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Abstract 
This paper reports on an IRIS project of reconstructing surface 

height from gradient. The coupled depth/slope model developed by 
J. G. Harris has been used and augmented with natural boundary 
conditions. Experiments have been conducted with emphasis on how 
to deal with uncertainties about boundary values. Experiments have 
shown that the reconstructed surfaces are confined to the original 
shapes if accurate boundary values are given. The algorithm fails to 
produce correct shapes when inaccurate boundary values are used. 
Natural boundary conditions are necessary conditions for the problem 
of variational calculus to be solved. Experiments have shown that 
natural boundary conditions can be relied upon when no estimations 
of boundary values can be made, except on occluding boundaries. 
When relative boundary values of occluding boundaries can be as­
sumed, good reconstruction results can be obtained. 





1 Introduction 

This paper reports on an IRIS project of reconstructing surface height from 
gradient. The coupled depth/ slope model developed by Harris [2] has been 
used and augmented with natural boundary conditions. Experiments have 
been conducted with emphasis on how to deal with uncertainties about 
boundary values. 

Section 2 reviews the coupled depth/ slope model. Section 3 develops the 
natural boundary conditions for the coupled depth/slope model. Section 4 
develops an iterating scheme and an algorithm based on both the coupled 
depth/slope model and the natural boundary conditions. Section 5 describes 
the design of various experiments on the algorithm and analyze the experi­
mental results. 

Throughout this paper z denotes surface height, z = z(x, y), and (p, q) 
denotes surface gradient. The gradients of surfaces are obtained by the pho­
tometric stereo method of Woodham [6]. The plane of the paper denotes the 
xy plane with x axis pointing to the left and y axis pointing downwards, and 
z axis pointing to us perpendicular to the xy pane. 

2 The Coupled Depth/Slope Model 

The problem that Harris [2] addresses is to reconstruct a surface from sparse 
sensory data. Harris built his coupled depth/slope model as a network of 
ideal subtractor elements connected by two planes of resistor meshes. The 
power dissipated in the total network is found to be 

E - j j [(zx - p)2 + (zy - q) 2 + p; + P! + q; + q~] dxdy 

j j F(x,y,z,zx,zy,P,Px,Py,q,qx,qy)dxdy (1) 

Maxwell's minimum heat theorem states that the distribution of currents and 
voltages in a circuit is such that the total power dissipated as heat is mini­
mized. Thus the problem becomes a problem of the calculus of variations. 
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The Euler-Lagrange equations for (1) are (see Courant-Hilbert (1] page 
192) 

l::,. {) {) 

- [F]z = OXFz,, + {)yFzy - Fz = 0, 

l::,. {) {) 

- [F]p = OXFP:r: + {)yFPy - Fp = 0, 

l::,. {) {) 

- [F]q = OXFq:,; + {)yFqy - Fq = 0. 

Calculating Fz, Fz:r:, and Fzy, we have 

Substituting them into [F]z, we get a differential equation 

Similar substitutions in [F]p and [F]g result in the following equations 

.D..p = -(zx - p) , .D..q = -(z11 - q) . 

Thus Harris got his system of coupled differential equations 

.D..z - Px + qy, 

.D..p - p-Zx' 

.D..q - q- Zy. 

3 Natural Boundary Conditions 

(2) 
(3) 

(4) 

The functions to be determined by the differential equations in the previous 
section ar postulated to assume preacribed values at the boundary of the 
region of in Legratjon. If no boundary conditions are prescribed for the un­
known functions in a fixed basic region, we speak of free boundary values. 
Natural bounda'l'y conditions for free boundaries are necessary conditions, in 
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addition to the Euler equations, for the variation to vanish. The natural 
boundary conditions for (1) are (see Courant-Hilbert [1] page 209) 

dy dx 
Fz:s: ds - Fzy ds = 0 ' 

dy dx 
FP"' ds - FPIJ ds = O ' 

dy dx 
Fq"' ds - Fq" ds = O ' 

on the boundary of the region whose arc length is denoted bys. Calculating 
Fz:s:, Fz

11
, and so on, we have 

Since (*, -~;) is a normal to the boundary, the natural boundary condi­
tions state that the normal derivative of the gradient is zero and the normal 
derivative of the height has to match the slope in the normal direction com­
puted from the gradient (Horn [3) page 29). Let n be a normal direction to 
the boundary, the natural boundary conditions can be represented as 

az on = ((p, q), n) ' 

ap = o 
an ' 
aq = o an . 

4 Iterating Scheme and Algorithm 

(5) 

(6) 

(7) 

The xy coordinate system on which our experiments are being conducted 
is shown in Figure 1, where the relationship between the data array and 
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Figure 1: Coordinate system and data array. 

the coordinate system is shown. It may look confusing because j increases 
as x decreases. But it does not affect any part of the theory developed in 
previous sections. It only affects the appearance of the formula of finite 
difference approximations of the derivatives. So we only need to remember 
this relation when we use finite differences. 

The finite difference approximations we use for the derivatives in differ­
ential equations (2), (3), and ( 4) are 

~z - Zi+Ij + Zi-Ij + Zij+I + Zjj-1 - 4Zij , 

~p - Pi+Ij + Pi-lj + Pij+I + Pij-1 - 4pij ' 

~q - qi+Ij + qi-lj + qij+I + qij-1 - 4qij , 

Zx z.. 1 - z · · (forward-difference) lJ- lJ l 

Zy - Zi+Ii - Zij (forward-difference) , 

Px Pii - Pii+I (backward-difference) , 

qy qii - qi-Ij (backward-difference) . 

Substituting them into differential equations (2), (3), and ( 4) and rearranging 
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the terms, the following discrete equations are obtained: 

1 

4 (zi+tj + Zi-lj + Zij+1 + Zij-1 + Pii+t + qi-lj - Pii - qij) (8) Zij 

1 
5 (Pi+tj + Pi-1j + Pii+1 + Pij-1 + Zij-1 - Zij) ' (9) Pii 

1 

5 (qi+tj + qi-lj + qij+1 + qij-1 + Zi+tj - Zij) , (10) qij -

A direct application of Jacobi iterative scheme on these equations is 
proved by Harris not to converge. If we add more stability to the iteration 
as 

the iteration converges. 

(12) 

(13) 

To get the iterating formula on the boundary using the natural boundary 
conditions, let ( i, j) be a point on the boundary, ( ii, jj) be the point inside the 
region such that the direction from (ii,jj) to (i,j) is closest to the outward 
normal direction n,j at ( i, j). Then substituting the derivatives in equations 
(5), (6), and (7) by their finite difference approximations, and rearranging 
the terms, the following iterating scheme for z, p, and q on the boundary of 
the region are obtained: 

ztii + ((P7j, qfj), nii) , 
k 

Piiii , 
k 

qiijj . 

(14) 

(15) 

(16) 

Employing the just mentioned iterating scheme and formula, we have the 
following algorithm. 
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Algorithm 

1. Input P?j, q~, and z?j• Let k = O, I< be the maximal number of itera­
tions. 

2. For each (i,j), if (i,j) is inside the region, set zf/1 according to (11); 
if (i,j) is on the boundary of the region, set zf/1 according to (14). 

3. For each (i,j), if (i,j) is inside the region, set p7f1 and qf/1 according 
to (12) and (13); if (i,j) is on the boundary of the region, set p7f1 and 
qf/1 according to (15) and (16). 

4. If k > I<, or the difference between zk and zk-l is small, then output 
k k d k d 't z , p , an q , an qm . 

5. Else, let k = k + 1, go to step 2. 

5 Experimentations 

The objects used in our experiments are a set of vases. We are given a mask 
array, called s-array, indicating where the interested region is. We are also 
given a pair of arrays, p-array and q-array, holding the gradient of the surface 
obtained by the photometric stereo method of Woodham [6). 

Recall that the coupled depth/slope model was designed for reconstruct­
ing surface from sparse data. Here, the gradient we have is dense and accu­
rate, i.e., on almost every grid the gradient is accurate. Thus, we basically 
don't need to update p-array and q-array. On the other hand, we know 
nothing about the surface height z. So we need to dedicate most of our 
computation on the updating of z, and the focus of our attention is on the 
boundary conditions. A series of experiments has been conducted to test the 
algorithm. In the following, we will describe the design of each experiment 
and analyze the results accordingly. 
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Experiment 1. Coupled depth/slope model with natural boundary 
conditions on the whole boundary. 

If we know nothing about the boundary values of the surface, there is gen­
erally no unique solution to the coupled differential equations (2), (3), and 
( 4). We want to apply the natural boundary conditions on the boundary 
so that we don't need to estimate the boundary values prior to the compu­
tation. Natural boundary conditions require the normal to the boundaries. 
Thanks to the theory and program of Lowe [4], we can have the normal to 
the boundary ready as long as we know where the boundary points are. We 
run the algorithm as described in Section 4 except that we don't update the 
p-array and q-array inside the region because we believe they are accurate. 
Figure 2 and Figure 3 plot the reconstructed surfaces with natural boundary 
conditions imposed on the whole boundary. The result is not what we would 
expect. One explanation would be that because the gradients tend to infinity 
at the side occluding boundaries, the surface heights tend to minus infinity 
to keep up with the gradients. The following experiments are designed to 
find out what causes the phenomenon. 

Experiment 2. Coupled depth/slope model with boundary values 
being prescribed over the whole boundary. 

To find out why Experiment 1 fails to reconstruct the expected shape, 
we want to separate the coupled depth/slope model from the natural bound­
ary conditions. Thus we start the algorithm with z-array containing pre­
scribed values on the boundaries, update only z-array and only update at 
the interior point of the region. 

Figure 4 and Figure 5 show the plot images of the reconstructed surfaces 
with the boundary value being zero over the whole boundary. The result is as 
expected that the surface tends to be smoothed over the boundary, because 
the algorithm assumes the continuity of the first derivatives. 

We know that the surface is a surface of revolution, the s-array we have 
is an estimation of the silhouette. Thus the values of half circles at the top 
and bottom boundaries are better estimations of the boundary values than 
zero over the whole boundary. Figure 6 and Figure 7 show the reconstructed 
surfaces with boundary values being the values of half circles on the top and 
bottom boundaries and zero on the side boundaries. The result is satisfying 
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but the method is only applicable to vertical solid of revolutions. 

Experiment 3. Coupled depth/slope model with natural boundary 
conditions on one part of the boundary and prescribed boundary 
values on the rest of the boundary. 

Looking at Figure 2 and Figure 3, it is reasonable to believe that the 
problem lies on the occluding boundary of the object. We run the algorithm 
with natural boundary conditions being imposed on the top and bottom 
boundaries and zero boundary value prescribed on the side boundaries. That 
is, z-array is updated according to the coupled depth/slope model in the 
interior of the region, updated according to natural boundary conditions 
on the top and bottom boundaries, and kept zero on the side boundaries. 
Figure 8 to 11 show the reconstructed surfaces. The results are satisfactory 
as long as we are able to indicate where we want natural boundary conditions 
to be imposed and we know the boundary value at the rest of the boundary. 

Experiment 4. Checking the sensitivity of natural boundary con­
ditions to boundary directions. 

Results of Experiment 1 also alarm us about the possibility of our algo­
rithm being sensitive to the directions of the normals to the boundaries. This 
experiment is designed to check this out. Figure 12 shows the reconstruction 
result on a new region, which is obtained from the original region by cutting, 
at slope 1, its upper-right corner away. The gradient is the original data. 
The reconstruction assumes natural boundary conditions on top and bottom 
boundaries, and assumes boundary value zero on the side boundaries. The 
result is then transposed before it is plotted to have a better view. Figure 13 
shows the result of the same procedure as for Figure 12, except that the cut­
ting slope is one half. For this new region, only the point at one end of the 
cutting edge has unusual big negative value as its reconstructed height. This 
is not surprising because the boundary has a normal discontinuity at that 
point. The reconstructed surfaces look as if the surfaces had been cut after 
reconstruction. This makes the natural boundary conditions more favorable. 
We then come beck to our original region, and transpose the s-array, p-array, 
and q-array, and do the reconstruct.ion again. Figure 14 shows the recon­
structed surface using the transposed s-array, p-array, and q-array. It looks 
the same as the surface transposed after reconstruction. The conclusion we 
draw from this experiment is that the natural boundary conditions are not 
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sensitive to the directions of the normals to the region boundary. 

Experiment 5. Coupled depth/slope model with natural boundary 
conditions on the whole boundary revisited - avoiding occluding 
boundaries. 

So far we haven't got a result which says that we could apply the natural 
boundary conditions to the whole boundary without being concerned about 
any prescribed boundary values. In this experiment, we will throw away some 
points from the original region, so that in the new region we will not use the 
gradients that approach infinity because of the concerned points being too 
close to the occluding boundary. Figure 15 shows the reconstructed surface 
over a new region with the natural boundary conditions imposed on the whole 
boundary. The new region is obtained by cutting the original region vertically 
and throw away the original occluding side boundaries. The reconstructed 
surface is lifted by an offset before it is being plotted, for the reconstructed 
surface has height starting from a negative value. The reconstructed surface 
starts its height from a negative value because the iterations are started with 
zero height and the natural boundary conditions are imposed at the first 
iteration. By this experiment, we can say that our implementation of the 
natural boundary conditions works on the whole boundary of the region. 

Experiment 6. Coupled depth/slope model with natural boundary 
conditions on the whole boundary revisited - checking occluding 
boundaries during reconstruction. 

Results of Experiment 1 also hint us a way of finding occluding bound­
ary points during reconstruction. That is, when surface height at a boundary 
point tends to minus infinity during the reconstruction, it can be taken as 
an occluding boundary point. Some objects involved in our experiments are 
generalized cones with convex cross-section as defined by Marr [5]. By The­
orem 1 in Marr [5), the contour generator of the boundaries of the silhouette 
regions are planar. That is, the points on the three dimensional surface that 
generate the silhouette boundary points in the images are planar. Thus, we 
can assume that the occluding boundary points have the same height because 
we are viewing the surface orthogonally. The procedure of Experiment 1 is 
adjusted as follows. All boundary points are dynamic when the procedure is 
started. At the end of each iteration, check every dynamic boundary point 
whether its surface height is smaller than a negative threshold. If yes, set 
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its height to zero, set the point to be non-dynamic and its height remain 
unchanged throughout the rest of the computation. Figure 16 and Figure 17 
show the plot images of the reconstructed surfaces. The result is satisfy­
ing. The method is restricted to generalized cones with convex cross-section 
viewed orthogonally. 

6 Conclusion 

A surface reconstruction algorithm based on the coupled depth/ slope model 
of Harris has been implemented. The natural boundary conditions for the 
coupled depth/slope model has been developed and implemented to augment 
the algorithm. A series of experiments has been conducted, focusing on the 
effect of the boundary conditions. 

The reconstructed surfaces are confined to the original shapes if accurate 
boundary values are given. The algorithm fails to produce correct shapes 
when inaccurate boundary values are used. Natural boundary conditions 
can be relied upon when no estimations of boundary values can be made, 
except on occluding boundaries. When relative boundary values of occluding 
boundaries can be assumed, good reconstruction results can be obtained. 

The experiments have shown that the implementation of the coupled 
depth/slope model and the implementation of the developed natural bound­
ary conditions work as expected by theory and intuition. 
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Figure 2: Result of Experiment 1 - Coupled depth/slope model with nat­
ural boundary conditions imposed on the whole boundary. 
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Figure 3: Result of Experiment 1 - Coupled depth/slope model with nat­
ural boundary conditions imposed on the whole boundary. 
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Figure 4: Result of Experiment 2 - Coupled depth/slope model with pre­
scribed boundary values being zero over the whole boundary. 
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Figure 5: Result of Experiment 2 - Coupled depth/ slope model with pre­
scribed boundary values being zero over the whole boundary. 
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Figure 6: Result of Experiment 2 - Coupled depth/slope model with pre­
scribed boundary values being zero on the side boundaries and the value of 
half circles on the top and bottom boundaries. 
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Figure 7: Result of Experiment 2 - Coupled depth/slope model with pre­
scribed boundary values being zero on the side boundaries and the value of 
half circles on the top and bottom boundaries. 
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Figure 8: Result of Experiment 3 - Coupled depth/slope model with 
prescribed boundary values being zero on the side boundaries and natural 
boundary conditions being imposed on the top and bottom boundaries. 
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Figure 9: Result of Experiment 3 - Coupled depth/slope model with 
prescribed boundary values being zero on the side boundaries and natural 
boundary conditions being imposed on the top and bottom boundaries. 
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Figure 10: Result of Experiment 3 - Coupled depth/slope model with 
prescribed boundary values being zero on the side boundaries and natural 
boundary conditions being imposed on the top and bottom boundaries. 
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Figure 11: Result of Experiment 3 - Coupled depth/slope model with 
prescribed boundary values being zero on the side boundaries and natural 
boundary conditions being imposed on the top and bottom boundaries. 
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Figure 12: Result of Experiment 4 - Coupled depth/slope model with 
prescribed boundary values being zero on the side boundaries and natural 
boundary conditions being imposed on the top and bottom boundaries. The 
new region is obtained by cutting the upper-right corner of the original region 
by slope 1. 
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Figure 13: Result of Experiment 4 - Coupled depth/slope model with 
prescribed boundary values being zero on the side boundaries and natural 
boundary conditions being imposed on the top and bottom boundaries. The 
new region is obtained by cutting the upper-right corner of the original region 
by slope 1/2. 
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Figure 14: Result of Experiment 4 - Coupled depth/slope model using 
transposed s-array, p-array, and q-array with natural boundary conditions 
being imposed on the straight side boundaries and the prescribed boundary 
values being zero on the curly top and bottom boundaries. 
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Figure 15: Result of Experiment 5 - Coupled depth/slope model with 
natural boundary conditions being imposed on the whole boundary. The 
new region is obtained by cutting the original region vertically and throwing 
away the parts that are close to the side occluding boundary. 
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Figure 16: Result of Experiment 6 - Coupled depth/slope model with 
occluding boundary points found by imposing natural boundary conditions 
on the whole boundary. The surface height is set to zero after the point is 
found to be on the occluding boundary. 
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Figure 17: Result of Experiment 6 - Coupled depth/slope model with 
occluding boundary points found by imposing natural boundary conditions 
on the whole boundary. The surface height is set to zero after the point is 
found to be on the occluding boundary. 
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