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ABST RACT 

NaDSet, a Natural Deduction based ,S_fil. theory and logic, of this paper is an extension of an 

earlier logic of the same name. It and some of its applications have been described in earlier 

papers. A proof of the consistency and completeness of NaDSet is provided elsewhere. In all 

these earlier papers NaDSet has been fo1111ulated as a Gentzen sequent calculus similar to the 

formulation L~ by Gentzen of classical first order logic, although it was claimed that any natural 

deduction formalization of first order logic, such as Gentzen's natural deduction formulation 

NK, could be simply extended to be a fom1alization of NaDSet. This is indeed the case for the 

method of semantic tableaux of Beth or for Smullyan's version of the tableaux, but the 

extensions needed for other formalizations, including NK and the intutionistic version NJ, 

require some care. The consistency of NaDSet is dependant upon restricting its axioms to those 

of the form A ➔ A, where A is an atomic formula; an equivalent restriction for the natural 

deduction formulation is not obvious. The main purpose of this paper is to describe the needed 

restriction and to prove the equivalence of the resulting natural deduction logic with the Gentzen 

sequent calculus formulation for both the intuitionistic and the classical versions of NaDSet. 

Additionally the paper provides a brief sketch of the motivation for NaDSet and some of its 

proven and potential applications. 

The authors gratefully acknowledges support from the Natural Science and Engineering Research 

Council of Canada. 
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1. INTRODUCTION 

NaDSet, a Natural Deduction based Set theory and logic, and some of its applications have been 

described in the earlier papers [Gilmore89J and [Gilmore&Tsiknis91a,b,c] as well as in the 

thesis [Tsiknis91]; it is an extension of the logic described in [Gilmore 71,80,86]. A consistency 

proof has been provided in [Gilmore90J and a completeness proof in [Gilmore9 l]. In all these 

papers the logic was formulated as a Gentzen sequent calculus similar to the formulation LK of 

classical first order logic [Gentzen35] [Szabo69], although it was claimed that any natural 

deduction formalization of first order logic, such as the formulation NK of natural deduction also 

described in [Gentzen35], as well as those presented in [Jaskowski34], [Fitch 52], [Beth55], 

[Prawitz65], or [Smullyan68], could be simply extended to be a formalization of NaDSet. This 

is indeed the case for the semantic tableaux formalization described in [Beth55] and for 

Smullyan's version of the tableaux described in [Smullyan68]; but the extensions needed for the 

other formalizations require some care. The consistency of NaDSet is dependant upon restricting 

its axioms to those of the form A ➔ A, where A is an atomic formula; an equivalent restriction 

for the natural deduction formulation is not obvious. The purpose of this paper is to describe the 

needed restriction and to prove the equivalence of the resulting natural deduction logic with the 

Gentzen sequent calculus fom1ul_ation for both the intuitionistic and the classical versions of 

NaDSet. 

Intuiticmistic first order logic is easier to present as a natural deduction logic than is the classical, 

simply because additional assumptions are needed for classical negation. For this reason the 

intuitionistic form of NaDSet is treated first. The intuionistic sequent calculus formulation of 

NaDSet, extending Gentzen's notation is denoted by LSJ; its sequents are restricted to having at 

most one formula appearing in the succeclent. The natural deduction presentation of this 

intuitionistic logic is denoted by NSJ. The classical sequent calculus formulation is denoted by 

LSK and a natural deduction presentation of this same logic is denoted by NSK. 

In section 2 the elementary and logical syntax for LSK is described; LSJ is then LSK with the 

succedents of its sequents restricted to having at most one formula. In section 3, NSJ is defined, 

and in section 4 the equivalence of LSJ and NSJ is proved. Finally in section 5, the equivalence 

of LSK and NSK is proved. 

In the remainder of this introduction, motivations for NaDSet and some of its proven and 

potential applications are sketched. 
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1.1. Why a New Loeic is Ne(;'d('(I 

Mathematics has traditionally used a process of abstraction to generalize and simplify structures: 

A property of objects is regarded as an object that may itself have properties. The traditional set 

theories are attempts to codify acceptable abstractions to ensure that undesirable conclusions are 

not drawn from sound premisses. But the concern of these set theories with what sets may 

correctly exist has given them an ad hoc character which may account for why "[they] have never 

been of particular interest to mathematicians. They now function mainly as a talismen to ward 

off evil" [Gray84]. 

The limitations imposed on set abstraction by the traditional set theories make them unsuitable for 

some applications in both mathematics and computer science. Consider the following example 

from [Feferman84]: Define a B structure to be a triple< B, =,®>,where Bis a set on which 

an identity= and a binary, commutative, and associative operation® are defined. Define B to be 

the set of all B structures. Then < JS, =, ® > is itself a B structure when = is interpreted as 

isomorphism and ® as Cartesian product. Hence < JE, =, ® > is a member of the set B. But 

this conclusion cannot be expressed in a traditional set theory because the restrictions on set 

abstraction do not permit a triple to be a member of one of its elements. A proof of the 

conclusion can be given in NaDSet [Gilmore89]. Similarly, it can be proved that the set of all 

categories can itself be a category [Gilmore&Tsiknis91 b] [Tsiknis91 ], a result that cannot be 

proved in traditional set theories [MacLane71], [Feferman77]. 

The need for abstractions in computer science not available within traditional set theories has also 

been argued. For example, [Scott701 describes the problems of self-application that can arise 

when interpreting programming languages and proposes a solution that has led to the 

development of domain theory as a mearis for providing denotational semantics. In Scott's 

foreword to [Stoy77], he concludes "For the future the problems of an adequate proof theory and 

of explaining non-determinism loom very large." In [Gilmore&Tsiknis91a] NaDSet is used to 

provide semantics for a t~y language used in fStoy77j to demonstrate Scott's methods, and an 

approach to domain theory is described that is more fully developed in [Gilmore&Tsiknis91c]. 

In a recent paper [Scott91] Scott has suggested that a new language for programming systems 

semantics might be developed within an intuitionistic set theory. The intuitionistic version of 

NaDSet provides such a set theory. 

Hom clause programming, as introduced in Prolog, provides a computational model, but not a 

deductive model, for its programs. In NaDSet, the definition of a predicate by Horn clauses is 

an abstraction term that is complete in the sense that two predicates with different but equivalent 
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definitions can be proved identical without additional axioms [Gilmore&Tsiknis91a]. In short, a 

proof theory for the semantics of Horn clause programming can be provided. For this reason, 

NaDSet may suggest extensions to Prolog that incorporate second order concepts. 

The increasing levels of abstraction required for the ·conceptual models used in enterprise 

modelling for database design, knowledge engineering and object-oriented systems, demands a 

logic within which such abstractions can be defined as objects and reasoned about. 

[Gilmore87a, 87b,88] describes applications of the earlier form of NaDSet to some of these 

problems. 

Both the earlier and the present version of NaDSet offer an elementary resolution of the 

paradoxes of set theory which is described in 1.2.1 and 1.2.2; briefly, they suggest that the 

underlying source of the paradoxes is an abuse of use and mention. [Sellars63a,b] suggested a 

similar source. 

1.2. Features of NaDSet 

Classical first order logic provides a fomialization of two of the three fundamental concepts of 

modem logic, namely truth functions and quantification. In classical set theories the third 

fundamental concept, namely abstraction, is fomialized by adding axioms to first order logic. In 

NaDSet the three concepts are formalized in the same manner, namely through inference rules in 

a natural deduction presentation of the logic. This is the first of four distinguishing features of 

NaDSet which will be discussed. 

1.2.1. Natural Deduction based £ct Theory 

Natural deduction presentations of logic, but in particular the Gentsen sequent calculus, provide a 

l!ansparent formalization of the traditional reductionist semantics of [Tarski36], in which the 

truth value of a complex formula depends upon the truth values of simpler formulas, and 

eventually upon the truth values of atomic sentences. Fonnalizing a set theory with abstraction 

terms in this way has the effect of replacing an unrestricted comprehension axiom scheme by a 

comprehension inference rule. Although natural deduction presentations of first order logic can 

be seen as only pedagogically superior presentations of earlier formulations of the logic 

[Quine51] [Church56], the natural deduction presentation of set theory provided in NaDSet has 

no correspondingly simple formulation in terms of the earlier logics. That a natural deduction 

logic is used for the theory is essential to its presentation, and not just a pedagogically convenient 

device. For example, unlike classical first order logic, the deductions formalized in the inference 

rules of NaDSet cannot be represented in tenm of the classical conditional. 
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The replacement of an unrestricted comprehension axiom scheme by a comprehension inference 

rule in a natural decution presentation of logic is not novel to NaDSet; for example, several of the 

theories described in [Schtitte60] or the set theory of Fitch described in [Prawitz65] or [Fitch 52] 

have this feature. It is also implicit in the description of the logic described in section 21 of 

[Church41] from which the later papers apparently derive their inspiration. This replacement is, 

however, not enough to ensure consistency; the theory described in [Gilmore68], for example, 

is inconsistent because of an improper definition of 'atomic formula'. 

The interpretation of atomic formulas is critical for the reductionist semantics of Tarski. A 

second distinguishing feature of NaDSet is its interpretation of its atomic formulas. 

1.2.2. A Nominalist Interpretation of Atomic Formulas 

In NaDSet, only names of sets, not sets may be members of sets. To emphasize that this 

interpretation is distinct from the interpretation of atomic forn1ulas in classical set theory,':' is 

used in place of 'e' to denote the membership relationship. For example, the atomic formula 

(i) {u I-u:u }:C 

is true in an interpretation if the term' { u I -u:u } 'is in the set assigned to 'C', and is false 

otherwise. Note that the term ' { u I -u:u } ' is being m ntioned in the formula while 'C' is being 

~-

To avoid confusions of use and mention warned against in [Tarski36] and [Church56], NaDSet 

must be in effect a second order logic. The first order domain for the logic is the set D of all 

closed terms, as defined in 2.1 below. For example, the term' { u I -u:u }' is a member of D. 

The second order domain for the logic is the set of all subsets of D. Thus if 'C' is a second 

order constant, then an interpretation will assign it a subset of D, so that (i) will be true or false 

in the interpretation. A fuller treatment of the semantics of NaDSet is provided in [Gilmore89, 

91]. 

Although NaDSet is in effect a second order logic, the elementary syntax requires only one kind 

of quantifiable variable and quantifier for both the first order and second order domains. This is 

the third distinguishing feature of NadSet 

1.2.3. First and Second Order Quantifiers are Combined 

In [Gentzen35,38], [Szabo69], and I Prawitz65], a syntactic distinction is drawn between free 

and bound variables; substitutions of tem1s can thereby be greatly simplified since a free variable 

can never become bound. In NaDSet the practice of [Prawitz65] is followed in calling free 
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variables parameters. Thus an occurrence of a parameter in a formula or term of NaDSet plays 

the role of a variable not bound by a quantifier or an abstraction term. 

In an interpretation of N aDSet, first order parameters are assigned members of JD, while second 

order parameters are assigned subsets of D. Thus the second order character of NaDSet is 

maintained without having distinct quantifiable variabies and quantifiers for first and second 

order domains, as was the case with the earlier version of NaDSet. 

1.2.4. A Generalized Abstraction 

The term' { u I -u:u } ' introduced in 1.2.2 is a typical abstraction term for a set theory that admits 

such terms; they take the form ( v I F } , where v is a variable, and F is a formula in which the 

variable may have a free occurrence. The term is understood to represent the set of v satisfying 

F. In NaDSet, however, v may be replaced by any term in which there is at least one free 

occurrence of a variable and there are no occu1Tences of parameters (2.1.3 below). A term 

satisfying these conditions is the ordered pair term defined for variables u and v that are distinct 

from was follows: 

<u,v> for ( w I (u:C /\ v:C)} 

Since the variables u and v occur free in { w I (u:C /\ v:C)} and no parameters occur, the term 

satisfies the restriction and can be used to form new terms, such as, for example, the Cartesian 

product of two sets A and B: 

[AxB] for { <u,v> I ( u:A /\ v:B ) } 

That a simple term like { w I (u :C /\ v:C)} has the desired properties of the ordered pair is 

demonstrated in [Gilmore89]. 

The inference rules for the introduction of abstraction terms such as these are natural 

generalizations of the inference rules for abstraction terms of the form ( v I F}. These abstraction 

rules determine what are appropriate uses of abstraction terms in mathematical arguments, rather 

than determine what sets may consistently coexist. For example, the arguments Russell used to 

show that the empty set is a member of the Russell set and that the universal set is not, are 

arguments that can be shown to be correct in NaDSet, while the arguments demonstrating that the 

Russell set is and is not a member of itself cannot be justified in NaDSet. Thus, while the 

traditional set theories have concentrated on answering the question What sets can consistently 

exist?, NaDSet, like other natural deduction logics, provides an answer to the question What 

constitutes a sound argument? 
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2. NaDSet 

The elementary syntax for the logic is described in 2.1, while the logical syntax or proof theory 

is described in 2.2 as a Gentzen sequent calculus LSK. To maintain ease of comparison with the 

natural deduction logics described in [Prawitz65], which are variants of the logics NJ and NK of 

[Gentzen35], l. (contradiction), =>, A, and v will be taken to be the primitive logical connectives 

of NaDSet. Negation - is defined: 

-F for (F => l.) 

2.1. Elementary Syntax 

Five different kinds of sytactical objects are used in the elementary syntax, namely variables, first 

and second order constants, and first and second order parameters. It is assumed that there are 

denumerably many objects. of each kind, and that any object of one kind is distinct from any 

object of any other kind. 

2.1.1. Elementary Terms 

• A variable is a tern,. The single occurrence of the variable in the term is a~ 

occurrence in the terni. 

• Any parameter or constant is a temi. No variable has a free occurrence in the term. 

2.1.2. Formulas 

• l. is a formula in which no variable has a free occurrence. 

• If r and s are any ternis, then r:s is a fom1ula. A free occurrence of a variable in r or in 

s, is a free occurrence of the variable in the forniula. 

• If F and Gare formulas then (F::JG), (FAG), and (FvG) are forniulas. A free 

occurrence of a variable in For in G is a free occurrence in each of these formulas. 

• If Fis a forniula and v a variable, then VvF and 3vF are formulas. A free occurrence 

of a variable other than v in F, is a free occurrence in VvF and 3vF; no occurrence of 

vis free in VvF or 3vF. 

2.1.3. Abstraction Terms 

• Lett be any tern, in which there is at least one free occurrence of a variable and no 

occurrence of a parameter. Let F be any formula. Then (t IF} is an abstraction terni. 

A free occurrence of a variable in F which does not also have a free occurrence int, is a 

free occurrence in ( t I F}. A variable with a free occurrence in t has no free 

occurrence in ( t I F} . 

• An abstraction term is a tern,. 
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2.1.4. First and Second Order Terms and Atomic and Closed Formulas 

• A term is first order if no second order parameter occurs in it, and is otherwise second 

Q!lkr. 
• A formula t:T is atomic if t is first order, and T is a second order parameter or 

constant. 

• .1. is an atomic formula. 

• A term or formula in which no variable has a free occurrence is said to be~-

It is important to understand what are free and not free and bound occurrences of variables in a 

term (t IF}. Consider the formula: 

<u,v>:{<u,v> I u:v" <v,w>:B} 

The first occurrence of each of the variables 'u' and 'v' in this formula are free occurrences; all 

other occurrences of these variables are not free. The single occurrence of the variable 'w' is a 

free occurrence. Therefore in the formula 

[v'u][v'w](<u,v>: ( <u,v> I u:v "<v,w>:B}) 

only the first occurrence of 'v' is free. 

2.2. Logicar Syntax 

A sequent in LSK takes the form r ➔ e, where rand e are finite, possibly empty, sequences of 

closed formulas. The formulas r fom1 the antecedent of the sequent, and the formulas of e the 

succedent. A sequent can be interpreted as asserting that one of the formulas of its antecedent 

is false, or one of the fonnulas of its succedent is true. 

2.2.1. Axioms 

A ➔ A, 

where A is a closed atomic formula, and 

l.➔ 

2.2.2. Propositional Rules 

r,F ➔ G,e 

r ➔ (F::,G ), e 

r ➔ F,e 

r, !\, (F:::iG) ➔ e, A 

r,F ➔ e r,G ➔ e 



Formulations of NaDSet August 12, 1991 

r,F ➔ e 

r ➔ (FvG), e r, ~. (FvG) ➔ e, A 

2.2.3. Quantification Rules 

r, [t /u]F ➔ e 

r, v'uF ➔ 0 

r ➔ [r /u]F, e r, [p/u]F ➔ e 

r,3uF ➔ e 

• Fis any formula in which at most the variable u has a free occurrence. 
• p is a parameter that does not occur in F, or in any formula of r or e of the first or 

fourth rules. 
• t is any closed term. 

2.2.4. Abstraction Rules 

r, [r/y]F ➔ e 

r ➔ Ir/lllt:{t IF}, e r, Ir/u]t:{t IF} ➔ e 

• ll is a sequence of the distinct variables with free occurrences in the term t. 
• F is a formula in which no variable, other than one of ll, has a free occurrence. 
• [ is a sequence of closed terms, one for each variable in y. 
• Ir /.u] is a simultaneous substitution operator that replaces each occurrence of the 

variables in .u with the corresponding terms in [. 

2.2.5. Structural Rules 

Thinning 

where F is any closed formula. 

r,F ➔ e 

8 
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Contraction 

r,➔ F, F, e 

Interchange 

r ➔ F,G,e 

2.2.6. Cut Rule 

r ➔ e,F F,t,. ➔ A 

r,t,. ➔ 9,A 

r,F,F ➔ e 

9 

Although the cut rule has been shown to be redundant in [Gilmore91], it will be maintained as a 

rule of deduction here. 

Essential to the consistency of NaDSet is the restriction of the axioms A ➔ A to those formulas 

A that are atomic. This is not an ad hoc restriction on the formulation of N aDSet to achieve 

consistency, but is a consequence of Tarski's reductionist formulation of truth as described in 

1.2.1. 

The rules on the left affecting formulas in the succedent of sequents are called succedent rules, 

while those on the right affecting formulas in the antecedent are called antecedent rules. The 

propositional, quantification and abstraction succedent rules will be denoted respectively by ➔::::i, 

➔A, -w, ➔'v, and ➔{}, while the corresponding antecedent rules are denoted respectively by 

=>➔, A➔, v➔, 'v➔, and ( } ➔. The structural and cut rules will be referred to by name. 

2.3. LSK and LSJ 

In the intuitionistic sequent calculus formulation of NaDSet, denoted by LSJ, a succeedent of a 

sequent may contain at most one formula. Note that only an application of the succedent thinning 

rule can have a premiss that satisfies this restriction and a conclusion that does not. The classical 

sequent calculus formulation of NaDSet, with the given unrestricted rules is denoted by LSK. 

2.4. Theorem 
If r, -F ➔ e is derivable in LSK, then so is r ➔ e, F. 
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Proof: 
The formula -F can be introduced into the antecedent of a derivable sequent either through 

antecedent thinning, or through an application of ::::>➔ in which the second premiss of the rule is 

the axiom .l ➔. By removing all applications of both these rules from a deduction of r, -F ➔ 8, 

either a deduction of r ➔ 8 or a deduction of r ➔ 8, F, ... , F is obtained. A derivation of 

r ➔ 8, F can therefore be obtained by succedent thinning or succedent contraction. 

End of Proof 

The theorem will be used in later sections. A similar theorem converting -Fin the succedent to 

F in the antecedent can also be proved, but is not needed here. 

3. NSJ and NSK 

The intutionistic natural deduction logic NSJ chosen for this second formulation of NaDSet is an 

extention of Gentzen's intuitionistic first order logic NJ. The classical natural deduction logic 

NSK is an extension of Prawitz's classical logic, which is a variant of Gentzen's. 

Essential to the consistency of the sequent calculus presentation of NaDSet is the restriction of 

the axioms A ➔ A to those formula A that are atomic. The point made in 1.2.1 and 1.2.2 cannot 

be emphasized too strongly: This is not an ad hoc restriction on the formulation of NaDSet to 

achieve consistency, but rather is a consequence of Tarski's reductionist formulation of truth. 

The corresponding restriction in NSJ and NSK is more complicated to describe. It is defined in 

3.1.4 and illustrated with examples in 3.1.5. 

3.1. Ibe Lo2ical Syntax for NS,J and NSK 

A natural deduction presentation of a deduction of a formula from assumptions is a tree of 

formulas with each leaf formula being an assumption, and the root formula being the conclusion 

of the deduction. Each formula that is not an assumption is the conclusion of one of the 

inference rules given below from premisses appearing above the conclusion in the tree. Some 

inference rules can discharge an assumption. For these rules the assumption is indicated with a 

'+', while the conclusion of the rule is marked with a'-' to indicate that the assumption is 

discharged by the rule. When more than one assumption appears in a deduction and is 

discharged, such as in any deduction in which the vE rule is used, assumptions are numbered 

and the conclusion of a rule that discharges one or more of them is marked with the numbers of 

the assumptions being discharged. 
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The inference rules for the natural deduction presentation consist of an introduction (I) and an 

elimination (E) rule for each logical connective, quantifier, and for abstraction terms, and a single 

rule for the logical constant .l that is classified as an introduction rule. 

3.1.1. 

::>I 

vi 

jJ 

l.K 

3.1.2. 

'v'I 

31 

Propositional Rules 

F [+] 
G ::£ F (F => G) 

(F=> G) [-] G 

The assumption F may be absent. 

F G AE (FAG) (FAG) 

(FAG) F G 

F [+l] G [+2] 
F vE (F VG) H H 

(F VG) H [-1, -2] 

.l 

F 

This is the form of the .l rule for NSJ, the intuitionistic version. It is an I rule. 

(F:::,.l) [+] 
.l 

F [-] 

This is the form of the .l rule for NSK, the classical version. It is an I rule. 

Quantifier Rules 

[p/u]F VE VuF 

'v'uF [r/u]F 

Where p is a parameter not occurring in VuF or in any assumption on which F 
depends and r is any term. 

[p/u]F [+] 
[r/u]F 3E 3uF G 

3uF G [-] 

Where r is any term and pis a parameter not occurring in 3uF, G, or in any 
assumption on which G depends other than [p/u]F. 
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3.1.3. 

{}I 

Abstraction Rules 

lr/ll]F 

Ir/u]t:{tlF} 

{ }E Ir /u]t: { tlF} 

Ir/y]F 

Where 1l is a sequence of the distinct variables with free occurrences in the 
term t, Fis a formula in which only the variables 1l have free occurrences 
and r is a sequence of closed tenns, one for each variable in y. 

3.1.4. The restriction on deductions 

12 

The restriction on deductions in the natural deduction formulations of NaDSet corresponding to 

the restriction to atomic in the axioms of the sequent calculus formulation can be expressed: 

A fonnula with an occurrence in a deduction thar is minimum must be atomic 

By a guasi-deduction is meant a deduction which may not satisfy this restriction. 

The remainder of this section is devoted to defining the meaning of a minimum occurrence of a 

formula in a deduction, and related definitions. The definitions have been adapted from 

[Prawitz65]. 

The premiss F of the ::::>E rule, the premisses H of the vE rule, and the premiss G of the 3E rule, 

are minor premisses of these rules; the premiss (F ::::> G) of the ::::>E rule, the premiss (F v G) of 

the vE rule, the premiss 3uF of the 3E rule, and all the premisses of the other rules are major 

premisses of these rules. 

A branch of length n, n;::: 1, of a deduction is a sequence of occurrences of formulas 

F1, F2, ... 'Fn 

satisfying the following conditions: 

1. F 1 is an assumption of the deduction; 

2. For each i, 1 < i ~ n, Fi is the conclusion of an application of an inference rule for which 

Fi-l is a major premiss; 

3. Fn is either a minor premiss of an application of vE, ::::>E, or 3E, or is the occurrence of a 

formula at the root of the deduction. In the former case, the branch is called a minor 

branch, while in the latter it is called a major branch. 

Let F 1, F2, ... , Fn be a branch of a deduction. A formula occurrence Fi in the branch is a 

minimum occurrence if it is not the conclusion of an application of vE or 3E and satisfies one of 

the following conditions: 

1. 1 = i = n, in which case F 1 is necessarily an assumption of the deduction; or 



Fonnulations ofNaDSet August 12, 1991 

2. 1 = i < n and F 1 is the premiss of an application of an I rule; or 

3. 1 < i < n and Fi is the conclusion of an E rule and a premiss of an I rule; or 

4. 1 < i = n and Fi is the conclusion of an application of an E rule. 

A formula occurrence Fi in the branch is a maximum occurrence if it is the conclusion of an 

application of an introduction rule and a major premis~ of an elimination rule. 

13 

The following observation is an immediate consequence of the·definition of maximum: Let F1, 

F 2, ... , F n be a major branch for which F 1 is a major premiss of an application of an 

introduction rule and Fn is the conclusion of an application of an elimination rule. Then 

necessarily for some i, 1 < i < n, Fi is a maximum occurrence. 

3.1.5. Example Deductions in LSJ and NSJ 

Examples of deductions in the two fom1ulations of NaDSet will be given in this section to 

illustrate the effect on deductions of the restrictions. Pairs of deductions are given, the first in the 

pair being a deduction in LSJ, and the second in NSJ. 

Throughout this section A, B, and C denote atomic formulas, and G and H any formulas. The 

rules used in the deductions illustrated below are not explicitly stated since they can be inferred 

from the form of the formulas appearing in the deduction. Further, the horizontal bars used in 

the description of the rules will be omitted, except in the case of rules with multiple premisses. 

3.1.5.1. 
The NSJ formulation of the following LSJ deduction illustrates an application of the ::,I rule 

without an assumption. It corresponds to an application of antecedent thinning in LSJ. 

A ➔ A 

➔ A:::::,A 

F ➔ A:::::,A 

➔ F:::::, (A:::::,A) 

A [+l] 

A:::::,A [-1] 

F:::::, (A:::::, A) 

The assumption A of the NSJ deduction is a minimum formula of the single branch of the 

deduction because it is the premiss of an application of the ::,I rule. 

3.1.5.2. 
These deductions illustrate that some "obvious" theorems require longer deductions in the 

NaDSet formulations than they ordinarily do. 
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A AB, A "B ::J C ➔ C C 

A AB ➔ (A " B ::J C) ::J C 

➔ A AB ::J ((A /\ B ::J C) ::J C) 

14 

(A AB ::JC)=> C [-2] 

A " B => ((A " B => C) => C) [-1] 

There are three branches in the NSJ deduction. The first two end in the minor premiss A " B of 

the application of ::::,E, while the third begins with the major premiss of that application and ends 

with the conclusion of the deduction. The occurrences of A and B in the first two branches are 

minimum, while the occurrence of C in the third is minimum. 

3.1.5.3. 

The treatment of v differs significantly in the two formulations, as illustrated in this example. 

The LSJ deduction is given first: 

(A VB) ➔ (A VB) 

GA (AV B) ➔ (AV B) 

(A VB) ➔ (A VB) 

H A (A VB) ➔ (A VB) 

(GA (AV B)) V (H" (AV B)) ➔ (AV B) 

➔ (G" (AV B)) V (H "(AV B))::::, (AV B) 

This deduction takes the following form in NSJ: 

G" (Av B)[+l] A [+2] B [+3] 

(A vB) (AvB) (AvB) 

(G "(Av B)) v (H" (Av B))[+7] (Av B) [-2,-3] 

(AvB) [-1,-4] 

(G" (A vB)) v (HA (A vB))::::, (A vB) [-7] 

H" (Av B)[+4] A [+5] B [+6] 

(A VB) (A VB) (A VB) 

(A v B) [-5,-6] 

There are three applications of vE in this deduction corresponding to the three applications of v➔ in 

LSJ. The first two each have an occurrence of (A v B) as major premiss, and two occurrences of 
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LSJ. The first two each have an occurrence of (A v B) as major premiss, and two occurrences of 

the same formula as minor premisses. The third has the assumption [ + 7] as major premiss and two 

occurrences of (A v B) as minor premisses. The last rule applied is ::>I. 

The 6 minor branches of the deduction are: 

Two of each of A, (Av B) and B, (Av B), and 

G" (A v B), (Av B), (A v B) and H " (A v B), (A v B), (Av B) 

The single major branch is: 

(G /\(AV B)) V (H /\(AV B)), (AV B), (G /\(AV B)) V (H /\(AV B)) ::>(AV B) 

In each of the first 4 minor branches, one of A or B is minimum. In each of the remaining minor 

branches, only the last formula can be minimum since it is the conclusion of an E rule. But recall 

that such conclusions are specifically excluded from being minimum, so that neither of these two 

minor branches have a minimum. In the single major branch (A v B) is the conclusion of an E rule 

and the major premiss of an I rule, but it may not be a minimum since it is the conclusion of an vE 

rule. Therefore each occurrence of a minimum formula in the NSJ deduction is atomic. 

3.1.5.4. 

The treatment of the existential' quanti~er is also different in the two formulations, as illustrated in 

this example. Here Dis used as a second order constant, and p as a first order parameter, so that p:D 

is atomic. 

p:D ➔ p:D 

p:D ➔ 3x(x:D) 

[p/x]G "p:D ➔ 3x(x:D) 

[p/x](G " x:D) ➔ 3x(x:D) 

3x(G " x:D) ➔ 3x(x:D) 

➔ 3x(G" x:D) ::> 3x(x:D) 

3x{G "x:D) [+2] 

p:D [-1] 

3x(x:D) 

[p/x](G " x:D) [ + 1] 

[p/x]G "p:D 

p:D 

3x(G " x:D) => 3x(x:D) [-2] 

The single minor branch in the NSJ deduction begins with the assumption + 1 and ends with the 

minor premiss p:D of the application of 3E. The occurrence of p:D in this branch is minimum. The 

single major branch begins with the assumption +2. In this branch p:D is the conclusion of the 

application of 3E and the major premiss of an application of 31. However, since it is the conclusion 

of the application of 3E it is not minimum, although it is atomic. 

3.1.5.5. 

The use of the abstraction rules has not yet been illustrated. This is done in the following 

"deductions" which at the same time demonstrate why the restrictions on the deductions are 
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necessary. The example is an adaptation of Curry's paradoxical combinator Y. [Curry58] The 

following abbreviation is used in the "deductions": 

Y for {x I x:x =>A} 

Y:Y ➔ Y:Y 

Y:Y, Y:Y=> A ➔ A 

Y:Y,Y:Y ➔ A 

Y:Y ➔ A 

➔ Y:Y::::>A 

➔ Y:Y 

Y:Y ➔ Y:Y 

Y:Y,Y:Y::::> A ➔ A 

Y:Y, Y:Y ➔ A 

Y:Y ➔ A 

Thus without the restriction, every atomic formula is derivable. Further, since the sequent 1-➔ 1-

is derivable, the atomic formula A may be replaced by 1- so that 1- is also derivable. This is, 

however, not a deduction in LSJ because Y: Y is not an atomic formula. 

The corresponding natural deduction fonnulation of this "deduction" follows: 

Y:Y [+1] 

Y:Y => A Y:Y [+1] 

A 

Y:Y => A [-1] 

Y:Y 

A 

The branches of the deduction are: 

Y:Y, Y:Y::::> A,A, Y:Y:::> A, Y:Y 

Y:Y 

Y:Y=> A,A,Y:Y=> A 

Y:Y 

Y:Y => A Y:Y [+2] 

A 

Y:Y => A [-2] 

The occurrence of A in the first and third branches is minimum, as is the occurrence of Y: Yin 

the second and the fourth. But Y:Y is not atomic. 
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4. LSJ and NS.Tare EQUIVALENT 

A sequent r ➔ His said to be derivable in NSJ if there is a deduction of H from the premisses 

r; a sequent r ➔ is said to be derivable in NSJ if there is a deduction of .l from the premisses r. 
To prove that LSJ and NSJ are equivalent, it is sufficient to prove that a sequent r ➔ H is 

derivable in NSJ if and only if it is derivable in LSJ. The proof of the "if' result is by induction 

on the size of deductions in LSJ, where the size of a deduction is the number of applications of 

the logical rules 2.2.2, 2.2.3, and 2.2.4, of succedent thinning and of cut; antecedent thinning 

and the contraction and interchange rules are not counted. The proof of the "only if' result is by 

induction on the size of deductions in NSJ, where the size of a deduction is the number of 

applications of the rules 3.1.1, 3.1.2, and 3.1.3. 

4.1. Theorem 
If r ➔ H is derivable in LSJ, then it is derivable in NSJ. 

Proof: By induction on the size k of the deduction of r ➔ H. If k=O, the deduction consists of 

an axiom A ➔ A or .l➔. In the first case, the corresponding deduction of size O in NSJ consists 

of the single assumption A, while in the second case of the single assumption .l; these 

deductions satisfy the minimum formula condition since both A and .l are atomic. 

Assume the conclusion is true for deductions of size less than k, and consider a deduction of size 

k. Consider the last rule applied in the deduction. It may be assumed that for each premiss~ ➔ 

F of the rule an NSJ deduction of~ ➔ F has been given. If the rule is a one premiss rule, then :E 

denotes the given NSJ deduction of the first premiss, excluding assumptions and conclusion. If 

the rule is a two premiss rule, then :E1 denotes the given NSJ deduction of the first premiss, 

excluding assumptions and conclusion, while :Ez denotes the given NSJ deduction of the second, 

excluding assumptions and conclusion. It i_s sufficient to prove that an NSJ deduction of the 

conclusion of the rule can be constructed from :E if the rule has a single premiss, and from :E1 

and .I:i if the rule has two premisses. 

Consider now the possibilities for the last rule applied in the deduction of r ➔ H. Proofs will be 

provided for some of the cases, since proofs for the other cases are similar. 
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➔=>: Consider the following quasi-deduction: 

r F[+l] 

:E 
G 

(F::,G) [-1] 

18 

Here the deduction ending in G is the given NSJ deduction of r, F ➔ G. An occurrence of a 

formula in the quasi-deduction is minimum if and only if it is minimum in the NSJ deduction of r, 
F ➔ G. Therefore the quasi-deduction is a deduction. 

:::>➔: Consider the following quasi-deduction which will be denoted by rr: 

F 

G t. 
L2 

H 

I1 is to be interpreted as follows. The deduction ending in the minor premiss Fis the given NSJ 

deduction of r ➔ F. The deduction below the application of :::>E is the given NSJ deduction oft., 

G ➔ H. The quasi-deduction with conclusion G is repeated once for every (not discharged) 

occurrence of the assumption G in the NSJ deduction oft., G ➔ H. 

The branches of rr are: 

a. the branches of the NSJ deduction of r ➔ F; 

b. the branches of the NSJ deduction oft., G ➔ H that start with an assumption in t.; and 

c. the branches that start with (F::,G) and G and continue through l:2, possibly to H. 

Since no occurrence of the assumption (F::>G) is minimum in n, a minimum occurrence in this 

quasi-deduction is necessarily minimum in the branches (a) or (b). Therefore, rr is an NSJ 

deduction. 
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➔A: Consider the following NSJ quasi-deduction: 

An occurrence of a formula in this quasi-deduction is minimum if and only if it is minimum in the 

NSJ deduction of r ➔ F, or in the NSJ deduction of r ➔ G. Therefore it is an NSJ deduction. 

v➔: Consider the following NSJ quasi-deduction: 

r F[+l] 
l:1 

H 

6 G[+2] 
½ 

H 

H[-1,-2] 

(FvG) 

Since the last occurrence of H is not minimum, the branch beginning with (FvG) has no 

minimum formula. Every other branch is a branch of the given NSJ deduction of r, F ➔ H, or 

of the given deduction of 6, G ➔ H. Therefore the quasi-deduction is a deduction. 

3➔: Consider the following NSJ quasi-deduction: 

r [p/u]F [+1] 

l: 
3uF H 

H 

The branch beginning with 3uF has no minimum formula. Every other branch is a branch in the 

NSJ deduction of r, [r/u]F ➔ H. Therefore the quasi-deduction is a deduction. 

Succedent thinning: An application of this rule results in the following NSJ, deduction: 

r 
l: 

j_ 

H 
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Cut Rule: Consider the following NSJ quasi-deduction: 

r 
I.1 

H 

If the indicated occurrence of Fis minimum, then it is minimum either in the NSJ deduction of 

r ➔ F, or in the NSJ deduction of 6., F ➔ H. Therefore, this is an NSJ deduction. 

End of Proof of theorem 4.1. 

4.2. Theorem 
If r ➔ H is derivable in NSJ, then it is derivable in LSJ. 

Proof: 

By induction on the size k of the NSJ deduction of r ➔ H. 

If k=O, the NSJ deduction consists of a single atomic assumption A, and the corresponding LSJ 

deduction is the axiom A ➔ A .. 

Assume the theorem for deductions of size less than k and consider an NSJ deduction of r ➔ H 
of size k. Three special cases will be considered: 

A) The last rule applied in the deduction is an introduction rule, 

B) The first rule applied in a major branch of the deduction is an elimination rule, . 

C) The last rule applied in the deduction is an elimination rule and the first rule applied in 

a major branch is an introduction rule. 

Since every NSJ deduction has at least one major branch, one of these three cases is true of the 

given deduction of r ➔ H. 

A) The last rnle applied in the deduction is an inrroduction rule 

It is sufficient to consider only the cases ::,I and VI, since the remaining cases are similar. 

:,I: In this case the NSJ deduction takes the form 

r F[+l] 
I.1 
G 
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A minimum formula of the quasi-deduction ending in G is necessarily a minimum formula of the 

full deduction. Therefore the quasi-deduction is a deduction of size less than k, and hence by the 

induction assumption, there is an LSJ deduction of r, F ➔ G. An LSJ deduction of 

r ➔ (F=>G) is then obtained by one application of ➔=>. 

J..J: In this case the NSJ deduction takes the form 

r 
r. 
..L 

F 

Since the J..J rule is an introduction rule, a minimum formula of the deduction is necessarily a 

minimum formula of the quasi-deduction standing above the conclusion F. This quasi-deduction 

is therefore a deduction of size less than k. There is, therefore, an LSJ deduction of r ➔ ..L. The 

axiom ..L➔ , one application of cut, and one application of succedent thinning yields an LSJ 

deduction of r ➔ F. 

VI: In this case the NSJ deduction takes the form 

r 
r. 
[p/u]F 

VuF 

A minimum formula of the quasi-deduction ending in [p/u]F i~ necessarily a minimum formula 

of the full deduction. Therefore the quasi-deduction is a deduction of size less than k, and hence 

by the induction assumption, there is an LSJ deduction of r ➔ [p/u]F. An LSJ deduction of 

r ➔ VuF is obtainecl by one application of ➔V. 

B) The first rule applied in a major branch of the deduction is an elimination rule 

It is sufficient to consider only the cases ::>E, AB, vE, and 3E since the remaining cases are 

similar. 

::>E: In this case the NSJ deduction takes the form: 

r 
r.1 
F (F=>G) 

G £\ 

r.z 
H 

A minimum formula of the quasi-deduction ending in F is necessarily a minimum formula of the 
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full deduction. Therefore the quasi-deduction is a deduction of size less than k, and hence by the 

induction assumption, there is an LSJ deduction of r ➔ F. Further, a minimum formula of the 

quasi-deduction with assumptions G and ~ and end formula H is necessarily a minimum formula 

of the full deduction. Therefore the quasi-deduction is a deduction of size less thank, and hence 

by the induction assumption, there is an LSJ deduction of~. G ➔ H. One application of:::>➔ 

yields an LSJ deduction of r, ~. (F:::>G) ➔ H. 

AB: In this case the NSJ deduction takes the form: 

(FAG) 

F r 
I: 
H 

Consider the quasi-deduction beginning with the assumptions F and r, and ending in the 

conclusion H. It is necessarily a deduction because AE is an elimination rule. Consequently, by 

the induction assumption there is an LSJ deduction of r, F ➔ H and therefore by one application 

of A➔, an LSJ deduction of r, (FAG) ➔ H. 

vE: In this case the NSJ deduction takes the form: 

r F[+l] ~ G[+2] 
I:1 l:2 
E E (FvG) 

E[-1,2] e 
l:3 
H 

Consider the following quasi-deductions constructed from this deduction: 

r F[+l] 
I:1 
E 
I:3 
H 

e e 

If any formula other than Eis a minimum formula in the quasi-deductions, then they are NSJ 

deductions. If E is a minimum formula in the quasi-deductions, then necessarily it is the 

conclusion of an elimination rule other than vE or 3E applied in I:1 or I:i, so that it is also 

minimum in the original NSJ deduction. Therefore the quasi-deductions are NSJ deductions of 

size less thank of r, e, F ➔ H and~. e, G ➔ H respectively. By the induction assumption 

there are LSJ deductions of these sequents, and therefore by one application of v➔ and 

applications of thinning, an LSJ deduction of the sequent r, ~. e, (FvG) ➔ H is obtained. 
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3E: In this case the NSI deduction takes the form: 

r [p/u]F[+l] 
I:1 
G 3uF 

G[-1] ~ 

~ 
H 

Consider the following quasi-deduction constructed from this deduction: 

r [q/u]F[+l] 
[q/p]l:1 
G ~ 

l:2 
H 

23 

Here q is a parameter of the same order asp that is distinct from any parameter appearing in G, 

H or in any formula of r, ~. 1:1 or ~- [ q/p ]l:1 is obtained from I:1 by replacing each occurrence 

of p in a formula by q. An argument similar to the argument applied in the vE case demonstrates 

that this quasi-deduction is an NSI deduction. By the induction assumption there is an LSI 

deduction of r, ~. [q/u]F ➔ H, and therefore by one application of 3➔ of the sequent r, ~. 
3UF ➔ H. 

C) The 1st rule applied in the deduction is an elimination rule and the first rule applied in 

a mwor branch of the deduction is an introduction rule. 

In this case the given major branch contains a maximum formula. If F is the maximum formula, 

then the NSI deduction takes the form: 

r 
l:1 
F ~ 

~ 
H 

which is an NSI deduction of r, ~ ➔ H. But since Fis a maximum formula of the major 

branch, it cannot be a minimum formula in either of the following NSI deductions: 

r 
I:1 
F 

F 
~ 
H 

Since each of these NSI deductions is of size less than k, there are LSI deductions for the 

sequents r ➔ F and F, ~ ➔ H, and hence by cut for the sequent r, ~ ➔ H. 

End of Proof 
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Corollary 

If r ➔ H is derivable in NSK, then it is derivable in LSK. 

Proof: 

24 

The case .Ll of section (A) must instead consider an application of l.K. The deduction takes the 

form: 
r (H=>..L) [+I] -e 

l: 
..L 

H [-1] 

From the argument in the .Ll case, it may be concluded that r, (H=>.l) ➔ ..L is derivable in LSK. 

By theorem 2.4, r ➔ ..L, His derivable in LSK, so that a derivation of r ➔ H can then obtained 

from the axiom .l ➔ by one application of cut. 

End of Proof 

5. LSK and NSKare EQUIVALENT 

The equivalence of the natural deduction formulation NSK of the classical NaDSet with its 

sequent calculus formulation LSK cannot be expressed in the simple manner that it was for the 

intuitionistic forms, apparently because the "natural" logic for a natural deduction presentation is 

the intuitionistic. A simple and intutitive presentation of classical NaDSet, that is LSK, is best 

achieved through semantic tableaux [Beth55] or the equivalent semantic trees [Smullyan68]. The 

equivalence of these presentations relies essentially on the following conclusion from theorem 

2.4: A sequent r ➔ e is derivable in LSK if and only if r, -e ➔ is derivable, where -e is 

obtained from e by replacing each formula F of e with its negation (F:::,..L). 

The equivalence of LSK and NSK is expressed in terms of the derivability of sequents 

r, --8 ➔ .l. The first half of the equivalence is stated in the following theorem: 

5.1. Theorem 
If r ➔ e is derivable in LSK, then r, -e ➔ ..Lis derivable in NSK. 

Proof: 

By induction on the size k of the LSK deduction of r ➔ e. If k=O, r ➔ e is an axiom 

A ➔ A or .l ➔. In the first case A, (A:::,..L) ➔ ..L is derivable from A ➔ A and ..L ➔ by one 

application of=>➔ and one application of antecedent thinning. In the second case .l ➔ ..L is an 

axiom or is derivable from ..L ➔ by one application of antecedent thinning. 

Assume the theorem for deductions of size less than k and consider a deduction of length k. 

Consider the last rule applied in the deduction. It may be assumed that for each premiss 6. ➔ A 
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of the rule an NSK deduction of!!> ➔ A is given. The symbols l:, l:1 and l:2 are used here in the 

same manner as in the proof of theorem 4.1. Proofs will be given only for the cases ➔=>, =>➔ 

and cut, since the other cases are similar. 

➔:::>: Consider the following quasi-deduction of r ➔ (F=>G), e: 

r F [+l] (G=>l.) [+2] ~9 
l: 
l. 

G (-2] 

l. 

by l.K 

The quasi-deduction ending at the first occurrence of l. is an NSK deduction of 

r, F, (G=>l.), ~8 ➔ l. obtained from the LSK deduction of r, F ➔ G, 9 postulated by the 

induction assumption. Since the rule 1.K is an introduction rule, any minimum occurrence of a 

formula in the above quasi-deduction is necessarily a minimum occurrence in the deduction of r, 
F, (G:::>l.), ~8 ➔ 1., or is the last occurrence of 1.. Therefore, the above quasi-deduction is an 

NSK deduction of r, ((F:::>G):::>1.), ~9 ➔ .L. 

=>➔: Consider the following quasi-deduction of r, !!>, (F:::>G). ~9, ~A ➔ 1.: 
r (F:::,1.) [ + l] ~9 

l:1 

l. 

F 

G ~A 

I:2 

l. 

where the pieces denoted by I:1 and I:2 together with the premisses above them and the 

conclusions are NSK deductions of the sequents r, (F:::>1.), ~9 ➔ l. and!!>, G, ~A ➔ l., 

respectively, obtained from the LSK deductions of r ➔ F, 9 and !!>, G ➔ A postulated by the 

induction assumption. By an argument similar to that presented in the corresponding case of 

theorem 4.1, it can be shown that the above quasi-deduction is an NSK deduction. 
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Cut: The quasi derivation in this case has the form 

r (F=>.l) [ + l] -9 
l:1 

.l 

d F 
l:i 
.l 

[- 1] -A by .lK 

26 

A minimum occurrence of a formula in this quasi-dedution is necessarily minimum in either the 

deduction ending with the first .l, or in the deduction beginning with the assumptions d, F, and 

-A. Therefore, the above quasi-deduction is an NSK deduction. 

End of Proof 

s.2. Theorem 
If r, -9 ➔ .l is derivable in NSK, then r ➔ 9 is derivable in LSK. 

Proof: Let r, -9 ➔ .l be derivable in NSK. By the corollary to theorem 4.2, the sequent is 

derivable in LSK. An LSK derivation of r ➔ .l, 9 can then be obtained from theorem 2.4. A 

derivation of r ➔ 9 can then be obtained from the axiom .l ➔ by one application of cut. 

End of Proof 
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