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Abstract

This paper reconsiders the familiar case of photometric stereo under the assumption

of Lambertian surface reectance and three distant point sources of illumination. Here,

it is assumed that the directions to and the relative strengths of the three light sources

are not known a priori. Rather, estimation of these parameters becomes part of the

problem formulation.

Each light source is represented by a 3-D vector that points in the direction of the

light source and has magnitude proportional to the strength of the light source. Thus,

nine parameters are required to characterize the three light sources. It is shown that,

regardless of object shape, triples of measured intensity values are constrained to lie

on a quadratic surface having six degrees of freedom. Estimation of the six parameters

of the quadratic surface allows the determination of the nine parameters of the light

sources up to an unknown rotation.

This is su�cient to determine object shape, although attitude with respect to the

world-based or the camera-based coordinate system can not be simultaneously recov-

ered without additional information.

1 Fellow of the Canadian Institute for Advanced Research.



1 Introduction

Woodham [1] included a formulation of photometric stereo that allowed the recovery of both

surface shape and surface reectance under the assumptions of orthographic projection, three

distant point sources of illumination and Lambertian reectance. To apply the formulation

given in [1], it is necessary that the three light sources be in a known con�guration and be

of known strength.
Subsequently, both for shape-from-shading and for photometric stereo, several papers

have considered how the directions to the light sources might be recovered automatically.

Automatic recovery is feasible using calibration points of known surface orientation. It is

less clear how to proceed when the shape of the objects in view also is unknown. Recently,
Iwahori et al. [2] argued that the three zenith angles of the illumination directions can be
recovered in photometric stereo provided that the corresponding azimuth angles are known
and that the illumination sources are of known strength.

Here, it is assumed that the directions to and the relative strengths of the three light
sources are not known a priori. Rather, as with Iwahori et al. [2], estimation of these

parameters becomes part of the problem formulation.
Each light source is represented by a 3-D vector that points in the direction of the light

source and has magnitude proportional to the strength of the light source. Thus, nine

parameters are required to fully characterize three light sources. It is shown that, regardless
of object shape, triples of measured intensity values are constrained to lie on a quadratic

surface having six degrees of freedom. Estimation of the six parameters of the quadratic

surface allows one to determine the nine parameters of the light sources up to an unknown
rotation.

This is su�cient to determine object shape, although attitude with respect to the world-
based or the camera-based coordinate system can not be simultaneously recovered without

additional information.

2 Formulation and Derivation of Theoretical Results

The basic equation characterizing image irradiance obtained under the assumptions of Lam-

bertian reectance, single distant point source illumination, orthographic projection and
transmittance through an intervening scatterless medium is,

E(x; y) =
E0

�
�(x; y) cos(�

i
) (1)
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where E(x; y) is the measured irradiance at image point (x; y), �(x; y) is the bidirectional

reectance factor (aka albedo) at the corresponding object point (0 � �(x; y) � 1), E0 is the

irradiance of the light source and �
i
is the angle of incidence of the light source at the object

point measured.

Often, one assumes that �(x; y) is constant at all object points of interest so that the

dependence of � on (x; y) can be ignored. (Note, however, that Woodham [1] does consider
the case where � depends on (x; y).) Then, one can also assume, without loss of generality,

that the constant of proportionality, E0

�

�, can be taken equal to 1 so that the image irradiance
equation becomes the more familiar

E(x; y) = cos(�
i
) (2)

Here, however, we will want to allow the relative strengths of the light sources to be distinct
so that we will write

E(x; y) = E cos(�
i
) (3)

Since we are not interested in absolute units, we will refer to the parameter E as the relative
strength of the light source.

The dependence of image irradiance, E(x; y), on the cosine of the incident angle, �
i
,

makes the Lambertian case especially simple to analyze. If we represent directions by unit
vectors, then the cosine of the angle between any two directions is the dot product of the

corresponding two unit vectors. This allows a linear problem formulation, as will be exploited
here.

For three light source photometric stereo, let a
i
= [a

i1; ai2; ai3], i = 1; 2; 3, be the 1� 3

(row) vectors that point in the direction of light source i with magnitude equal to the relative
strength, E

i
, of light source i. Let A be the 3� 3 matrix

A =

2
64
a11 a12 a13
a21 a22 a23
a31 a32 a33

3
75 (4)

We will assume that the three light source directions, given by a
i
, i = 1; 2; 3, are not coplanar

so that the matrix A is nonsingular.
Let x = [x1; x2; x3]

T be the unit (column) surface normal vector at some object point

of interest. Let y = [y1; y2; y3]
T be the associated triple of intensity values given by

Equation (3), applied once for each light source direction. Then, we may write

y = A x (5)
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Equation (5) establishes a linear relation between surface shape, given by the unit surface

normal vector, x, and measured intensity values, y.

Of course, if we knew A then we could determine x as

x = B y (6)

where B = A�1. Here, however, we do not assume that A is known. Fortunately, there is

more that we can say simply based on the observation that Equation (5) is linear.
Consider each unit vector, x, to be positioned at the origin. We can then associate all

vectors, x, with points on the unit sphere centered at the origin. In this way, we can think of

Equation (5) as specifying a linear transformation of the sphere k x k
2
= (xTx)

1

2 = 1. It

is reasonable to ask what is the corresponding shape mapped out by the vectors y = A x.

Substitution, using Equation (6), shows that the quadratic xTx = 1 implies

(By)
T

By = yT BTBy = yT Cy = 1 (7)

where C = BTB is the 3 � 3 symmetric, positive de�nite matrix

C =

2
64
c11 c12 c13
c21 c22 c23
c31 c32 c33

3
75 =

2
64
b1

Tb1 b1

Tb2 b1

Tb3

b2

Tb1 b2

Tb2 b2

Tb3

b3

Tb1 b3

Tb2 b3

Tb3

3
75 (8)

and where the b
i
= [b1i; b2i; b3i]

T , i = 1; 2; 3, are the three 3� 1 column vectors of B.
Suppose we were to obtain an empirical scatterplot of measured intensity triples, y, from

points on an object of unknown shape. Then, these intensity triples are constrained to lie
on the quadratic yT Cy = 1. Geometrically, this means that the intensity triples, y, lie on

an ellipsoid whose equation is given analytically by

c11 y1
2 + c22 y2

2 + c33 y3
2 + 2 c12 y1 y2 + 2 c13 y1 y3 + 2 c23 y2 y3 � 1 = 0 (9)

This equation has only six unknown coe�cients. This follows, of course, from the fact that

the matrix C, being symmetric, has only six degrees of freedom. Equation (9) necessar-
ily de�nes an ellipsoid because the matrix C is positive de�nite. In particular, c

ii
> 0,

i = 1; 2; 3.
The six unknown coe�cients of matrix C can be determined empirically even when the

matrix A is unknown and even when there is no object point whose surface normal vector,

x, is known. All that is required is that we have su�ciently many measured intensity

triples, y, to estimate the six unknown coe�cients of the quadratic given by Equation (9).
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A standard linear least squares method can be used to estimate these six coe�cients. Let

y
k

= [y
k1 y

k2 y
k3], k = 1; 2; : : : ; n, be n � 6 measured intensity triples. Let M be the

n� 6 matrix

M =

2
66664

y11
2 y12

2 y13
2 2 y11y12 2 y11y13 2 y12y13

y21
2 y22

2 y23
2 2 y21y22 2 y21y23 2 y22y23

...
...

...
...

...
...

y
n1

2 y
n2

2 y
n3

2 2 y
n1yn2 2 y

n1yn3 2 y
n2yn3

3
77775

(10)

Let I be the n�1 column vector each entry of which is 1. Let z be the 6�1 column vector of

unknown coe�cients, z = [c11 c22 c33 c12 c13 c23]
T

. Then, the standard linear least squares

estimate of z is
z = (MTM)

�1

MT I (11)

In principle, this least squares estimation will be very robust since each of the n measured
intensity triples contributes useful information.

Thus, empirical measurement determines the matrix C. The constraint that C imposes

on A is easiest to interpret when expressed in terms of C�1. Let D = C�1 so that

D = C�1 = (BTB)
�1

= B�1(BT )
�1

= B�1(B�1)
T

= AAT (12)

Therefore,

D =

2
64
d11 d12 d13
d21 d22 d23
d31 d32 d33

3
75 =

2
64
a1a1

T a1a2
T a1a3

T

a2a1
T a2a2

T a2a3
T

a3a1
T a3a2

T a3a3
T

3
75 (13)

The matrix D, like the matrix C, is a 3 � 3 symmetric, positive de�nite matrix. From D,
one can determine the relative strengths of the light sources i, i = 1; 2; 3, and the angle

between the vectors to light sources i and j, i 6= j, i = 1; 2; 3 ; j = 1; 2; 3. Speci�cally, the
relative strength of light source i, E

i
, is given by

E
i
= (a

i
a
i

T )
1

2 =
q
d
ii

(14)

and the cosine of the angle, �
ij
, i 6= j, between a

i
and a

j
is given by

cos(�
ij
) =

a
i
a
j

T

p
a
i
a
i

T

q
a
j
a
j

T

=
d
ijp

d
ii

q
d
jj

(15)

Equations (14) and (15) together represent six constraints on the matrix A. These six
constraints can be interpreted geometrically. Let the vectors a

i
, i = 1; 2; 3, share a common
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origin. The vectors, a
i
, form a triad whose shape, speci�ed by the lengths of the vectors and

the angles between them, is known. Any rotation of this triad will not change the shape

of the triad and therefore will not violate any of the six constraints. A 3-D rotation has
three degrees of freedom. To absolutely �x the triad in a given 3-D coordinate system, three

additional constraints would be required.

A simple argument demonstrates that the quadratic yT Cy = 1 is, indeed, invariant
under a rotation of the coordinate system used to represent x. Let R be an arbitrary 3 � 3

rotation matrix. Consider rotating our unit surface normals by R. That is, let x̂ = Rx

Clearly, the constraint x̂T x̂ = 1 is preserved since

x̂T x̂ = (Rx)
T

Rx = xT (RTR)x = xTx = 1 (16)

Therefore, the corresponding constraint yT Cy = 1 also is preserved. Suppose we have

ŷ = Ax̂ (17)

We can also write this as

ŷ = A (Rx) = (AR)x (18)

Thus, given only measurements y, one can not distinguish between the case of a surface
normal vector x̂ with light source matrix A from the case of a surface normal vector x with
light source matrix Â = AR. That is, without knowing x, one can only hope to determine

the matrix A up to an unknown rotation matrix R.

Shape, in the form of surface normal vectors, still can be reconstructed using a coordi-
nate system imposed for that purpose. The relationship between the surface normals thus
reconstructed and any world-based or object-based coordinate system will be one of rotation.

Actually, the argument holds for any orthonormal matrix R, not just a rotation. It is not

possible, based on matrix C alone, to decide whether the triad a
i
, i = 1; 2; 3, forms a right-

handed or a left-handed coordinate system. If a mismatch occurs between the handedness

of the coordinate system used for reconstruction and the handedness of the �nal coordinate

system, the possibility that R includes a reection must also be considered.
Assuming that matrixC has been determined empirically, any assignment of values to the

entries of matrixA that satis�es Equation (13) is suitable since this assignment will implicitly
de�ne an 3-D coordinate system in which to reconstruct the surface normal vectors, x. The

following procedure selects a candidate matrix Â that satis�es C�1 = D = Â Â
T

:
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1. Align a1 with the positive X1 axis by setting a12 = a13 = 0. To satisfy Equation (14),

set a11 =
p
d11.

2. Place a2 in the X1X2 plane by setting a23 = 0. To satisfy Equation (15) for a1 and

a2, set a21 = d21=a11 To satisfy Equation (14), set a22 = �pd22 � a212. The � on
a22 is signi�cant because a2 may make an angle �12 with respect to the X1 axis either

in a clockwise or in a counter clockwise direction.

3. To satisfy Equation (15) for a1 and a3, set a31 = d31=a11. To satisfy Equation (15)

for a2 and a3, set a32 = (d32 � a21a31)=a22 To satisfy Equation (14), set a33 =
�pd33 � a312 � a322. Again, the � on a33 is signi�cant because a3 may be oriented

either in the half space X3 > 0 or the half space X3 < 0

Depending on which sign is chosen for a22 and a33 above, the triad ai, i = 1; 2; 3, will form

a left-handed or a right-handed system. A right-handed (left-handed) system can always be
chosen according to whether the resulting determinant of Â is positive (negative).

Given the matrix, Â, the surface normal, x̂, corresponding to a measured intensity triple,

y is given by:

x̂ = (Â)
�1

y (19)

The surface normal, x̂, is expressed in the 3-D coordinate system imposed by our particular
construction of Â.

Now, if the visual task is object recognition, this may well be su�cient. There is no

particular advantage, for viewpoint independent object recognition, to representing surface
normals in a viewer-centered coordinate system. On the other hand, if the task requires a
robot to grasp the object, it will be necessary to determine object attitude in a robot-centered

coordinate system.
Suppose other means are used to determine the rotation matrix, R, that transforms

surface normals, x, represented in a desired coordinate system to the coordinate system

implicitly de�ned by the method used to construct Â. Now,

x̂ = Rx = (Â)
�1

y (20)

so that

y = ÂRx (21)

and

A = ÂR (22)

Clearly, we can also recover x from x̂ by

x = R�1 x̂ = RT x̂ (23)

6



3 An Example

Let the three unit (row) vectors pointing in the direction of the light sources be

[ :5568900989 :2386671853 :7955572842 ]

[ �:5568900989 :2386671853 :7955572842 ]

[ 0 0 1 ]

(24)

Suppose the relative strengths of the three light sources, E
i
, i = 1; 2; 3, are 3, 2 and 1:5.

Then, the matrix A becomes

A =

2
64

1:670670297 :7160015559 2:386671853

�1:113780198 :4773343706 1:591114568

0 0 1:500000000

3
75 (25)

The matrix C = BTB, where B = A�1, becomes

C =

2
64

:5772234818 :5971277402 �1:551827789
:5971277402 1:298752835 �2:327741684

�1:551827789 �2:327741684 5:382716048

3
75 (26)

Figure 1 shows three 256� 256 synthesized images of a Lambertian sphere illuminated from

each of the three light source directions given in Equation (24). For the images shown
in Figure 1, the light sources were assumed to be of equal strength. In what follows, the

intensity values were post-multiplied, respectively, by 3, 2 and 1:5 to correspond to the

situation described by Equation (25). For this example, 24; 812 points on the sphere received
illumination from all three light sources. Using Equation (11), with n = 24; 812, the
empirically determined estimate of C, call it Ĉ, is given by

Ĉ =

2
64

:5769297 :5967482 �1:5509174
:5967482 1:2980919 �2:3263760

�1:5509174 �2:3263760 5:3797137

3
75 (27)

The input images shown in Figure 1 were quantized to 8 bits. Comparison of the matrices C

and Ĉ indicates that each entry of Ĉ is accurate to better than 3 decimal digits (i.e., better
than 10 bits). This illustrates the inherent robustness of the estimate, Ĉ � C, when based
on a large number of measurement triples. Now, let D = C�1 so that

D =

2
64

9 2:278481010 3:580007761

2:278481010 4 2:386671844

3:580007761 2:386671844 2:25

3
75 (28)
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From the square roots of the diagonal elements of D we immediately recover the relative

strengths of the three light sources, E
i
, i = 1; 2; 3, as 3, 2 and 1:5, respectively. Following

the procedure outlined above, a candidate matrix, Â, is obtained where

Â =

2
64

3 0 0

:7594936718 1:850180893 0

1:193335923 :8001059613 :4310218286

3
75 (29)

It can be veri�ed that the matrix Â satis�es the constraints. That is, Â Â
T

= D = C�1.

In this example, it happens that both A and Â de�ne a right-handed coordinate system. In

this example, we also know A so that we can determine R = (Â)
�1

A as

R =

2
64

:5568901001 :2386671858 :7955572859

�:8305861935 :1600211927 :5334039755
0 �:9578262846 :287347886

3
75 (30)

Suppose we obtain a measured intensity triple, y, where

y =
h
2:755891272 :5511782542 :8660254035

i
(31)

Then, we solve for x̂ = (Â)
�1

y to obtain

x̂ =
h
:9186304258 �:0791899548 �:387100880

i
(32)

The corresponding x = RT x̂ is

x =
h
:5773502706 :5773502652 :5773502721

i
(33)

This completes the example since the surface normal x =
h
1=
p
3; 1=

p
3; 1=

p
3
i
was used to

generate y in Equation (31) according to y = Ax and 1=
p
3 � 0:57735027.

4 Conclusions

Nine parameters are required to characterize the light sources for the case of three distant
point source photometric stereo. For the Lambertian case, it has been shown that, regardless

of object shape, triples of measured intensity values determine six of these nine parameters.
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The remaining three degrees of freedom de�ne a rotation. For the purposes of shape recon-

struction, it is not necessary to know this rotation.

A simple, but illustrative, application of this result would be to robot navigation. Imagine
a robot vehicle required to move through a large, unstructured workspace. Suppose that the

positions of three distant point light sources are known in a 3-D coordinate system de�ned

in the workspace. Further, suppose the robot were to carry a suitable target object of known
shape in its �eld of view. The method described here can be used to reconstruct the shape

of the target object in a light source based coordinate system. Given that the position and
attitude of the target already is known in the robot coordinate system, the rotation matrix,

R, between light source and robot coordinates also can be determined. This, in turn, de�nes

the attitude of the robot with respect to the workspace coordinate system.
In this work, two unique properties of Lambertian reectance have been exploited. First,

a Lambertian reector appears equally bright from all viewing directions. This means that

it is not essential to reconstruct object shape in a viewer dependent coordinate system, as is
the case with standard approaches to shape-from-shading and photometric stereo. Instead,
as has been demonstrated, one can reconstruct shape in a 3-D coordinate system induced by

the light sources themselves. Second, under distant point source illumination, Lambertian
reectors have scene radiance proportional to the cosine of the incident angle. This means

that, using unit vectors to specify directions, the problem remains linear. The resulting

mathematics, as has been demonstrated, remains quite tractable.
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