
A Simple Primal Algorithm for

Intersecting 3-Polyhedra in Linear Time

by

Andrew K. Martin

(Email: amartin@cs.ubc.ca)

Technical Report 91-16

July 1991

Department Of Computer Science

University of British Columbia

2366 Main Mall, Vancouver, B.C.

CANADA V6T 1Z4

Abstract

This thesis presents, in full, a simple linear time algorithm for intersecting two

convex 3-polyhedra P and Q. This di�ers from the �rst such algorithm | due

to Chazelle | in that it operates entirely in primal space, whereas Chazelle's

algorithm relies heavily on duality transforms. We use the hierarchical represen-

tations of polyhedra due to Dobkin and Kirkpatrick to induce a cell complexes

between coarse approximations, P k and Pk of P satisfying Pk � P � P k, and

similar approximationsQk and Qk of Q satisfying Qk � Q � Qk. We show that

the structure of such complexes allows intersection queries to be answered e�-

ciently. In particular, the sequence of cells intersected by a ray can be identi�ed

in time proportional to the length of the sequence.

The algorithm operates by recursively computing the intersections: P k\Qk

and Pk\Q
k. Then edges of the union of approximations P \Qk and Q\P k are

traversed by tracing their intersection with the two cell complexes. We show

that each such edge can be traversed in constant time. In the process, most of

the edges of P \Q which lie simultaneously on the boundary of P and Q will

be traced. We show that the total time needed to construct those which remain

is linear in the size of P and Q.

Though based on the same general principles, the algorithm presented here

is somewhat simpler than that described by Chazelle, which uses only the cell

complexes induced by the inner hierarchical representations of P and Q. By ex-

tending Chazelle's search structure to the space exterior to the given polyhedra,

we avoid having to operate simultaneously in primal and dual spaces. This per-

mits us to conceptualise the algorithm as traversing the edges of the boundary

of (P \Qk)[(Q\P k). As a side e�ect, we avoid one half of Chazelle's recursive

calls, which leads to a modest improvement in the asymptotic constants.

Contents

1 Introduction 3

2 Terms and De�nitions 5

3 Polytope Sequences Viewed as Cell Complexes 7

3.1 Representation : 9

3.2 Point Location and Ray Tracing : : : : : : : : : : : : : : : : : : 10

3.3 Steepest Descent : 14

4 Hierarchical Representations 16

4.1 Inner Hierarchical Descriptions : : : : : : : : : : : : : : : : : : : 17

4.2 Outer Hierarchical Descriptions : : : : : : : : : : : : : : : : : : : 22

4.3 The Size of P k and Pk : 24

5 Computing P \Q 31

5.1 Facets of � : 34

5.2 Tracing Edges of � : 36

5.3 Crossing Perforated Facets : 38

5.4 An Edge Traversal Algorithm for � : : : : : : : : : : : : : : : : : 39

5.5 Filling in the Gaps : 39

5.6 Time Analysis : 41

6 Conclusions 42

1

List of Figures

3.1 A polytopal Cell Complex : 8

3.2 Locating a point x in a cell complex : : : : : : : : : : : : : : : : 11

3.3 Tracing a ray outwards : 13

4.1 An inner hierarchical description of a polytope P : : : : : : : : : 17

4.2 An outer hierarchical description of a polytope P : : : : : : : : : 18

5.1 A perforated facet of P [Q : 32

5.2 Coplanar facets of P \Qk and Q \P k : : : : : : : : : : : : : : : 33

2

Chapter 1

Introduction

The main contribution of this thesis, is the development in full of a simple

linear-time algorithm for computing the intersection of two three dimensional

convex polytopes. In the process, cell complexes are described which abstract

some of the properties of Dobkin and Kirkpatrick's hierarchical representations.

The properties of such cell complexes are described for arbitrary dimensions,

although their use is restricted to three dimensions in this thesis.

As shown by Muller and Preparata[7], the problem of computing the inter-

section of two convex polytopes can be linearly reduced to that of computing a

description of the intersection of their boundaries. Intuitively, such a descrip-

tion provides a pattern for `sewing' together facets of the two polyhedra to form

their intersection. Brute force approaches to computing the boundary intersec-

tion which simply compute the intersection of each facet of one, with all facets

of the other are, of course, doomed to take �(n2) time, where n is any rea-

sonable measure of the combined complexity of the two polytopes. Muller and

Preparata describe the �rst non-trivial algorithm for computing the intersec-

tion of two convex polyhedra. Their algorithm, which runs in O(n logn) time,

relies on the dual relationship between polytope intersection and convex union.

Given two polytopes P and Q, the algorithm �rst identi�es a point p in their

intersection (or returns the empty set if none exists). Then, by applying an

inversion transform[9] about p, P and Q are transformed into their duals, P �

and Q� respectively. The convex hull Z of P �[Q� is then computed, and �nally

the dual of Z is computed to yield a description of P \ Q. Since both inver-

sion and intersection detection are accomplished in linear time the algorithm is

dominated by the O(n logn) cost of computing the convex union. Subsequently

Hertel et al.[5] give a fundamentally di�erent algorithm based on planar sweep

to achieve the same upper bound. Yet another O(n logn) algorithm follows by

direct application of the hierarchical representations of 3-polyhedra introduced

in Dobkin and Kirkpatrick[3] (and revisited in Chapter 3 of this thesis).

While linear time solutions to the two-dimensional version of this problem

3

(ie. intersecting convex polygons) have been known for some time[9], until

Chazelle's recent result[2], linear time algorithms for intersecting 3-polyhedra

have remained elusive. Chazelle's linear time algorithm uses both a truncated

version of the hierarchical representations of Dobkin and Kirkpatrick, and the

dual transforms used by Muller and Preparata. Even though the induced search

structure which underlies Chazelle's algorithm has logarithmic depth, making a

running time of �(n logn) seem unavoidable, Chazelle uses an ingenious dove-

tailed recursion to avoid using the entire structure thereby reducing the time

taken to O(n).

The algorithm presented here was inspired by and bears considerable resem-

blance to Chazelle's algorithm. In particular Chazelle's observations that an

inner hierarchical representation induces a cell complex suitable for ray tracing,

and that a truncated version of this can be exploited in a recursive algorithm

are fundamental to our algorithm as well. However, the two algorithms di�er

in several important respects. By extending Chazelle's search structure to the

space exterior to the given polyhedra, we manage with only one half of Chazelle's

recursive calls which leads to a simpli�cation in the analysis of the algorithm

and to a modest improvement in the asymptotic constants.

We consider both the inner and the outer hierarchical representations simul-

taneously and view their union as a cell complex partitioning both the interior

and the exterior of the given polytopes. Truncating the approximation sequences

at a �xed depth (k) gives a cell-complex which is bounded by two coarse approx-

imations to the original and in which ray-tracing can be performed in constant

O(k) time. More speci�cally suppose P and Q are two convex polytopes with

n and m edges respectively. To construct P \Q we begin by building a search

structure CP on the space between two coarse approximations Pk and P k sat-

isfying Pk � P � P k. A similar structure CQ is built between approximations

Qk and Qk of Q. Recursively, Qk \ Pk and P k \Qk are computed. The result

of these recursive calls is then used to trace the edges of a carefully constructed

approximation to P [Q through CP and CQ taking O(m+ n) time in total.

Chapter 2 provides de�nitions for the terms and symbols used throughout

the paper. Chapters 3 and 4 develop a cell decomposition of the space within

and outside of each polytope. This structure will allow us to trace the surface of

one polytope through the structure induced by the other, thereby exploiting the

structure of both to reduce the number of boundary intersections which need to

be considered. Chapter 5 shows how to use these structures to achieve an O(n)

algorithm. Finally Chapter 6 compares our algorithm with that described by

Chazelle.

4

Chapter 2

Terms and De�nitions

We begin by de�ning some terms and symbols which will be used throughout this

paper. Many of the de�nitions, and in particular the de�nitions of (oriented)

hyperplanes, convex polyhedra, convex polytopes, faces, vertices, edges and

facets are exactly as described in[3].

If a 2 <d �f0g and c 2 < then the set H(a; c) = fx 2 <djhx; ai = cg (where

hx; ai denotes the inner product of vectors x and a) is called a hyperplane in <d.

A hyperplaneH(a; c) de�nes two closed half spaces, H+(a; c) = fx 2 <djhx; ai �

cg and H�(a; c) = fx 2 <djhx; ai � cg. A (convex) polyhedron is de�ned as the

intersection of a �nite number of such closed half-spaces. Bounded polyhedra

are known as polytopes. A polytope can be de�ned equivalently as the convex

hull of a �nite point set. If S is such a point-set set, we denote the convex hull

of S by CH(S). If H is a �nite set of hyperplanes, we de�ne the associated

polyhedra P(H) = \H2HH
+.

We say that a hyperplane H supports a polytope P if P � H+ andH\P 6= ;.

We say a hyperplane H supports P at x when P � H+ and x 2 P \H. If H

supports P , then H\P is called a face of P . Zero dimensional faces of are called

vertices, one dimensional faces are called edges and d� 1-dimensional faces are

called facets. The set of all vertices (resp. edges and facets) of a polytope P is

denoted by V (P) (resp. E(P) and F (P)). The union of all the facets of P is

called the boundary of P and is denoted by @P . P � @P is called the interior of

P and denoted Int(P). Observe that the set V (P) is the smallest set of points

S such that P = CH(S). Similarly, we use the notation D(P) to denote the

smallest set of hyperplanes, H satisfying P = P(H). We call such a hyperplane

a de�ning hyperplane, and observe that its intersection with P is a facet.

We say two vertices, v1 and v2 are neighbours in P i� there is an edge,

e 2 E(P) such that e = CH(fv1; v2g). We say that they are independent if they

are not neighbours. The neighbourhood N (P ; v) of a vertex, v is the set of all

such neighbours. We say two de�ning hyperplanes h1 and h2 are neighbours in

P i� their common intersection with P is a d � 2 dimensional face. De�ning

5

hyperplanes are independent i� they are not neighbours. The neighbourhood

N (P ;h) of a de�ning hyperplane h, is the set of all such neighbours. As poly-

topes are closed objects, the compliment of P , denoted P , speci�cally excludes

the boundary of P . On occasion, it will be convenient to have a way to refer to

the set of points on or beyond the boundary of P . Thus we denote P [@P by eP .
Since P [Q = (P \Q)[(P \Q)[(P \Q), the notions of faces, vertices, edges

and facets can be extended in a natural way to the union of convex polytopes.

In particular, @(P [Q) = (@P \ eQ) [(@Q \ eP).

6

Chapter 3

Polytope Sequences

Viewed as Cell Complexes

Let S = P1; : : : ; P� be an arbitrary sequence of polyhedra in <d such that, for

1 � i < �, Pi+1 � Pi. The connected components of Pi � Pi+1 for each i,

together with P1 and P�, will be referred to as cells. 1 A cell complex C(S)

arising in this way will be referred to as a polytopal cell complex. Such a complex

is illustrated in Figure 3.1. We associate with each cell c a level L(C(S); c), such

that L(C(S); c) = i i� c � Pi � Pi+1, L(C(S);P1) = 0 and L(C(S);P�) = �. In

cases where the polytope sequence S is clear from the context, we will omit the

�rst argument, abbreviating the notation to L(c). Cells c such that L(c) > 0

and L(c) < � will be called proper cells to distinguish them from P1 and P�.

The concept of levels can be extended naturally to arbitrary points x 2 <d by

de�ning L(C(S);x) = L(C(S); c) where c is the unique cell which contains the

point x.

Lemma 3.1 If an arbitrary line penetrates a sequence of cells c1; : : : ; cn of a

polytopal cell complex then the sequence of levels, L(c1); : : :L(cn) is unimodal.

Proof: The polytopes which form the complex are convex, and hence each can

be intersected by a line at most once. 2

We de�ne jcj, the complexity of a level i cell c as the total number of faces

of Pi and Pi+1 which intersect its boundary. We say that c is simple i� its

complexity is bounded by a predetermined constant �. We say that a polytopal

cell complex is simple if all of its proper cells are simple. If the innermost (resp.

outermost) polytope P� of a simple polytopal cell complex is also simple, then we

1This is somewhat of an abuse of the term used in various branches of topology, since the

boundaries of our cells are partially open.

7

@P

@P

@P

1

2

3

Figure 3.1: A polytopal Cell Complex

say that the complex is i-simple (resp. o-simple). A cell complex which is both

i-simple and o-simple will be said to be t-simple. Throughout the remainder of

this chapter, we assume that C(S) is an arbitrary simple polytopal cell complex.

Moreover, throughout the rest of this thesis, we restrict the generality of the

term \cell complex" to simple polytopal cell complexes just de�ned.

Lemma 3.2 Suppose that H is a de�ning hyperplane of some Pj 2 S and i is

the smallest integer such that H 2 D(Pi). Then there is a unique cell C(H)

such that Pi�1 \H+ � C(H).

Proof: Let x1 and x2 be two points in Pi�1\H+. We show that they are in the

same cell. Clearly, x1x2 \ Pi = ; since both x1 and x2 lie in H+. On the other

hand, x1x2 � Pi�1 since both x1 and x2 are in Pi�1. Since the line connecting

them neither enters Pi nor leaves Pi�1 we must conclude that they are in the

same cell. 2

Lemma 3.3 If C(P1; : : : ; P�) is an arbitrary simple (resp. i-simple,o-simple,t-

simple) cell complex, and H an arbitrary hyperplane, then the cell complex

C(P1 \H; : : : ; P� \H) is a simple (resp. i-simple, o-simple, t-simple) cell com-

plex.

8

Lemma 3.4 If C(P1; : : : ; P�) is an arbitrary simple cell complex and H is a

de�ning hyperplane of some Pi where i > 1, but is not a de�ning hyperplane of

P1, then the cell complex C(Pi \H; : : : ; P� \H) is a o-simple cell complex.

Proof: The facet Pi \H must be simple since it bounds a simple cell. 2

3.1 Representation

Before proceeding to make claims about the cost of computing certain things

with a polytopal cell complex, we must make explicit some assumptions about

representation. We assume that the full facial graph is available for each poly-

tope in the sequence, with each face being represented explicitly. For polytopes

of three or less dimensions, this graph will be planar and hence can be rep-

resented in linear space using the doubly connected edge list representation of

Muller and Preparata[7]. In this representation, edges are oriented and repre-

sented explicitly by data structures containing the names of the two vertices

which terminate them, the two facets which they separate, and pointers to the

next edges encountered when proceeding clockwise around their terminating

vertices.

We assume that cells are explicitly represented, or at least that a list of the

faces of Pi and Pi+1 which bound each level i cell can be constructed in constant

(depending on �) time. We also assume that for each de�ning hyperplane H

of each Pi, we have at hand, the unique cell C(H) whose existence was proved

in Lemma 3.2. Moreover for each face f of each Pi, we have a pointer to the

highest dimensional face of Pi+1 which it contains (if one exists). If no such face

of Pi+1 exists, then f 's representation includes a pointer to the representation

of the level i cell which it bounds.

Lemmas 3.3 discussed the cell complex which results from intersecting a

cell complex C with a hyperplane H. While a representation of this complex

is implicit in the representation of C, some cost may be incurred in extract-

ing descriptions of its features. On the other hand a description of the cell

complex arising in the more restricted situation discussed in Lemma 3.4 is ex-

plicitly present in the description of the original: Let f be a facet of some

Pk 2 fP1; : : : ; P�g, let fi = Pi \ f for all k � i < �, and let j be the largest i

such that fj 6= ;. Let C� = C(fk; : : : ; fj). Observe that each fi for k � i � j is

actually a face of Pi, and thus a description of it is directly available from the

description of Pi. Each cell in C� is merely a cell of C which has been inter-

sected by a hyperplane. Thus, a description of each cell of C� can be obtained

in O(�) time from the description of the corresponding cell in C. In fact, all

the information which we claimed to have at hand for C, is available for C� in

O(�) time from the description of C.

9

3.2 Point Location and Ray Tracing

Our primary interest in cell complexes, concerns the ease with which point-

location and ray-tracing operations can be performed. We �rst de�ne these

operations. The problem of ray-tracing can be described as follows: Given a

point x inside a known proper cell c and a direction vector ~v, compute the next

cell c0 entered by a ray r which emanates from p in the direction ~v. Since c has

a constant sized description, it is a simple matter to compute the coordinates of

the point x0 at which the ray leaves c in O(�) time. Thus, we lose no generality

in assuming the the point x0 on the boundary of c is also given. We say that r

is emanating outwards if L(c0) < L(c). Of course, if r is emanating outwards,

x0 will actually be a point in the cell c. We say that r is emanating inwards if

L(c0) > L(c). If r is emanating inwards, x0 will be a point in the cell c0 whose

identity we are to determine. Unfortunately, in both cases knowing the face by

which r leaves c does not immediately identify the new cell c0 which it enters.

The problem of point-location is to identify the cell in a cell complex con-

taining a point whose physical co-ordinates are known. For our purposes, it

will su�ce to consider this problem in the restricted case where cell complex is

o-simple.

Lemma 3.5 If an algorithm exists to solve the point-location problem for any

query point x in an arbitrary d � 1 dimensional o-simple cell complex C� in

O(L(C�;x)) time, then the identity of the next cell c0 of an arbitrary d di-

mensional cell complex C(S) entered by an arbitrary ray r which emanates in-

wards from a point p in a known proper cell c of C(S)) can be computed in

O(L(C(S); c0)� L(C(S); c)) time.

Proof: Let i = L(C(S); c). Let f be the facet of Pi bounding c by which r leaves.

Since c has an O(�) sized description, we can identify f in O(�) time. Let x0 be

the point at which r touches f , let c0 be the cell which contains x0, and let j =

L(C(S); c0). Let fk represent Pk \ f for all i < k � j, and observe that each fk
is a face of Pk. The sequence fi+1; : : : ; fj forms a d�1 dimensional o-simple cell

complex, the structure of which | including cell names|is explicitly described

by the description of the original. Thus, we can appeal to the point-location

algorithm to locate w in the d� 1 dimensional cell complex, C(fi+1; : : : ; fj) in

O(j � i) time. 2

Lemma 3.6 If point location for all points x in an arbitrary d� 1 dimensional

o-simple cell complex C� can be accomplished in O(L(C�;x)) time, then it can be

accomplished for all points y in an arbitrary d dimensional o-simple cell complex

C in O(L(C; y)) time.

Proof: Suppose that x is the point we wish to locate in a d-dimensional cell

complex C = C(S). Let o be any point in P�. Let r be a ray from o through x.

10

f

o

x

w

Figure 3.2: Locating a point x in a cell complex

Since P1 has a simple description, we can identify the co-ordinates of the point

w at which r intersects the boundary of P1, and the facet f of P1 which contains

w in O(�) time. This construction is illustrated in Figure 3.2. We now appeal

to algorithm for computing point location in d � 1 dimensions to compute the

cell in the o-simple C(P1 \ f; : : : ; P� \ f) which contains w. Having identi�ed

the cell which contains w, we appeal to Lemmas 3.1 and 3.5 to trace the ray

from w to x in the required time. 2

Theorem 3.7 It is possible to locate any point x in an arbitrary d dimensional

o-simple cell complex, C, in O(L(C;x)) time.

Proof: We prove the theorem by induction on the dimension of the problem. In

one dimension, a simple cell complex is just a set of intervals, and point-location

in the required time is trivial. Suppose that the theorem is true for all problems

of dimension less than d. Then Lemma 3.6 says that it is true for problems of

dimension equal to d. 2

11

Theorem 3.8 The identity of the next cell c0 of a cell complex C entered by a

ray r which emanates inwards from a point p in a known proper cell c can be

computed in O(L(C; c0) �L(C; c)) time.

Proof: Follows directly from Theorem 3.7 and Lemma 3.5. 2

Having given upper bounds for the costs of doing point location in a o-

simple cell complex, and tracing rays inwards in a simple cell complex, we now

attend to tracing rays outwards. Algorithm 3.1 �nds the next cell c0 entered by

Algorithm 3.1

Repeat

c := C(H)

Let D be the set of all hyperplanes G satisfying G 2

D(P
L(c)), G \ c 6= ;, r � G�, and r \G = x.

If D 6= ; then

let H be any element of D.

Endif

Until D = ;

a ray r which emanates outwards from a cell c. Its operation is illustrated in

Figure 3.3. Lemma 3.9 shows it to be e�cient, and Lemma 3.10 shows it to be

correct. Initially, we let x be the point on @c by which r leaves. We initialise

H to be any de�ning hyperplane of P
L(C) which bounds c and which r crosses

by leaving c. More formally, we require: H 2 D(P
L(c)),r � H� and r \H = x.

Such a hyperplane is guaranteed to exist, since r must cross some bounding

hyperplane. After the algorithm terminates, c will identify the next cell entered

by r.

Lemma 3.9 Suppose ci is the initial value of c. Then the algorithm terminates

in O(L(ci)� L(cr)) time, where cr is the �nal value of c.

Proof: The algorithm terminates since L(c) is monotonically decreasing, and

D(P1) = ;. It terminates in the required time, since each step in the iteration

requires only constant time. 2

Lemma 3.10 When Algorithm 3.1 terminates, c will be the next cell entered

by r.

12

3
2

1

H
H

H3C

C

C
C

1

2

x

r

Figure 3.3: Tracing a ray outwards

13

Proof: We �rst show that the algorithm does not `miss' the appropriate cell.

Suppose that D is not empty, and hence the algorithm continues for at least

one more iteration. Let G be any element of D and observe that r�fxg � G+,

but c � G+. Thus, c cannot be the next cell entered by r, and the algorithm

correctly continues to iterate.

Suppose on the other hand that D is empty. We must show that that c is the

next cell entered by r. Let x = r\H. Let ~v be a unit vector in the direction of r,

so that points along r can be expressed as x+ t~v for non-negative scalars t. We

say that a point x violates a de�ning hyperplane H of some polytope P � H+

if x 2 H+. We say that a ray r immediately violates such a hyperplane H if for

all positive (non-zero) scalars s we have x+ s~v 2 H+.

We know that r � H� for some H 2 D(P
L(c)+1), and that c is the unique

cell C(H) such that P
L(c) \H

+ � c. Now, if a point is not in c, then it clearly

must violate a de�ning hyperplane of P
L(c) which bounds c, or it must be inside

P
L(c)+1. Since D is empty, we know that the ray does not immediately violate

a de�ning hyperplane of P
L(c) which bounds c. Since r immediately crosses H

entering H�, we must conclude that r immediately enters c. 2

Theorem 3.11 Suppose that C = C(P1; : : : ; P�) is an arbitrary simple cell

complex, and suppose that x is a point in P1 \ P�, or in an edge of P�. Given

the proper cell c of C or the edges of P� containing x, the next cell c0 of C

entered by a ray r emanating from x can be computed in O(jL(C; c0)�L(C;x)j)

time.

Proof: The result is a direct consequence of Theorem 3.8 and Lemmas 3.9

and 3.10. 2

This result is the fundamental result of this section, providing a primi-

tive operation used throughout the algorithm for computing P \ Q. If C =

C(P1; : : : ; P�), we say that the region

CN = P1 � P�
[

e2E(P�)

e

is the navigable region of C. Observe that if l is a line segment, and x is a

point in a connected component l0 of l\CN then the sequence of cells c1; : : : ; ck
intersected by l0 can be computed in O(maxfL(C; ci)g � minfL(C; ci)g) time

by repeated application of Theorem 3.11.

3.3 Steepest Descent

We conclude this chapter by describing a procedure that we call \steepest de-

scent," which enables us to �nd out whether a particular polytope in the se-

14

quence intersects a given hyperplane.

Theorem 3.12 Suppose that C = C(S) is a simple cell complex and that H is

a hyperplane intersecting Pj. If the cell c containing a point x 2 Pj\H has been

identi�ed, then one can decide whether a point in Pk \H exists in O(k �L(c))

time, returning such a point if it does.

Proof: Let i = L(c). If i = k then we are done. Suppose that i < k. We �rst

intersect c with H in constant time and consider H \ c. If H does not intersect

a portion of the boundary which belongs to @Pi+1, then H \ c = H \ Pi, and

thus H cannot intersect Pk. On the other hand, if H does intersect a portion

of the boundary which belongs to @Pi+1 then we let x0 be any point on the

intersection, compute c0 = C(x0) in O(L(c)� i) time, and apply the algorithm

iteratively to c0.

Now suppose that the algorithm iterates n times identifying a sequence cells

c1; : : : ; cn. Let c0 = c be the cell given initially. The total time spent is thus

given by
Pn

x=1O(L(cx)�L(cx�1), which reduces to O(L(cn)�L(c)) as required.

2

15

Chapter 4

Hierarchical

Representations

We say that a sequence of polytopes P1; : : : ; Pk in <d is an inner hierarchical

representation of a polytope P i�

1. P1 = P

2. Pk is a d-simplex

3. V (Pi+1) � V (Pi)

4. no two vertices in V (Pi)� V (Pi+1) are neighbours in Pi.

Similarly a sequence of polytopes, P1; : : : ; Pk n <d is an outer hierarchical rep-

resentation of a polytope P i�

1. P1 = P

2. Pk is a d-simplex

3. D(Pi+1) � D(Pi)

4. no two facets in F (Pi)� F (Pi+1) are neighbours in Pi.

These constructions, which are illustrated in Figures 4.1 and 4.2 are precisely

the hierarchical representations of Dobkin and Kirkpatrick[3]. In this chapter,

we explore the di�erence between successive elements of such descriptions, with

an eye towards identifying situations under which the resulting cell complexes

are simple. We de�ne the cell associated with a vertex v of a polytope P as

C(P ; v) = P �CH(V (P)� v), and show that the cells associated with indepen-

dent vertices are disjoint. Moreover, we show that if Pi and Pi+1 are successive

16

4

3

2

1

P

P

P

P

Figure 4.1: An inner hierarchical description of a polytope P

elements in an inner hierarchical description, and S = V (Pi) � V (Pi+1), then

then Pi � Pi+1 =
S
v2S C(Pi; v).

Similar results hold for outer hierarchical descriptions. We de�ne the cell

associated with a de�ning hyperplane h of a polytope P as C(P ;h) = P(D(P)�

h)�P . We show that cells associated with independent de�ning hyperplanes are

disjoint, and that if Pi and Pi+1 are successive elements in an outer hierarchical

description, and S = D(Pi) �D(Pi+1) then Pi+1 � Pi =
S
h2S C(Pi;h).

We also show that the complexity of a cell associated with a vertex or de�ning

hyperplane is functionally dependent (linearly when d � 3) on the size of that

vertex's or hyperplane's neighbourhood. Thus, to form a simple cell complex,

all that is required is that the neighbourhood of a vertex or de�ning hyperplane

which appears in Pi and is absent from Pi+1 be bounded by an appropriate

constant.

4.1 Inner Hierarchical Descriptions

This section examines the nature of cells in an inner hierarchical description.

Towards this end, we let P be an arbitrary convex polytope and let v be one of

its vertices. We begin by describing the cell, C(P ; v). Let P 0 = CH(V (P)�fvg);

N = CH(N (P ; v) [fvg) and N 0 = CH(N (P ; v)).

17

4
3

2

1

P
P
P
P

Figure 4.2: An outer hierarchical description of a polytope P

18

Lemma 4.1 Let P be a polytope and v one of its vertices. If H is a hyperplane

such that v 2 H and N (P ; v) � H+
then P � H+

Proof: Suppose H = H(a; c) and let G = G(a0; c0) be any hyperplane through

v which supports P and minimises the angle � between the normal vectors a

and a0 . If � = 0, then G = H and H supports P as required.

Suppose that j�j > 0. Since G minimises �, there must be another vertex v0

of P which lies on G \H+. Moreover, the closest such vertex to v must be a

neighbour of v, contradicting the assumption that N (P ; v) � H+. 2

Lemma 4.2 Suppose P is a polytope and v is one of its vertices. If H is a

hyperplane such that v 2 H�

and N (P ; v)) � H+
then V (P)� fvg � H+

Proof: Suppose that H = H(h; c). If v 2 H then Lemma 4.1 applies directly.

If v 62 H, then translate H to H0 = H(h; c0) so that v 2 H0. By Lemma 4.1

we know that V (P) � H0
+
. Let W be the set of vertices of P which lie in

H+ \H0
+
. We shall show that W = fvg. Clearly, v 2 W . Suppose with an eye

towards contradiction that w is another vertex in W . Let � be the maximum

angle formed by the ray ~vw and the ray v + zh (z >= 0) for any w 2 W , and

consider the cone de�ned by all points x such that the angle between ~xv and

v + zh equals �. Observe that any hyperplane containing x and tangent to the

cone supports P , and that any vertex w 2 W is a neighbour of v by virtue of

such a hyperplane containing w and v, and lying tangent to the cone. Of course,

no such point w can be a neighbour of v since W � H+ and neighbours of P

are constrained to lie in H+. Thus, no vertices of P can lie in H+ as required.

2

Lemma 4.3 P = P 0 [N

Proof: It should be clear that both P 0 and N are subsets of P , and hence so

is their union. Suppose that x is a point in P , but in neither P 0 nor N . There

exists a hyperplane H1 such that x 62 H+
1 , but P

0 � H+
1 . Similarly there exists

a hyperplane, H2 such that x 62 H+
2 but N � H+

2 . Notice that v 62 H+
1 since

if it were, H1 would separate P from x. Thus, v 2 H+
1 \ H+

2 . Consider the

hyperplane G through v and H1 \H2. Observe that it separates x from v and

N (P ; v), and by Lemma 4.1 from P , contradicting the assertion that x 2 P .

Thus, no such point x exists. 2

Theorem 4.4 C(P ; v) = CH(N (P ; v) [fvg)� CH(N (P ; v))

Proof: From Lemma 4.3, we know that P �P 0 � N . From their de�nitions we

know that N 0 � P 0. Thus we conclude that P � P 0 � N � N 0. On the other

19

hand let x be a point in N �N 0. Since x 62 N 0 there exists a hyperplane H such

that x 62 H+, and N 0 � H+. Since no hyperplane can separate x from V (N),

we must have v 62 H+. We have thus established a situation, in which v 2 H�,

and N (P ; v) � H+. From Lemma 4.2 we conclude that V (P)� fvg � H+ and

hence P 0 � H+. Since x 62 H+, we must also conclude that x 62 P 0 proving that

N �N 0 � P 0. Since N � P it follows that N �N 0 � P � P 0. 2

Corollary 4.5 In <3
, if jN (P ; v)j � � then jC(P ; v)j � 6(�+ 1)

Proof: The boundary of the resulting cell could be represented as a planar

graph. Thus, the total number of facets cannot exceed six time the number of

vertices. 2

Unlike cells in an arbitrary cell complex, those that arise from inner hierar-

chical representations are star shaped.

Lemma 4.6 If x 2 C(P ; v) then vx � C(P ; v)

Proof: Let x be any point in C(P ; v). Since x 62 P 0, there must exist a

hyperplane H such that P 0 � H+, and x 62 H+. Since x 2 P we must have

v 62 H+, otherwise H would separate x from V (P). Since P is convex, and both

x and v are in P , we can be sure that vx � P . On the other hand, since both

v and x are not in H+, and P 0 � H+, we can be equally sure that vx\P 0 = ;.

Thus, we can conclude that vx � C(P ; v). 2

Up until now, we have examined the e�ect of removing a single vertex v

from a convex polytope, and forming the convex hull of those which remain.

We have shown that the resulting cell is star-shaped with all points visible from

v, and that its complexity depends only on the size of v's neighbourhood. We

now show that if two vertices are not neighbours, then the cells resulting from

their removal are disjoint. Moreover the order in which they are removed in no

way a�ects the resulting cells.

Lemma 4.7 If x is a vertex of P such that x 62 N (P ; v) and H is a hyperplane

supporting P 0 at x then H supports P .

Proof: Suppose that H does not support P . Then there must be a vertex of P

which is not in H+. The only vertex of P which is not also a vertex of P 0 is v,

so v 62 H+. However, v 62 N (P ;x), and thus we have x 2 H and N (P ;x) � H+

and hence P � H+ by Lemma 4.1 2

Throughout the remainder of this section, we let P be an arbitrary convex

polytope, and v1 and v2 be two distinct vertices of P . We let P1 = CH(V (P)�

fv1g and P2 = CH(V (P)� fv2g).

20

Theorem 4.8 Disjointness: If v1 62 N (P ; v2) then C(P ; v1) \C(P ; v2) = ;

Proof: Suppose, with an eye towards contradiction, x is a point in the intersec-

tion of the two cells. Consider the ray r1 starting at v1 and proceeding through

x. Such a ray must penetrate a face f1 of P1, which is contained in a hyperplane

H1 such that V (P1) � H+
1 . Similarly the ray r2 starting at v2 and proceeding

through x must penetrate a face f2 of P2 which is contained in a hyperplane H2

such that V (P2) � H+
2 .

Let z be the point at which r2 penetrates f2, and notice that v2 2 H+
1 ,

x 62 H+
1 , and hence z 62 H+

1 . Since z lies on f2, there must be a vertex of f2
which is not in H+

1 . Such a vertex must also be a vertex of P2, and the only

possible such vertex is v1.

So here we have a situation in which H2 does not support P since v2 62 H+
2 ,

H2 supports P2 at v1, and v1 2 V (P). From Lemma 4.7 we can conclude that

v1 2 N (P ; v2), contradicting the original premise. 2

Lemma 4.9 If v1 62 N (P ; v2) then N (P ; v2) = N (P1; v2).

Proof: Suppose x 2 N (P ; v2). Then there is a hyperplane H which supports

P such that H \ P = xv2. Now P1 � P , so H \ P1 � H \ P . The vertex

v1 62 N (P ; v2) so x 6= v1, xv2 � P1, and H \ P1 = xv2.

On the other hand, suppose that x 2 N (P1; v2). Then there is a hyperplane

H supporting P1 such that H \ P1 = xv2. From Lemma 4.7 we know that H

supports P . If v1 2 H then H \V (P) = fv1; v2; xg, and there must be an edges

between v1 and v2. If v1 62 H, then H \ P must remain unchanged. 2

Theorem 4.10 If v1 62 N (P ; v2) then C(P1; v2) = C(P ; v2)

Proof: Follows as a direct consequence of Theorem 4.4 and Lemma 4.9 2

Corollary 4.11 Suppose that R is an independent subset of V (P) and P 0 =

CH(V (P)�R). Then P = P 0 [([v2RC(P ; v)).

Consider now the inner hierarchical representation, P1; : : : ; Pk of a polytope

P . Let Si = V (Pi) � V (Pi+1) for 1 � i < k � 1. Moreover, suppose that

the polytopes P2; : : : ; Pk are constructed so that if v 2 Si, then jN (Pi; v)j � �

for some predetermined constant �. From Theorem 4.8 and Corollary 4.11 we

conclude that the cells C(Pi; v) for each v 2 Si are the connected components

of Pi � Pi+1. In <3, if we choose � > 6� then C(P1; : : : ; Pk) forms a simple

polytopal cell complex. Moreover, Corollary 4.5 assures us that a description

of the cell associated with each vertex v 2 Si is available in O(� log�) time from

the description of Pi. Thus the cell complex is adequately represented by DCEL

representations (described on page 9) of each polytope in the sequence.

21

4.2 Outer Hierarchical Descriptions

In the previous section, we described the cell complex induced by an inner hier-

archical description of a polytope. Here we develop a complimentary description

of the cell complex induced by an outer hierarchical description. Recall that we

de�ne a polytope as the intersection of a �nite number of closed half-spaces in

Rd. IfH is a set of hyperplanes in Rd, we de�ne the polyhedra P(H) = \h2Hh
+.

Of course there is a certain duality between the construction of inner and outer

hierarchical representations. In particular, taking the geometric dual of the

polytopes P1; : : : ; Pk in an inner hierarchical representation of P about a point

in the interior of Pk yields an outer hierarchical representation P
�
1 ; : : : ; P

�
k of P �,

the dual of P about the same point. Thus it should not be surprising that the

results of Section 4.1 have analogues for the cell complexes arising from outer

hierarchical representations. However, one of the goals of this thesis is to avoid

the use of dual transforms hence we develop separately the results for outer hi-

erarchical representations. When h is a hyperplane, we de�ne the associated cell

as C(P ;h) = P(D(P)�fhg)�P . Throughout the following section, we assume

that P is an arbitrary convex polytope, h 2 D(P), and that P 0 = P(D(P)�h).

Lemma 4.12 Let g be a hyperplane in D(P). If g 62 N (P ;h) then g\P = g\P 0

hence g \C(P ;h) = ;

Proof: Observe that g \ P is a convex polytope in d � 1 dimensions. Since h

and g are not neighbours, we know that h\g\P is not a d�2 face of P . Thus,

h \ P 62 D(g \P) and hence g \ P 0 = g \ P . 2

Theorem 4.13 C(P ;h) =
T
x2N (P ;h) x

+ \ h+

Proof: Let W =
T
x2N (P ;h) x

+ \ h+. It follows directly from their de�nitions

that C(P ;h) � W . It remains to show that W � C(P ;h). Let x be a point

in w. Since x 62 h+, we know that x 62 P . Suppose with an eye towards

contradiction that x 62 P 0. There must be some g 2 D(P 0) such that x 62 g+.

Since C(P ;h) � W , there must be some point in C(P ;h) which is in g+, thus

g+ must partition C(P ;h). But, according to Lemma 4.12, g cannot intersect

C(P ;h), thus establishing a contradiction and proving that x 2 P 0. Since x 62 P

and x 2 P 0, we have also proven that x 2 C(P ;h) and hence W � C(P ;h). 2

Corollary 4.14 In <3
, if jN (P ; v)j � � then jC(P ; v)j � 6(�+ 1)

Proof: The boundary of the resulting cell could be represented as a planar

graph. Thus, the total number of faces cannot exceed six times the number of

facets. 2

22

Throughout the remainder of this section, we assume that P is an arbitrary

convex polytope, that h1 and h2 are two distinct de�ning hyperplanes. We let

P1 = P(D(P) � fh1g) and P2 = P(D(P)� fh2g).

Theorem 4.15 C(P ;h1) \C(P ;h2) = ;

Proof: Let x be a point in C(P ;h1). Theorem 4.13 says that x 2 h+1 . On the

other hand, C(P ;h2) � P2 � h+1 , proving that the two cells are disjoint. 2

Theorem 4.16 If h1 62 N (P ;h2) then C(P1;h2) = C(P ;h2)

Proof: To prove the theorem we need only show that N (P1;h2) = N (P ;h2).

For a hyperplane to be in such a neighbourhood, it must be a de�ning hyper-

plane. Since the de�ning hyperplanes if P1 and P di�er only by the inclusion or

omission of h1 which is known not to be in the neighbourhood of h2, the possible

candidates are the same. From Lemma 4.12 we know that h2 \P1 = h2 \P , so

for any hyperplane x, it must follow that x \ h2 \ P1 = x \ h2 \ P . 2

Corollary 4.17 Suppose that R is an independent subset of D(P) and P 0 �

P(D(P)� R). Then P = P 0 [(
S
h2R C(P ;h).

As with inner hierarchical descriptions, we now consider the outer hierarchi-

cal representation P1; : : : ; Pk of a polytope P , constructed so that the de�ning

hyperplanes removed from successive polytopes have no more than � neighbours

for some predetermined constant �. From Theorem 4.15 and Corollary 4.17 we

conclude that the cells C((;P)i; h) where h 2 D(Pi)�D(Pi+1) are the connected

components of Pi � Pi+1. In <3, if we choose � � 6� then the resulting cell

will be simple. Thus the sequence Pk; Pk�1; : : : ; P1 forms a simple polytopal

cell complex. Moreover, Theorem 4.15 assures us that a description of each cell

c � Pi � Pi�1 can be obtained from the description of Pi in O(� log�) time.

Chazelle[2] was the �rst to observe that the inner hierarchical representa-

tion of a polytope P induces a spatial sub-division on its interior. In fact

his polytope intersection algorithm relies heavily on the ability to trace rays

e�ciently in such a structure. Here we have extended this technique, by show-

ing that both the inner and outer hierarchical representations result in such a

structure. Suppose that P1; : : : ; Px is an inner hierarchical representation of

a polytope P , constructed so that N (Pi; v) � � for all v 2 V (Pi) � V (Pi+1)

Suppose further that P 1; : : : ; P y is an outer hierarchical representation of the

same polytope P , constructed so that N (Pi;h) � � for all h 2 D(Pi)�D(Pi+1).

Let S = P y; : : : ; P 2; P; P2; : : : ; Px and observe that C(S) is a t-simple poly-

topal cell complex, and thus inherits all the properties developed in Chapter 3.

Kirkpatrick[6] provides a simple argument to show that such hierarchical de-

scriptions can be constructed for arbitrary polyhedra with an appropriately

23

chosen constant �, in O(n) space and time, and that such descriptions have

depth at most O(logn) depth, where n is the number of edges in P .

As discussed in the introduction, hierarchical descriptions with logarith-

mic depth immediately give rise to an O(n logn) algorithm for computing 3-

polyhedral intersection. To replace the logn term by a constant, we truncate

the hierarchical descriptions, so that they contain at most k polytopes for some

appropriately chosen constant k. Throughout the remainder of this thesis, we

assume that such a polytopal cell complex has been constructed. We use the no-

tation Pk and P
k to refer to the kth polytopes of the inner and outer hierarchical

representations of P respectively.

4.3 The Size of P k and Pk

In this �nal section on hierarchical representations, we consider the question of

how quickly the size of successive polytopes in a hierarchical description can be

made to diminish. In particular we are interested in relating the combined size

of P k and Pk to the choice of k and �.

Before embarking on such a discussion, it behooves us to de�ne precisely

what is meant by a polytope's \size". For polytopes in three dimensions or less,

the incidence structure on the faces (edges, vertices and facets) can be described

by a planar graph. Thus, Euler's formula f + v � e = 2 relates the number of

vertices, edges and facets. If f � 2 and v � 2 then e � v and e � f . Thus,

for the remainder of this paper, we shall use the number of edges as a measure

of the size of a three-dimensional polytope. This metric has the advantage of

being invariant under duality, and thus provides no bias towards either inner or

outer hierarchical representations. Thus, we de�ne

jP j = jE(P)j

for polytopes in three or less dimensions.

Inner (resp. outer) hierarchical representations are build by removing suc-

cessive sets of independent vertices (resp. de�ning hyperplanes) with bounded

degree. The rate at which the size of the polytope diminishes is thus related

to the size of the independent set of low degree vertices (resp. de�ning hyper-

planes) that can be found. Kirkpatrick[6] gives a very straightforward argument

which shows that an independent set of at least n
24

vertices whose degree does

not exceed 11 can be found in O(n) time, where n is the original number of

vertices. Algorithm 4.1, given by Edelsbrunner[4] improves this fraction. The

algorithm is initialised with a list L of the vertices of P in non-decreasing order

of degree. He leaves as an exercise the problem of showing that it �nds an

independent set of at least n
7
vertices when � � 12.

Edelsbrunner's result makes no assumptions about the sparsity of edges in

the original polytope. Here we generalise his result to include some sensitivity

24

Algorithm 4.1

Let I := ;

Let v be the �rst vertex in L.

while deg(v) � � do

if v is not marked then

Set I := I [fvg

Mark all vertices adjacent to v.

endif;

Set v to the next vertex in L

endwhile.

to the ratio of facets to vertices, and hence the number of edges. We begin by

de�ning some terms.

� Let l = jLj.

� Let Li = fv 2 Ljdeg(v) = ig and let li = jLij.

� Let Ai = fv 2 Ijdeg(v) = ig and let ai = jAij.

� Let In be
Sn

i=1Ai.

� Let c be the average degree of the vertices in L.

� Let bi be the number of vertices in Li which have edges connecting them

to vertices in Ii�1.

� Let xi be the number of edges connecting vertices in Ai to vertices of

higher degree.

� Let v, f , and e be the number of vertices (resp. faces, edges) on the

polytope.

� Let � = (f=v) + 1

An immediate consequence of Euler's formula v + f � e = 2 is that

e < �v (4:1)

Since 2e represents the sum of the degrees of all the vertices of P , we can

conclude that

c � 2�: (4:2)

25

Lemma 4.18
Pn

i=1
xi�bi
i+1

� 0

Proof: For the purpose of discussion, we associate a direction with edges

connecting vertices of unequal degree. We call the vertex of lower degree the

tail, and the other the head. We can establish an upper bound on bn, the number

of vertices of degree n with edges connecting them to accepted vertices of smaller

degree. Each such vertex must be the head of an edge whose tail is an accepted

vertex. The number bn of such vertices cannot exceed the number of such edges.

Clearly there are at most
Pn�1

i=1 xi such edges available. Of these, however, at

least
Pn�1

i=1 bi have heads of degree less than n. Thus, we can conclude that

bn �

n�1X
i=1

xi �

n�1X
i=1

bi (4:3)

We show by induction on n that any non-negative decreasing sequence of

coe�cients, z1; : : : ; zn, satis�es the following equation:

nX
i=1

zi(xi � bi) � 0 (4:4)

For a basis, observe that bi = 0 for i � 3. Assume that Equation 4.4 holds for

n � (m � 1).

mX
i=1

zi(xi � bi) =

m�1X
i=1

(zi � zm)(xi � bi) + zm

mX
i=1

(xi � bi)

�

m�1X
i=1

(zi � zm)(xi � bi) + zmbm+1 (4.5)

Now, the �rst term,
Pm�1

i=1 (zi � zm)(xi � bi) is non-negative by our inductive

hypothesis. The second term zmbm+1 is non-negative since both factors are

required to be non-negative. Thus, we can conclude that

mX
i=1

zi(xi � bi) � 0 (4:6)

Substituting 1
i+1

for zi in equation 4.6 gives

mX
i=1

xi � bi

i+ 1
� 0 (4:7)

as required. 2

26

Lemma 4.19 jInj �
Pn

i=1
li
i+1

Proof: The algorithm will reject a vertex only if it is connected to a vertex

already accepted. Consider the li � ai rejected vertices of degree i. Of these, bi
are rejected because there is an edge connecting them to a vertex in Ii�1. The

remaining li � ai � bi vertices are rejected because of edges connecting them to

vertices in Ai. There are iai edges incident upon vertices in Ai. However, xi of

them lead to vertices of higher degree. This leaves iai � xi edges available to

cause the rejection of a degree i vertices. Thus: li � ai � bi � iai � xi giving

ai �
li + xi � bi

i + 1
(4:8)

Now, combining Equation 4.8 and Lemma 4.18 we obtain

jInj �

nX
i=1

li + xi � bi

i+ 1

=

nX
i=1

li

i + 1
+

nX
i=1

xi � bi

i + 1

�

nX
i=1

li

i + 1
(4.9)

as required. 2

Lemma 4.20 For any sequence of non-negative coe�cients, z1; : : : ; zn, and any

positive real coe�cients �1; : : : ; �n, the following inequality holds:
nX
i=1

zi

!2

�

nX
i=1

�izi

!
nX
i=1

zi=�i

!

Proof: We �rst observe the fact that for any positive real �i and �j we have,

�2i + �2j

�i�j
� 2 (4:10)

Now
nX
i=1

zi

!2

=

nX
i=1

(zi)
2 + 2

n�1X
i=1

nX
j=i+1

zizj (4:11)

and,
nX
i=1

�izi

!
nX
i=1

zi=�i

!
=

nX
i=1

(zi)
2 +

n�1X
i=1

nX
j=i+1

(�i)
2 + (�j)

2

(�i)(�j)
zizj (4:12)

27

Combining Equations 4.10, 4.11 and 4.12 yields the required result. 2

Lemma 4.21 1 jIj � l=(c+ 1)

Proof: By de�nition, jIj = jI�j. From Lemma 4.19 we know that

jIj �

�X
i=1

li

i + 1
: (4:13)

From the de�nitions of c and l, we have

l

c + 1
=

(
P�

i=1 li)
2P�

i=1(i + 1)li
: (4:14)

From Lemma 4.20 (when �i = i + 1) we have

(
P�

i=1 li)
2P�

i=1(i+ 1)li
�

�X
i=1

li

i + 1
: (4:15)

Combining equations 4.13, 4.14 and 4.15 gives

jIj �
l

c+ 1
(4:16)

as required. 2

We now turn our attention to establishing a lower bound on jIj, which re-

spects the ratio between the number of vertices, v, and the number of faces, f ,

on the given polytope by proving the following theorem:

Lemma 4.22 If � � 12 then jIj � v
2�+1

Proof: Recall that � = (f=v)+1. The sum of the degrees of all vertices is given

by 2e, and can be no less than cl+(�+1)(v � l). Combining with equation 4.1

and regrouping gives

l �
(2� � �� 1)v

c� �� 1

which can be combined with Lemma 4.21 to yield

jIj �
(2� � �� 1)v

(c � �� 1)(c+ 1)

1Stated without proof as a \hint" to problem 9.9 in[4]

28

Of course, we would like to be able to substitute 2� for c in the above equation,

while preserving the inequality. Consider the expression as a function of x so

that

f(x) =
(2� � �� 1)v

(x� � � 1)(x+ 1)

Observe that the derivative of f with respect to x is given by

d

dx
f(x) = �

(2� � �� 1)v

(x� �� 1)2(x+ 1)2
(2x� �)

Recall fromEquation 4.2 that c � 2�. If we choose �, so that � � 4� (� � 12

will su�ce since � < 3) then the derivative is negative for x � c. As a result,

we can be sure that f(c) � f(2�), and hence

jIj �
v

2� + 1

as required. 2

Suppose we are given a polytope P with v vertices, f facets and e edges.

Previously we de�ned � = (f=v) + 1. We can �nd and remove an independent

set of low degree vertices of size at least v
2�+1

. The value of � is not known

for the resulting polytope, but Euler's equation prohibits it from exceeding 3.

Thus, at worst we will be able to remove k � 1 more sets each consisting of at

least 1
7
of the remaining vertices. The result will be a polytope, Pk, such that

jV (Pk)j < v

�
2�

2� + 1

��
6

7

�k�1
Now, e = �v, and jPkj < 3jV (Pk)j, so we can conclude that

jPkj < 3jP j

�
6

7

�k�1�
2

2� + 1

�
(4:17)

Similarly, we obtain an expression for the size of P k, the polytope which is

formed by removing k independent sets of de�ning hyperplanes. Let �� =

(v=f) + 1. Then

jP kj < 3jP j

�
6

7

�k�1�
2

2�� + 1

�
(4:18)

Adding equations 4.17 and 4.18 gives a bound on the combined size of P k and

Pk.

jP kj+ jPkj < jP j(6)

�
6

7

�k�1�
1

2� + 1
+

1

2�� + 1

�
: (4:19)

29

To continue the simpli�cation we �rst maximise the expression,

1

2� + 1
+

1

2�� + 1
:

To accomplish this, let � = f=v, and substitute �+ 1 for �, and (��1 + 1) for

��. After expansion, this gives

1

2� + 1
+

1

2�� + 1
=

2(�+ ��1) + 6

6(�+ ��1) + 13
: (4:20)

Substituting x = �+ ��1 into equation 4.20 gives

1

2� + 1
+

1

2�� + 1
=

2x+ 6

6x+ 13
: (4:21)

For positive x, this is a strictly decreasing function, and is thus maximised when

x is minimised. Of course, x is minimised when � = ��1 = 1, giving x � 2, and

hence
1

2� + 1
+

1

2�� + 1
�

2

5
(4:22)

Substituting equation 4.22 back into equation 4.19 yields

jP kj+ jPkj < 6jP j

�
2

5

��
6

7

�k�1
: (4:23)

The results of this chapter are summarised by the following theorem:

Theorem 4.23 Given a (DCEL) representation of polytope P � <3
, it is possi-

ble to construct a sequence of nested polytopes S = P k; P k�1; : : : ; P 2; P; P2; : : : ; Pk
so that C(S) is a simple polytopal cell complex with � < 72, and so that jP kj+

jPkj < 6jP j
�
2
5

� �
6
7

�k�1
.

30

Chapter 5

Computing P \Q

We now show how to use the cell complexes which are induced by the inner and

outer hierarchical representations of two polytopes P and Q to compute their

intersection. We assume that polytopes are represented in a (now standard)

way using the doubly connected edge list (DCEL) representation described on

page 9. To build a description of P \Q, it will su�ce to compute a description

of the edges of @P \ @Q, with appropriate pointers into the DCEL descriptions

of P and Q, along with new pointers for truncated edges of P and Q. Thus, we

add two new slots to the representation of an edge to accommodate these two

new pointers.

Suppose we were to begin by constructing inner and outer hierarchical rep-

resentations of both P and Q, so that we have available descriptions of the

t-simple cell complexes, C(Pw; : : : ; P; : : : ; Px) and C(Q
y; : : : ; Q; : : : ; Qz), with w

(resp. x,y,z) large enough so that Pw (resp. Px,Q
y,Qz) is a simplex. We call

these the complete hierarchical representations of P . Approaches to computing

P \Q which attempt to traverse the boundary of either P or Q, while keeping

track of their location in the cell complex induced by the complete hierarchical

representations of the other seem doomed to produce �(n logn) algorithms at

best. The problem is that the complete hierarchical representations have loga-

rithmic depth, all of which might be used during the traversal. To avoid this

di�culty, Chazelle limits the depth of his (inner) hierarchical representations to

an appropriately chosen constant k. We adopt the same approach, by computing

Cp = C(P k; : : : ; P; : : : ; Pk) and Cq = C(Qk; : : : ; Q; : : : ; Qk). We then traverse

the edges of the boundary, �, of the specially designed non-convex polytope,

(P k \ Q) [(Qk \ P). Observe that (P k \ Q) \ (Qk \ P) = P \ Q, and that

any point on @P \ @Q lies on �. Note that the facets of � might not be simply

connected since, as illustrated in Figure 5.1, facets of P may be perforated by

facets of Q and vice versa. To traverse all the edges of � our algorithm will

have to cross such perforated facets.

There is an alternate dual construction involving the surface �� = @((P [

31

@Q

@P

P

Int(P)

_

Figure 5.1: A perforated facet of P [Q

Qk) \ (Q [Pk)) which also appears to be easy to explore and yields a suitable

approximation to P \ Q. �� might appear to yield the desired result more

directly, since it is the boundary of the intersection of approximations to P and

Q, whereas � is the boundary of the union of such approximations. However,

�� has the draw-back that its composite approximations are non-convex and

hence turn out to be somewhat tedious to describe. In light of this, we con�ne

our attention to the surface, �.

We begin by recursively computing P k \Qk and Qk \Pk. In section 5.6 we

show how the constant k can be chosen so that the overall recurrence remains

linear. We then make use of the description of these intersections, and the cell

complexes Cp = C(P k; : : : ; Pk) and Cq = C(Qk; : : : ; Qk) to traverse the edges of

� taking constant time per edge, thus taking O(jP j+ jQj) time in total. During

the course of this traversal, most of @P\@Q is explored. It may happen, however

that some edges of @P \ @Q intersect the interior of facets of �, and hence are

not explored during the edge traversal.

An example of such an edge arises when a facet g of Q is co-planar with a

facet g0 of Qk, and intersects a facet f of P which is not co-planar with a facet

of P k. In this event, which is illustrated in Figure 5.2, g\f is an edge of Q\P ,

but crosses the interior of (g0 \ eP)[(g \P) 1, a facet of �. As it turns out, the

edge in this example cannot be traversed in constant time, and thus we would

like to be able to delay its treatment until section 5.5. The following lemma

says more formally that such an edge is not an edge of � and thus permits us

1Recall the notation eP = P [@P .

32

P
_

Int(P)

f

g’
g
g intersect P

~

g’ intersect P

Figure 5.2: Coplanar facets of P \Qk and Q \ P k

33

to postpone its treatment:

Lemma 5.1 Suppose that f and g are facets of P and Q respectively, that f \g

is not contained in an edge of f or g, and that there is no f 0 2 F (P k) such that

f � f 0. If f \ g is an edge of �, then there is no g0 2 F (Qk) such that g � g0.

Proof: Suppose that such a g0 exists. Let H be the hyperplane containing g

and g0. Observe that a = g0 \P is a facet of A, and that b = g\P k is a facet of

B. Thus, H supports both A and B, and a[b is a facet of �. The line segment

f \ g crosses the interior of b and hence the interior of a [b and hence cannot

contain an edge of �. 2

Although it may seem unfortunate that an edge traversal of � may not cross

all the edges of @P \ @Q, section 5.5 shows how to use the cell complexes, the

descriptions of Pk\Q
k and Qk\P

k and information obtained during the edge-

traversal of � to traverse those which remain. In fact, implementations need

not delay traversing these edges at all. They are treated separately here only

to simplify the analysis of the algorithm.

To simplify the descriptions of the faces of �, we introduce the following

notation:

De�nition 5.1 If f is a d-dimensional polytope, we let (f)� be the closure of

the interior of f \ �, in <d.

In particular, if f is a two-dimensional polytope (say a facet of P), and f \� �

@f , then (f)� = ;, since Int(@f) = ; in R2.

There are four problems which need to be addressed, before we can claim

to have an algorithm for computing @P \ @Q. We must show that individual

edges of � can be traversed in su�ciently little time. Since the facets of � need

not be simply connected (some facets may be perforated), we must show how to

navigate across such perforations. We must be able to locate a starting point on

an edge of �. Finally, we need to demonstrate that we can e�ciently compute

descriptions of all of the edges of @P \@Q which are not edges of �. To provide

a basis for attacking these problems, we begin by classifying and describing the

facets of �. Then each problem is addressed in turn.

5.1 Facets of �

Let A = P \ Qk and let B = Q \ P k. Facets of � are of one of the following

three types.

1. facets of A restricted to lie in eB
2. facets of B restricted to lie in eA
3. The union of co-planar facets, one from A and one from B.

34

Exploiting the obvious symmetry of � in A and B, we can ignore facets of type

2, which are obviously symmetric with type 1, and concentrate on facets of type

1 and type 3.

Facets of A, of course, are either facets of P restricted to lie inside Qk, or

they are facets of Qk restricted to lie inside P . Since they turn out to have

somewhat di�erent properties, we consider separately the facets of P which are

co-planar with facets of P k from those which are not. Thus we identify three

kinds of facets of A which might contribute two-dimensional components to type

1 or type 3 facets of �. These are the portions of facets of Qk which lie in P k,

the portions of those facets of P which are co-planar with facets of P k and lie

in Qk, and the portions facets of P which are not co-planar with any facet of

P k and lie in Qk. The following three equations describe the portion of each

which intersects �.

Facets f 2 F (Qk):

f \� = f \ P \ eB
= f \ P \ (eQ [fP k)

= f \ P (5.1)

Facets f 2 F (P) which are co-planar with a facet of P k:

f \ � = f \Qk \ eB
= f \Qk \ (eQ [fP k)

= f \Qk (5.2)

Facets f 2 F (P) which are are not co-planar with a facet of P k:

f \� = f \Qk \ eB
= f \Qk \ (eQ [fP k)

= (f \Qk \ eQ) [(f \Qk \ fP k) (5.3)

In the �rst two of these cases, f \ � is simply a convex polytope. Thus,

provided that f\� is two dimensional, equations 5.1 and 5.2 accurately describe

(f)�. The �nal case, described by Equation 5.3 requires further study. Observe

that since f 2 F (P), f \ fP k � @f . Thus,

Int(f \�) = Int((f \Qk \ eQ) [(f \Qk \ fP k))

= Int((f \Qk \ eQ) [(@f \Qk \ fP k))

= Int(f \Qk \ eQ) (5.4)

and (f)� consists of the two-dimensional components of (f \ Qk \ eQ). Thus,

equations 5.1, 5.2 and 5.4 describe the portions of facets of A which contribute

two dimensional components of facets of �.

35

5.2 Tracing Edges of �

We say an edge has been traced through a cell complex C if the sequence of cells

which it intersects has been determined. It is our intention to show that given a

starting point located in the navigable regions of Cp and Cq, any edge of � can

be traced through Cp and Cq in O(k) time by simulating a walk along the edge,

while keeping track of our location in the two cell complexes simultaneously. In

light of Theorem 3.11, there is no problem provided during the course of the

walk, we remain in the navigable regions of Cp and Cq. Since P \Qk and Q\Pk
are both subsets of P k and Qk the only way such a walk can leave the navigable

regions is to enter Pk or Qk.

Let e be an edge of �. If e \ Pk is con�ned to an edge of Pk we call the

intersection trivial. Trivial intersections with Pk or Qk present no di�culty since

they remain within the navigable regions of Cp and Cq. Through the following

case analysis, it will be shown that any non-trivial intersection of an edge e with

Pk (resp. Qk) lies on an edge of Pk \Qk (resp. Qk \ P k), or on a simple facet

of Pk (resp. Qk). Moreover, the edge or simple facet on which it lies can be

identi�ed in O(k) time. If e is an edge of � and e is contained in an edge of

P k, then e\Qk will clearly be an identi�able edge of P k \Qk, and thus can be

followed without di�culty since its description is available from the recursively

computed description of P k \ Qk. Similarly if e is contained in an edge of Qk

then e can be followed through Pk.

Let F = F (P) [F (Q) [F (P k) [F (Qk). Edges of � are the intersection of

two non-coplanar facets (f1)� and (f2)�, for some f1; f2 2 F . Let us classify

edges, according the origin of the facets which give rise to them by de�ning

E(X1; X2) to be the set of edges of � satisfying e = (f1)� \ (f2)� for some

f1 2 F (X1) and f2 2 F (X2). Under such a classi�cation scheme, there are

10 possible types of edges: E(P; P), E(P; P k), E(P;Q), E(P;Qk), E(P k; P k),

E(P k; Q), E(P k; Qk), E(Q;Q), E(Q;Qk) and E(Qk; Qk).

Of course, E(Q;Qk) and E(P; P k) do not require separate treatment since

they are subsets of E(QkQk) and E(P k; P k) respectively. We can also exploit

the symmetry of � in P and Q, and hence discuss only the following �ve types

of edges: E(P; P), E(P;Q), E(P;Qk), E(P k; P k) and E(P k; Qk).

5.2.1 Edges in E(P;Q)

Let f be a facet of P , and g be a facet of Q. Let e = f \ g. Lemma 5.1 says

that if (e)� is an edge of �, then either both f and g are co-planar with facets

f 0 and g0 of P k and Qk respectively, or neither are. If neither are, then both

f and g must be simple, and hence point-location can be accomplished in both

cell complexes in constant time over the entire edge.

Suppose, on the other hand, that both f and g are co-planar with facets

f 0 and g0 of P k and Qk respectively. If e \ Pk is non trivial, then there exists

f0 2 Pk such that f is coplanar with f0, and e\Pk � f0. Thus, e\Pk � g0\f0,

36

which is, of course, an edge of Pk \Qk. Similarly if e \Qk is non-empty, then

there is a g0 2 F (Qk) such that e\Qk = g0\f
0, which is an edge of Qk\P

k. In

both cases, the problem remains of identifying (by name) the appropriate edge

of Pk \Qk or Qk \ P k. Suppose that we are following e and that it intersects

Pk. In this event, it crosses the boundary of f0, at an edge x which can be

determined from the description of Cp. The edge of Pk \ Qk which we must

identify, is one of the two edges bounding f0 \Qk and incident upon x \Qk.

5.2.2 Edges in E(P;P)

Let f1 and f2 be facets of P , and let e = f1 \ f2. Then e 2 E(P), and e \ Pk
is trivial. If (e)� \ Q is con�ned to the boundary of Q, then it is contained

in the intersection of a facet of P with a facet of Q, and is subsumed by the

discussion of E(P;Q) in section 5.2.1 above. Suppose, on the other hand that

(e)� actually punctures Q's interior, and let e0 = (e)� \ Int(Q). We shall show,

that e0 is contained in an edge of P k.

Since e0 is on �, it must be on the boundary of P k. If it were interior to

both P k and Q then it would be interior to B and hence interior to A [B.

Moreover, e0 cannot intersect the interior of a facet of P k. Suppose that e0

did intersect the interior of a facet g0 of P k. From Equation 5.1 we know that

(g0)� = g0\Q. Since e0 � Int(Q), we can conclude that e0 intersects the interior

of (g0)�, contradicting the original supposition that e0 is part of an edge of �.

Thus, e0 is on the boundary of P k, but does not intersect the interior of a

facet, and hence is con�ned to the edge of P k, which contains e.

5.2.3 Edges in E(P;Qk)

Let f be a facet of P , g0 be a facet of Qk, and e = f \ g0. Clearly, e \ Pk is an

edge of Pk \Qk. Suppose e has a non-trivial intersection with Qk. Then there

is a facet g 2 F (Q) which is co-planar with g0, and e \ Qk � g \ f , which has

been discussed in section 5.2.1 above.

5.2.4 Edges in E(P k; P k)

Let f1
0 and f2

0 be facets of P k. Let e = f1
0

\ f2
0. Since e is an edge of �, its

intersection with Pk must be trivial, and its intersection with Qk must be an

edge of Qk \ P k.

5.2.5 Edges in E(P k; Qk)

Let f 0 be a facet of P k, g0 be a facet of Qk, and let e = f 0\ g0. If e intersects Pk
(resp. Qk), such an intersection is con�ned to the boundary of Pk (resp. Qk),

and hence is contained in g0 \ f0 (resp. f \ g0) where f0 (resp. g0) is the facet

37

of Pk (resp. Qk) with which the edges intersects. Clearly g0 \ f0 (resp. f
0 \ g0)

is an edge of Qk \ Pk (resp. P k \Qk).

We have shown that it is possible to trace each type of edge through Cp
and Cq in O(k), provided the recursively computed descriptions of Pk \Q

k and

Qk \ P k are available. Given a starting location on each connected component

of the edges of �, this would immediately yield an O(jP j+ jQj) algorithm for

traversing all the edges.

5.3 Crossing Perforated Facets

Since, some facets of � are not simply connected, a mechanism for traversing

individual edges does not immediately lead to a mechanism for traversing entire

facet boundaries.

Lemma 5.2 The only facets of � which are not simply connected are comprised

of facets of P which are not co-planar with facets of P k
, or facets of Q which

are not co-planar with facets of Qk
.

Proof: Facets of � which are comprised of the union of two facets of A and

B will be edge-connected provided the constituent facets are. From our earlier

analysis of facets of A (equations 5.1, 5.2 and 5.3) we can see that if f is a facet

of Qk or a facet of P which is co-planar with a facet of P k, then (f)� is a convex

polytope, and hence must be edge-connected. 2

Consider a facet f of P which is not co-planar with any facet of P k. Then

(f)� = f \ Qk \ eQ. Of course f \ Qk is still convex and edge-connected. The

disconnectedness of (f)� arises from the exclusion of the interior of Q, e�ectively

taking a bite out of the facet. Such a bite could partion the facet into several

components. Provided that the boundaries of Q and f \Qk intersect, however,

the boundaries of each component will be connected.

The more di�cult problem arises when Q intersects only the interior of

f \ Qk. In this case (f)� is perforated by Q, and thus has two disconnected

boundaries, namely @(f \Qk), and @(Q \ f). Given the location of a vertex v

of @(Q\ (f)�) in Cq, we can discover the location of a point on the boundary of

f \Qk in O(k) time. To accomplish this, we simply start walking in a straight

line on f away from Q, tracking our location in the two cell complexes. On the

other hand if we have traversed the boundary of Qk\f , and would like to decide

whether Q intersects (f)�, locating a point in the boundary of the intersection

if it does, we can rely on the \steepest descent" algorithm given in the proof of

Theorem 3.12 to accomplish this in O(k) time.

38

5.4 An Edge Traversal Algorithm for �

All that remains is to �nd a starting point for the edge traversal of �. To

accomplish this, we begin by constructing the complete inner hierarchical rep-

resentations of P and Q taking O(jP j+ jQj) time. We can rely on the algorithm

given in[3] (which uses these hierarchical representations) to provide a witness

to the intersection of P and Q in O(log jP j+ log jQj) time. We then navigate

through the cell complexes induced by the complete inner hierarchical descrip-

tions of P and Q in any direction until we puncture a facet � of �. This will

take at most O(log jP j + log jQ)) time. We then continue to navigate in any

direction on � until we cross one of its edges. In total, this initialisation takes

at most O(jP j+ jQj) time.

To traverse all the edges of �, we start with a located point on the boundary

of one of �'s facets f . From there, we traverse the edges bounding f , taking

O(k) time per edge, and possibly O(k) time to search for a possible perforation

of f . We then proceed to explore the facets adjacent to f in the same way.

This algorithm takes constant (O(k)) time per edge (actually each edge will

be explored twice since it bounds two facets), plus an additional O(k) time per

facet to check for perforations. Thus, in total we take (e + f)O(k) time to

complete the entire traversal where e and f are the number of edges and facets

in �, plus O(jP j + jQj) time to �nd a starting point. Of course there are at

most O(jP j+ jQj) facets and at most O(jP j+ jQj) edges in �, so that in total,

the entire traversal takes only O(jP j+ jQj) time since k is a �xed constant.

5.5 Filling in the Gaps

In the previous section, we have shown that the edges of � can be traversed in

linear time. Of course the end goal is to traverse all of the edges of @P \ @Q.

Unfortunately some of these edges may have been missed during the traversal

of �, and will need to be dealt with separately. To identify these edges, we

examine the treatment of each facet of P with an eye towards intersections with

facets of Q which may have been overlooked.

We �rst consider degenerate cases, in which co-planar facets of P and Q

intersect. Suppose that f and g are co-planar facets of P and Q respectively,

and that f\g 6= ;. In this case, we need to ensure that a description of the facet

� = f \ g in F (P \Q) has been constructed. Once the intersection of f and g

has been detected, constructing their intersection is easily accomplished by one

of the known linear time polygon intersection algorithms such as[8]. Thus, the

real problem is to ensure that all such intersections are detected.

Let H be the hyperplane containing the two facets. If H separates P and

Q, then � = P \ Q. This case can be identi�ed at the outset, when a witness

to the intersection of P and Q is computed. Suppose on the other hand that

P and Q lie on the same side of H. If (without loss of generality) f � g,

39

then locally, the boundary of P \ Q is simply the boundary of P . Hence this

situation need not even be detected. If neither is strictly interior to the other,

then their boundaries will intersect at a vertex of � and hence this situation

can be detected during the traversal of �.

We now show that non-degenerate cases always involve facets of P and Q,

at least one of which is co-planar with a facet of P k or Qk respectively. Suppose

f is a facet of P which is not co-planar with a facet of P k. The portion of f

which contributed to a facet of � was given by (f)� = f \ Qk \ eQ. If f is not

co-planar with a facet of Q, and hence that intersections between f and @Q

are one-dimensional in nature, we will have traced all intersections of f with

@Q except for those which were co-incident with @Qk. Thus, when looking for

edges of @P \ @Q which are not edges of �, it su�ces to examine only facets

of P which are co-planar with facets of P k and facets of Q which are co-planar

with facets of Qk. Without any loss of generality, we shall con�ne our attention

to facets of P .

Let f be a facet of P which is coplanar with a facet f 0 of P k. Assume that

f (and hence f 0) intersects Q, since if it does not, then there is no edge of

@P \ @Q to discover on f . Recall from Equation 5.2 that (f)� = f \ Qk and

from Equation 5.1 that (f 0)� = f 0\Q. Observe that f� = (f)�[(f
0)� is a facet

of �. While tracing the edges of � we have traversed the entire boundary of f�,

while maintaining our location in Cq. As part of this process, any intersection

of @Q with @f , will have been discovered. Thus, if @Q intersects @f , then for

each sequence of edges of @P \@Q inside f we will have identi�ed the two points

at which it intersects the boundary of f , and these points will be located in Cq.

To trace the remainder of each of these edge sequences, we appeal to an

algorithm for intersecting two convex polygons due to O'Rourke et al.[8] Let

H be the hyperplane containing f and let g = H \ Q. Observe that the edges

we wish to traverse are the edges of g which lie inside (f)�. Our traversal of

@(f)� has identi�ed the points, @g \ @(f)�. It remains to traverse the edges of

g inside (f)� which lie between pairs of such points, taking O(jf j+ n) time in

total, where n is the number of edges traversed.

The algorithm of O'Rourke et al. accomplishes precisely this, but relies on

explicit descriptions of both f and g. Unfortunately, we have an explicit de-

scription only of f and computing the required description of g would take an

excessive amount of time. To perform the required reduction, we must show

that any question which might be asked of g can be answered from its implicit

description (H \ Q) in constant time. Conveniently, given a point on @f \ @g,

the algorithm of O'Rourke et al. only requires a description of the portion of

@g which actually intersects f . Since f is co-planar with f 0 2 F (P k), we can

compute the endpoints of such edges simply by tracing through Cq the intersec-

tion of relevant facets of Q with H. If we should enter Qk and hence leave the

navigable region of Cq we can rely on the description of f 0 \Qk which must be

available from the recursively obtained description of Pk \Qk to guide us.

The above discussion assumed that @Q actually intersects the boundary of

40

f and thus that starting points were available. Suppose on the other hand

that it does not. If it intersects f at all, @Q must intersect the hyperplane

H containing f at points strictly interior to f . To detect this situation, we

simply start from any known point on @(f)� and perform a `steepest descent'

search (see Theorem 3.12) for @Q while remaining on the hyperplane containing

f . Once this has been accomplished, we can use the Cq and the recursively

obtained description of f 0 \Qk to compute @Q \H taking O(k) time per edge

(facet of Q) traced.

5.6 Time Analysis

To analyse the time required by our algorithm as a function of the size of P and

Q, we let T (jP j; jQj) represent the running time. The algorithmproceeds by �rst

computing the inner and outer hierarchical representations of P and Q, using

at most O(jP j+ jQj) time. Then we make two recursive calls, requiring running

time of T (jP kj; jQkj) and T (jPkj; jQ
kj) respectively. Finally, the intersection is

computed using an additional O(jP j+ jQj) time. Thus, the entire recurrence is

expressed by

T (jP j; jQj) = T (jP kj; jQkj) + T (jPkj; jQ
kj) + O(jP j+ jQj):

To conclude that T (jP j; jQj) = O(jP j+ jQj) we must choose k so that

jP kj+ jQkj+ jPkj+ jQkj < �(jP j+ jQj) (5:5)

for some constant � < 1.

It su�ces, of course, to choose k such that jP kj + jPkj < �jP j and jQkj +

jQkj < �jQj. Recall from Theorem 4.23 that

jP kj+ jPkj < 6jP j

�
2

5

��
6

7

�k�1
:

Similarly,

jQkj+ jQkj < 6jQj

�
2

5

��
6

7

�k�1
:

Thus we need (12=5)(6=7)k�1 � 1, or (6=7)k�1 � 5=12. Letting k = 7 gives

(6=7)k�1 < 0:4 < 5=12 as required.

41

Chapter 6

Conclusions

This thesis has described in detail a simple algorithm for computing the inter-

section of two three-dimensional convex polyhedra using O(n) time and O(n)

space, where n is the combined number of edges in the polyhedra. In the pro-

cess, we have fully exploited the structure of a polyhedral subdivision of <3

induced by hierarchical representations of a given polytope. We expect that

this induced cell complex will have other applications and hence have set out

its properties separately in some detail.

To intersect two polyhedra, we use inner and outer hierarchical represen-

tations of Dobkin and Kirkpatrick to build simple polyhedral cell complexes

around each of their boundaries. This provides a mechanism for detecting in-

tersections between the two boundaries while traversing the edges of one. To

avoid logarithmic cost per edge traversed, and hence an O(n logn) algorithm,

we limit the depth of the cell complexes to a �xed constant k. This allows us

to traverse each edge of the union of approximations to P and Q in constant

(O(k)) time, using recursively obtained descriptions of P k\Qk and Q
k\Pk. In

this way, the problem of intersecting P and Q is reduced to one of navigating

in shallow cell complexes close to the boundaries of P and Q.

The algorithm which has been presented bears considerable resemblance

to that described by Chazelle[2]. Chazelle proceeds by identifying a point in

P \Q, and then computing the geometric duals P � and Q� of P and Q about

that point. One of the two polytopes is called the \anchor". Assume without

loss of generality that it is P . He then triangulates the boundaries of P and

P �, before computing their inner hierarchical representations for a sequence

of at most k approximating polytopes. Recursively, he computes Pk \ Q and

P �
k \ Q�, being sure that Q is chosen as the anchor for the recursive calls.

Once these preliminaries have been accomplished, the algorithm proceeds to

traverse the boundary of P inside Q, and the boundary of P � inside Q� in

search of intersections with the boundary of Q (laces). To accomplish such a

traversal, it is necessary to pass from a lace of P \ Q to a corresponding lace

42

on P � \ Q�. A considerable portion of his paper is devoted to the description

of such a correspondence, and the corresponding algorithm for computing such

a passage. The algorithm presented here represents a simpli�cation largely

because it operates entirely in primal space, avoiding these complexities. Our

algorithm is not just a re-interpretation of Chazelle's however. To stay entirely

in primal space it is necessary to have two di�erent kinds of navigation: ray

tracing, and `steepest descent'.

A second improvement over Chazelle's algorithm is a reduction in the number

of recursive calls, and hence the linear constants. As described in his paper,

Chazelle's algorithm gives rise to the following recurrence describing its running

time where p and q represent the number of edges in P and Q respectively.

T (p; q) = 4T (3(6=7)kp; 3(6=7)kq) +O(p+ q)

To compare the two algorithms fairly, we must re�ne the analysis of Chazelle's

slightly. In the above recurrence, the constant factor 3 in the expressions

3(6=7)kp and 3(6=7)kq represents the worst case cost of triangulating the bound-

aries of P , P �, Q and Q�. Of course, in reality this worst case cannot be

exhibited both by triangulating P and by triangulating P �. To capitalise on

this observation we further remark that the running time is really dependent

on the sum of p and q rather than on their independent values. The algo-

rithm recursively computes four sub-problems: P �
k \Q

�
k, P

�
k \Qk, Pk \Q

�
k and

Pk \ Qk. To run in O(n) time, the size of the sub-problems must diminish so

that jPkj + jP �
k j < �jP j and jQkj + jQ�

kj < �jQj for some �xed positive � less

than (1=2).

Suppose that P is a polytope with v, e and f vertices, edges and facets

respectively. Let � = e=v and let �� = e=f . Observe that 1
�
+ 1

��
= 1 + 2

e
.

Let P0 and P �
0 be triangulated versions of P and P � respectively. Let f 0 and

e0 be the number of facets and edges of P0. Since P0 is triangulated, we have

e0 = 3
2
f 0. Combining with Euler's equation gives e0 = 3v�6 = 3e

�
�6. Similarly,

we obtain complimentary results for the size of P �
0 . Combining gives

jP0j+ jP �
0 j = 3e

�
1

�
+

1

��

�
� 12:

Simplifying gives

jP0j+ jP �
0 j = 3e � 6 < 3e:

Thus, we can conclude that jPkj + jP �
k j < 3(6=7)ke. Letting k = 12 gives

jP12j + jP �
12j < 0:47jP j, guaranteeing a linear recurrence. On the other hand,

our algorithm gives rise to the recurrence

T (jP j; jQj) = T (jP kj; jQkj) + T (jPkj; jQ
kj) + O(jP j+ jQj)

which avoids one half of Chazelle's recursive calls, and becomes linear when

k � 7.

43

Bibliography

[1] B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and

three dimensions. Journal of the Association for Computing Machinery,

34(1):1{27, 1987.

[2] Bernard Chazelle. An optimal algorithm for intersecting three-dimensional

convex polyhedra. Technical report, Department of Computer Science,

Princeton University, February 1989.

[3] David P. Dobkin and David G. Kirkpatrick. Fast detection of polyhedral

intersection. Theoretical Computer Science, 27:241{253, 1983.

[4] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,

Heidelberg, Germany, 1987.

[5] S. Hertel, M. M�antyl�a, K. Mehlhorn, and J. Nievergelt. Space sweep solves

intersection of convex polyhedra. Acta Informatica, 21(5):501{519, 1984.

[6] David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal

on Computing, 12, No. 1, 1983.

[7] D. E. Muller and F. P. Preparata. Finding the intersection of two convex

polyhedra. Theoretical Computer Science, 7:217{236, 1978.

[8] Joseph O'Rourke, Chi-Bin Chien, Thomas Olson, and David Naddor. A new

linear algorithm for intersecting convex polygons. Computer Graphics and

Image Processing, 19:384{391, 1982.

[9] Preparata and Shamos. Computational Geometry. Springer-Verlag, New

York, 1985.

44

