chief advantage of this is that the programmer can explicitly

free all allocations associated with a frame in one operation; a thread's frame stack is

implicitly freed when it exits. Also, frame memory allocation is typically very fast since it

can be obtained from a single global memory chunk simply by advancing a pointer. For

the same reason, deallocation of frame memory is also efficient. This memory management

scheme is particularly useful when decoding ASN .1 data. Such decoding can perform many

memory allocation requests as the internal form of the data structure is constructed. Often,

8

the internal form together with all of its components can be deleted simultaneously. After

a server decodes a request and executes it, for example, the internal form of the request can

be discarded.

Portability is facilitated through the sub-kernel technique because instead of making

system calls to the host kernel directly, applications must call the sub-kernel's versions. As

a result, there is little application code that directly relies on the host operating system.

Hence, porting the application basically amounts to porting Threads, a task that can be

done once for many different OSI applications. Threads has been ported to several different

flavours of Unix as well as several different machine architectures. Early versions have also

been ported to VMS and MS-DOS.

3.2 ASN .1 compiler

A considerable amount of work has been done in implementing ISO BER (Basic Encoding

Rules) and ASN .1 [17, 18, 20, 23]. There are several different ways that this translation

process can occur. For example, the 1984 EAN implementation of the X.400 message

handling system (14] used an internal representation called ENODES. An ENODE is a C

structure that contains the identifier, length, and pointer to the value of the data. Every

data element in represented by an ENODE. If the data element is a constructor (i.e., a

composite data s~ructure), then the pointer is to another ENODE. Using this method, an

APDU (Application Protocol Data Unit) is represented internally by a tree of ENODES.

Although this style of representing an APDU is very general, the syntactic structure of

the data is lost to the application programmer. For example, in ASN.1 a count might be

described as [APPLICATION 1] count INTEGER. This would be represented by an ENODE

indicating the identifier (i.e., [APPLICATION 1] INTEGER), a length, and a pointer to the

count, rather than int count in C or VAR count INTEGER in Pascal. The latter approaches,

which are much more intuitive for the application programmer and more space efficient, are

therefore the preferred way of representing APDUs.

9

The CASNl tool [17] takes as input the ASN.1 description of the APDUs and produces

the equivalent C language data structures. It also produces an encoding function and a

decoding function, also in C, for each data type. As a result, the programmer can use

the data structures directly. To encode an AP'DU, the programmer can simply call the

encoding routine for the "top-level" data element of the APDU. This encoding routine

calls other encoding routines for all ~he other data types in the APDU. When the top­

level routine returns, the APDU is returned in BER transfer syntax ready to be passed to

the presentation layer. Decoding an incoming APDU is very similar. On input, the top­

level decoding routine is called, which calls all other descendant decoding routines. Each

decoding routine is responsible for allocating the associated C data structure and storing

the input value. The top-level decoding routine returns a pointer to the top-level C data

structure. Frame-based memory is used by decoders and encoders so that the constructed

data structures can be allocated and freed efficiently.

Converting ASN .1 types directly into C or Pascal data structures is not without prob­

lems. Difficulties occur in the translation process because ASN .1 contains data types and

facilities not available in these programming languages. Even simple data types such as

INTEGER are problematic since BER does not restrict the size of an integer to the usual 16

or 32 bits.

Two data types that are supported by ASN .1 but which do not exist as built-in types

in C or Pascal are SET OF <type> and SEQUENCE OF <type>. It is therefore necessary to

create user-defined types that match those in ASN .1. Facilities such as OPTIONAL are also

problematic. In both Pascal and C there is no counterpart for indicating whether or not a

variable exists. Fortunately, there is no data type or facility that can not be represented in

C or Pascal, albeit somewhat clumsily at times.

As described in Section 3.4, the object store uses CASNl internally• to write data to

disk in BER format.

10

3.3 Communication service

In order for OSI applications to communicate, mechanisms must be provided for establish­

ing connections and invoking operations. Using Threads and CASNl, DAPE provides the

presentation, session, and transport layers, ACSE (Association Control Service Elements),

and remote operations support for the application programmer. The network layer is as­

sumed to be provided by the host operating system, whether in the system kernel or as a

user process. The communication framework, protocol service, and user interface will be

briefly discussed in this section; more detailed descriptions appear in (18).

The framework provides a set of services specific to protocol implementation. This mod­

ule standardizes communication methods between protocol layers as well as communication

between cooperating threads. This standardization allows relatively simple replacement of

individual protocol layers, greatly simplifies code readability, and provides a set of libraries

that can be reused by each protocol layer.

The communication service is implemented as a group of cooperating threads. The

communication thread runs the protocol state machines and acts on requests from user

threads. This protocol server uses worker threads comprising readers (to read from the

network), writers (to write to the network), and timers (to provide interval timers). Two

forms of communication are employed. Interprocess communication between the protocol

server, its workers, and users is standardized by the framework module. All inter-layer

communication between the protocol layers and the protocol server is event-driven. These

events correspond to protocol state machine events.

The protocol server contains a dispatcher routine that acts as a translator between the

two forms of communication. Workers and users send events to the dispatcher thread using

Threads IPC. The dispatcher delivers the event to the appropriate protocol layer. For

example, the interval timer service uses timer processes that suspend themselves for the

required interval and then send a message to the dispatcher, which then posts an event to

the appropriate protocol layer. Events are delivered to protocol layers in a uniform way,

11

regardless of their origin, simplifying protocol implementation.

The DAPE protocols provide the remote operations service defined by the CCITT stan­

dard X.219 using the X.229 protocol [4, 5]. To support this protocol, the OSI transport,

session, presentation, and association control layers are also provided. The transport layer

can make use of several network services; Sun X.25, UBC X.25, and the ISO TP0 protocol
'

on top of TCP /IP[21) are currently supported. All of these protocol layers run in the same

thread.

Many application threads can exist within a single Threads environment (i.e., a single

Unix process), with each application running as an individual thread. One thread can be

designated as the recipient of all connection requests directed at the Unix process. This

thread may handle a connection itself or transfer the connection to another thread. In

the latter case, the connection would typically be passed to a worker thread, causing the

worker to receive all subsequent operation requests for the association. The worker may

perform incoming requests or create other workers to deal with them, making multiple

concurrent operations over the same association possible. The general design philosophy is

that the application programmer does not have to deal directly with concurrency. Instead,

concurrency is obtained by creating multiple threads, resulting in a simpler interface.

It is possible to set up a server thread on one or both ends of a connection so that

remote operation requests may flow in both directions. Each client and server may have

zero or more connections with application threads in the same or different Unix processes.

It is also possible for multiple threads to share a connection, directing multiple outstanding

requests at the same server.

The user interface makes the runtime communication services available to applications.

It is implemented as an upper-half, which provides access to the ROSE (Remote Operations

Service Elements) and ACSE routines and a way to ~lock until a request is received, and

a lower-half consisting of a state machine. The upper-half comprises stub routines that

are called by the application to marshal requests into the form required by the framework

12

module and forward them to the dispatcher. The lower-half of the user interface runs in

the communication thread.

The communication service has been tested against other ISO protocol implementations

and there are no known interoperation bugs.

3.4 Persistent object store

Many OSI applications require some kind of persistent store. In the case of X.500, each

DSA must store its portion of the DIB. To accommodate these applications, a persistent

object store was created. This is a generalized facility that can be used for many different

applications, not just X.500.

The object store permits an application programmer to create, delete, read, and store

objects within the context of nested atomic transactions. The object store is capable of

operating in a multi-threaded environment. Objects are instances of some programmer

defined type, with each type identified by a unique type number. Each object is assigned

a system-wide unique identifier, the ObjOid. It is certainly possible to store an object's

Obj Did inside another object. Such an ObjOid would act as a kind of pointer to another

object. It is therefore possible to build arbitrarily complex structures of objects.

For each object type, routines are specified to serialize (encode) and deserialize (decode)

the object, and optionally, to generate keys for the object (index). The encode routine

is typically used to flatten a linked list of data structures representing the object into a

contiguous buffer; the decode routine restores the data structure. It is possible, for example,

to use the encoding and decoding functions generated by CASNl. Because the object is

simply being written to disk and not to another open system, however, it is not necessary to

use an internationally standardized encoding. Specialized functions can be used to exploit

the type information to achieve greater efficiency. For example, C-based encoding rules

could be used to increase encoding and decoding speed in exchange for a less space efficient

encoding and loss of portability.

13

The index routine is used to generate a set of keys for a given object. The keys are

used to construct inverted indexes, allowing efficient retrieval of objects containing the key.

As an example of how this might be used, suppose objects of a given type are structured

as attribute-value pairs. If "Colour" is an indexed attribute and if some object has a

value of "Blue" for this attribute, then the indexing routine might generate a key such as

"Colour=Blue" from this object. The system will automatically maintain an index object

that consists of the 0bj0ids of all objects having this key. The precise structure of the key

is up to the indexing routine.

Typically, an object is first created using the system's memory management routines.

Before the object can be stored, ObjNev() must be called. T,4is function is passed the type

of the object and returns a new 0bj0id for subsequent operations. The 0bj0id has the

type information encoded within it. Hence, subsequent operations do not need to pass the

type. The object can then be stored via the ObjSecure() operation, passing the 0bj0id

and a pointer to the "top-level" data structure of the object. The appropriate encoding and

indexing functions are called by 0bjSecure(). To read an object. the 0bjMapO operation

is used. This operation invokes the decoder to build the appropriate C language data

structures and returns the "top-level" structure pointer. The application can then modify

the data structures in memory and call Obj Secure() to replace the copy in the object store.

The Obj Delete() operation is used to remove an object from the object store. Obj Lookup()

is passed an object type and key and returns the set of 0bj0ids associated with the key.

In many applications, including X.500, a single remote operation may result in several

objects being updated, created, or deleted. If the host system crashes while processing

the remote operation, the object store must not be left in an inconsistent state. Also, if

concurrent reading and writing or concurrent update operations are allowed, the object

store must guard against inconsistencies that may result.

To deal with these problems, the object store provides nested atomic transactions [8);

most object store operations are executed in the context of a transaction. The object store

14

takes an optimistic approach to concurrency control. This is appropriate in the context

of the directory service since update transactions are relatively infrequent and concurrent

updates are unlikely. If the system crashes before a top-level transaction commits, the

transaction is implicitly aborted. Likewise, attempting to commit a transaction that would

leave the object store in an inconsistent state (e.g., multiple simultaneous updates) causes

the transaction to be aborted. If the system crashes during a commit, the system completes

the commit when the application is restarted. Transactions also simplify exception handling

since an explicit abort "undoes" a partially completed request that may involve many

objects. This mechanism provides a simple and easily used facility to create fault-tolerant

applications.

The object store uses a database, called tdbm, that is similar to Unix's dbm library.

Tdbm P'rovides nested transactions [13], volatile and persistent databases, support for very

large objects, and stores the database within a single Unix file. More detailed discussions

of the object store and its underlying database can be found in [2, 18].

4 DSA Operation

When the DSA is started, it reads a configuration file. This file tells the DSA what its name

and address are, where the object store is located, and specifies various administrative limits,

such as the time limit for an operation. It is possible to run multiple DSAs on the same

host by having each instance consult a different configuration file on start up.

Next, the ADT (Attribute Definition Table) file is loaded. The ADT describes each

recognized attribute name, giving its syntax type, standard object identifier, and flags for

special handling (e.g., whether the attribute should be indexed).

The DSA proceeds to read the ODT (Object Definition Table) file. The ODT defines, for

each object class, its standard object identifier and the kinds of attributes objects belonging

to the object class are permitted to have.

15

..

The DSA then waits for a DUA or another DSA to bind to it. s1:,arting a new dispatcher

thread to handle the association. After authenticating the requestor. the dispatcher awaits

requests. A new thread is created to execute successive requests. The dispatcher exits when

the association with the requestor is terminated. Figure 4 illustrates this structuring.

5 The Local DIT

The local DIT is built out of object entries written to the object store. Every entry contains

its own Obj Did, distinguished name, RDN. attribute set, and flags indicating if the entry

:s an alias or if it refers to a remote naming context. An entry contains a number of

optional pointers to other entry objects in the DIT: its parent, left-most descendent, and

right sibling . .-\.n entry optionally contains information about each of its children. making

the List operation more efficient since it avoids having to read each child object. Figure 5

shows the ASN .1 definition for an Entry.

The inverted index scheme uses Lookup objects that are transparently maintained by

the system. They consist of a variable length key and a set of Obj □ ids that are associated

with the key . .-\. number of attribute types are currently marked for indexing in the ADT;

organization. common name, surname, title, and e-mail address, for example. The surname

attribute is also marked for indexing based on its Soundex code [11] so that searches can

be conducted without knowing exact spelling. Also. all distinguished names and knowledge

references are indexed .

.-\.11 objects are serialized by the object store using CASNl encoding functions. Origi­

nally these serialization functions were specially coded. Experimentation showed that the

functions generated by CASNl used with the BER library, however, greatly reduced the size

of the database on disk with modest additional computational overhead. Also. automating

the generation of these functions made experimentation with the entry format much easier,

so they replaced the hand-written code.

The local DIT is contained within a single tdbm database, which may either oe persistent

16

• • • • • • • • • • •
Authcnucauon
Server

I
I
I
I • I

I

• • ♦

----•--- means PrcscntalionAssoc.:i:nion

•■••• means ··creale new lhread"

••

• •
I

Figure 4: DSA Process Structuring

17

• •

Entry::= SEQUENCE {
flags [O] BIT STRING {

me

entryAlias(O),
entryRemotePartition(l)} OPTIOl.lL,

[1] ObjOid,
superior
lettDescendant
right Sibling

[2] ObjOid OPTIOl.lL,
[3] ObjOid OPTIOl.lL,
[4] ObjOid OPTIOl.lL,

-- root has no superior

nuie
rdn

[6) Distinguishedlue,
[6) RDI,

attrSet
children

[7) SET OF Attr OPTIOl.lL,
[8) SET OF Child OPTIOl.lL}

Child
child
rdn
flags

.. - SEQUENCE {
[O] ObjOid,
[1] RDN,
[2] BIT STRIIG {

childisAlias(O),
childisRemote(1),
childBasDetectAccess(2)} OPTIONAL}

Figure 5: ASN.1 definition for an Entry

or volatile (completely contained in main memory). Entries returned by remote reads and

searches can be stored in a separate tdbm database of cached objects. For cached entries,

only the distinguished name is indexed.

After an initial object store has been created, either by an initialization program or by

the DSA itself, the DSA can begin to serve clients. A special non-interactive user agent can

be used to load entries into the local DIT. It connects to a specified DSA, reads entries in

text form, and sends appropriate commands to the DSA to add or replace entries.

The OSI directory design has an inadequacy with respect to bulk loading of entries, such

as when initially populating the local portion of the DIT. To guard against inconsistencies

arising because of system crashes, the AddEntry operation must take place within an atomic

transaction in the DSA. There is no means within the X.500 recommendations by which a

user agent can group a series of operations, however, and so each AddEntry must end by ·

a transaction commit. This has to be expensive, since an atomic transaction requires the

18

use of stable storage. Loading could be made more efficient if there was a mechanism for a

user agent to start, commit, and abort transactions. Of course, more efficient loading can

be achieved by non-standardized means.

6 The Distributed Search Algorithm

The directory service provides a Search operation that asks the directory to return all entries

(starting at some distinguished name) or only those that satisfy a boolean filter expression

that makes assertions about the presence or values of attributes. ivI uch of the design of the

EA~ DSA is geared toward making Search efficient.

The EAN DSA 's Search operation can take advantage of inverted indexes and its multi­

threaded environment. When searching through a local portion of the DIT using a common

subset of possible filter expressions, the inverted indexes can be used to greatly decrease the

number of objects that are read from the object store. If, in the process of a Search, remote

references are encountered, new threads can be created to continue the Search in parallel.

\Vhen all threads complete, the results are combined and returned to the requestor.

Heuristics can sometimes be used when a Search finds that it must continue at another

DSA. The Search operation can be very slow if it involves contacting many remote DSAs,

so it is desirable to try to "prune" naming contexts from the search tree. We have looked at

two heuristics, one based on disseminating attribute information and the other on caching

information concerning searches that do not return results.

In the former method, DSAs maintain an attribute bitmap for some attribute types.

When a new entry is added, each attribute value of every designated attribute type present

is hashed to compute an index into the attribute bitmap for the attribute type and the

corresponding bit is set[l]. These attribute bitmaps are disseminated to other DSAs and

associated with the access point of the bitmap's creator. When a Search reaches an ac­

cess point, the filter expression is evaluated against the attribute bitmaps to determine

whether an entry exists that satisfies the filter. The filter can involve tests for equality (e.g.,

19

"Surname•smi th") or approximate (Soundex) match (e.g., "Surname approx smythe"); the

attribute bitmaps are not helpful for some filters, but simple equality tests appear to be used

most often. A hashing collision can cause a naming context to be examined unnecessarily.

In the other method, the first time a Search that is using a filter encounters a particular

access point, it associates a bitmap with the remote DSA. Whenever a Search fails because

no entries satisfying the filter could be found, the filter is hashed to compute an index into

the bitmap and the corresponding bit is set. When a later Search reaches the same access

point, the filter is again hashed and if the appropriate bit is set, the access point need not

be followed. To keep the cached information from becoming ineffective, a set of bitmaps

can be kept for the access point with each bitmap representing a different time period. Old

bitmaps can eventually be discarded, eliminating the least recently used information. This

heuristic may occasionally fail because of hashing collisions; a user may wish to retry the

search with caching disabled (perhaps causing the DSA to revise its bitmaps).

Operations, including Search, may return a set of cross references which are cached by

the DSA. Subsequent name resolution may be able to take advantage of the cross references

by starting its resolution "closer" to the entry in question.4 In the case of Search, each

cross reference can optionally include its filter and attribute bitmaps, thereby propagating

the DSA's search history and attribute information. Should a DSA obtain a filter bitmap

for an access point for which it already has a filter bitmap, the two bitmaps can be logically

ORed togeth~r. By associating a time stamp with each bitmap, it is possible to avoid

retransmitting bitmaps that have not changed.

The EAN DSA's Search algorithm is outlined below. Details, such as abandoning remote

searches and error handling, have been omitted.

I• Search the DIT starting at the given entry and applying the given
• search tilter. •I

Search(Entry, Filter)
{

4 lt is possible for a new cross reference to effectively cause' a Search to bypass a useful bitmap associated
with a superior access point. A more sophisticated scheme might take this into account.

20

}

it Entry is a remote naming conte%t then
Une%plored = [Entry->DSA, Entry->nuae]
return remoteSearch(Une:icplored, Filter)

else
return localSearch(Entry, Filter)

end

/• Conduct a remote search at each access point in the list o1 une:icplored
• DSAs. •I

remoteSearch(Une%plored, Filter)
{

}

tor each [DSA,lame] in Une%plored
/• Check tor previous unsuccessful search first. •I
it prune!ccessPoint(DSA, Filter)= False then

end

it muimum concurrency level has been reached tor this search then
wait tor a remoteSearchThread to finish
collect and merge its results

end

create remoteSearchThread(DSA, lame, Filter) process
end

while there is an active remoteSearchThread
wait tor a remoteSearchThread to finish
collect and merge its results and update tilter bitmap

end

I• The remote search process tries access points tor the DSA until
• a connection is established. •/

Process
remoteSearchThread(DSA, Name, Filter)
{

}

tor each access point .lP tor DSA

end

it bind to AP is successful then
invoke Search(lame, Filter) at AP
return result and e%it

end

/• Search a portion ot a locally held naming conte%t.
• A tilter is simple it it consists o1 a single item or a sequence

21

• ot items arbitrarily combined by logical ORs and/or AHDs. Also, only
• equality matches or approximate matches are allowed and all attributes
• must be appropriately indexed. •/

localSearch(Entry, Filter)
{

}

it Filter is simple then

else

lookupList = localLookup(Filter)
for each ObjOid in the lookupList

E = ReadEntry(ObjOid)

end

it Eis belov Entry in the DIT
append E to the results

end

let Unexplored be the set ot all remote naming contexts that are
below Entry in the DIT.

return traverseSubtree(Entry)
end

if IUnexploredl > 0 then
remoteSearch(Unexplored, Filter)

end

/• Recursively evaluate the simple Filter expression, looking up
• each component ot the expression using the inverted indexes and
• returning the ObjOids ot all entries satisfying the expression.
• For example, it Filter="Surname=lieuteld or Title=professor",
• one lookup will be done to locate all entries with the key
• "Surname=lieuteld" and another tor "Title=protessor", and the
• resulting lists ot ObjOids vill be the union of these tvo. •I

localLookup(Filter)
{
}

I• Conduct a recursive, depth-tirst search starting at Entry
• reading each subordinate entry, applying Filter to each entry,
• and returning a list ot successful matches. •/

traveraeSubtree(Entry, Filter)
{
}

22

7 Distributed Name Resolution

Most of the X.500 directory operations take the name of an entry as an argument. The task

of name resolution is to determine if a purported name refers to a locally held object, an

object in another DSA's naming context, or no object at all. The EAN DSA implements

both the standardized name resolution algorithm and a resolution algorithm based on de­

scriptive names [15]. A third method called ''typeless names" has been investigated. Each

method will be described in turn.

7 .1 Distinguished names

A distributed name resolution algorithm for distinguished names is provided by the X.500

recommendations. The EAN DSA takes advantage of caching (when allowed by the re­

questor) and makes extensive use of inverted indexes to implement the algorithm efficiently.,

When resolving a purported name, a check is first made to see if the distinguished name

has been cached as invalid. Users often misspell names (e.g., when trying to Read a specific

entry) and contacting a remote DSA is relatively slow. If the DSA finds that a remote

distinguished name does not exist, it caches the fact so that a subsequent request involving

the same name can immediately be rejected. The cache is periodically cleaned up in case

old negative results become valid. The directory service allows the user to indicate that

caching not be used in this and other circumstances.

If a name is not known to be invalid, the next step is to find the "closest" naming

context. This is done by a combination of lookups on the distinguished name and all known

naming contexts and cross references. If the entry is local, it is read to see if it is a remote

naming context. Only four object store operations are typically required. If it is determined

that the object is local but could not be looked up, a tree walk is performed. Because of

the way entries are currently indexed, this should only happen if the object does not exist

and is not strictly necessary.

23

If the object is determined to be remote, both name resolution and the requested oper­

ation are continued at the remote DSA in a process called chaining.

As a special case, if the operation is a Read, an Obj Lookup() can be done to see if the

object has been cached. The distinguished name of the object is used as the key.

A difficulty with distinguished names is that the user must know the DIT hierarchy

from the root down to the entry of interest. The Search operation can be used to determine

the distinguished name of an entry, however, given a starting point in the DIT and an

appropriate filter to reduce the number of entries returned. The EAN DSA 's use of indexing

makes this operation very fast when the entry is stored locally. A user may set a service

control to limit the search to locally held naming contexts, so other DSAs can be pruned

from the search. Returning to our example, a search under { C=CA} with a filter of 'CN=Peter

Smith, would return Peter Smith's entry, including its distinguished name.

The EAN DSA 's algorithm is outlined below.

DistinguishedResolve(lame)
{

}

repeat /• to resolve an alias•/

end

let ObjOid be the entry having the closest remote naming context for
lame or the local entry itself.

if ObjOid is an entry for a remote naming context at DSA then
result= invoke Distinguished.Resolve(lame) at DSA
return result

end

Entry= locallameResolve(lame, ObjOid)
it Entry is not an alias return(Entry)
lame= DistinguishedlaaeOf(Entry)

locallameResolve(lame, ObjOid)
{

repeat
Entry= ReadEntry(ObjOid)

24

end
}

it Entry is remote naming context return(Ent:i;-y)
it Entry is an alias then

end

it alias points to another alias return(Error)
deretEntry = DereterenceAlias(ObjOid)
return(deretEntry)

it all RDls in laae match those in Entry return(Entry)
let lue be the distinguished nue ot an i.aaediate subordinate

entry that matches the next RDI in the purported name.
Entry= Lookuplue(laae)

7 .2 Descriptive names

With distinguished names, the user must know the DIT hierarchy from the root down to the

entry of interest. Any change to the hierarchy may result in this path name changing. Also,

for reasons of autonomy and security, an organization might not want to have its corporate

structure revealed. Descriptive names provide a solution to these problems since a user need

only provide enough attributes of the desired entry to identify it unambiguously. Because

descriptive names do not reflect the name hierarchy, they are more convenient for users

than distinguished names. It is not necessary to populate the DIT with a large number of

alias entries to produce reasonable names for objects since there can be many descriptive

names for an object. It is also not necessary to restrict the design of the DIT hierarchy for

reasons of simplicity or security.

Descriptive names are an unordered set of AVAs. In general, only as many AVAs are

required as are necessary to uniquely identify the object. One possible descriptive name

for Peter Smith is {C•CA, Drg•UBC, CN•Peter Smith}. In this case, it is unnecessary to

include the organizational units "Science" and "CS". If there is more than one object with

attribute I CN .. Peter Smith' at UBC, then we would have to include more information.

Any attribute from the desired entry or any superior can be added. The attributes are not

restricted to those used in an RDN; any attribute type designated as a naming attribute

can be used. For example, they may include a telephone number or e-mail address.

25

Like the Search operation previously described. descriptive names can be used to provide

inverse name resolution. The descriptive name can be used to obtain the distinguished name

for the entry.

In exchange for the flexibility and convenience of descriptive names, additional compu­

tational effort is required for name resolution. The algorithm for descriptive names is given

in (15].

7 .3 Typeless names

We have investigated another non-standardized means of making naming more convenient.

A typeless name is a hierarchical name that allows the attribute type specification from

each RDN to be omitted and restricts each of these name components to a single attribute

value. In practice, most RDNs consist of a single AVA, so few names will not be expressible.

The typeless name will have as many RDNs as the distinguished name for the same object.

For example, {CA, UBC, CS, 'Peter Smith'} might be used to identify "Peter Smith".

Typeless names are implemented by assigning a special wild card attribute type to those

RDNs for which the user has omitted the attribute type. As long as the given attribute

value uniquely determines an entry at the corresponding level of the DIT, a distinguished

name can be constructed simply by replacing the wild card RDN with the true RDN for

the entry. Once again inverted indexes allow this to be done efficiently since a single object

store ObjLookup() can determine the mapping of an attribute value to an RDN.

8 DSA Security

There are many aspects to the problem of providing security for the DSA. A DSA must be

able to authenticate or verify the identity of a user. The EAN DSA implements X.500's

simple authentication scheme, requiring a user to present a distinguished name and its

corresponding password. As part of DIT initialization, an entry is created for the adminis­

trator and a password AVA is associated with it. A user must present the administrator's

26

distinguished name and password before maintenance commands can be issued. Although

digital signatures have been integrated into the X.500 protocol to guard against tampering

with a request or result, they are optional and have not been implemented. Access control

is left as a local matter by X.500. The EAN DSA allows each entry to have an optional

access control list (ACL) attribute. Access control lists are the subject of the next section.

8.1 ACLs

The philosophy behind the design of the EAN DSA 's ACLs is that users will want to he able

to modify their own entries in the directory and should he responsible for doing so. I\fost

attributes in these entries will he publicly readable. The DSA administrator is responsible

for creating and updating entries that do not represent persons. Maintenance of an entry

can be delegated by setting the ACLs to allow others to modify the entry. Figure 6 gives

the ASN.l description of the ACL.

If the distinguished name of the DUA (i.e., the authenticated name provided by the

user) is equal to the distinguished name of the entry, then the user is considered to be the

owner of the entry. The owner of an entry always has all permissions and does not need to

set ACLs to specify this.

An ACL has three components: one for the ACL itself, one for the ACL password, and

one for the rest of the entry. By default, the ACL's "self" component gives no permissions.

the password attribute grants detectAccess and compareAccess permissions. and entries

are given public detectAccess, readAccess, and compareAccess. These can be changed

later by those with permission to write the ACL attribute.

Inheritance is not used; i.e., the ACLs of its superiors are not significant when access

rights are checked for an entry. All the permis_sions for an entry exist with the ACL at­

tributes for that entry. This decision was made mainly for performance reasons, as searching

up the tree for all applicable ACLs would be costly.

27

ACL ATTRIBUTE
WITH ATTRIBUTE-SYNTAX ACLEntry
MATCHES FOR EQUALITY
· ·= {attributeType 5} -- An EAN object identifier

ACL · ·= SET OF ACLEntry

ACLEntry ::= SEQUENCE {
name [OJ DistinguishedName,
attrType AttrType OPTIONAL,
access [1] Access}

Access ::= BIT STRING {
detectAccess(O),
compareAccess(l),
read.Access(2),
modifyAccess(3),
deleteAccess(4),
addAccess(S)}

entry and attributes can be listed
presented value can be compared against entry
attributes can be read
attributes can be updated
entry or attributes can be removed
can add child entries

Figure 6: ASN.1 Definition for the A.CL

28

9 Maintenance

Like access control, directory system maintenance operations are outside the scope of the

X.500 recommendations. New remote operations were introduced to the EAN DSA to in­

spect and alter the DSA 's cache, knowledge references, and other state information. Only a

properly authenticated user may execute the DSA maintenance operations. The command­

line oriented DUA provides a way for an administrator to connect to any EAN DSA and

issue maintenance-related commands.

Several operations are provided to administer the cache. The contents of the cache can

be listed and the entire cache can be cleared. Another set of operations is available to

maintain naming contexts. A context can be verified , removed , or added. The set of known

contexts can be listed. Known cross references can be listed, removed, and verified. An

operation is provided to list information about all active associations. The EAN DSA 's

maintenance operations are summarized in Figure 7.

A user agent is available that can connect to any EAN DSA and dump its local DIT

in text format. This is the same format used by the loading program, so it is easy to do

remote backups and restorations.

10 Performance

In this section, the performance of the EAN DSA is examined and some representative

execution times are presented for a set of common operations.5 The first experiment looked

at a set of operations conducted with the DIT on disk and again totally in memory. The

second experiment investigated the scalability of the DSA by more than doubling the size

of the DIT. Protocol efficiency was the subject of the last experiment. All experiments were

done on a Sun Sparcstation 1 with 24Mb of memory.

5 These are process virtual times as reported by getitiaerO, accounting only for time when the user
process is executing. An average of several runs is reported. The in terva.l timer is not particularly accurate;
the maximum variation for longer runs of the same configuration was sometimes as much as 10%.

29

Operation Name Function

Add Context Add a new naming context.
List Context List all naming contexts.
Check Context Validate one or all naming contexts by resolving them.
RemoveContext Remove a naming context.
AddCrossR.ef Add a new cross reference.
List Cross Ref List all cross references.
RemoveCrossRef Remove a cross reference.
Check Cross Ref Validate one or all cross references by resolving them.
List Cache List the distinguished names of all cached entries.
ClearCache Remove all cached entries.
Status List information about each current associa tion.

Figure i: Remote Maintenance Operations

In the first experiment. times are displayed for a disk-based configuration and a memory­

based configuration, both having the same 5,900 entry OIT with almost all of the entries

under the RON "0rg=ubc". Immediately beneath 0rg=ubc was the RON "0U=cs", which

had 1 TO entries that ranged in size from about 600 bytes to 13Kb. About 60 of these entries

rnntain photos. Yarying in size from 2Kb to 12Kb. The entry for OV=cs itself was almost

t'.:!I..;:b.

The measurements are presented in four categories. The invoke comoonent coYers the

-ime from just before the DSA decodes the remote operation request To invoke the operation

here. Read. List. or Search) up to and including the time for the DSA to Transmit the replyY

:iesoiution co\·ers the time to perform distinguisheci name resolution :or me operation. The

time to execute the requested operation proper and construct the resuit (which may be one

or more entries or an error report) falls under Operation and the Result category covers

~he time to encode the result and submit it as the reply to the remote operation request.

The Invoke time includes the Resolution, Operation, and Result times. The measurements

nppear in Figure 8. When considering these results. it should be noted that the DSA is

~In all experiments. the time to decode the remote operation request was less than the resoiution of the
:1ock.

30

;'production quality" software, complete with extensive error checking and event logging;

little time has been spent fine tuning the database software. The database layer (beneath

the object store) takes roughly 0.01 to 0.02 seconds to retrieve an item from disk.

Command Invoke Resolution Operation Result
List uu=ca

0.35 I 0.35 0.22 I 0.21 0.02 I 0.02 0.11 I (170 entries)
;:,earch under
Org=ca with no fil-
ter,
returning a.11170 en- 11.71 I 10.92 0.22 I 0.25 8.47 I 7.54 3.01 I
tries
(includes some pho-
tos).
:,earch under
Org=ubc

2.52 I 2.35 0.22 I 0.23 1.92 I 1.75 0.38 I for Surname=smi th,
returnin.e; 43 entries.
!Search under
Org=ubc
for Cl='gerald 0.50 I 0.51 0.22 I 0.22 0.27 I 0.28 0.01 I
neu:feld',
returnini:r 1 entrv.
!Search under
Org=ubc
for CN=bogus, 0.43 I 0.48 0.20 I 0.23 0.22 I 0.25 0.01 I
returning no
.o.ni-~;.,.,

K.ead OU=cs,
CN='gerald

0.11 I 0.10 0.04 I 0.05 0.03 I 0.03 0.02 I neu:feld',
returnin2: one entrv.
Kead OU=cs,
CN=bogus, 1.16 I 0.97 1.10 I 0.92 - I - 0.01 I returning no
.o.nt~;pc,

Figure 8: Times for Some Common Operations (disk/memory, in secs)

Perhaps surprisingly, the results indicate that keeping the database in memory gives little

or no performance improvement. This is largely because the database layer and object store

necessarily (because of their support for transactions) perform caching.7 Also, the database

7 There is currently no caching outside of the transaction mechanism; the second of two sequential oper-

31

0.11

3.13

0.37

0.01

0.01

0.02

0.01

layer is based on an external hashing method that can typically access an entry in one or

two Unix read() system calls.

The cost of reading and decoding a large non-leaf entry can be seen when the time for

name resolution of Org•ubc is compared to that of 'CN•gerald neufeld 1 • The Org•ubc

entry is about 16.6Kb when encoded and about 50Kb when decoded into its C repre­

sentation. The 'CN•gerald neufeld' entry is 582 bytes when encoded a.nd 3.4Kb when

decoded. Non-leaf entries are often large because they can contain information about their

child entries, offering a substantial speed improvement to the List operation. This tradeoff

is expected to be worthwhile since we anticipate that users will often interact with the DSA

by browsing through the DIT. making heavy use of the List operation. This feature is a

configuration option of the DSA and can be adjusted or disabled.

For operations that return a large result (such as Search), encoding the result can be seen

to make up a large proportion of the total cost. It is clear that substantial improvements

in performance could be made if the encoding and decoding of BER data could be speeded

up. Our current work on this problem is discussed in Section 11.

After the experiments described previously were run. an additional 16.000 entries (roughly

6iv1b in external text form) from the University of Michigan were added to the disk-based

configuration to examine the scalability of the DSA. In addition to repeating the previous

experiments. some new queries covering the entire local DIT were performed. These results

appear in Figure 9.

With one exception. there was no significant difference in execution times when the op­

erations were repeated on the larger DIT. The search for Surname•smith was slower because

each of the 133 matches had to be examined to select those under Org=ubc. A refinement

to the indexing scheme has been designed that ~ill largely eliminate this additional time

cost.

As a means of testing the efficiency of the protocol stack. an experimental "backdoor"

a.tions will not benefit from any database-ievel caching.

32

Command 1nvoke Resolution Operation Result
List DU=cs

0.42 0.24 0.06 0.12
(170 entries) .
:search under Drg=cs with no tilter,
returning all 170 entries (includes 11.74 0.21 8.51 3.01
photos).
::>earch uncter Drg=ubc for
Surname=smi th, 5.26 0.22 4.69 0.36
returnin.e: 43 entries.
:,earch uncter Drg=ubc tor
Cl='gerald neufeld', 0.50 0.22 0.26 0.01
returnin.e; 1 entrv.
Search under Drg=ubc for C.N=bogus,

0.47 0.22 0.23 0.01
returnin.e; no entries.
H.ead under OU=cs, Cl='gerald
neufeld', 0.10 0.04 0.03 0.02
returnin.e; one entrv.
neact uncter OU=cs tor Cl=bogus,

1.21 1.17 - 0.00
returnin.e: no entries.
Search under Drg=ubc and
Drg=umich

0.68 0.04 0.62 0.02
for Cl='gerald neufeld', return-
in.e: 1 entrv.
::>earch under Drg=ubc and
Drg=umich 0.59 0.04 0.56 0.01
for Cl=bons, returnin.e; no entries.
:search under Drg=ubc and
Org=umich 6.57 0.03 5.35 1.19
for Surname=smi th, returning 133
<>nl-,-;,.c,.

H.ead Org=umich, OU=infotech,
0.10 0.04 0.03 0.01 CN= 'rose lee', returnin.e; 1 entrv.

Figure 9: Results of the Scalability Tests (secs)

33

to the DSA was added that bypasses all protocol layers up to and including the presentation

layer, remote operations, and authentication. A thread within the DSA waits for a Read

request to arrive in a UDP packet and, if the given name is resolved to a local entry, the

entire contents of the entry are returned in ASCII format by a single UDP packet. More

elaborate versions of this idea have been proposed as a means of providing directory access

to systems that wish to use Internet protocols instead of the OSI protocol stack [9, 22].

The results of an experiment to investigate protocol efficiency are presented in Figure 10.

The command-line oriented DUA is the first one listed. It establishes an association with

the DSA, invokes a Read operation, terminates the association, and displays the result. The

times for the second DUA (the interactive DUA) do not include association establishment

or termination times. Both of these DUAs use the OSI protocol stack, with the ISO TP0

protocol on top of TCP /IP. The third DUA uses the simple UDP interface to the DSA. The

elapsed virtual time spent in the DSA handling the request (exclusive of Bind and Unbind

times) and the elapsed real time for the DUA to show the result are reported: The figures

are for the best times obtained for a series of runs of each configuration. In each case, the

same entry in the original DIT was read.

Command Time in DSA DUA Elapsed Time
1. Bind/Read/Unbind 0.10 I 0.08 0.9 I 0.9
2. Read (no bind) 0.09 I 0.07 0.28 I 0.25
3. Datagram/ ASCIJ 0.07 I 0.05 0.13 I 0.11

Figure 10: Elapsed times for a Read operation (disk/memory, in secs)

Although all of the elapsed times are under one second, the results demonstrate the

relatively high cost of connection-oriented communication. Quite early on it was suspected

that typical "heavy weight" transport layer connection management would not be suitable

for this common form of interaction with a DSA. The RRP protocol [16] was designed to

lower the connection establishment component of these interactions. Evaluation of RRP

and other means of lowering the response time of simple queries is ongoing.

34

11 Conclusions

The directory system has proved to be a valuable testbed for the design and evaluation

of a wide range of software components, including the Threads kernel, object store, and

communication protocols. Also, considerable experience has been gained in the design of

multi-process structured applications. Much of this work will continue and be incorporated

into new distributed applications.

Figure 11 shows the approximate breakdown of lines of C code (including header files

and comments) in the directory system. The figure for the DSA programs was obtained

from the top-level code for the DSA and associated maintenance programs. The executable

DSA consists of the main program, the DSA libraries, common libraries, object store, tdbm

database, Threads, communication service, ASN.1 library, and CASNl output (i.e., the

encoders, decoders, and data structures). Common libraries are used by both the DSA

and DUAs; they contain code for handling attributes, loading configuration files, activity

logging, etc. The communication service implements network interfaces through to the

presentation layer (except for ASN .1 which is accounted for separately).

Module Lines
DSA programs 3,000
DSA libraries 12,900
Common libraries 14,100
DUA 7,200
XDUA 17.000
0 b ject store 3,500
Tdbm database 6,700
Threads 4,000
Communication service 15,000
ASN.1 library 4,100
CASNl output 15,000

Figure 11: Code size breakdown

The EAN directory system has successfully interoperated with the QUIPU implemen-

35

tation [10]. as well as DSAs implemented by Retix. Nixdorf. and ICL. The DSA has been

tested by loading a DIT with over 31,000 entries, with most entries having at least 6 indexing

keys.

As can be seen by the performance figures, one of the major costs is encoding and

decoding the requests and responses. This is particularly significant as the size of the data

increases. In response, we have initiated a project to determine more efficient algorithms for

encoding and decoding as well as implementing new encoding rules such as Packed Encoding

Rules, light-weight encoding rules, and encoding rules that assume a homogeneous language

environment.

References

(1) J. Bentley. Programming Perls, Addison-Wesley, April 1986.

[2) B. Brachman and G. Neufeld. "TDBM: The Transactional Database", in preparation.

[3) l\.L Thompson. D. Pianka. and A. Murdock. National Library of Canada Directory

Advisory Group Pilot Project Final Report. Sept. 27. 1991.

[4] CCITT. "Draft Recommendation X.219: Remote Operations: Model. Notation and

Service Definition", Nov. 1987.

[.5) CCITT. "Draft Recommendation X.229: Remote Operations: Protocol Specification".

Nov. 1987.

(6] CCITT. ''Recommendation X.500: The Directory - Overview of Concepts, .Models and

Services", Dec. 1988.

[7] D. Cheriton. "The V Kernel: A Software Base for Distributed Systems", IEEE Soft­

ware, Vol. 1, No. 2, Apr. 1984, pp. 19-42.

(8] R. Gruber. "Optimistic Co_ncurrency Control for Nested Distributed Transactions''.

~IIT /LCS/TR-453. June 1989.

36

(9) T. Howes, M. Smith, and B. Beecher. "RFC 1249: DIXIE", USC Information Sciences

Institute, Aug. 1991.

[10] S. Kille. "The Design of QUIPU", Version 2, Research Note RN /89/19, Dept. of Com­

puter Science, University College London, Mar. 1988,

[11] D. Knuth. The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison­

Wesley, 1973, pp. 391-392.

(12] P. Mockapetris. "RFC 1035: Domain Names - Implementation and Specification",

USC Information Sciences Institute, Nov. 1987.

(13] J. Moss. Nested Transactions: An Approach to Reliable Distributed Computing, MIT

Press, 1985.

[14] G. Neufeld, J. Demeo, B. Hilpert, and R. Sample. "EAN: An .X.400 message system",

Proc. of IFIP Computer Message System '85, Elsevier Science Publishers, B. U. North­

Holland, 1986.

[15] G. Neufeld. "Descriptive Names in X.500", Proc. ACM SIG COMM '89, (Computer

Communication Review, Vol. 19, No. 4), Sept. 1989, pp. 64-71.

[16] G. Neufeld and M. Goldberg. "A Request/Response Protocol for ISO Remote Opera­

tions", Proc. TEN COM '90, Hong Kong, Sept. 1990.

[17] G. Neufeld and Y. Yang. "The Design and Implementation of an ASN .1 to C Compiler",

IEEE Trans. on Software Engineering, Vol. 16, No. 10, Oct. 1990, pp. 1209-1220.

[18] G. Neufeld, M. Goldberg, and B. Brachman. "The UBC OSI Distributed Application

Programming Environment - User Manual", Technical Report 90-37, Department of

Computer Science, University of British Columbia, Jan. 1991.

[19] D. Oppen and Y. Dalal. "The Clearinghouse: A Decentralized Agent for Locating

Named Objects in a Distributed Environment", Technical Report OPD-T8103, Xerox

Corporation, Palo Alto, CA, Oct. 1981.

37

[20} A. Pope. "Encoding CCITT X.409 Presentation Transfer Syntax" . .-!CA.f Computer

Communication Review, Vol. 14, No. 4, Oct. 1984, pp. 4-10.

[21] M. Rose a.nd Dwight Cass. "RFC 1006: ISO Transport Service on top of the TCP",

Version 3, USC Information Sciences Institute, May 1987.

[22] M. Rose. "RFC 1202: Directory Assistance Service", USC Information Sciences Insti­

tute, Feb. 1991.

. [23] M. Rose., J . Onions, and C. Robbins. The ISO Development Environment: User's

:\fanual, Volume 1: Application Services. Version 7.0. Sept. 1991.

38

