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Abstract 

We define a new simple general model which captures many natural (sequential 
and parallel) hashing algorithms. In a game against nature, the algorithm and coin­
tosses cause the evolution of a random tree, whose size corresponds to space (hash 
table size), and two notions of depth correspond to the longest probe sequences for 
insertion (parallel insertion time) and search of a key, respectively. 

We stu_dy these parameters of hashing schemes by analyzing the underlying stochas­
tic process, and derive tight lower and upper bounds on the relation between the 
amount of memory allocated to the hashing execution and the worst case insertion 
time. In particular, we show that if linear memory is used then not all key inser­
tions to the hash table can be done in constant time. Except for extremely unlikely 
events, every input set of size n will have members for which f!(lg lg n) applications 
of a hash function are required. From a parallel perspective it can be said that n 
processors need f!(lglgn) expected time to hash themselves into O(n) space, al­
though serial algorithms exist that achieve constant amortized time for insertion, 
as well as constant worst case search time [16). 

Three variants of the basic model, which represent common hashing practice, are 
defined and tight bounds are presented for them as too. The most striking conclu­
sion that can be drawn from the bounds is that, under all combinations of model 
variants, not all keys may be hashed in constant time. 

•This work included in the first author Ph.D. dissertation (21] and appeared in a preliminary form in (25]. Research 
supported in part by the Leibniz Center for Research in Computer Science 
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1 Introduction 

Hashing is one of the most important concepts in Computer Science. Its applications touch almost 
every aspect of this field-operating systems, file structure organization [31], communication, par­
allel and distributed computation, efficient algorithm design and even complexity theory [52, 53]. 
Nevertheless, the most common use of hashing is for the very fundamental question of efficient 
storage of sparse tables (see [43] and [36] for a systematic study). 

A multitude of models and algorithms for hashing have been suggested and analyzed. However, 
almost all of them are specific in their assumptions and results. We present a simple new general 
model that captures many natural (sequential and parallel) hashing algorithms. In a game against 
nature, the algorithm and coin-tosses cause the evolution of a random tree, whose size corresponds 
to space (hash table size), and two notions of depth correspond to the longest probe sequences for 
insertion (parallel insertion time) and search of a key respectively. 

A fundamental result of [20] shows that n elements from a universe of any size can be hashed to 
a linear size table in linear time, allowing for constant search time. It was observed, however, that 
although the average insertion time per element is constant, parallel application of this algorithm 
cannot work in constant time. The reason is that while the average is constant, some elements will 
have to be hashed a non-constant number of times. 

Our main results exhibit tight tradeoffs between space and parallel time, in the basic model and 
three variants which capture standard hashing practice. 

2 Review of Hashing Algorithms and Models 

The word hashing usually refers to the process of cutting and chopping something until it loses its 
original shape. In Computer Science, hashing is done by applying a hash function that maps a huge 
(but finite) universe of all possible keys into a smaller range. In this mapping, a given set of keys 
will usually loose a lot of its "structure". This, together with the fact that the hash function is in 
many times a "grinding" of the key representation, explain the usage of the term hashing. 

Hashing is traditionally used for memory-efficient implementation of sparse tables and dictionar­
ies; a hash function reduces the universe size to a suitably small range, which is sometimes called 
the hash table, and then manipulation of keys (insert, lookup and delete) can be done in direct 
access. 

Hashing algorithms can be classified by the hash function they use and by the way they deal 
with collisions, i.e., two distinct keys having the same hashed value. Knuth [36] enumerates sev­
eral "random-like" hash functions. Random functions were intuitively perceived as the best for 
hashing [37]. This intuition was proved correct by Ajtai, Komlos and Szemeredi [3]. 

Random functions, the usage of universal hashing for achieving random-like behaviour and the 
FKS scheme are discussed in the following section. Except for the FKS scheme there are two main 
techniques for dealing with collisions: chaining and open-addressing. Let us review these techniques 
and the models used in the literature for analyzing them. 

Chaining Perhaps the most popular collision resolution tool used in practice is chaining. The 
hash table in this case is an array of linear lists, where all keys with the hashed value i are stored 
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in the ith list. The simplicity and the extendibility of this algorithm makes it useful in diverse 
applications such as compilers [21 pages 340- 341] operating systems [5] and text formatters [38, 
pages 107-111] . Analysis of the performance of chaining can be found in [43 1 pages 120-124]. This 
analysis assumes that the hash function distributes the universe uniformly and that all its elements 
are equally likely to appear in any place of the input. Alternately, it may be assumed that the 
hash function is random, i.e., that it is selected at random from all possible functfons that map the 
universe to the table. This random function assumption is used by Knuth (36, pages 514-517] to 
analyze a certain variant of a technique called coalesced chaining in which lists are not completely 
separate. The advantage of coalesced chaining is that it does not use an external dynamic memory 
allocation procedure for lists management; all lists records are allocated from hash table entries. 

Another variant of coalesced chaining was suggested and analyzed by Knott [33] and indepen­
dently by Vitter [56]; further analysis of this variant can be found in [11, 12, 46, 47]. Random 
function are assumed in all of these studies. Chen and Vitter [13] considered the problem of pre­
serving the "random" order of elements in coalesced chains after deletions, and suggested a battery 
of algorithms for this problem. Not surprisingly, the assumption underlying their research was again 
that the hash function itself spreads the elements uniformly at random among the lists, any bias is 
due to list administration. 

Other chaining variants were proposed and analyzed as well. (See e.g., [35].) 

Open addressing Another popular method for collision handling is within the hash table itself, 
using open addressing. In this method, instead of lists, we define for each key a sequence of table 
entries, the first of which is the key's hashed value. Key access is done by probing this entries one 
by one, until the key is found. For keys which are not in the table this probes will end in an empty 
entry. The probe sequence can be defined in many ways, the two most popular ones being linear 
probing and double hashing. 

In linear probing, the probe sequence is just a linear scan of the table starting at the position 
equal to the key's hashed value and wrapping around the table's end. Analysis of linear probing 
under the assumptions of keys selected at random, or equivalently that the hashing function used 
is random can be found in (36]. 

Double hashing is similar to linear probing except that instead of scanning always in increments 
of 1, other step sizes (which are relatively prime to the table size) are used. The step size is 
determined by a secondary hash function of the key; hence the name double hashing. Text book 
(e.g., [1, pages 130-131]) analysis of double hashing is done using a model of uniform Hashing, i.e., 
that the probe sequence of a key is a random permutation. 

Ullman [55] suggested a model for studying the the performance of closed hashing schemes. In 
this model he showed that that there is no closed hashing scheme which in terms of the expected 
insertion cost will perform better than uniform hashing. Yao [59] complemented this result by 
showing that the optimality of uniform hashing is true also in terms of the expected retrieval cost . 

Guibas and Szemeredi [29] showed that if the primary and the secondary hash functions are 
random then the performance of double hashing is equivalent (asymptotically for large tables) to 
that of uniform hashing up to a load factor of about 0.319. Lueker and Molodowitch [40] showed 
that this equivalence holds for load factors arbitrarily closet 

Some other studies of open addressing and of the uniform hashing model include the works 
of Brent [7], Rivest [50], Gonnet and Munro [27], Gonnet [26], Larson [39], Gellis, Larson and 
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Munro [9), and Poblete and Munro [48). Ramakrishna [49] gives an analysis of open addressing 
hashing under the random probing model in whlch the probes are independent random positions 
in the hashing table. Linear open addressing was considered by Mendelson and Yechlali [44], Pflug 
and Kessler [45] (assuming non-uniform key distribution), Pittel [46] and Knott [34]. 

Perfect hashing Some of the research on hashing was devoted for the the search for perfect 
hash functions. A hash function is perfect for a given set of keys if it is in injective on the set. 
The function is minimal perfect if in addition the size of its range is equal to the set size. The 
function is ordered minimal perfect if in addition it also sorts the input keys. The problem of 
finding a minimal and almost minimal perfect hash functions for a given set of keys has received 
much attention. The main parameter studied was the number of bits required for the representation 
of such function. Note that the corresponding hashing model concentrates only on space complexity. 
Numerous algorithms have been suggested for constructing minimal, almost minimal, and ordered 
minimal hash functions (See for example [6, 10, 28, 57].) Some of this algorithms aim at achieving a 
good hash function construction time and/ or evaluation time. Schmidt and Siegel [51] give a short 
account of the best upper and lower bounds results for this problem. 

3 Preliminaries 

Definitions Let S be a set of n keys drawn from a finite universe U = { 0, 1, ... , q - 1}. A hash 

function h is a function mapping tl1e universe to a bounded range, U A [O, ... , m - 1]. Such a 
function partitions S to subsets, also called buckets, Sf= h-1 (i) n S, of sizes bf = lst!I, 0 $ i < m. 
For convenience, the h superscript will be omitted when it is clear from the context. We call h a 
perfect hash function for S if there are no two keys in S that are mapped by h to the same value. 
We say that h is r-perfect for S if bf $ r for all O $ i < m; h is pe1ject if it is I-perfect. 

Perfect hash functions are of considerable importance since they induce a linear storage scheme 
for S that supports lookup operations ( queries of the type "is x E S") at the cost of one function 
application. It is also important to find relatively small classes of hash functions that contain a 
perfect hash function for any given input set of a certain size. If the hash class is very large then the 
representation of a single function from the class cannot be efficient. In the extreme case, there is 
always a perfect hash function among all mn possible functions (provided, of course, that m ~ n). 
However, writing down such a function can generally be done only by tabulating all values x E U. 
This lengthy representation is inadequate for another reason: to evaluate the function value at 
certain point a table lookup is required, which was the original problem the perfect hash function 
was introduced to solve. 

The following definition encapsulates the most-desired properties of hash functions: 

Definition 3.1 Leth be a hash function. Then h is called a good lookup function for S if 

{i) h is perfect for S; 
{ii) h uses linear storage (i.e., m = O(n)); 
(iii) h can be represented in O(n) space; 
(iv) h supports quick lookups, i.e., for every x E U, h(x) can be evaluated in 0(1) time by a single 

processor. 
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The data structure induced by a good lookup function is called a good linear static hash table. 
This data structure requires O(n) storage and 0(1) time for a lookup query. 

3.1 The FKS Scheme 

In their seminal paper (20], Fredman, Komlos and Szemeredi introduced a sequential scheme that 
generates a good linear static hash table in O(n) expected time for any input set. Their scheme 
builds a 2-level hash function: a level-1 function splits S into subsets whose sizes are distributed 
in a favorable way. Then, a perfect level-2 hash function is built for each subset. Dietzfelbinger, 
Karlin, Mehlhom, Meyer auf der Heide, Rohnert and Tarjan (16) extended the 2-level scheme for 
a dynamically changing input set (a dictionary), in which the amortized cost for insert a.nd delete 
is constant. Dietzfelbinger and Meyer auf der Heide [19} presented a scheme for implementing a 
dictionary in worst case constant time per instruction with very high probability. Parallel and 
network adaptations of the FKS scheme were also done, see [17, 18, 41]. 

Polynomial Hash Functions The class of d-degree polynomial hash functions is defined by 

If q, the universe size, is prime, then polynomial hash functions are useful in construction of good 
lookup functions .1 Henceforth we assume that q is prime.2 Polynomial classes are not rich enough 
to contain a good lookup function for every input set. However, as Fredman, Komlos a.nd Sze­
meredi [20] demonstrated, it is possible to use combinations of linear (i.e., polynomial of degree 1) 
hash functions to construct good lookup functions. 

The main properties of the linear hash functions which enable their construction are given in the 
following fact. 

Fact 3.1 (FKS) If the input set S is fixed then 

m-1 

{a) There exists at least one function h E 1-f}si such that I: ISil2 < 31S1. 
i=O 

{b} There exists at least one function h E ?-£1812 which is perfect for S. 

Remark A selection of a random function in the class 1-£1 provides pair-wise element indepen­
dence, i.e., for any x1, x 2 EU, 0:::; i1 , i2 < m and h selected at random from 1-£1 

This attribute underlies the above fact as well as some other properties of 1-£1 mentioned later. 

1 Applicability of such functions for hashing purposes was first demonstrated by Carter and Wegman [8]. 
2This assumption is not restrictive since there is no need for a large increase in the universe size before this 

property is attained . 
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The FKS construction For a given input set S, a level-1 hash function is selected using Fact 3.1 
(a). This function splits S into buckets in a such way that each bucket can be allocated memory 
quadratic in its size, while keeping the total memory requirements limited to O(n). Fact 3.1 
{b} is then applied to find a level-2 perfect hash function for each bucket. The good lookup 
function for the whole input set is the composition of the appropriate level-2 function and the level­
! function. Representation of the function is carried out by allocating an auxiliary array whose 
entries correspond to the buckets. Each such entry stores the level-2 hash function associated with 
a bucket as well as pointer to its memory block. 

The most prominent feature of the work of FKS is that their construction works for any given set 
and for any universe size. This stands in clear contrast to many other hashing schemes which could 
guarantee and analyze performance only under the assumption that the hashed keys are chosen 
uniformly at random from the universe. The assumption that S is fixed is henceforth implied. 

FKS continued their investigation noting that although the resulting set representation is effi­
cient, the construction is costly and it may take O(nq) operations. An improvement in the efficiency 
of the construction algorithm (with the cost of a constant factor increase in memory) was given by 
using the following facts: 

Fact 3.2 (FKS) If h is chosen uniformly at random from the class 'H}si then 

m-1 

E(I: isl) ~ 2.51s1 , 
i=O 

consequently (by Markov's inequality) 

m-1 

Prob( I: !Bl ~ 51S1) 2:: 1/2 . 
i=O 

Fact 3.3 If h is chosen uniformly at random from the class 1-(,-:n 

Prob (h is not perfect for S) ~ 1S12 /m . 

The last fact does not appear exactly as presented in [20] but it is easily derivable from their basic 
lemma. 

An Efficient FKS Construction From Fact 3.2 it follows that a level-1 function, with properties 
similar to those of the level-! function in the previous construction, can be selected for any given 
input set in O(n) expected time. A bucket Si is then allocated 2ISl memory cells. Using Fact 3.3, 
we infer that the probability of a failure of such a level-2 hash function on a fixed bucket is less than 
1/2. The processing time for a function applied to a bucket Si is O(IS,I), therefore the expected 
time before a perfect hash function is found for the bucket is also O(ISil). The total expected time 
for finding a good lookup function for all the buckets is 

m-1 

I: ISil = 1s1 = n 
i=O 
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Note that if this hashing scheme was performed in rounds, then in every round the number of 
"active" buckets will drop "only" by a factor of 2 so there will be O(lg n) rounds. It can be shown 
that if the memory allocated to a bucket is the same in each round, and if the total memory is 
linear in the size of the input, then the total number of rounds is O(lg n ). 

In our hashing schemes we will be using functions from 1i1 (with various ranges) as level-2 
functions, and we will be interested in the analysis of the distribution of the.number of buckets that 
fail. 

The 2-level hash scheme of FKS and the strength of polynomial hash functions provided ground 
for further developments in hashing theory. The usability of higher degree polynomials as hash 
functions has beeu demonstrated, and it has been observed that such d-degree polynomials grant (d+ 
1)-independence, as well as the following properties which are generalizations of similar properties 
found in linear hash functions: 

Fact 3.4 (DKM88) Let the input set S be fixed, and h be picked at random from 1i~, where d ~ 1, 
m ~ n. Then 

(

m-1 d ) (2n)d 
(a) E ~ Jl(ISil-j) ~ 2n -;; , 

(

m-1 ) 1 
(b) Prob I: bf~ c • n ~ 2, for some constant c > O, and 

t=O 

(
2n)d (c) Prob ( his not d-perfect for S ) ~ 1 - n -;; . 

Proof. See [16] and [19]. • 
Corollary 3.1 Let the input set S be fixed, and let h be picked at random from 1i~, where d ~ 1, 
and m ~ n. Then there is a constant c > 0 such that 

Parallel and network adaptations of the FKS scheme were also done. (See [17, 18].) 

3.2 Chernoff Bounds 

One of the advantages of the 2-level scheme is that the hashing of different buckets is completely 
independent, hence exponential Chernoff bounds (14, 4, 30) may be used in the analysis of the 
probabilistic behavior of the hashing of a batch of buckets. 

Fact 3.5 (Chernoff} Let xi, ... , Xn be independent binary random variables. Let X = Li=l xi, 
and let m = E (X). Then for O ~ t: ~ 1 and 1 > 1 

{a} Prob (X ~ (1 + t:)m) ~ e-f2
m/3

, 

{b) Prob (X ~ (1 - t:)m) ~ e-f2
m/2, and 

( C) Prob ( X ~ ,m) ~ (II er-rm. 
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Proof. See [30]. • 

3.3 Pseudo Random Classes 

Recently, Dietzfelbinger and Meyer auf der Heide [19] showed how polynomial hash functions can be 
combined to create a new class of hash functions such that a function chosen uniformly at random 
from that class, looks very much like a truly random function. 

Definition 8.2 The class ndi,d2 (k, m) of hash functions is the set of all (k + 2)-tuples h = 
(f,g,ai,a2, ... ,ak), wheref E 'Hf andg E 1i';; 1 anda1,a2, ... ,ak E {0, ... ,m-1}. The ac­
tion of h E ndi,d2 (k,m) on x EU is defined as h(x) := (g(x) + af(z}(x)) mod m. 

The following fact summarizes those aspects of their results which we require: 

Fact 8.6 ([19]) There is a class n = ndi,d2 (k,m) of hash functions and a subclass n(S) ~ n of 
functions to the range [O, ... , n - 1] that satisfy the following properties: 

(a) h En can be evaluated in constant time. 
(b) n processors can pick a random h En in 0(1) time. 
(c) If h is picked at random from n then Prob(h <t n(S)) < n-k for any k > 0. 
{d} For h randomly chosen from n(S), 

• h is lg n-perfect with probability 1 - n-k for any k > 0. 

• Prob(bf $ r) 2:: (er-l /rr)l/di. 

4 Our Model 

4.1 The Basic Model 

The process of inserting a set of n elements taken from some universe U into a hash table can 
be thought of as a process of refining partitions, and is depicted simply by a tree. Originally, all 
elements reside in a single node (the root). The algorithm chooses a range m, picks a hash function 
h : U i-+ [m] according to some distribution, and partitions S into subsets S1 , S2 , ••• , Sm (some 
empty) such that Si = h-1 (i) n S. The function h is stored at the root, the root has m children 
and the subsets Si move to different children of the root. The function h is stored at the root, the 
root has m children and the subsets Si move to different children of the root. 

The process repeats for each Si that contains at least two elements. The refining halts when 
every leaf contains at most one element from S. 

A search for an element x E U in the hash table is easily performed by following the path from 
the root which is determined by applying the hash functions at internal nodes to the element x, 
and when reaching a leaf, comparing x to the element residing there if such an element exists. 

In particular, our approach leads to an alternate view of a hashing algorithm as an element 
distinctness proof generator. The input is a set of distinct keys taken from a universe with no order 
relation defined on it. The output is a proof that all elements are distinct. The proof components 
are functions from the universe to a bounded range. 
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4.2 Comments 

1. The two types of strategic decisions made by a specific algorithm are the choice of range (i.e., 
number of children) for the hash function, and the choice of distribution of functions to this 
range. We assume that the function used is a truly random function, i.e., all possible functions 
are given equal probability. This assumption follows that of many of the previous models for 
analyzing hashing algorithms, and the general trend in the hashing algorithms design of trying 
to construct pseudo-random functions. (See also discussion in Section 9.) 

Thus, the hashing process that occurs in a node can be described as the act of independently 
sending each element of U to each possible child with uniform distribution. Analyzing the full 
hashing algorithm is reduced to analyzing a natural process of successively throwing identical 
balls into boxes until all the balls reside in distinct boxes. 

2. Most common algorithms are stronger than the process we described-they use retries when 
the chosen hash function is extremely bad (e.g., all elements were mapped to one cell), and 
allow storing elements in the internal nodes of the tree as well as in the leaves. These gener­
alizations and others will be considered later by introducing variants to the basic model. 

3. We deliberately deal here with the static case, i.e., when all the elements to be inserted are 
known in advance. This does not restrict the generality of the lower bounds. However, the 
algorithms presented in this chapter are for the static case only. The question of existence 
of sequential algorithms (which fall into the framework of our basic model or its variants) 
for the dynamic case that achieve both constant amortized time and minimal worst time are 
not dealt with here. PRAM algorithms for the static case are described in (22]; the results 
presented there were the basis of the extremely fast dictionary algorithm of Gil, Matias and 
Vishkin (24). 

4. Yao's cell probe model (58], the standard general model for hashing, can also be described as 
a tree in a similar way. Our model differs from his in the way that a decision tree differs from 
a Turing machine. The cell probe model allows each cell a limited number of bits ( depending 
on U), but these can encode arbitrary objects and be computed at no cost. Our cells contain 
either elements or functions. Functions can only be applied to elements and two elements 
can only be tested for equality. Our model, being more structured, is cleaner and easier to 
analyze, though less general. 

4.3 Resources 

The stochastic process determined by a hashing algorithm Alg given S C U of size n, is described 
by a random tree. The main resources of Alg operating on S are natural parameters of this tree. 

Space The space required, or hash table size, denoted by SPACE(Alg, S), is simply the total number 
of nodes in the tree. 

Insertion Time We denote by TIME(Alg, S) the total insertion time. This is the sum of depths 
of all leaves containing an element, i.e., the number of hash function applications to all the 
elements. Each application counts as one time unit.3 

31f hash functions are taken from 1-{d or from n di ,d~ for constant d, d1 , d2 then this is the case for actual algorithms 
as well. 
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Parallel Insertion Time We denote the depth of the tree by DEPTH(Alg, S). This is the parallel 
insertion time under the assumption that each processor is assigned one key and this processor 
alone is responsible for inserting this key. This parameter has two important meanings for 
sequential algorithms as well. It captures the number of functions needed to resolve the 
"worst" pair of elements, and the worst case insert and search time. 

Search time will not be identical to insertion time in the more general models, so we devote 
a different notation for it: 

Maximum Search Time This is the largest number of function applications needed to find out 
if x E U is in S using the tree generated by Alg on S. This parameter will be denoted by 
SEARCH(Alg, S). In the basic model this definition coincides with that of DEPTH(Alg, S). 
However, this will no longer be true when the model model is elaborated, although we will 
still have SEARCH(Alg, S):::; DEPTH(Alg, S). 

Let PARAM be a generic parameter (SPACE, TIME, DEPTH or SEARCH), then PARAM(Alg, S) will 
denote the expectation of PARAM with respect to the random choices made by the algorithm Alg, 
so PARAM(Alg, S) = E (PARAM(Alg, S)). We denote by 

PARAM(Alg,n) = maxPARAM(Alg,S) 
ISl=n 

the performance of Algona worst case set S of size n, and by 

PARAM(n) = min PARAM(Alg, n) 
Alg 

the performance of the best algorithm on its worst case set S. At times it will be useful to ignore 
the probabilistic.performance, and consider the worst possible performance of Alg (over all possible 
runs) on the worst case input, which we denote by PARAM(Alg,n). 

4.4 Variants of the Basic Model 

Finally, we consider more powerful algorithms than those permitted by the basic model: 

Retries An algorithm may allocate (say) m boxes (children) for n balls residing at a node v, and 
find that in throwing them randomly they all fell into one or very few cells. This is an unlikely 
event, that causes a big waste of space. The algorithm is allowed to consider this (or other 
more-likely events) "bad", and try again. We do not charge for space used in v. To maintain 
the meaning of depth in this variant, we create one single child for v, and move all the balls 

• there. 

We attach the subscript r to the resources measures in this model, e.g., SPACEr(Alg, S) and 
DEPTHr(n) etc. Note that SEARCHr may be much smaller than DEPTHr, since while a search 
is being performed no function application should be done at a node with only one child. 

Chaining This variant allows the algorithm to store elements in internal nodes too. Specifically, 
when m keys reach a node v, only m - 1 proceed to v's children, and one of them is stored 
in v. The term chaining is used since this variant generalizes hashing techniques in which a 
chain of keys can be stored in hashing array positions. 
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The subscript c is added to the resources measures. Clearly SEARCHc and DEPTHc are the 
same again, since even if no branching occurs at node v, the element being searched for should 
be compared to the one residing at v. 

We allow a combination of chaining and retries, which is denoted by the double subscript c:r. 

In this combination the algorithm may leave a key in an internal node, even if the function 
used at this node was discarded. Obviously, such a node cannot be skipped in a search. 

Parallel Hashing In this variant of the model, we allow the algorithm to try in parallel several 
hash functions in a node v, and then pick one of them to create v 's children. Space here is 
counted as the sum of ranges of all those functions. Subscript p is added in this variant to 
the resources measures. 

This variant may be combined with the two previous ones; if retries are permitted then the 
algodthm may choose not to use any of the hash functions that were tried; if exploiting 
internal nodes is possible then the algorithm can leave one element at v, no matter which 
hash function is selected for the node. 

Despite its name, this variant does not lead directly to a PRAM algorithm. The major 
difficulty causing this is the assignment of processors that have completed handling their 
original key, to assist the yet unhashed keys. 

One possible hashing variant was deliberately omitted from the above list; we do not permit the 
merging of nodes in the hash trees. Intuitively, merges lose separation information, and omitting 
merges from a hashing algorithm should only improve its performance. It is easy to verify that 
the TIME, DEP H and SEARCH complexity measures can only decrease as a result of eliminating 
merge operations. The only possible merit of merging is to SPACE. It will be evident from the lower 
bounds proofs that merging cannot improve an algorithm with respect to all complexity measures 
defined above. 4 

Most hashing algorithms deviate from our basic model by allowing one or both of the retries or 
the chaining variants. The parallel variant is mentioned as an alternate hashing idea in [22), and 
used by Matias and Vishkin (42]. 

5 Results 

The most interesting algorithms are those that achieve SPAOE(Alg, n) = O(n) i.e., linear space. In 
his seminal paper "Should Tables be Sorted?" [58], Yao asked if one can simultaneously achieve 
SPACE(n) = O(n) and SEARCH(n) = 0(1). In our basic model, this is impossible. 

Theorem 5.1 If SPACE(Alg, n) = 0(n) then DEPTH(Alg, n) = SEARCH(Alg, n) = O(lg lg n). 

However, allowing retries, Yao gave an algorithm Y which achieves SPACEr(Y,n) = 0(n) and 
SEARCHr(Y,n) = 0(1) for large enough universes; For small universes, q = n°<1>, Tarjan and 
Yao [54] showed how linear storage and constant search time can be maintained. Fredman, Komlos 
and Szemeredi [20] closed the gap by an algorithm FKS that satisfies SPACEr(FKS, n) = 0(n) and 
SEARCHr(FKS,n) = 0(1) for any universe size, and any input set. Analyzing their algorithm, 

4However, it is interesting to note that merging is useful for the construction of good pseudo-random functions, 
which may be used for implementing hashing algorithms [19]. 
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we find that while insertion time TIMEr(FKS, n) = 0(n), (i.e., on the average we apply only a 
constant number of functions to each element), DEPTHr(FKS, n) = O(lgn), so some element will 
be hashed O(lg n) times, and this is the time required for hashing the elements in parallel using the 
FKS scheme.5 A natural question that arises is whether this parameter can decrease to 0(1)? We 
answer this question in the following theorem: 

Theorem 5.2 /f SPACE(Alg,n) = 0(n) then DEPTHr(n) = O(lglgn). 

Remark There exists an algorithm, DM, due to Dietzfelbinger and Meyer auf der Heide [19], for 
managing a dynamic data hash table, that achieves with very high probability constant worse case 
performance. However, DM does not contradict the stated lower bounds since it does not fit in our 
basic model nor in any of its variants. In particular, DM pipelines the insertions; processing an 
inserted element can continue for up to nf steps after the insertion took place; the algorithm allows 
keys to be fetched even if they are not "fully" inserted. Still, as the lower bounds indicate, there 
is no easy way of constructing a fast parallel version of DM. There are always keys for which DM 
requires as many as nf function applications. 

With the help of retries, the lower bound of Theorem 5.1 can be met: 

Theorem 5.3 There is an algorithm Shallow which uses linear space (i.e., SPACEr(Shallow,n) = 
O(n)}, that gives 

(i} TIMEr(Shallow,n) = 0(n), 
{ii} DEPTHr(Shallow,n) = O(lglgn), and 
{iii} SEARCHr(Shallow,n) = 0(1). 

This algorithm is a variant of the FKS algorithm. The improvement in DEPTH(n) is accomplished 
by using a different, more adaptive memory allocation scheme while executing the retries, so that 
the probability of failure decreases very quickly. This algorithm is optimal with respect to all 
parameters, even if we count arithmetic operations and limit word size to O(lg U). Moreover, if 
we restrict the algorithm to the basic model by eliminating retries, all the parameters, except for 
SEARCH(Alg) (which will be the same as DEPTH(Alg)) will remain optimal: 

Theorem 5.4 There is an algorithm Shallow' for which 

(i} SPACE(Shallow',n) = O(n), 
(ii) TIME(Shallow',n) = O(n), and 
{iii} DEPTH(Shallow', n) = SEARCH(Shallow', n) = O(lg lg n) . 

A worst case ·upper bound for SPACE is not possible here, because for any such bound there 
are (admittedly rare) cases, in which enough failures occur to force an algorithm to overflow this 
bound. 

The general tradeoff between space and depth is given by 

Theorem 5.5 /JSPACE(Alg,n) = n1+1/>. then DEPTHr(Alg,n) = O(lg>.) . 

6Indeed the parallel hashing scheme of Matias and Vishkin [41] being based on FKS takes O(lgn) parallel time. 
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Can the common practice of using internal nodes for storage help by more than a constant factor? 
Again, perhaps surprisingly, the answer is positive: 

Theorem 5.6 Both SPACEc(n) = O(n) and DEPTHc(n) - O(lglgn/lglglgn) can be achieved 
simultaneously. 

The algorithm behind this theorem uses truly random hash functions or equivalently, high degree 
polynomials. As a more practical alternative, t.he class 'R, can be used here too. The next theorem 
shows that this meager improvement of lg lg lg n is the best possible, and even it cannot coexist 
with employment of retries to achieve 0(1) search time. (As before, adding the power of retries to 
this variant of the model cannot improve DEPTH(n).) 

Theorem 5.7 

(a) If SPACEcr(Alg',n) = SPACEc(Alg,n) then 

DEPTHcr(Alg',n) = O(DEPTHc)(Alg,n) 

(b) If SPACEc(Alg, n) = O(n) then 

n(DEPTHc(Alg, n)) = n(SEARCHc(Alg, n)) = D(lg lg n/ lg lg lg n) 

(c) If SPACEcr(Alg',n) = SPACEc(Alg,n) = O(n) and DEPTHcr(Alg,n) = O(lglgnjlglglgn) then 

SEARCHcr(Alg', n) = O(DEPTHc(Alg, n)) 

The general tradeoff is given by: 

Theorem 5.8 I/SPACEc(Alg,n) = n1+1/>. then DEPTHc(Alg,n) = O(lg,\/lglg,\). 

In a clear contrast to the first two variants, the "Simultaneous Retries" which may be applied in 
the parallel variant, lead to a significant improvement in DEPTH because they allow folding many 
iterations into one. Nevertheless, constant time hashing time cannot be achieved in this case too. 

Theorem 5.9 If SPACEv(Alg, n) = O(n) then DEPTH,,(Alg, n) = 0(lg* n). 

Neither retries nor chaining can further decrease the maximal insertion time of the parallel variant. 

Theorem 5.10 If memory usage is restricted to O(n) then 

DEPTHrcp(n) = n(DEPTH1,(n)) . 
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6 Proofs of Lower Bounds 

We view hashing algorithms from a parallel perspective. Each parallel iteration is an attempt to 
separate all subsets of S that were not previously separated, i.e., subsets that still have two or more 
keys in them. Thus successive iterations correspond to successive tree levels. 

Let Opt be the best possible algorithm for the current setting of the parameters (space and model 
variant). Om: proofs are based upon showing that with a dominant probability, there is a minimal 
number of iterations Opt has to go through. For simplicity in the analysis, we let Opt make the 
following assumptions: 

Extra Memory Say that the problem restricts the memory usage to a total of m memory cells. 
This restriction will be weakened for Opt and it will be allowed to use m memory cells in each 
iteration. 

Partial Separation A mapping of a set of keys to memory is called a partial separation if there 
exist two keys in the set that are mapped to distinct cells. Opt may consider any partial 
separation as being a total separation. The extremely unlikely case in which all keys from 
the set were mapped to the same memory is called a complete failure. Only complete failures 
need to be passed to the next iteration of Opt. 

Restricted Set Size In iteration t, Opt has only to deal with (nodes containing) sets of rt keys. 
Smaller or larger sets can be completely ignored. The exact value of rt will be specified later. 

Early Termination need not be concerned with the case where there are fewer than lg n sets of 
size rt, As soon as the number of sets drops below that bound, Opt can terminate immediately. 

Higher Success Probability While analyzing Opt we will assume that failure probability is de­
termined by r = r1 although rt keys are actually mapped. It will be shown that this may only 
decrease the failure probability. 

To account for the random nature of the hashing process, the following definition is introduced. 

Definition 6.1 Events that occur with probability smaller than n-f for some € > 0 are called 
negligible events. Dominating events are the complement of negligible events. 

Negligible events will be ignored in the following discussion, since even if they could be treated 
by Opt without any resource investment, the expected value of the performance measures will 
essentially be the same. 

The rest of this section is outlined as follows. Suitable values for rt will be set, and then we will 
compute a lower bound on the initial number of sets of size r 1 . (Since the algorithm is based on a 
random process, it may be extremely lucky and break this bound; thus the lower bound statement 
should be read with "ignoring negligible events" appended to it. Such quantification is implied 
henceforth.) We next estimate the number of sets of size rt+I in iteration t + 1 as a function of the 
number of sets of size rt in iteration t. Then an explicit lower bound for the number of sets of size 
rt in iteration t is derived. The lower bound proofs are then completed by computing the minimal 
number of iterations Opt must undergo before completion. The analysis is done for the basic model 
and the chaining variant together, and then it is repeated for the parallel variant. We conclude 
with a remark explaining why all lower bound proofs are applicable to all the retries variants. 

14 



6.1 Root Node Hashing 

The roo,t node corresponds to iteration number 0. In it n keys are hashed into m memory cells. 
The set Sis separated using a random function h : U f-4 [m] into subsets S1, S2, ... , Sm, Since his 
a random function, the root node is accurately modeled by the the well studied "balls into boxes" 
or "urnn model. Let N = N(r) be the number of subsets that have exactly r elements in them and 
let 17 = ry(r) = N(r)/m. The values of r that we will be using are such that r > l and r = o(n), so 
the results obtained there can be used as follows: 

• For large enough n, N(r) has Poison distribution. We get that there exists n' such that for 
every n > n' 

1 ar 
E (N(r)) > -

2
me-a-

1 r. 
(1) 

where a = n/m. Without loss of generality assume that n > n' from now on. 

• If E(N(r)) = !1(n') then the event N(r) < E (N(r))/2 is negligible. (See [21, Corollary 2.3] 
for proof.) Consequently, if E(N(r)) = O(n') 

l ar 
N(r) ~ 4me-a-;:y , (2) 

except in a negligible number of cases. 

6.2 The Basic Model and the Chaining Variant 

In the basic model, we follow only sets of size 2, i.e., rt = 2 for t ~ 1. When the usage of 
intermediate nodes ( chaining) is possible, sets of fixed size r can no longer be tracked since the 
number of iterations will depend on n, and even complete failure to hash a set will decrease its size 
by 1. Instead define r0 = r = r(n) and Tt+i = rt - l. Note that, in this variant, r0 must be greater 
than. the desired lower bound for the number of iterations. The following fact estimates E(N(r)) 
for those pairs of rand m we are interested in. Note that in all of those cases E (N(r)) is !1(n() for 
some E > 0 and hence the event N(r) < E(N(r))/2 is negligible. 

Fact 6.1 The expected value of N0 (r ), the initial (after the root node hashing) number of sets of 
size r, is given by: 

1. If r = 2 and m = 0( n) then 

E(N0(r)) = O(n) . 

2. If r = 2 and m = n1+1/>- for some fixed >. then 

E(No(r)) = n(nl-l/A-l/n1
/>-1nn) = n(nl-1/>.-o(l}) 

3. If r = lglgn/lglglgn and m = O(n) then 

E(No(r)) = n(nl-r(lgr-lga)/lgn)) = n(nl-o(l/lgn)) 

4. If r = lg>./lglg>. and m = n1+i/>- for some fixed>. then 

E(No(r)) = n(nl-(r-1)/>.-o(l)) ' 
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Proof. Apply Inequality (1). ■ 

From the simplifying assumptions it follows that in iteration t, Opt uses m memory cells to deal 
with Nt sets of rt keys each. The algorithm should allocate memory to cells in a way that will 
minimize the number of failures Nt+1 • The following lemma reveals the memory allocation scheme 
used by Opt. 

Lemma 6.1 Opt uses a balanced memory allocation scheme; each of the Nt sets is hashed into m/Nt 
cells. 

Proof. In an iteration t, if a subset (that has rt keys) is mapped by a random function into mi 
memory cells, then the complete failure probability is mt-rt. This probability is inversely pro­
portional to mi, therefore a memory allocation is not optimal unless all the m cells are utilized. 
Let m = m1 + m2 + · · · + mN1 be a memory allocation of them cells to the Nt sets. The expected 
value of Nt+l is given by 

Nt 

E (Nt+i) = L mi-rt 
i=l 

and by convexity this is minimized when all mi are equal. II 

The complete failure probability, mi-rt, increases as rt decrease. Thus it is permissible to assume 
that Opt uses a complete failure probability derived from r = r1 , the initial size of the sets. We can 
then write 

Nt 

E (Nt+i) = L m!-r 
i=l 

and by Lemma 6.1 

The probability that Nt+1 will be much smaller than its expected value is estimated by 

Lemma 6.2 Let Nt be fixed. The event Nt+l < E (Nt+1 )/4 is n-negligible if E (Nt+i) > lg n. 

Proof. Note that Nt+1 is the sum of Nt independent random binary variables. The lemma is 
obtained from application of the Chernoff inequality (Fact 3.5). ■ 

Thus we can assume that Nt 2:: E (Nt)/4 simultaneously in all iterations. For simplicity we 
permit Opt to have 

Nt+i = _t -N (m)l-r 
4 Nt 

Let 1/t = Nt/m. Then, by dividing the above by m, we have 
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This representation demonstrates the fact that the fraction of sets of a given size decreases "only" 
double-exponentially, giving rise to the double logarithmic lower and upper bounds. The exact 
solution of the recurrence is given by 

For our purposes it is sufficient to write 

which facilitates an easy counting of the minimal number of iterations: 

Lemma 6.3 If m $ n3
, then the number of levels in Opt 's tree is 

n(-1-l lgm ) 
lg r g 2 - lg 7/o . 

Proof. Let T be given by 

T = _1_ lg lg lg n - lg m 
lgr lg170 - 2 

Then, fort< T, 

('f/o)rt ('T}o)rT 
Nt = ffi'T}t = m 4 > m 4 = lg n 

It follows that if Opt executes less than T iterations it will have more than lg n sets and it cannot 
terminate. The proof is completed by noting that for m $ n 3 

T = n (-1- lg lg m ) . 
lg r 2 - lg170 

• 
Applying this lemma to the estimates in Fact 6.1 will yield the proofs for the lower bounds set 

by Theorems 5.1, 5.5, Theorem 5.7(b) and Theorem 5.8. In particular, 

The basic model Setting r = 2 and m = O(n) we have -lg 'T}o = 0(1) and hence 

DEPTH(Opt,n) = n(i:r lg 2 ~;
110

) 

n (i lg n + 0 ( 1)) 
- g 2 + 0(1) 

- O(lglgn) . 
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The basic model Setting r = 2 and m = n 1+1I\ .A fixed, we have - lg 770 = lg n/2.X + o(l) and 
hence 

DEPTH(Opt,n) = n( 1 l lgm ) 
lg r g 2 - lg 7]o 

n (i ( 1 + 1 / >.) lg n ) 
g 2 + lgn/2>. + o(l) 

( 
1+1/>. ) 

- n lg 1/2>. + o(l) 

O(lg >.) . 

The retries model Setting r = lg n/ lg lg n and m = 0(n) we have -lg 770 = r lg r + 0(1) and 
hence 

DEPTH(Opt,n) = n( 1 l lgm ) 
lg r g 2 - lg 1]0 

n ( 1 l lg n + 0(1) ) 
- lg lg lg n g 2 + r lg r + 0 ( 1) 

n( lglgn ) 
lg lg lg n . 

The retries model Setting r = lg>./ lg lg>., m 
1)/>.lgn + o(l)) and hence 

D (0 ) n ( 1 l . lg m ) EPTH pt, n = u lg r g 2 _ lg 1]o 

n1+1 /~, >. fixed, we have - lg 7'/0 

n ( 1 1 ( 1 + 1 / >.) lg n ) 
lg lg >. g 2 + ( r - 1) lg n / >. 

n( 1 1_(1+1/--')) 
- lg lg >. g ( r - 1) / >. 

n( i i >.+1) 
lg lg>. gr - 1 

_ n ( lglg >. ) 
- lglglg>. 

6.3 The Parallel Variant 

-(r -

The memory allocation scheme as used by Opt is a slightly different here. Many hash functions 
can be applied in parallel to the same set. In an iteration t let mi,i, mi,2 , ••• be the cardinalities of 
ranges of those functions for some subset Si, and let mi = mi,I + mi,2 + · • · be the total range used 
for it. The probability that all those hash functions will be a complete failure is 

This probability is minimized when mi,i = 2 for all j. In this case the complete failure probability . 
IS 
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Note that if the set size is greater than 2 then a complete separation is not possible if only 2 cells 
are allocated to a set. This does not pose a problem in our lower bound analysis since we consider 
any partial separation to be a complete separation. 

Let m = m1 + m2 + · • • + mNt be a memory allocation of them cells to the Nt sets. The expected 
value of Nt+1 is 

Nt 
E (Nt+i) = I,: 2m;(l-rt) 

i=l 

Once again, this is minimized when all the mi are equal. Hence we have 

Lemma 6.4 In the parallel variant, all hash functions used by Opt are to a range of size 2. In 
iteration t, m/2Nt functions with a total range of size m/ Nt are applied to each one of the Nt sets 
of size rt. 

From which we get a recursion formula for Nt 

Note that Lemma 6.2 also holds here, so we can write 

N > Nt 2m(l-rt)/2Nt 
t+l - 4 

which will take a simpler form using the definition lit= m/ Nt: 

For r,teration ~ 4 we have 

By setting rt = 4, m = O(n), we get that 110 = 0(1). The number of iterations T required to 
decrease the number of subsets below lg n (i.e., until llT = n/ lg n) is n(lg'" n ). This completes the 
proof of the lower bound part of Theorem 5.9. 

The proof of (the chaining variant part of) Theorem 5.10 is conducted in a similar manner to the 
lower bound proof for the ordinary chaining variant. Let r = r 1 = lg• n, rt+I = rt - l, m = O(n). 
Then by Inequality (2) 

llo = 0 ( (lg'" n )1g• n) 
We can also write 

Now, the number of iterations required to achieve 11 > lg n is at least 

lg"' n - l - lg'" 110 = !1(lg'" n) 
2 
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6.4 The Retries Variants 

To complete the lower bounds analysis we need to discuss the retries variant and provide the proofs 
for Theorems 5.2 items (a) and (c) of Theorem 5.7. Theorem 5.5 and Theorem 5.10 reference the 
retries variant as well. These references will he treated in a similar manner. 

The retries technique is useful if a certain application of a hash function was not satisfactory 
according to some criteria. Then, instead of coping with it, the algorithm may try another hash 
function. However, our simplifications allow Opt a dichotomous classification of poll results. If 
there was a complete failure in a hash of a specific internal node, then doing a retry is the same as 
what Opt will do in the next iteration, but with less memory. On the other hand, if this internal 
node was not a complete failure, we allow Opt to ignore it without any further resource investment. 
If retry was done on such a node then this may only result in a deeper tree. Retries cannot help 
in the root node either, as the root node behavior is dominant (Inequality (2)), and even O(lgn) 
retries in the root node will not yield a significantly better value for N0 (r). 

Thus, the addition of retries to any model combination will not affect the DEPTH lower bounds. 
Upon further examination of the lower bound proof of the chaining variant, it can be seen that a par­
allel insertion time of O(lg lg n/ lg lg lg n) cannot be achieved unless a key is left in !l(lg lg n/ lg lg lg n) 
nodes, which will nullify the ability of the retries variant to achieve SEARCH= 0(1). 

The equivalence of an algorithm without retries to an algorithm with retries was possible here 
because the Opt could use its total memory allowance in each and every iteration. In general, using 
this technique to transform Alg, an algorithm that uses retries into Alg', an algorithm that avoids 
retries, leads to an increase in the memory used by the algorithm by a factor of up to DEPTH(Alg, n). 

7 Proofs of Upper Bounds 

8 Proofs of Upper Bounds 

Any fixed memory allocation scheme is bound to lead to DEPTH = !l(lgn). In order to further 
decrease the total number of hashing iterations, a more flexible memory allocation is employed. 
Following the same general scheme used by the idealized algorithm Opt, we try to use ahnost the 
same size memory in every iteration. Thus, in every iteration we can increase the memory portion 
allocated to "stubborn" buckets that managed to survive all previous attempts to hash them.6 

A decreasing geometric series defines the partitioning of the total memory allowance between the 
iterations. Informally, we can say that although this series decreases quite rapidly, the decrease in 
the number of active buckets is so much quicker that our algorithm will be in conditions which are 
very similar to the Extra Memory assumption we permitted Opt. 

Our basic algorithm is Shallow. This algorithm works for the retries model. Algorithm Shallow' 
for the basic model is obtained from small changes to Shallow. Algorithm ParShallow for the parallel 
model, and ParShallow for the chaining model follow. 

6Those buckets are more unfortunate than stubborn, their persistence is dictated by the laws of probability which 
predict that there will always be a certain number of failures. 
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8.1 The Retries Variant 

Let us begin with the description of algorithm Shallow which works in the retries variant. The 
algorithm builds a 2-level hash table as was done by algorithm FKS. Correspondingly the algorithm 
will have two phases. 

Phase I Let S be the input set, ISi = n. Algorithm Shallow starts by finding a hash function h 
which partitions S into buckets Sf, ... , S! such that 

n 2 I:lsrl < 5n. 
i=O 

(3) 

This is done by repeatedly trying functions selected at random from the class 'H~. 

Phase II The algorithm proceeds to find a perfect hash function for all the buckets. This is done 
by trying memory ·blocks of rapidly growing size. The block size growth rate is characterized by 
the sequence /Jt: 

f31 = 16 ' (4) 

or, in an explicit form 

fJ - 22
1
-2 t - • (5) 

Specifically, Shallow executes simultaneously procedures Shallow1 , ... Shallowflgnl· Let j be any. 
Then, the description of Shallowi is as follows. The procedure handles all buckets Si for which 
2i-1 < !Sil $ 2i. Initially, all buckets are active. The procedure executes in stages, each stage 
constitutes of rounds. In a round of stage t, each of the active buckets is hashed into a memory 
block of size f3t2 2i using a function selected at random from the class 'H~122j• Let Nt, j be the 
number of keys in active buckets at the beginning of stage t. By the end of each round consider the 
total number of keys in active buckets for which the selected hash functions were not perfect. We 
say that a round fails if this number is greater than 2N(t,j)/ f3t, Ha round fails, then all buckets 
remains active, and all separations obtained in the round are disregarded (a 11retry'1 ). Otherwise, 
buckets for which a perfect hash function was found become inactive; non-perfect hash functions 
a.re disregarded and the procedure moves to stage t + 1. The procedure terminates when there ai:e 
no more active buckets. The algorithm terminates when all proced~res terminate. 

Analysis of DEPTH(Shallow, n) It follows from Fact 3.3 that with probability at least 1/2 a 
function selected at random from?-{~ will satisfy Inequality (3). Therefore, the expected number 
of functions selected until Inequality (3) is attained is 0(1). The contribution of this part of the 
algorithm to the DEPTH(Sha llow, n) is at most constant. 

The number of stages of Shallow;, j = 1, ... ng n l can be determined by the following simple 
consideration. IT t is such that f3t ?: 4n then by the end of stage t the number of active buckets is 
less than 1 /2, or in other words N t, j = 0. It follows from Equation ( 5) that taking t = O(lg lg n) 
is enough to ensure f3t ?: 2n. Hence, the number of stages of Shallow; is O(lg lg n ). 
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It follows from Fact 3.3 that a function selected at random from ?-t}t221 is perfect for a bucket of 
size at most 2i with probability at least 1 -1/ flt. Hence, the expected number of active keys by the 
end of a round is at most N(t, j)/ f3t, and by Markov's inequality the probability of any given round 
to be the last in a stage is at least 1/2. The expected number of rounds in each stage is therefore 
at most 2, and the total expected number of rounds is O(lg lg n). 

Round failures are independent. We can therefore apply Chernoff bounds (Fact 3.5) getting 
that there is a constant C, such that for any 1 > C, the probability that the total number of 
rounds will be more than , times its expected value is o(l/lg,y/C n). Since there are at most 
r1g n l procedures executing simultaneously, the expected parallel time until the slowest procedure 
terminates is also O(lglgn). We therefore have DEPTH(Shallow,n) = O(lglgn). 

Analysis of SPACE(Shallow, n) In phase I, Shallow applies a series of retries into a memory of size 
n. The total memory used by this phase is therefore n. Consider any procedure Shallowj, In stage t 
there are at most Nt,i /2i active buckets, each bucket is hashed into memory of size f3t22i. The 
total memory used in the stage is therefore at most Nt,if3t2i. (Recall that no space is charged for 
retry nodes.) Since Nt+i,; :::; 2Nt+i,j/ f3t and f3t+i = /3;/4 we get that the bound for memory usage 
in stage t + l is at most 1/2 of the bound of memory used in a rourid of stage t. Thus, the total 
memory usage is up to a constant factor the same as memory used in stage 1. Using the fact that 
initially E(L ISl) = O(n) and /31 = 0(1) we get that even accounting for the possible doubling 
of set sizes due to r.ounding, SPACE(Shallow, n) = O(n). 

Analysis of TIME(Shallow, n) Note that the expected number of times Shallow accesses any mem­
ory cell is constant. Then, TIME(Shallow,n) = O(n) follows from SPACE(Shallow,n) = O(n). Since 
all functions used in Shallow are polynomials of degree 1, we get that the number of operations is 
linear even if arithmetic operations are counted. 

Analysis of SEARCH(Shallow, n) Recall that algorithm Shallow constructs a 2-level hashing 
scheme for S. The first level consists of the function selected at phase I, which splits S to buckets. 
The second level consists of the perfect hash functions found in phase II for each of the buckets. 
We therefore have SEARCH(Shallow, n) = 2. This completes the proof of Theorem 5.3. 

8.2 The Basic Model 

Algorithm Shallow' which works in the basic model is derived from Shallow, by replacing retry nodes 
in Shallow by refining nodes in Shallow'. A description of the modifications follows. 

Phase I Algorithm Shallow' starts partitioning S into buckets Si, S2 , ••• , Sn, by applying a hash 
function selected at random from?-{,~. It follows from Fact 3.2 that 

n 

E(L 1sd2) :::; 2.5ISI . (6) 
i=l 

22 



Phase II Simila.rly to Shallow, Sha ll ow> partition into procedures Shallow'i , ... Shallow' flsnl • All 
buckets Si, 2.i-1 < jS1 j :$ 2i are refined by Shallow';• However, smaller buckets generated from 
refining do do not move between procedures. The allocation of memory to buckets needs to be 
modified since there are greater variations in the size of buckets within a procedure. Instead of 
allocating a memory block of size 22J to all buckets associated with Shallow' h the allocation for 
smallel' buckets decreases in proportion to their size. Speci:fically, in stage t ~ 1 of Shallow',; a 
bucket of size r is hashed f3tr2i range using a function selected at random from 'Hlr2;. If this 
function is perfect then the bucket becomes inactive. The probability that this happens is at least 
1 - r /(2i /3,) > 1 - 1/ flt, If the function is not perfect then the bucket is broken into smaller sub­
buckets, and processing continues (within the same procedure) for all sub-buckets which have two 
or more keys. Let Nt,j be the number of keys in active buckets at the beginning of stage t. Then, 
the rounds of a stage t continue until the number of keys in active buckets drops below 2N(t,j)/ f3t, 

8.2.1 Analysis 

Note that the probability that a round will fail (i.e., that it will not be terminate the stage) is again 
at most 1/2. The expected number of rounds in each round is therefore a constant. Also, we loose 
no generality in assuming that rounds are independent. Following the same lines of the analysis of 
DEPTH(Shallow, n) we have DEPTH(Shallow', n) = O(lg lg n), and therefore SEARCH(Shallow', n) = 
O(lglg n). 

The space used by Shallow' in Phase I is n. For the analysis of space used in Phase II, we apply 
similar considerations to those used in the analysis of the space used by Shallow. A moment's thought 
will show that also here space usage decreases geometrically with stage number, and therefore space 
usage in stage 1 dominates all others. However, in this case we can only get a bound for the expected 
memory usage. Memory used in stage 1 is at most a constant times E(}:i~l ISi!2). Applying 
Inequality (6) we get SPACE(Shallow', n) = O(n) and consequently TIME(Shallow', n) = O(n). This 
completes the proof of Theorem 5.4. 

8.3 The Parallel Variant 

Both Shallow and Shallow' are not applicable directly to PRAMs, but the ideas underlying them can 
be used to supply an act1,1al PRAM algorithm [22]. In contrast, the following ParShallow algorithm 
seems much harder to implement. In each successive iteration, more and more processors are drafted 
to hash fewer and fewer keys. Locating those keys in need of help and organizing help for them 
apparently requires considerable time, and ParShallow completely ignores that. 

The description and the analysis of Shallow are used here as a skeleton. The following differences 
apply: the sequence f3t starts with {31 = 4 and increases at a quicker rate, f3t = 2P,-2

• In stage t 
of ParShallow3 the f3tr2i size memory block allocated to a bucket of r :S 2i keys is further divided 
into f3t2i /2r sub-blocks of 2r2 cells each. The parallel hashings are then done into these sub-blocks. 
The failure probability is thus at most 

In a stage, rounds continue to the point when the number of active keys is at most 2. 2-/Jt/2 Nt(r), 
and hence 
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This last bound, together with the definition of the sequence {.Bt}, proves that DEPTH(ParShallow) = 
O(lg"' n). To see that SPACE(ParShallow) = SPACEr(ParShallow) = O(n) note that the total memory 
used by a round of iteration t + 1 is at most 1/2 of the total memory used by a round of stage t. 
This completes the proof of the upper bound par.t of Theorem 5.9. 

8.4 The Chaining Variant 

The idea behind the reduction of DEPTH to O(lg lg n/ lg lg lg n) is to replace Phase II of Shallow by 
two phases: 

Phase Ila Use the prototype of algorithm Shallow to continuously break subsets until they are all 
small enough, instead of the usual attempt to achieve a complete separation. "Small enough" 
in this context means that the subset size is ~ R = lg lg n/ lg lg lg n. 

Phase lib When all the buckets are this small, then the ability of this model variant to store 
one element in every internal nodes is applied. No matter which function is used on nodes 
containing small subsets, at most R levels will be added to the tree. 

The main point in which the first phase of Shallowc differs from Shallow is that it handles only 
subsets of at least R elements; as soon as a subset is broken into smaller pieces, the algorithm 
ceases to handle it. Another difference is that hash functions used in an iteration must have a 
"good breaking" property. 

8.4.1 Good Breakers 

Definition 8.1 Let 1t be a class of hash functions mapping sets of size r into memory of size f3r 2 , 

then 1t is a good breaker if the probability that h picked at random from 1t is not R-perfect is at 
most 131-R. 

This property is achieved by random functions [21, Chapter 2]. However, true random functions are 
not useful for hashing as they require huge space for representation, and consequently non-constant 
evaluation time. 

The class JtR-l is a good breaker too, and its members can be represented efficiently. Unfortu­
nately, each application of a hash function takes O(R), which amounts to a total of O(lg lg n) run 
time, (although the number of hash function applications is still O(lglgn/lglglgn)). 

The class 'R is probably best suited for a more practical implementation of our algorithm as it 
offers the advantages of sub-linear representation and constant time evaluation. 

8.4.2 Parameters Setting and Analysis 

The sequence {f3t} is defined in algorithm ParShallow by 

(7) 
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As in Shallow, the basic unit of memory allocation is f3t2 23 in a stage t of Par5hallow3. A subset of 
sizer ::; 2i belonging to this procedure is hashed using a good breaker into a f3tr2i size memory 
block. The probability that the subset will not be broken into small enough subsets is at most 
f3l-R. If a stage's rounds carry on until N(r) ::; 2N,(r )/3l-R then the expected number of rounds 
in an iteration will be ::; 2 here too. Thus we have 

(8) 

Combining the recurrences (7) and (8) we see that memory requirements decrease geometrically: 

Adding to this the fact that the root node function must have satisfied Inequality (3), we infer that 
the total memory usage is linear. 

Solving the recurrence (7) we have 

/3 _ t3R1- 1 4-(R1-1)/(R-1) 
t - 1 , 

from which it follows that the number of iterations is O(R), completing the proof of Theorem 5.6. 

9 Conclusions 

Hashing models The hashing model proposed leads to an alternate view of hashing algorithms 
as element distinctness proof generator. In our lower bound analysis we assumed that all the hash 
functions (the proof components) are completely random. However, it is not difficult to see that if 
the universe is not too large, say polynomial in the size of the input set, and if non-random functions 
can be used, then the lower bounds do not hold. (E.g., by an integer sorting algorithm.) 

Is the random functions assumption essential? It was shown before [3, 59] that random functions 
are optimal in certain hashing situations. On the other hand, hashing algorithms that are based 
on open addressing or on the FKS scheme (such as the one described in [23]) as well as the upper 
bounds presented here do not assume the existence of random functions. We conjecture that the 
lower bound results hold for super polynomial sized universe even if arbitrary function are allowed. 

Although the model proposed is very general, it does not cover all hashing algorithms ( e.g., the 
one presented in [19]). It may be interesting to define more general models and to derive lower 
bounds for this models as well. 

Reliability of polynomial hash functions Polynomial hash functions were successfully used 
in the past as a replacement for truly random hash functions. However, only expected value results 
were known for the measures of performance of polynomial hash functions. Thus, hashing algorithms 
which use these functions are typically not-solid. In fact, the real time dictionary- an application 
which requires performance guaranteed with high probability, motivated Dietzfelbinger and Meyer 
auf der Heide in their invention of the class n. Selecting a function from n meets the high 
probability requirement but with a cost of a large number of random bits, and of considerable 
space for its representation. Can the simpler polynomial hash functions give similar performance? 
In a work which followed this thesis Dietzfelbinger, Gil, Matias and Pippenger [15] show that a 
small increase of the polynomial degree improves the reliability of polynomial hash functions. 
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Parallel Hashing The hashing problem considered in this dissertation was "static", i.e., the input 
set Sis fixed. H the Sis changing dynamically, then the problem is known as the dictionary problem, 
in which it is required to maintain a data structure that supports the instructions insert, delete 
and lookup. The fastest optimal dictionary published prior to this thesis is due to Dietzfelbinger 
and Meyer auf der Heide [17]. Its time complexity is O(nf) for any constant c > 0. The static 
hashing scheme presented in chapter 7 can be extended to a dynamic hashing scheme with similar 
complexities [24]. Furthermore, a recent result is that a dictionary can be maintained optimally in 
O(lg* n) time. An important application of parallel hashing and the dictionary algorithm is in the 
recent work of Karp, Luby, and Friedhelm Meyer auf der Heide on the extremely fast simulation of 
a PRAM on a complete network [32]. 
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