
• I

The UBC OSI Distributed
Application Programming Environment 1 .

User Manual

by -r/<_ 90- 37
Gerald W. Neufeld

Murray W. Goldberg
Barry J. Brachman

Technical Report 90-37
January, 1991

The OSI Laboratory
Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T 1 W5

Email: goldberg@cs.ubc.ca

lThis work was made possible by grants from the Canadian National Science and Engineering Council, the UBC
Centre for Integrated Systems Research and UBC Research Services and Industry Liaison.

Contents

Acknowledgement

Introduction

I Operating System Support

1 The Threads Sub-Kernel

1.1 Introduction

1.2 Process Management, Scheduling and Context Switching .

1.3 Memory Management

1.4 I/O ..

1.5 Sleep .

1.6 Signal Handling .

1.7 Interprocess Communication.

II Communication Support

2 Association Management

2

4

5

7

8

8

11

15

19

23

25

25

28

29

CONTENTS

2.1 Introduction

2.2 Initialization Steps

2.3 Addressing • I • •

2.4 The CONNINFO structure

2.5 Waiting For An Event: The Await() call

2.6 Establishing An Association: The Bind(), AcceptBind() and RefuseBind()

Calls, and the CONNINFO Structure.

3

29

30

31

33

35

38

2.6.1 The Bind() Subroutine 39

2.6.2 Receiving a Connection Request 46

2.6.3 Responding to a Connection Request . 46

2.6.4 Receiving Connection Request Results (or: Bind() Return Values) 54

2.7 Releasing An Association: The Unbind() and AcceptUnbind{) Calls

2.8 Owning and Transferring Associations

2.9 Examples

3 Data Transfer

3.1 Presentation Layer Interface .

3.2 Remote Operations Interface

3.3 Connection Management and Remote Operations Examples

4 CASNl - The ASN .1 Compiler

4.1 Introduction . .

4.2 The defs.c FilP

4.2.1 CASN1 Built-In Types .

57

59

60

61

61

62

68

81

81

81

82

CONTENTS

III

5

4.3 The encode.c File .

4.4 The decode.c File

4.5 Examples

Persistent Storage

Persistent Object Store

5.1 Introduction ..

5.1.1 Objects

5.1.2 Interfaces

4

93

94

95

113

114

114

114

115

CONTENTS 5

Acknowledgement

The authors would like to acknowledge the work of Barry J. Brachman and Yeuli

Yang for their contribution to the design and development of portions of the programming

environment. We would also like to recognize the constructive suggestions and comments

of EAN Group member Eric Lau, and OSIWARE employee Duncan Stickings.

CONTENTS 6

Introduction

This manual describes DAPE (the Distributed Application Programming Environment)

and gives instructions for its use. DAPE is a software package which provides the remote

operations service defined by the CCITT standard X.219 (ISO standard 9072-1) using the

protocol defined by the CCITT standard X.229 (ISO standard 9072-2). It also supports

communication through use of a Presentation layer interface. These protocol layers, as

well as the OSI transport, session and association control layers are also provided. DAPE

provides access to CASNl, an ASN.1 compiler. This compiler enables DAPE applications

to encode application level data into an external representation suitable for transmission

over a heterogenous computer network. All DAPE applications execute in the Threads

sub-kernel environment. Threads provides a convenient coding environment for a group

of cooperating processes. Finally, DAPE provides an object storage facility for persistent

storage of variable size C data objects.

This manual is divided into parts. The first part describes the Threads environment.

The features of Threads are outlined and the Threads application interface is detailed.

The second part discusses the communication facilities of DAPE. The main sections of

this part discuss application association establishment, release and information transfer

using remote operations or presentation data transfer primitives. This part also describes

the functionality and use of CASNl, the ASN.1 compiler. The final part of this manual

presents the persistent object storage facility. Examples are given throughout the manual.

Part I

Operating System Support

7

Chapter 1

The Threads Sub-Kernel

1.1 Introduction

Threads is a sub-kernel running inside a UNIX process. The purpose behind writing

Threads was to provide a pleasant and convenient coding environment for communication

protocols. The result though is such an environment for any set of cooperative communi

cating processes.

The threads environment has the following properties. First, light-weight processes

may be created and destroyed at will. All threads processes run in a shared memory space.

Simple interprocess communication primitives have been supplied. A sleep facility has

been provided. Memory management routines have been provided to allow quick memory

allocation. A threads process has access to all existing libraries and UNIX system calls,

though the more popular blocking primitives have been replaced so only the calling threads

process is blocked, not the entire UNIX process.

A program written to run in the threads environment has few differences from one

written to run directly 11n n('r UNIX. The main difference, of course, is that the capabilities

mentioned above are alt ailable for use. All such programs must include the header file

"os.h". Also, instead of a program having to have a "main()" routine, a program designed

to run under threads must instead have a "mainp()" routine. This gives access to argv and

argc just as "main()" does. It should be noted that very little other than process creation

8

CHAPTER 1. THE THREADS SUB-KERNEL 9

should be done in the "mainp()" routine. "mainp()" is not actually a threads process,

and therefore the proper task for it is the creation of other threads processes. Once the

"mainp()" routine returns, the created routines will be allowed to run, and "mainp()" will

never be heard from again.

The following is a simple example of code written to use threads:

#include 11 standards.h 11

#include 11 os.h 11

!***!
I* this process awaits a message from other processes, prints the *I
I* message to stdio, and replies to the sender. This process will *I
I* terminate when the received message begins with the character 11 ! 11

• *I

PROCESS writer()
{

PID who;
int msglen;
char *buf;
char printbuf[100];
char firstchar;

do
{

I* await a message from some other process
buf = Receive(&who, &msglen);

I* remember the first character so we can test it later
firstchar = buf[O];

I* null terminate the message
buf[msglen - 1] = (char)O;

I* send message to stdio indicating message arrival *I
sprintf(printbuf, "Received message Y,s, length Y,d\n11 , buf, msglen);
WriteN(1, printbuf, strlen(printbuf));

CHAPTER 1. THE THREADS SUB-KERNEL

}

f* return a reply to unblock sender
strcpy(buf, "thank you") ;
if((Reply(who, buf)) < 0)

lilerr(11 writer on rpl 11
);

}

while(firstchar != '!');

'***!
/• this is a termination subroutine called when the reader terminates •I
printThis(string)
char *string;
{

WriteN(1, string, strlen(string));
}

f***~***********************f
/• this process reads some text from stdin and sends the text to the •/
/• writer process for printing to stdio. This process will terminate •/
/• when the first character of the read text is a 11 ! 11

• Note that this •I
/• process is passed a single argument on creation. *I

PROCESS reader(arg)
char •arg;
{

PID writer;
char buf [100];
char *rplbuf;
int nwnread;
char printbuf[100];
char firstch;

/• indicate that printThis is to be called when this proc finishes *I
OnTermination(printThis, "Goodbye Cruel World");

I• print out the create argument, just for fun
WriteN(1, arg, strlen(arg));

10

CHAPTER 1. THE THREADS SUB-KERNEL

}

I* ask Threads for the PIO of the "writer" process
writer= NameT0Pid(11 writer 11

);

do
{

I* read text from stdin and record the first character
numread = Read(O, buf, 100);
firstch = buf[O];

I* send the text to the writer for writing to stdio
if ((rplbuf = Send(writer, buf, numread)) < 0)

lilerr("reader on send");

/* write (to stdio) the reply received from the writer
sprintf(printbuf, "got reply Y,s\n", rplbuf);
WriteN(1, printbuf, strlen(printbuf));
}

while(firstch != '!')

mainp(argc, argv)
int argc;
char **argv;
{

11

I* create two processes, each with a 3k stack size, at normal priority *I
Create (reader, 3000, "reader", "readers arg", NORM) ;
Create (wri tar, 3000, "writer", 0, NORM) ;

}

1.2 Process Management, Scheduling and Context Switch-. 1ng

Threads process scheduling is performed on a round-robin, multi-priority basis. All ready

processes of a common priority level are scheduled on a round-robin basis. A process will

CHAPTER 1. THE THREADS SUB-KERNEL 12

only be allowed to run if there are no higher priority ready processes.

Threads scheduling is neither time-slicing nor preemptive. Context switches are per

formed only on the basis of threads system calls made by a threads process. The system calls

which potentially cause a context switch are the following: Pexit(), Send(), Receive(), Re

ply(), Read(), Write(), ReadN(), Recvfrom(), WriteN(), Accept(), Connect() and Sleep().

Also, a process may explicitly release control of the processor by calling Sched(). The

Sched() threads call requires no parameters. This property of knowing when a context

switch is .likely to occur is actually very useful when programming cooperating processes.

A critical section can be written with little worry about other process interference. If some

operation on shared memory is performed, the writer only needs to be cautious about

which threads system calls are made during the critical section.

Lack of time slicing is only a problem in the case of non-cooperating processes (for

example - a multi-user system). In this case a threads process may easily neglect or refuse

to relinquish control of the cpu for as long as it wishes. This would be a serious problem

for the other users (processes) in the system.

Context switches are implemented through the switching of process stacks. Each pro

cess has its own stack. When a process is about to give up control of the system, two

things happen. First, most processor registers are saved onto the process' stack. Next, the

actual stack pointer is saved into a variable in the process' process control block. To load

the next ready process, the processor registers are loaded from the ready process' process

control block, the ready process' saved stack pointer is decremented to reflect the popping

of the registers, and the decremented saved stack pointer is loaded into the hardware stack

pointer. Many of these steps require the use of assembly language. The effect of this is that

when the Threads context switching subroutine returns, the return will occur to a location

taken from the newly installed stack, and therefore a context switch occurs. This neces

sitates the creation ·of a "fake" stack at process creation time. This fake stack will cause

a completed process (running off the end or returning) to return to a system subroutine

which does all necessary clean-up.

CHAPTER 1. THE THREADS SUB-KERNEL 13

Threads makes the assumption that there is always at least one runnable process in the

system. This assumption is satisfied by the doIO process which runs at the lowest priority

and is guaranteed never to block.

The headers for the process management subroutines are as follows:

PIO MyPid()

PIO NameToPid(name)
char *name;

int PExists(pid)
PIO pid;

PIO Kill (pid)
PIO pid;

PexitO

PIO Create(addr, stksize, name, arg, prio)
int (*addr) 0;
int stksize;
char *name;
int arg;
PPRIO prio;

OnTermination(subr, arg)
int (*subr) ();
int arg;

My Pid() requires no parameters and returns the process identifier of the calling process.

NameToPid() requires a single parameter which is a pointer to a null terminated char

acter string. This string represents a process name (see Create()). This routine searches

the existing processes in the system for one with name name. The process identifier (PID)

of the first process found with such a name is returned.

CHAPTER 1. THE THREADS SUB-KERNEL 14

PEx.ists() requires the single argument pid. This routine checks for a process with a

process identifier of pid. If such a process exists in the system, the integer 1 (one) is

returned. Otherwise the integer O (zero) is returned.

Kill() requires the single argument pid. Kill() searches for the process identified by pid,

and if found, removes all traces of this process from the system returning the PID of the

killed process. Otherwise, a zero is returned.

Pex.it() causes the calling process to exit from the system. This routine is always

successful and when called is the last instruction executed by the calling process. Note that

it is not necessary for a process to make a call to Pexit(). A process may also terminate

its own existence by simply returning from, or falling off the end of its main subroutine.

Create() causes the creation of a new Threads process. Create requires five parameters.

The first parameter, addr, is a pointer to the routine which acts as the main subroutine

for the newly created process. In the C language this is accomplished by simply using the

name of the desired subroutine (without parens) for this parameter. The stksize parameter

is the size, in bytes, of the new process' stack. The stack size requirements vary with

the depth of subroutine calls made by the new process. They also vary according to the

number of local variables and parameters of routines called by the process. A minimum

requirement is generally about 2K bytes, though some processes require as much as lOK

bytes or more. The third parameter, name, points to a text string which acts as a user

supplied identifier for this process. This string must be null terminated and currently has

a length restriction of 17 bytes including the null-terminator. Any number of processes

may be identified by the same name. The name is copied by the Create() routine and

therefore the memory containing this routine may be released by the caller on return from

Create(). The fourth parameter, arg, acts as an argument (parameter) to the newly created

process. This argument is passed transparently to the process and may be of any (4 byte

or smaller) type, although it should be cast to an integer on call. The main routine for

the new process receives this argument as a parameter, or may instead not declare any

parameters if no creation-time arguments are required. The final argument to Create()

CHAPTER 1. THE THREADS SUB-KERNEL 15

is prio. This arguments indicates the priority of the newly created process. The possible

process priorities are HIGH, NORM and LOW. Except under unusual circumstances, user

processes should be created at normal (NORM) priority.

OnTermination() requires two arguments, subr and arg. This routine registers a sub

routine to be executed for the calling process when that process terminates (returns, exits

or is killed). The subrparameter identifies the entry point of the subroutine to be called on

process termination. As in the case of Create(), the entry point is identified by using the

subroutine name as the argument. The arg parameter is a single argument to be provided

to the called subroutine. The registration of the subroutine may be cancelled by calling

OnTermination() again with a NULL for the subr parameter. It should be noted that

this subroutine will be called by the process which is terminating only in the cases that

this process falls off the end or calls PExit(). If the process is terminated using the Kill()

routine, then the termination subroutine is performed by the process making the call to

Kill().

1.3 Memory Management

Threads memory management provides fast memory allocation and deallocation. Threads

provides two forms of memory management: a general memory allocation scheme, and a

per-process allocation scheme.

The general scheme works as follows. A request for memory allocation is rounded up to

the next size allowed by Threads. These sizes, and the number of such sizes are configurable

within Threads. Threads keeps a list of available memory blocks of each size. Initially,

each list of memory blocks is• empty. When a process requests memory, Threads checks

the list to see if there are any appropriately sized blocks on the list. If there are, the first

block is dequeued and returned. Otherwise, a request for memory is made to UNIX. When

memory is returned from a Threads process, it is not returned to UNIX, but is instead

queued onto the appropriate list. This way, once a sufficient free pool of memory has been

CHAPTER 1. THE THREADS SUB-KERNEL 16

established, subsequent allocations and deallocations are very fast. If a request is ma.de for

a block of memory larger than the largest configured size, the request is passed directly to

UNIX. When this block is freed, the free request is also passed directly to UNIX. If more

memory is required from UNIX and UNIX cannot satisfy the request, all free memory

blocks are returned to UNIX, and the process of building the free block pool begins again.

This can help recover from serious memory fragmentation. Memory allocated in this way

is not associated with any Thread process. If the process that allocated the memory dies,

exits or gets killed, the memory still exists.

The calls to allocate and release this type of memory are as follows:

BYTE *Malloc(size)
int size;

Free(mem)
BYTE *mem;

The parameter to Malloc(), size, indicates the number of bytes required. Malloc() will

return the address of the allocated memory. The parameter to Free() is the address of the

memory to be freed. This address must have been previously returned by Malloc().

Threads also has a per-process memory facility. Each Threads process has associated

with it a stack of memory frames. If a process exits or is killed, all of the memory allocated

from its stack frames is returned to the system. Per-process memory may be allocated

only from a process' top memory frame. There are also operations to create, destroy and

swap frames. Frames may also be passed from one process to another. An example of one

way that this is useful follows. Say process A wishes to create a linked list of structures

and pass it to another process - process B. Process A can create a new memory frame, and

allocate all of the linked list nodes from this top frame. It then can pass this frame (and

all the nodes contained within) to process B. Process B consumes the list and can free all

of the storage associated with the list using a single call which frees the memory frame.

This feature is especially useful for complex structures which would be time consuming to

CHAPTER l. THE THREADS SUB-KERNEL 17

free. Its implementation is very efficient in that freeing a memory frame (no matter how

many blocks have been allocated on it) requires little more time than freeing one memory

block.

The headers of the subroutines which operate on per-process memory are as follows:

NewFrame()

FreeFrame()

SwapFrame ()

void •PopFrame()

PushFrame(frame)
void •frame;

int TransferTempMem(topid)
PID topid;

BYTE •TempMalloc(size)
int size;

FreeTempMem()

New Frame() creates a new memory frame and pushes it onto the calling thread's mem

ory frame stack.

FreeFrame() frees all memory associated with the calling process' top memory frame,

pops the frame and discards it.

SwapFrame() swaps the top two memory frames of the calling process. If zero or one

frames exist for this process then SwapFrame() has no effect.

Pop Frame() pops and returns a pointer to the top memory frame of the calling process.

This routine should be used with caution, generally in conjunction with PushFrame(). The

CHAPTER 1. THE THREADS SUB-KERNEL 18

reason for caution is that a memory frame which is not currently on any process' memory

stack is essentially an orphan. This memory will not be returned to the system should its

creator or owner exit.

PushFrame() takes a pointer to a frame and pushes it on the calling thread's memory

stack. The PopFrame() / PushFrame() pair can be used to transfer per-process memory

from one process to another, or to perform stack rearrangement functions. Note that a

stack frame which does not currently reside on any process' stack is in danger of becomming

uncollectable garbage. Normally, when a memory frame exists on some process' memory

stack, the memory is returned to the system when the process exits or dies. Note also that

a memory frame cannot exist on more than one memory stack at a time. If an application

wishes to move the top memory frame from one process to another, this may be done

using PopFrame(), PushFrame() and inter-process communication, but it is preferable to

use TransferTempMem() instead.

TransferTempMem() takes as an argument the PID topid. This ·operation transfers the

top memory frame of the calling process to the top of the memory stack of process topid.

This routine avoids the time interval between a PopFrame() and a PushFrame() when a

memory frame does not belong to any process.

TempMalloc() takes an integer parameter size. This routine allocates memory from the

top memory frame of the calling process. This memory cannot be released using Free().

Per-process memory is instead returned to the system using FreeFrame() (discussed previ

ously) or FreeTempMem(). An important feature of TempMalloc() is that if no memory

frame currently exists on the calling process' memory stack, a new one is created and

pushed. In this case, the allocated memory is taken from the new frame.

FreeTempMemn returns the calling process' per-process memory to the system. The

memory from earn of the calling process' memory frames (not just the top one as in the

case of FreeFrame()) is returned. This routine also pops all memory frames from the calling

process leaving it with none.

CHAPTER 1. THE THREADS SUB-KERNEL 19

Finally, there is one routine which is common to both general memory allocation and

per-process memory allocation. This is the Realloc() routine. The header for this routine

is as follows:

BYTE *Realloc(oldptr, newlength)
BYTE *oldptr;
int newlength;

Realloc requires two parameters. Oldptr is pointer to memory (previously allocated

using Malloc() or TempMalloc()), and newlength is an integer. This routine allocates a

new block of memory of length newlength, copies the contents of the original memory to

the new memory (to the extent of the old or new memory sizes~ whichever is smaller), and

returns a painter to the new memory. Realloc() also frees the original memory block. If

the original block was per-process memory, the new block will be allocated from the same

memory frame as the original.

1.4 I/0

Routines which support I/O in threads include NonBlkRead(), NonBlkWrite(), Read(),

Write(), ReadN(), WriteN(), Accept(), Connect(), Recvfrom(), Open(), Close() and Socket().

Each of these routines is meant to replace corresponding UNIX routines (see individual rou

tine descriptions), though some are provided for different reasons than others.

The routines Open(), Close() and Socket() are provided for the reason that threads

must keep account of the number of open file descriptors or sockets. Ea.ch UNIX process

is allowed to have open at any one time no more than getdtablesize() descriptors. This

causes a problem for the UNIX accept() command which allocates a new descriptor. UNIX

accept() cannot be called if its completion would require more than the available number

of descriptors. In order to avoid this situation, each descriptor allocated from and returned

CHAPTER 1. THE THREADS SUB-KERNEL 20

to UNIX must be counted, and a check of this number must be made before the threads

Accept() makes its call to UNIX accept().

Threads Accept() has a more important job than simply checking the number of avail

able descriptors and calling UNIX accept(). This routine, like the remainder of the above

routines (NonBlkRead(), NonBlkWrite(), Read(), Write(), ReadN(), WriteN(), Recvfrom()

and Connect()) are re-implemented in threads for a more important reason. Each of these

routines has the trait that it has the potential to block the UNIX process once called. This

could be a significant problem for the rest of the threads processes running in the system.

It would not be appropriate for all Threads processes to have to wait for a single process'

I/O.

To avoid this problem, threads replaces common blocking UNIX system calls with

similar threads calls. The replacement I/O calls have the effect of blocking the calling

threads process without blocking the other processes sharing the same UNIX process.

This is accomplished via the UNIX select() call. All Read(), Receive(), Accept(), Write()

and Connect() calls (with a small exception) place the calling process on the I/O blocked

queue. There it stays until its I/O is satisfied. How does the I/O become satisfied? The

way this is accomplished is by first marking all I/O descriptors as non-blocking using the

fcntl() UNIX call. Then, a threads system process called "doIO" periodically checks the

I/O blocked queue. If there is anything on this queue, doIO builds read and write masks for

use with select(). If select() indicates that any of the descriptors are ready for reading or

writing, then the appropriate operation is performed. If the performance of the operation

completes the requested threads operation (eg. if the correct number of bytes have been

read), then the process making the original call is taken off the I/O blocked queue and

readied by doIO.

The interval at which doIO checks the I/O blocked queue depends on the priority at

which the doIO process is created. At present, doIO is created at low priority, and therefore

I/O is only performed once all higher priority processes have blocked or completed. This

seems to be a suitable arrangement as I/O is comparatively slow.

CHAPTER 1. THE THREADS SUB-KERNEL

The headers for these I/O routines are as follows:

int Open(file, flags [,mode])
char *file;
int flags;
int mode;

int Close(fd)
int fd;

int Socket(domain, type, protocol)
int domain, type, protocol;

int Connect (fd, name,
int fd;
void *name;
int namelen;

int Accept (fd)
int fd;

I* some

namelen)

address type

int Read (fd, buf, numbytes)
int fd;
char *buf;
int numbytes;

*I

int Recvfrom (fd, buf, numbytes, flags, from, fromlen)
int fd;
char *buf;
int numbytes;
int flags;
char *from;
int *fromlen;

int ReadN (fd, buf, numbytes)
int fd;
char *buf;
int numbytes;

21

CHAPTER 1. THE THREADS SUB-KERNEL

int NonBlkRead (fd, buf, numbytes)
int fd;
char *buf;
int numbytes;

int Write (fd, buf, numbytes)
int fd;
char *buf;
int numbytes;

int WriteN (fd, buf, numbytes)
int fd;
char *buf;
int numbytes;

int NonBlkWrite(fd, buf, numbytes)
int fd;
char *buf;
int numbytes;

22

The Open(), Close(), Socket(), Connect() and Accept() routines all provide the same

interface and service as their corresponding UNIX routines. As indicated, Open(), Close()

and Socket() are only provided to keep track of the number of file descriptors currently in

use. The Connect() and Accept() routines are both provided so that a call to one of these

blocks only the calling thread rather than the entire UNIX process.

The interface to Read(), ReadN() and NonBlkRead() are the same as for the UNIX

read() routine. Read() waits until some data is available for reading, reads the available

data, and returns the number of bytes read. Unless some error has occurred, the number of

bytes read will be between one and the number requested. ReadN() is similar except that

it waits until it reads exactly the number of bytes requested. NonBlkRead() will attempt

a non-blocking read and return any data that is immediately available for reading. The

number of bytes read will vary between zero and the number of bytes requested. These

CHAPTER 1. THE THREADS SUB-KERNEL 23

routines are provided in order that calls made do not block the entire UNIX process.

The interface and service provided by Recvfrom() is the same as the corresponding

UNIX routine. This routine is provided so that a call to it does not block the entire UNIX

process.

The interface to Write(), WriteN() and NonBlkWrite() are the same as for the UNIX

write() routine. Write() waits until it is possible to write some data, writes the data, and

returns the number of bytes written. Unless some error has occurred, the number of bytes

written will be between one and the number requested. WriteN() is similar except that it

waits until it can write exactly the number of bytes requested. NonBlkWrite() will attempt

a non-blocking write and return the number of bytes which could be written immediately.

The number of bytes written will vary between zero and the number requested. These

routines are provided in order that calls made do not block the entire UNIX process.

1.5 Sleep

Processes in the threads sub-kernel have the ability to put themselves to sleep with a timer

resolution of CLKRES seconds. In the present implementation CLKRES is set to one tenth

of a second.

When the threads Sleep() routine is called, a check is first made to be sure that the caller

wants to sleep for more than O seconds. If this is not the case, Sleep() returns immediately.

Otherwise, a calculation is made of the correct wakeup time by adding the desired sleep

duration in seconds to the current time as supplied by the UNIX library function time(O).

This value is loaded into the process control block of the calling process, and that process

is queued into a blocked queue.

The mechanism by which a process is taken out of the sleep queue and readied will

depend on the number of active processes in the system, their cpu intensity, and their

state. First of all, it should be mentioned that because threads is not a time-slicing system,

there is no guarantee that a sleeping process will be waken up within a deterministic time

CHAPTER 1. THE THREADS SUB-KERNEL 24

of the requested wake time. Obviously, some other cpu intensive process could decide not

to relinquish control of the cpu for an extended period of time, and therefore the sleeping

process would remain asleep until the running process gave up the cpu. This is not really

a fault with the sleep logic, but more a by-product of the fact that there is no time-slicing.

For the great majority of applications with cooperating processes the lack of time-slicing

is not a weakness, but is often rather a benefit. If there are many ready processes in the

system, then it is likely that the sleeping process will be waken up as a result of a context

switch. Every time a context ~witch occurs, a check is made of the sleep queue, and if

there is a process ready to be waken, it will be placed on the ready queue at that time. If

there are few or no ready processes in the system, then the bulk of the time will be spent

by threads in the dolO process making the UNIX select call. It has been arranged that

select will time-out every CLKRES seconds, and at this time the sleep queue is checked

and appropriate processes readied.

The process of checking the sleep queue for processes to awaken is done at every context

switch and therefore must be very fast. This is accomplished by ordering the sleeping

processes in order of wake time. When a check is made, first the head of the sleep queue is

checked to see if there are any sleeping processes. If there are, it is only necessary to check

the wake-t'ime of the head process in the queue, and this is done by means of a simple

comparison with the current time. If the process at the head of the queue is ready to be

awaken, then the rest in line are checked and readied until one is found whose time has

not yet come.

The header of this routine is as follows:

Sleep(secs)
long secs;

As indicated, this routine puts the calling thread to sleep for the number of seconds

indicated in the argument secs.

CHAPTER 1. THE THREADS SUB-KERNEL 25

1.6 Signal Handling

Threads provides a way for a threads process to block awaiting the arrival of a UNIX signal.

The implementation of this is fairly simple. A call to the SigWait() routine records the

signal to be waited for, informs UNIX of a routine to be called on the arrival of this signal

(using the UNIX signal() routine), and then blocks the calling thread.

The arrival of this signal causes a global variable to be set. The do!O threads process

will check this variable periodically for the arrival of some signal. If one has arrived then

each process blocked awaiting that signal is readied.

This method of handling signals is crude in the sense that if signals arrive at very short

intervals it is possible that one of them will be missed.

The header of the SigWait() routine is as follows:

SigWait(sig)
int sig;

As indicated, this call blocks the calling process until the arrival of the signal indicated

by sig. The valid values for sig are those given in the include file <signal.h>.

r. 7 Interprocess Communication

Threads processes communicate via Send() / Receive() / Reply() primitives. Because all

threads processes share one memory space, no copying of data is done. Instead, a pointer

and a length (or actually any two, four byte values) are sent'in Send() and Reply().

Send works by first checking to see if the destination process is currently waiting for a

message (via Receive()). If so, the pointer and length are transferred, and the receiver is

returned to the appropriate ready queue. The sender is placed on the "waiting for reply"

queue. If instead the d"r-t\nation process is not waiting for a message, then a check is made

CHAPTER 1. THE THREADS SUB-KERNEL 26

to verify that the destination process exists. If it does, the sender is blocked (on the send

blocked queue) pending a Receive() operation by the destination.

Receive is very similar to send. First, Threads checks to see if some process is blocked

waiting to send to the receiving process. If so, the pointer and length are transferred, and

the receiver is readied. The sender is placed on the "waiting for reply" queue. Otherwise,

the receiving process is blocked pending some other process sending to it.

Reply is very simple. Unless a problem has occurred, Reply will find that its replied-to

process is waiting on the "wait for reply" queue. A verification of this is performed, and

the reply pointer is transferred. Also, at this point the original sender is returned to the

appropriate ready queue. The Reply() operation may be used by any process. It does not

have to be the one which originally received the message.

There is also a routine which allows a potential receiver of messages to test (in a

non-blocking fashion) whether there are messages waiting for it. This is the MsgWaits()

subroutine.

The subroutine headers to Send(), Receive(), Reply() and MsgWaits() are as follows:

char *Send (to, msg, len)
PIO to;
char *msg;
int len;

char *Receive(pid,
PIO *pid;
int *len;

int Reply(pid, msg)
PIO pid;
char *msg;·

int MsgWai ts()

len)

CHAPTER 1. THE THREADS SUB-KERNEL 27

The Send() routine sends a message pointed to by the parameter msg, of length /en,

to process to. If successful, Send() returns a pointer to the message returned by the

Reply() operation. If the proposed destination does not exist, Send() will return the value

NOSUCHPROC.

Receive() blocks the calling process until some message is sent to it using Send(). The

parameters pid and Zen should point to memory locations large enough to hold a PID and

integer respectively. The pid parameter must point to a valid location. The len parameter

may have the value NULL if the length of the received message is not required. On return,

the pid location will contain the PID of the process which sent the message. The len

location (if provided) will contain the length parameter provided with the sent message.

Receive returns a pointer to the message received.

The Reply() operation returns a message to, and unblocks a process which previously

performed the Send() operation. The parameter pid should contain the PID of the blocked

sender, and the parameter msg is a pointer to the returned message (if any). Reply()

returns O on success or NOSUCHPROC if the destination of the reply does not exist or is

not blocked awaiting a Reply().

The MsgWaits() routine returns a 1 if there is at least one message waiting to be

received by the calling process. Otherwise, a O is returned. This call does not block.

Part II

Communication Support

28

Chapter 2

Association Management

2.1 Introduction

This chapter describes the communication component (DASCOM) of DAS and gives in

structions for its use.

DASCOM supports all association classes (1, 2 and 3), and supports operation classes 1

and 2. It also supports direct use of the presentation layer interface for data transfer. The

association control service conforms to CCITT recommendation X.227. The presentation

service provides the kernel functional unit of CCITT recommendation X.226. The session

service provi<les the full-duplex basic combined subset of functional units described by

CCITT recommendation X.225. Class O of the transport layer of CCITT recommendation

X.224 is also provided. The transport layer can make use of several network services.

Currently supported interfaces are those to sunlink X.25, UBC X.25, and TCP /IP.

DASCOM provides interface routines that enable clients and servers to communicate

using the remote operations protocol or presentation data units directly. A server is an

application process which blocks awaiting events such as connection requests or remote

operations requests. A client is an application process which generates these events by

requesting a connection or requesting that a server perform some operation. Access to

the association control and data transfer services is provided through calls to DASCOM

interface subroutines. DASCOM allows any reasonable number of application processes

29

CHAPTER 2. ASSOCIATION MANAGEMENT 30

(APs) to exist within one UNIX process. Each AP runs as an individual sub-process

(thread) of the UNIX process. Each UNIX process may have a main thread which is the

recipient of all connection requests directed at that UNIX process. This thread may handle

the connection itself or may transfer the connection to any other thread within the process.

In this way the main thread may field incoming connection requests by creating a worker

thread and passing the connection to the newly created worker. It is possible to set up a

server thread on one or both ends of a connection so that remote operation requests may

flow in both directions. Each client and server may have O or more connections with APs

in the same or different UNIX processes. It is also possible for multiple clients to share a

connection directing multiple outstanding requests at the same server.

The remainder of this part discusses the use, behaviour, parameters and return values

for the DASCOM interface routines.

2.2 Initialization Steps

Before the services of DAS COM may be used, two initialization steps are required. The first

step is a call to the DAS COM initialization subroutine InitComm(). All users of DAS COM,

whether they intend to be connection initiators, responders or both, must make a call to

InitComm() before DASCOM may be used. The header for this subroutine is as follows:

int InitComm(paddr)
PresentationAddress *paddr;

The first parameter, paddr represents a presentation address. If the initializing AP

wishes only to make connection requests of other AP's, and not receive any connection

requests, then the value of this parameter should be NULL. Otherwise, this parameter

reflects the address on which the initializing AP is willing to receive connection requests.

The format of the presentation address is found in section 2.3.

CHAPTER 2. ASSOCIATION MANAGEMENT 31

The second initialization step need only be executed by an AP wishing to act as a

responder (wishing to receive incoming connection requests). This is the RegisterServer()

DASCOM interface subroutine. This subroutine requires no parameters. This routine is to

be called by the thread wishing to act as the main thread for the UNIX process. It is this

thread which is notified each time an incoming connection request is received. Aside from

this unique property, the main thread is no different from any other thread. On receipt of

a connection request, the main thread may either handle the connection itself, or pass the

connection to some other thread.

Once InitComm() and (possibly) RegisterServer() have been called, the APs are free

to make use of the DASCOM services.

2.3 Addressing

Presentation addresses are required for several purposes when using DASCOM. First, a

presentation address is used when an AP initializes DASCOM to indicate to DASCOM

which address it must accept incoming connection requests on. Also, presentation addresses

are used when an AP is establishing an association with another AP in order to identify

both the called and calling APs. The format of an DASCOM presentation address is as

follows:

typedef struct PresentationAddress
{

OCTS *pSelector;
OCTS *sSelector;
OCTS *tSelector;
LIST *nAddress; I• list of OCTS *I

} PresentationAddress;

Each of pSelector, sSelector and tSelector are pointers to ASN .1 octet string structures

(see section 4.2.1 for the format of the OCTS structure). The nAddress field is a list of octet

string structures. This list is constructed using the list routines described in section 4.2.1. .

CHAPTER 2. ASSOCIATION MANAGEMENT 32

If the initialization is performed correctly, a O (zero) value is returned. Otherwise, a

-1 is returned. For InitComm() to be successful, at least one network address on the list

of network addresses (which forms part of the presentation address) must be in a format

recognizable to DASCOM. DASCOM delivers connection requests received on any of the

valid network addresses in the list. Currently, (subject to the communication services

available on your machine) three network address formats are recognized by DASCOM,

each of which is represented by a string.

Each octet string making up a valid network address is composed of two parts con

catenated together: a network address type, and a network address value. The substrings

which represent the valid address types are as follows:

• Internet=

• ubcX25=

• sunX2S=

For an internet address, the address value is made up of three substrings. The first

substring is either a machine name which is recognized locally, or an internet address in

the N. N. N. N format where N is a 1 to 3 digit decimal number in the range O to 255.

The second substring is the single character +. The third substring is a port number

in decimal notation. Here are three examples of octet string values making up internet

addresses:

• Internet=koolaid.cs.ubc.ca+5101

• Internet=koolaid+55101

• Internet=128.189.97.62+555101

For an UBC-X25 address, the address value is made up of several substrings all con

catenated together. The first substring is optional and may be used to set the packet

size to 128. It takes the following form: p, (the comma is part of the substring - i.e.

CHAPTER 2. ASSOCIATION MANAGEMENT 33

this is a two character substring). The second two-character substring is used to reverse

the charges when making an outgoing call and takes the form r, (again, the comma

forms part of the substring). This substring is also optional and only has meaning when

constructing an address for an outgoing connection request (see the section on the Bind()

DASCOM interface subroutine). The next substring is mandatory and represents the X25

address. This address is represented as a string of decimal digits. The following substring is

mandatory and consists of the single character +. The final substring is also mandatory,

and consists of an even number (between 2 and 32) of hexadecimal digits. Each pair of

hexadecimal digits represents one byte of user data. Here are four examples of octet string

values making up ubcX25 addresses:

• ubcX25=p,8310141002+58353030

• ubcX25=p, r, 123421920030045+58353030

• ubcX25=p,131106070013600+0301810023

• ubcX25=150527372000054+03018100

The format for a Sunlink-X25 address is the same as for UBC-X25 addresses with the

following exceptions. First, the substring indicating the network address type is, of course,

sunX25= rather than ubcX25=. Secondly, the last two substrings (+ and the user data)

are both optional and if one is present, must both be present. Here are four examples of

octet string values making up sunX25 addresses:

• sunX25=p,8310141002+58353030

• sunX25=p,r,123421920030045

• sunX25=p,131106070013600

• sunX25=150527372000054+03018100

2.4 The CONNINFO structure

All connection management operations require an extensive set of parameters and results

passed between the user and the various communication layers of DASCOM. Therefore a

CHAPTER 2. ASSOCIATION MANAGEMENT 34

general purpose structure, called the CONNINFO structure, has been created as a place

holder for this information. This structure is used to pass parameters to and return results

from connection management operations. Because it is used by several connection man

agement routines, and because all routines do not require the same set of parameters, the

fields of importance will vary according to which operation is being performed. The rel

evant fields are discussed in the sections describing the DASCOM interface subroutines.

Here are the fields which are of interest to the user of DASCOM.

typedef struct
{

I* the following for
BYTE *callingssur;
int callingssurlen;
BYTE *calledssur;
int calledssurlen;
BYTE *commonssur;
int commonssurlen;
BYTE •addtlref;
int addtlreflen;
short ureq;
BYTE reason;

I* connection info passed between layers *I

the session layer *I
I* pointer to session calling user ref *I

I* pointer to session called user ref *'
'* pointer to session common user ref *'
I• pointer to session additional reference*/

I* user requirements
I* disconnection/refusal reason

I* the following for the presentation layer
int pVersion; /• presentation version
PresentationAddress •callingAddr; I* addresses
PresentationAddress *calledAddr;
PresentationAddress *respondingAddr;
LIST *pcdl;
LIST *pcil i

I* pres context definition list
I* pres context identifier list

Default_context_name *den; I* pres default context name
int
BYTE
int
int
DID

int
int

•dcr;
presReqs;
*pReason;
PDVchoice;
•thisTSN;
thisPC;
dataPC;

/• default context result
/• presentation requirements
/• abort reason, provider reason •I
I* encoding choice for presentation data •/
/• transfer syntax name - only used in PCP*/
/• presentation context for this data unit*/
I* pres ctxt for data xfers, -1 for DCN *I

CHAPTER 2. ASSOCIATION MANAGEMENT 35

int useRose; I* NOROSE or USEROSE - use pdata or RO

I* the following for ACSE *I
int ACSEtype; I* pdu type at acse level
int ACSEversion; I* ACSE version
DID *acn; /• application context name *I
UNIV *calledTitle;
UNIV *calledQualifier;
int *calledAPinvid; I* applicati_on process Invocation id *'
int *calledAEinvid; I* application entity Invocation id *'
UNIV *CallingTitle;
UNIV *callingQualifier;
int *callingAPinvid;
int *callingAEinvid;
UNIV *respondingTitle;
UNIV *respondingQualifier;
int *respondingAPinvid;
int *respondingAEinvid;
UNIV ACSEuserinfo;
int *ACSEReason; I* release request reason *'
int ACSEResult; I* associate response result *' int REsource; I* associate source diagnostic source *'
int REdiagnostic; I* associate source diagnostic *'
} CONNINFO;

2.5 Waiting For An Event: The Await() call

An application process (AP) may receive incoming events by calling the Await() subroutine.

The Await() subroutine call will block the calling AP until some event is received. This

header for this subroutine is as follows:

PUBLIC OP Await(idp, invokeidp, argp)

int *idp; '* pointer to space for returned connection id *I
InvokeIDType *invokeidp; '* pointer to space for returned invokeid *'
void **argp; '* pointer to returned arguments *'

CHAPTER 2. ASSOCIATION MANAGEMENT

The following typedefs apply to this header:

typedef int
typedef int

OP;
InvokeIDType;

/• INTEGER *I
/*INTEGER•/

36

All three parameters are used to return results after the completion of the call. Prior

to the subroutine call, the fields idp and invokeidp should each point to memory large

enough to hold integers. The argp field should point to a memory location large enough to

hold a single pointer value. The meaning of these results depends on the return value of

Await(), though in general the space pointed to by idp will be filled with the association

identifier (or connection id) of the association which generated the event, and the space

pointed to by invokeidp will contain the invoke id (see X.219) of the associated event (if

there is one). The argp pointer will be filled with a pointer to an argument received as

part of the event. This could be a bind argum~nt, invoke argument, etc. A side effect of

this call is that on return, a new memory frame is pushed onto the AP's memory stack.

All DASCO!v1-allocated results are allocated on this new memory frame. See the Threads

documentation for a description of memory frames.

The return value of Await may be any one of the following:

• BINDOP,

• UNBINDOP,

• RO REJECTU,

• ABORTOP,

• PRESDATA,

• some other positive operation value.

A BINDOP return value indicates that some AP is attempting to establish an associ

ation. On return the idp location contains the identifier of the attempted association, the

invokeidp location is meaningless, and the argp pointer location points to a CONNINFO

CHAPTER 2. ASSOCIATION MANAGEMENT 37

structure containing received bind arguments. The CONNINFO structure exists in mem

ory allocated on the applications new top memory frame. The important fields of this

structure are discussed in the section on connection establishment.

An UNBINDOP return value indicates that an associated AP is releasing the associa

tion. On return the idp location holds the identifier of the released association, invokeidp

is meaningless, and the argp pointer location points to a CONNINFO structure (allocated

from the new memory frame) containing received release arguments.

A ROREJECTU return value indicates that a problem with a previously sent remote

operations Result() or Error() (discussed later) was detected by the associated AP. On

return the idp location holds the identifier of the association over which the problem was

detected, the invokeidp location contains the remote operation's invocation identifier (if one

is received) of the Result() or Error() that caused the problem, and the argp location points

to an OUTCOME structure (allocated from the new memory frame). The meaningful fields

of this structure for a RO REJECTU are problem Type and problem Val. Problem Type and

problem Val can be one of the following pairs:

problem Type GENPROB: problem Val can be any of: unrecognisedAPDU, rnistypedAPDU
or badlyStructuredAPDU.

problem Type RRESPROB: problem Val can be any of: unrecognisedlnvocation, resultRe
sponseUnexpected or mistypedResult.

problem Type RERRPROB: problem Val can be any of: unrecognisedlnvocation, error Re
sponse Unexpected, unrecognisedError, unexpectedError or mistypedParameter.

The full OUTCOME structure is as follows: (though for a ROREJECTU return value,

only fields problem Type and problem Val are meaningful)

type.def struct
{

UNIV
int
int

arg; I* result or error
problemType; I* for reject
problemVal; . I* for reject

parameter *I
U or P */
U or P */

CHAPTER 2. ASSOCIATION MANAGEMENT 38

int errorVal; I• for error
} OUTCOME;

An ABORTOP return value indicates that an association has been abnormally ter

minated. The idp location holds the identifier of the aborted association, the invokeidp

location is meaningless, and the argp pointer location either points to a CONNINFO struc

ture (allocated from the new me~ory frame) or has the value NULL if no abort information

is available.

A PRESDATA return value signals the arrival of presentation data (without the use of

remote operations). The idp location holds the identifier of the connection over which the

data arrived. The invokeidp location is meaningless, and the argp pointer location points

to received presentation data.

These five possible return values are all negative integers. Any positive value returned

from Await() constitutes an operation value and is the result of an associated AP invoking

an operation on the awaiting entity. In this case the return value is the operation value of

the requested operation. On return the idp location holds the association identifier of the

association over which the operation request is received. The invokeidp location holds the

invocation identifier of the requested operation, and the argp location holds the address

of the received invoke arguments. The encoding and decoding of these arguments are

explained below in the section concerning the use of the remote operations primitives.

2.6 Establishing An Association: The Bind(}, AcceptBind()
and RefuseBind() Calls, and the CONNINFO Structure.

There are two sides to a.ny application association: the initiator and the responder. The

initiator makes the connection attempt and the responder may either accept or refuse the

requested connection. The normal sequence of events is as follows:

1. An initiating AP makes a connection request of some other AP by using the Bind()
subroutine call. The initiator is blocked on the Bind() call. The desired responder
must be waiting for events using the Await() subroutine call.

CHAPTER 2. ASSOCIATION MANAGEMENT 39

2. The Await() subroutine will return to the responder indicating that a connection is
being requested.

3. The responder may accept the connection using the AcceptBind() subroutine call, or
it may refuse the connection using the RefuseBind() subroutine call. Neither of these
calls block the responder.

4. The initiator now returns from the call to Bind() and the return value indicates the
status of the requested association.

2.6.1 The Bind() Subroutine

The first step in the process of establishing an association is for the initiator to issue an

association request using the Bind() DASCOM interface subroutine. This routine sends an

association request to the proposed responder. The Bind() subroutine header is as follows:

/• returns id, CONNREFUSED or ABORTOP •/
PUBLIC int Bind(cinfo, result, server)
CONNINFO *cinfo;
CONNINFO **result; I• result structure returned here •I
PID server;

On subroutine call, cinfo must point to a CONNINFO structure containing the Bind

arguments. result must point to a memory location large enough to hold a pointer to

a CONNINFO structure. It is in this returned CONNINFO structure that the received

Bind results are returned (further information regarding the returned results of the Bind()

interface subroutine are discussed below). A side effect of the call to Bind() is that the top

memory frame of the calling AP is removed and passed to DASCOM (see section 1.3 for a

description of memory frames). The cinfo structure should be allocated from memory on

this top memory frame. The server parameter either contains a valid PID or a O ((PID)

0). If the initiator wishes an association of classes 2 or 3, this parameter contains the PID

of the process which is to "Await()" operation requests over this requested association. If

the requested association class is 1, then this parameter contains a 0.

CHAPTER 2. ASSOCIATION MANAGEMENT 40

The cinfo para.meter points to a CONNINFO structure which contains the bind argu

ment as well as all the parameters necessary for the communication layers to establish the

connection. The fields of the CONNINFO (pointed to by cinfo) which must be provided

by the initiating AP are as follows:

• For the session layer:

- Session Connection Identifier

- Calling SS-user reference and length

• BYTE *callingssur; /* 64 bytes maximum*/

• int callingssurlen; /* length in bytes * /

- Common Reference and length

• BYTE *commonssur; /* 64 bytes maximum*/

• int commonssurlen; /* length in bytes * /

- Additional Reference

.. • BYTE *addtlref; /* 4 bytes maximum*/

• int addtlreflen; /* length in bytes * /

Session User Requirements

- short ureq; /* must currently be set to DUPLEX * /

• For the Presentation Layer:

Calling Presentation Address

- PresentationAddress *callingAddr;

Called Presentation Address

- PresentationAddress *calledAddr;

Presentation Context Definition List

- LIST *pcdl;

Default Context Na.me

- DefaulLcontexLname *den;

- Transfer Syntax Name for Presentation Connect User Data

- OID *thisTSN;

- Presentation Context id for Presentation Connect User Data

- int thisPC; (-1 for simple encoding)

CHAPTER 2. ASSOCIATION MANAGEMENT

- Presentation Context id for user-data PDUs

- int dataPC; (-1 for simple encoding)

• For the Association Control Layer:

- Application Context Name

- OID *acn;

- Calling AP Title

- UNIV *callingTitle;

Calling AE Qualifier

- UNIV *callingQualifier;

- Calling AP Invocation-identifier

- int *callingAPinvid;

Calling AE Invocation-identifier

* int *callingAEinvid;

- Called AP Title

- UNIV *calledTitle;

Called AE Qualifier

- UNIV *calledQualifier;

- Called AP Invocation-identifier

- int *calledAPinvid;

- Called AE Invocation-identifier

- int *calledAEinvid;

User Information

- UNIV ACSEuserlnfo; /* pointer to a "list of external" * /

• For the Application Interface:

- Application Context Name

- int useRose;

41

Many of these fields require further explanation. The session calling, common and

additional references may have any length up to the indicated maximum. Therefore, if

these parameters are not to be included, the length of each should be set to zero, and

CHAPTER 2. ASSOCIATION MANAGEMENT 42

the pointers should be assigned NULL. The session user requirements must take the value

DUPLEX. Any other value would be an error as this is the only session functional unit

currently supported.

The calling and called presentation addresses are represented by the PresentationAd

dress structure. This structure has the same form, and is constructed in the same way as

was outlined above in section 2.2.

At least one valid network address must exist on the network address list for the

calledAddr field of the CONNINFO structure. All other fields (selectors) of the calledAddr

structure, and all fields of the callingAddr structure (including the network address list

field) are optional and may be assigned the value NULL (actually, the callingAddr field

itself may be assigned the value NULL). DASCOM will scan the network addresses in the

calledAddr list and attempt to connect to the first valid network address it encounters.

The pail field of the CONNINFO structure points to the presentation context definition

list. This is a list of T02 structures. This list is constructed using the list routines described

in section 4.2.1. The T02 structure is as follows:

typedef struct T02 { I• element of presentation context definition list •I
Presentation_context_identifier r11;
Abstract_syntax_name r12;
LIST •r13; I• pointer to list of Transfer_syntax_name structures •I
} T02;

The related typedefs are as follows:

typedef int

typedef OID
typedef DID

Presentation_context_identifier;
*Abstract_syntax_name;
•Transfer_syntax_name;

For a description of the meaning of this parameter see X.216 - 10.2.1.4 and X.226 -

6.2.2.7 and 6.2.6.1. The list of transfer syntax names _is constructed using the list routines

described in section 4.2.1. This section also provides a description of the 01D (object

CHAPTER 2. ASSOCIATION MANAGEMENT 43

identifier) structure. The presentation context definition list parameter relates to the

thisPC, this TSN and dataPC parameters (described later).

The den field of the CONNINFO structure points to a structure which represents the

default context name proposed for this connection. This structure has the following form:

typedef struct Default_context_name {
Abstract_syntax_name r11;
Transfer_syntax_name r12;
} Default_context_name;

The related typedefs are as follows :

typedef DID
typedef DID

*Abstract_syntax_name;
*Transfer_syntax_name;

For a description of the meaning of this parameter see X.216 - 10.2.1.6 and X.226 -

6.2.2.8 and 6.2.6.2. See section refasnloid for a description of the OID (object identifier)

structure.

The thisTSN field is a pointer to an OID structure describing the transfer syntax name

for the presentation connect data values. This field is optional (according to the rules

specified in X.226 8.2.4. 7) and the value should be set to NULL if the transfer syntax name

is not required (i.e. if simple encoding is desired or if only one transfer syntax name was

proposed for this presentation con text). This parameter relates to this PC described below

and pcdl described above.

The thisPC field is an integer -representing the presentation context of the connect

presentation data values. If simple encoding is desired this field should be set to -1. See

X.226 - 8.4.2.6 as well as the presentation context definition list parameter (pcdQ described

previously.

The dataPC field is an integer representing the presentation context to be used for

normal data transfer (after the connection is fully established). If simple encoding is

CHAPTER 2. ASSOCIATION MANAGEMENT 44

desired for presentation user data during the data transfer phase, then this parameter

would be set to -1.

The acn field is a pointer to an object identifier structure representing the application

context name. This is a mandatory field. Information on this parameter may be obtained

from X.217 - 9.1.1.2 and X.227 - 7.1.4.2.

The fields cal/ingTitle, callingQualifier, calledTitle and calledQualifier are all pointers

to ASN .1 encoded data in the form of an IDX list. These parameters convey the calling

and called AP titles and the calling and called AE qualifiers. The encoded ASN .1 data

may be of any type. Information concerning these parameters may be found in X.217

9.1.1.3, 9.1.1.4, 9.1.1.7 and 9.1.1.8, and also in X.227 7.1.4.3, 7.1.4.4, 7.1.4.7 and 7.1.4.8.

For information on the IDX structure see section 4.3. These are all optional fields and may

therefore be set to NULL.

The fields callingAPinvld, callingAEinvld, calledAPinvld and calledAEinvld are all

pointers to integers. These parameters convey the calling and called AP and AE invocation

identifiers. Their meaning is described in X.217 9.1.1.5, 9.1.1.6, 9.1.1.9 and 9.1.1.10, and

also in X.227. These are all optional fields and may therefore be set to NULL.

The A CSEuserlnfo field is used to convey the user's bind arguments to the proposed

responder. The form of this parameter is a pointer to a list of EXT (external) structures.

This list is constructed using the list routines described in the ASN.1 documentation. The

EXT structure is described in section 4.2.1 and contains the following fields:

typedef struct EXT {
DID •dref; I* direct reference (optional) *I
int •iref; I• indirect reference (optional) •I
OCTS *Value; I* data value descriptor (optional) •I
CODING ed; I* Encoding policy *I

} EXT;

A description of the OID (object identifier) and OCTS structures are found in sec

tion 4.2.1. The meaning of the first three fields may be found in ISO 8824, 32.1 to 32.14.

CHAPTER 2. ASSOCIATION MANAGEMENT

The CODING structure has the following format:

typedef struct
{

int choice;
union
{

ANYtype single;
OCTS octet;
BITS arbitrary;

} data;
} CODING;

#define single_asnl_tag OxaOOOOOOO
#define octet_aligned_tag Ox80000001
#define arbitrary_tag Ox80000002

I* single ASN.1 type *I
I• octet aligned •/
I* arbitrary •/

45

The three indicated defines are used by the choice field to indicate the type of encoding

chosen (single, octet aligned or arbitrary). The choice field must take one of these values.

The meaning of the three encoding choices is described ISO 8824, 32.1 to 32.14. If encoding

of a single ASN.l type is desired, then the single field should contain a pointer to an IDX

list. If an octet-aligned or bit-aligned value is to be encoded, then the union is used

as an OCTS or BITS structure respectively. The OCTS and BITS types are defined in

section 4.2.1.

The final field is u.seRose. This field indicates to the application interface whether
remote operations or presentation data are to be used for data transfer. The associated
defines are as follows:

I* definitions for use or non use of ROSE•/
#define USEROSE 0
#define NDROSE 1

If this field is set to USEROSE, then the remote operations primitives are available for

use. The PData() data transfer primitive is not available. If, instead, useRose is set to

CHAPTER 2. ASSOCIATION MANAGEMENT 46

NOROSE, only the PData() data transfer primitive is available for information transfer.

Once the CONNINFO structure and other parameters are filled and Bind() is called, the

caller is blocked pending the outcome of the connection (Bind()) request. The connection

request and its associated parameters are transferred to the proposed responder.

2.6.2 Receiving a Connection Request

An AP wishing to receive requests for associations does so by calling the Await() subroutine.

An incoming connection request will cause Await() to return the value BINDOP. The

memory location provided for the idp parameter will now contain the identifier for this

newly proposed connection and the pointer location provided for the argp parameter will

contain a pointer to a CONNINFO structure (see section 2.5). The identifier returned must

be retained as it is used in all subsequent references to this association.

The CONNINFO structure returned (actually, its pointer is returned) contains all the

arguments as provided by the initiator of the association. The only exception to this is

the dataPCfiled which is provided to the initiating DASCOM for future data transfer and

is not transferred on association creation. Optional fields which are not received as part

of the bind request will contain a NULL pointer. Mandatory fields, and optional fields

which are received in the bind request will follow the same format described above in the

section on the Bind() interface subroutine. One effect of Await() returning is that a new

memory frame (see section 1.3) is pushed onto the memory stack of the "Awaiting" AP.

The CONNINFO structure described here is allocated from memory on this new memory

frame.

2.6.3 Responding to a Connection Request

The AP on the receiving side of a BINDOP may either accept or refuse the requested con

nection. If accepted, the connection is open and may be used for information transfer (using

remote operations primitives). If refused, no connection is established. The DASCOM in

terface subroutines for accepting and refusing a proposed association are AcceptBind() and

CHAPTER 2. ASSOCIATION MANAGEMENT 47

RefuseBind() respectively.

Accepting a Proposed Connection

The AcceptBind() DASCOM interface subroutine requires two parameters. The header for

this routine is as follows:

int AcceptBind(cid, cinfo) I* returns O or ABORTOP *I
int cid;
CONNINFO *cinfo;

AcceptBind() returns either O or ABORTOP. If the proposed connection is aborted

between the time that the connection request is received and the time that it is accepted

or refused, then ABORTOP is returned. Otherwise a O is returned. The parameter cid

is an integer containing the connection identifier of the connection being accepted. cinfo

is a pointer to connection response arguments. This structure is created by the accepting

AP and should be contained in the topmost memory frame prior to the subroutine call.

One effect of the call to AcceptBind() is that the topmost memory frame (containing the

arguments) is popped from the calling AP's memory stack and passed to the DASCOM

process. Therefore, nothing other than AcceptBind() arguments should be allocated from

the top memory frame.

The fields of the CONNINFO structure which are provided by the responding AP are

as follows :

• For the session layer:

- session connection identifier

- Called SS-user reference and length

• BYTE *calledssur; /* 64 bytes maximum*/

• int calledssurlen; /* length in bytes * /

- Common Reference and length

• BYTE *commonssur; /* 64 bytes maximum*/

CHAPTER 2. ASSOCIATION MANAGEMENT

int commonssurlen; /* length in bytes * /

- Additional Reference and length

• BYTE *addtlref; /* 4 bytes maximum * /

• int addtlreflen; /* length in bytes * /

- Session User Requirements

- short ureq;

• For the Presentation Layer:

Responding Presentation Address

- PresentationAddress *respondingAddr;

- Presentation Context Definition Result List

- LIST *pcdl;

- Presentation Context id for Presentation Connect User Data

- int thisPC; (-1 for simple encoding)

Presentation Context id for user-data PDUs

- int dataPC; (-1 for simple encoding)

• For the Association Control Layer:

- Application Context Name

- OID *acn;

Responding AP Title

- UNIV *respondingTitle;

Responding AE Qualifier

- UNIV *respondingQualifier;

Responding AP Invocation-identifier

- int *respondingAPinvid;

- Responding A E Invocation-identifier

- int *re. dingAEinvid;

User Inform a . n

- UNIV ACSEuserinfo;

• For the Application Interface:

48

CHAPTER 2. ASSOCIATION MANAGEMENT 49

- Application Context Name

- int useRose;

Once again, these fields require further explanation. The called, common and additional

references for the session layer follow the same format as the calling, common and additional

references for the Bind() operation. The meaning of these fields may be found in X.215 -

12.1.2 and X.225 - 7.4.1, 8.3.4.3, 8.3.4.4 and 8.3.4.5. The session user requirements must

take the value DUPLEX. Any other value would be an error as this is the only session

functional unit currently supported (see X.225 8.3.4.13).

The responding presentation address follows the same .format as the called and calling

presentation addresses supplied to the Bind() interface routine. The meaning of this field

is found in X.216 - 10.2.1.3 and X.226 - 6.2.3.3 and 6.2.3.4.

The pcdlfield of the CONNINFO structure points to the presentation context definition

result list . This is a list of T03 structures. This list is constructed using the list routines

described in section 4.2.1. The T03 structure is as follows:

typedef struct T03 {
Res r11;
Transfer_syntax_name r12;
int •provider_reason;

} T03;

The related typedefs are as follows:

typedef int Res;
#define acceptance 0
#define user_rejection 1

typedef OID *Transfer_syntax_name;

I• result •/
/• Transfer_syntax_name •I

The r 11 field typedefs to ,, .. integer and may take the value acceptance or user_rejection.

This field indicates the acceptance or rejection of the corresponding proposed presentation

CHAPTER 2. ASSOCIATION MANAGEMENT 50

context in the presentation context definition list received in the Bind() request. If the value

is acceptance, then the r 12 field must point to a valid object identifier structure (described

in section 4.2.1) containing one of the proposed transfer syntaxes for that presentation

context. Otherwise, the r12 pointer should take the value NULL. The provider_reason

field is a pointer to an integer and must always take the value NULL. More information

regarding the presentation context definition result list is found in X.216 - 10.2.1.5 and

X.226 - 6.2.3.5.

The fields thisPC and dataPC take the same format and are used for the same purpose

as described above for the Bind() interface routine. The only difference is that the values

supplied are used for data transfer in the direction of responder to initiator.

The acn (application context name) field has the same format as that of the Bind()

routine described above. More information regarding this parameter may be found in X.217

- 9.1.1.2 and X.227 - 7.1.5.2.

The respondingTitle and respondingQu.alifier fields have the same format as the call

ingTitle, callingQu.alifier, called Title and called Qualifier fields required for the Bind() rou

tine. These fields convey the responding AP title and responding AE qualifier. More

information regarding these parameters may be found in X.217 - 9.1.1.11 and 9.1.1.12 as

well as in X.227 - 7.1.5.3 and 7.1.5.4.

The respondingAP Invld and respondingAEinvld fields have the same format as the

callingAPinvld, callingAEinvld, calledAPinvld and calledAEinvld fields required for the

Bind() routine. These fields convey the responding AP and AE invocation identifiers. More

information regarding these parameters may be found in X.217 - 9.1.1.13 and 9.1.1.14 as

well as in X.227 - 7 .1.5.5 and 7 .1.5.6.

The field ACSEu.serlnfo is used to convey the users bind results to the initiator. The

form of this parameter is the same as that of the same field when used for the Bind()

interface subroutine. Information regarding this parameter is found in X.217 - 9.1.1.15 and

X.227 - 7.1.5.10.

CHAPTER 2. ASSOCIATION MANAGEMENT 51

The final field is useRose. This field indicates to the application interface whether
remote operations or presentation data are to be used for data transfer. The associated
defines are as follows:

/• definitions for use or non use of ROSE•/
#define USEROSE 0
#define NOROSE 1

If this field is set to USEROSE, then the remote operations primitives are available for

use. The PData() data transfer primitive is not available. If, instead, useRose is set to

NOROSE, only the PData() data transfer primitive is available for information transfer.

Refusing a Proposed Connection

An AP wishing to refuse an incoming Bind() request does so using the RefuseBind() DAS

COM interface routine. This routine requires two parameters. The header of this routine

is as follows:

int RefuseBind(cid, cinfo) /• returns O or ABORTOP •/
int cid;
CONNINFO *cinfo

RefuseBind() returns either O or ABORTOP. If the proposed connection is aborted

between the time that the connection request is received and the time that it is refused,

then ABORTOP is returned. Otherwise a O is returned. The parameter cid is an integer

containing the connection identifier of the connection being refused. cinfo is a pointer to

connection response arguments. This structure is created by the refusing AP and should be

contained in the topmost memory frame prior to the subroutine call. One effect of the call

to Accept Bind() is that the topmost memory frame (containing the arguments) is popped

from the calling AP's memory stack and passed to the DASCOM process. Therefore,

nothing other than RefuseBind() arguments should be allocated from the top memory

frame.

CHAPTER 2. ASSOCIATION MANAGEMENT 52

The fields of the CONNINFO structure which must be provided by the refusing AP are

as follows:

• From the session layer:

- session connection identifier

- Called SS-user reference

• BYTE *calledssur; /* 64 bytes maximum * /

• int calledssurlen;/* length in bytes * /

- Common Reference

• BYTE *commonssur; /* 64 bytes maximum * /

• int commonssurlen;/* length in bytes * /

- Additional Reference

• BYTE *addtlref; /* 4 bytes maximum * /

• int addtlreflen;/* length in bytes * /

Session User Requirements

- short ureq;

• For the Presentation Layer:

Responding Presentation Address

- PresentationAddress *respondingAddr;

Presentation Context Definition Result List

- LIST *pcdl;

- Default Context Result

- int *dcr;

- Presentation Context id for Presentation Connect User Data

- int thisPC;

• For the Association Control Layer:

- Application Context Name

- OID *acn;

- ASCE associate result

- int ACSEResult;

CHAPTER 2. ASSOCIATION MANAGEMENT 53

- ACSE associate source diagnostic

- int REdiagnostic;

- Responding AP Title

- UNIV *respondingTitle;

- Responding AE Qualifier

- UNIV *respondingQualifier;

- Responding AP Invocation-identifier

- int *respondingAPinvid;

- Responding AE Invocation-identifier

- int *respondingAEinvid;

User Information

- UNIV ACSEuserinfo;

All the session fields (calledssur, calledssurlen, commonssur, commonssurlen, addtlref,

addtlreflen and ureq) follow the same format and have the same meaning as they do for

the AcceptBind() interface routine. Information regarding these fields is found in X.215 -

12.1.2 and in X.225 - 8.3.5.3, 8.3.5.4, 8.3.5.5 and 8.3.5.7.

The presentation fields respondingAddr, pcdl and thisPC all follow the same format

and have the same meaning as they do for the AcceptBind() interface routine. Information

regarding the respondingAddr and pcdl parameters is found in X.216 - 10.2.1.3 and 10.2.1.5,

as well as in X.226 - 6.2.4.2, 6.2.4.3 and 6.2.4.4. The dcr field is the default context result

supplied in response to the default context name proposed in the Bind() request. Its form

is a pointer to an integer. This is an optional field and if not desired must be set to NULL.

If it is desired, dcr must consist of a pointer to an integer which contains either acceptance

or user_rejection. More information regarding this parameter may be found in X.216 -

10.2.1. 7 and X.226 - 6.2.4.5 and 6.2.6.2.

The ACSE fields acn, respondingTitle, respondingQualifier, respondingQualifier, re

spondingAEinvid and ACSEuserinfo all take the same format and carry the same meaning

as their corresponding fields required for the AcceptBind() interface primitive. More infor

mation for these fields is found in the same references given for the AcceptBind() routine.

CHAPTER 2. ASSOCIATION MANAGEMENT 54

The ACSE fields ACSEResult and REdiagnostic indicate the type of, and reason for

connection refusal. A CSEResult carries the ACSE associate result, while REdiagnostic

holds the ACSE associate source diagnostic. ACSEResult is an integer, and may take the

value rejected..permanent or rejected_transient. If some other value is supplied ACSEResult

defaults to rejected.:.permanent. More information regarding ACSEResult is found in X.217

- 9.1.1.16 and X.227 - 7.1.5.7. REdiagnostic indicates the reason for connection refusal and

is also an integer. It takes one of the following values:

• no_reason..gi ven

• application_con textJ1ameJ10Lsu pported

• calling__AP _ti tle_not_recognized

• calling__AP Jn vocationJden tifier _noLrecognized

• calling__AE_qualifier _not_recognized

• calling__AEJnvocationJd_not_recognized

• called__AP _title_not_recognized

• called_AP Jn vocationJden tifier _not_recognized

• called__AE_q ualifier _not_recognized

• called__AEJn vocationJd_not_recognized

If some other value is provided, REdiagnostic defaults to the value null. More informa,.

tion is found in X.217 - 9.1.1.18 and X.227 - 7.1.5.8.2 and 9.1.

2.6.4 Receiving Connection Request Results (or: Bind() Return Values)

Once the responder has either accepted or refused the Bind() request (or some problem

has occurred), the initiator's Bind() subroutine call will return. One side effect of Bind()

returning is that a new memory frame will be pushed onto the calling AP's memory stack.

The return value from Bind() is one of the following:

CHAPTER 2. ASSOCIATION MANAGEMENT 55

• CONNREFUSED,

• ABORTOP or

• some positive value which is the connection identifier of a successfully established
connection.

CONNREFUSED is returned if the destination AP will not accept the association,

and ABORTOP is returned if the proposed destination could not be reached or if there is

some problem at one of the protocol layers. These are both negative values. Any positive

return value is the connection id of the successfully created connection. A return value

of a positive connection identifier or CONNREFUSED is accompanied by a CONNINFO

structure. The address of this structure is placed (by the Bind() subroutine) in the pointer

location provided by the caller in the result parameter. The memory for this structure is

taken from the new memory frame pushed by Bind() before it returns.

The contents of this returned CONNINFO structure will vary according to whether

the connection was accepted or refused. If accepted, the fields will correspond in format

and content to those described previously in the section on AcceptBind(). Likewise, if the

connection is refused, the fields of the returned CONNINFO structure will correspond to

those described in the section on RefuseBind(). There are, however, a couple exceptions.

The first exception is that the returned CONNINFO will not have a meaningful value

in the dataPC field. The dataPC parameter is supplied for the AcceptBind() call as a

local indication of which presentation context to use for future data transfers (of remote

operations PDUs). It is not passed to the initiator in returned connection information.

The second exception is that there are a few fields returned to the initiator when Bind()

returns which were not supplied by the rejecting responder. These fields are as follows:

BYTE reason;
int *pReason;
int REsource;

CHAPTER 2. ASSOCIATION MANAGEMENT 56

The first of these fields is reason. This field corresponds to the session layer reason

code for session connection refusal and is only meaningful if the Bind() result is CONNRE

FUSED. More information regarding the meaning of this parameter is found in X.225 -

8.3.5.9.

The second of these fields is pReason. This field corresponds to the presentation layer

provider refusal reason. It is an optional field and only points to a valid memory location

if the connection was refused by the presentation protocol, otherwise it contains the value

NULL. If the connection was refused by the presentation layer, this field gives the reason

that the connection was refused and points to a memory location containing one of the

following:

• reason_not...specified

• temporary_congestion

• localJimit...exceeded

• called_presen tation_address_unknown

• protocoLversion_not...supported

• default_context_not...supported

• user _data_not_readable

• no_PSAP _available

More information regarding the meaning of this parameter and its possible values is

found in X.226 - 6.2.4.9.

The third field is REsource. This field corresponds to the association control layer's

result source parameter. If the connection is refused by the ACSE protocol layer, this field

takes the value ServiceProvider. If the connection is refused or accepted by the application,

then the value is Service User. More information regarding the meaning of this parameter

is found in X.226 - 7 .1.5.8.

CHAPTER 2. ASSOCIATION MANAGEMENT 57

2. 7 Releasing An Association: The Unbind(} and Accept Un
bind() Calls

An established association may only be released by its initiator. To do so, the initiator

calls the DASCOM interface subroutine Unbind(). The Await() subroutine will deliver the

unbind request to the responder by unblocking and returning the value UNBINDOP. The

responder must then call the AcceptUnbind() interface subroutine to complete connection

release. The Unbind() and Accept Unbind() interface routine headers are as follows:

int Unbind(cid, cinfo, result)
int cid;
CONNINFO •cinfo;
CONNINFO **result; I• result CONNINFO structure returned here *I

int AcceptUnbind(cid, cinfo)
int cid;
CONNINFO •cinfo;

Both subroutines return O on success or ABORTOP if the association was abnormally

released prior to the call.

For Unbind(), the cid parameter is the connection identifier of the connection to be

released. cinfo is a pointer to association release parameters and information in the form

of a CONNINFO structure. The result parameter must point to a memory location large

enough to hold a pointer to a CONNINFO structure. On return this pointer location will

contain the address of the returned CONNINFO structure. Two fields of the CONNINFO

structure are of importance when releasing an association. These fields are as follows:

int •ACSEReason;
UNIV ACSEuserinfo;

The ACSEReason field is optional, and reflects the ACSE connection release reason.

If desired, this field points to a memory location containing one of the following integer

values:

CHAPTER 2. ASSOCIATION MANAGEMENT 58

• normal

• urgent

• user _defined

If this field is not desired, ACSEReason takes the value NULL.

The A CSEuserlnfo is also optional, and reflects user information to be conveyed with

the release request. The format of this field is exactly the same as it is for the Bind()

request. Further information regarding both the ACSEReason and ACSEuserlnjo fields

may be found in X.227 - 7.2.4.

This CONNINFO structure provided to the Unbind() subroutine must be on the top

memory frame of the calling AP as this frame is popped and passed down to the commu

nication process. On return, a new frame, containing the returned CONNINFO structure

is pushed on to the calling AP 's memory stack.

The Unbind() request will cause the connected responder to return from the Await()

call with an UNBINDOP return value (see the section on the Await() subroutine call).

The returned connection identifier contains the id of the connection being released. The

returned CONNINFO structure contains the information provided by the releasing AP in

the format described for Unbind(). The responder must now call the DASCOM inter

face subroutine Accept Unbind() providing the identifier of the connection being released,

as well as a CONNINFO structure. The important fields of the cinfo parameter (CON

NINFO structure) are the same fields which are important (and are described above) for

the Unbind() subroutine call. These fields are used to convey the AP's release response

reason and user information. More information may be found regarding these fields for

Accept Unbind() in X.227 - 7.2.5.

The call to AcceptUnbind() unblocks the initiator's Unbind() call returning the CON

NINFO structure provided by the responder. This structure is provided using the result

parameter. The contents and format of the returned CONNINFO structure are the same

as are provided to the AcceptUnbind() subroutine.

CHAPTER 2. ASSOCIATION MANAGEMENT 59

2.8 Owning and Transferring Associations

An incoming connection request is always directed at the main server thread of the UNIX

process. If this connection is correctly established (the server accepts the association)

then that server becomes the owner of the association. The owner of an association is the

server thread which receives all incoming events related to that association. These events

include incoming operation requests and unbind requests. It is possible for the owner of

a connection to designate some other thread as the connection's new owner. This may be

done before or after the connection has been completely established. Once the connection

has been transferred to some other owner, that new owner receives all subsequent events

associated with that connection. The only two ways that the main server could regain

control of the association are if the worker explicitly transfers control back to the main

server, or if the worker thread is killed while the association is still active. A typical

scenario could be as follows:

• Await() returns to main server indicating new connection request.

• Main server creates a worker to deal with new association.

• Main server transfers the association to the worker. The association is now completely
out of the main server's control.

• The first task of the worker is to accept the association by issuing an AcceptBind().

• The worker now performs a loop Await()-ing and performing requests.

A slight deviation from the above scenario would be for the main server to accept the

connection before transferring it to a worker. In this way, the connection could be passed

to an existing worker without the worker having to accept the connection before it can

start Await()-ing events. This is useful if a worker is to handle more than one connection.

The DASCOM interface subroutine which transfers an association from one server to

another is TransferAssociation(). The header for this routine is as follows:

/• returns O on success, -1 on failure•/

CHAPTER 2. ASSOCIATION MANAGEMENT 60

int TransferAssqciation(cid, pid)
int cid; I• association id •/
PIO pid; /• pid to transfer to •I

The first parameter is the identifier of the association (or potential association) being

transferred. The second parameter is the identifier of the thread which is to be the new

owner of the association. If the association is successfully transferred a O is returned,

otherwise a -1 is returned. Association transfer may be done at any time during the life of

an association (or by the responder even before the association has been accepted).

2.9 Examples

Please refer to section 3.3 for examples regarding association management.

Chapter 3

Data Transfer

Once the association has been established, the applications may transfer operation requests

and responses using the remote operations protocol, or using the presentation layer directly.

Remote operation association classes one, two and three are supported. Therefore, at

the initiators option, operation requests may flow in either or both directions over the

association.

3.1 Presentation Layer Interface

The presentation data transfer routine consists of the following:

PUBLIC int PData(cid, idx)
int cid;

IDX *idx;

This routine takes the encoded data (represented as an IDX list) and transfers it over

the association identified by cid. A zero (0) is returned on success, or a -1 is returned if the

association was aborted. One result of the call to PData() is that the top memory frame

of the calling thread is popped and transferred to the communication server. Therefore it

is wise to place the a.rguments to PData() in the top memory frame before the call. The

61

CHAPTER 3. DATA TRANSFER 62

PData() interface may only be used over a connection which was appropriately configured

at connection request and accept time. See sections 2.6.1 and 2.6.3 for details regarding

the configuration of connections for the use of the PData() service.

3.2 Remote Operations Interface

The Remote Operations interface may only be used over a connection which was appro

priately configured at connection request and accept time. See sections 2.6.1 and 2.6.3 for

details regarding the configuration of connections for the use of the Remote Operations

service.

The remote operation interface routines consist of the following:

• Invoke()

• Result()

• Error()

• RejectU()

The Invoke() interface subroutine is used to request an operation of an associated

application. The association class of the connection determines whether the initiator or re

sponder (or both) may issue an Invoke(). This class is determined by the Bind() parameters

discussed in section 2.6.1.

Invoke() parameters consist of the connection identifier, the invocation identifier, the

operation being requested and operation arguments. Information provided as the argu

ments to the operation request may be of any type but should be encoded in some external

representation. The ASN .1 module provides the services necessary to perform this encod

ing. Once Invoke() is called, the client making the call is blocked pending the server's

response. The Invoke() header is as follows:

CHAPTER 3. DATA TRANSFER

int Invoke(cid, invokeid, operation, arg, outcomep)

int cid; I• association id
InvokeIDType invokeid; I* invocation id
OP operation; I* operation requested
IDX •arg; I• must be an IDX list
OUTCOME ••outcomep; I• ptr to OUTCOME structure

The related typedefs are as follows:

typedef int InvokeIDType;

typedef int OP;

I• structure returned in outcome parameter of Invoke•/
typedef struct

{

UNIV arg; I• result or error parameter •I
int problemType; I* for reject u or p *I
int problemVal; I* for reject U or P *I
int errorVal; '* for error •I
} OUTCOME;

63

*I
•I
*I
*I
*I

The cid parameter is an integer and represents the association over which the invoke is

to be sent.

The invokeid paran. : is an integer which is passed transparently to the server. If

there is more than one Invoke() outstanding over this association (i.e. more than one client

process is using this association) then it is important that the invoke ids are unique over

that association. These identifiers are used by DASCOM when results are returned to

find the client process which initiated the invoke. If two or more outstanding invokes over

the same association have the same invoke id the results will be unpredictable. This also

assumes that the server uses the correct invoke id in its responses.

CHAPTER 3. DATA TRANSFER 64

The operation para.meter is used to identify the operation to be performed. The value of

this parameter is some positive integer recognizable to both client and server as representing

some operation.

The arg parameter is a pointer to an IDX list. This parameter forms the arguments to

the requested operation. For more information on the IDX list structure see section 4.3.

The outcomep parameter must point to a location large enough to hold a pointer to an

OUTCOME structure. On return from Invoke(), this location points to an OUTCOME

structure allocated from the top memory frame for this process. This structure has the

fields listed above. The meaning of the fields depends on the return value of Invoke().

There are five possible return values from Invoke(). These are:

• RORESULT

• ROERROR

• ROREJECTU

• ROREJECTP

• ABORTOP

A RORESULT return value indicates the successful performance of the operation with

the server responding to the operation request using the Result() interface routine. In this

case, the only field of importance in the returned OUTCOME structure is arg. This field

will point to a buffer (assuming one is returned) containing the result data as passed back

by the server. If no result data is returned then this field will have the value NULL.

A ROERROR return value indicates the occurrence of some problem during the per

formance of the operation (for example, a divide by zero error). This is generated by the

server responding using the Error() interface routine. In this case, the important fields of

the OUTCOME structure are arg and error Val. The arg field will point to data (if any)

which accompanies the returned error. The error Val field is an integer provided by the

server to indicate the nature of the error.

CHAPTER 3. DATA TRANSFER 65

A ROREJECTU return value indicates the occurrence of some problem with the request

itself (rather than an error discovered in the performance of the request). This value is

returned when the server responds using the RejectU() interface routine. ROREJECTP

is returned if the protocol service detects a problem with the request. In either case

(ROREJECTU or ROREJECTP) the fields of importance in the OUTCOME structure

are problem Type and problem Val. These are both integers. The possible values for these

fields are as follows:

problem Type GENPROB (ROREJECTP only): problem Val can be any of: unrecog
nisedAPDU, mistypedAPDU or badlyStructuredAPDU.

problem Type INVPROB (ROREJECTU only): problem Val can be any of: duplicatelnvo
cation, unrecognisedOperation, mistypedArgument, resourceLimitation, initiatorRe
leasing, unrecognisedLinkedID, linked Response Unexpected or unexpected Child Op
eration.

More information regarding the meaning of these problem Type and problem Val fields is

found in X.229 - 7.4.4.2 and 7.5.4.2.

Finally, ABORTOP is returned if the association over which the Invoke() was to be

sent is lost.

The Invoke() operation will cause the intended server to return from Await() with a

return value equal to the operation being requested. The server is then free to respond to

the operation (immediately or at some future time) using the Result(), Error() or RejectU()

interface subroutines.

The Result() interface subroutine header is as follows:

int Result(cid, invokeid, operation, arg) I* returns O or ABORTOP *I
int cid;
InvokeIDType invokeid;
OP operation;
IDX /* must be an encoded IDX list *I

CHAPTER 3. DATA TRANSFER 66

The cid field is used to indicate the association over which the result is to be sent.

The invokeid field must match that of the incoming request to which this responds. The

operation field indicates the operation performed for the client. Finally, the arg field points

to an IDX list containing any result data to be passed back to the client. This field may

contain the value NULL if no data is to be passed back with the result. The Result()

interface subroutine returns O on success or ABORTOP if the association has been lost.

The Error() interface subroutine header is as follows:

int Error(cid, invokeid, error, arg) I* returns O or ABORTOP •I
int cid;
InvokeIDType invokeid;
ERR error;
IDX /• must be an encoded IDX list *I

The related typedef follows:

typedef int ERR;

The cid field is used to indicate the association over which the error indication is to be

sent. The invokeid field must match that of the incoming request to which this responds.

The error field is an integer which indicates to the client the reason for the error result.

Finally, arg points to an !DX list containing any error data to be passed back to the client.

This field may contain the value NULL if no data is to be passed back with the error

indication. The Result() interface subroutine returns O on success or ABORTOP if the

association has been lost.

The RejectU() interface subroutine header is as follows:

int RejectU(cid, invokeid, problemtype, problem) I* returns O or ABORTOP •/
int cid;
InvokeIDType invokeid;

CHAPTER 3. DATA TRANSFER

int
int

problemtype;
problem;

67

As in Result() and Error(), the cid and invokeid parameters reflect the connection

identifier of the association on which to send the reject and the invocation identifier of the

Invoke() being rejected. Problemtype and problem are both integers indicating the cause

of the reject. RejectU() may be used to reject a received operation request (Invoke()) or

to reject a received Result or Error response to a previously sent request. If the reject is

used in response to an operation request, the permissible values for the problemtype and

problem parameters are as follows:

problemtype INVPROB: problem can be any of: duplicatelnvocation, unrecognisedOpera-
' tion, mistypedArgument, resourceLimitation, initiatorReleasing, unrecognisedLinke-

dID, linkedResponseUnexpected or unexpectedChildOperation.

If RejectU() is used to reject a returned result or error, the permissible values for the

problemtype and problem parameters are as follows:

problemtype RRESPROB: problem can be any of: unrecognisedlnvocation, resultRespon
se Unexpected or mistypedResult .

problemtype RERRPROB: problem can be any of: unrecognisedlnvocation, errorRespon
seUnexpected, unrecognisedError, unexpectedError or mistypedParameter.

Because each Invoke() blocks the calling thread, it may appear that asynchronous

invokes are not possible. However, because multiple threads can concurrently issue invokes

over the same association, class 2 operations are supported. Linked operations are handled

in a similar way. The association initiator designates a thread to act as a server for the

initiator side of the association. In this way, even though the initiator is blocked, the

designated s~rver is free to respond to a linked operation. The general design philosophy is

that the application programmer does not have to deal directly with concurrency. Instead,

concurrency is obtained by the creation of multiple threads resulting in a more simple

interface.

CHAPTER 3. DATA TRANSFER 68

3.3 Connection Management and Remote Operations Ex
amples

Several examples are provided here to assist the application developer in the task of in

terfacing to the connection management and remote operations primitives provided by

DASCOM. The convention used is that any text between pairs of three consecutive peri

ods represents code which has been omitted for brevity.

This first example shows a client establishing a connection with a server, requesting

one operation, then releasing the association. The client also creates a process to handle

requests in the direction of the server to the client.

#define PSELECTOR "p-selector goes here"
#define NADDRESS "Internet=koolaid+556677"
#define ISO 1
#define STANDARD 0

#define BER 8825
#define ASN1 8824
#define CONNECTDATA "hey there - want to connect?"

I* this process designed to handle server requests destined for the client •/
PROCESS smallserver()
{

int operation;
int aid, invokeld, arg;

do
{

/• wait for operation request from server •I
operation= Await(&aid, &invokeld, targ);

switch(operation)
{

case USEROP1:
... process the request and make the results ...

Result(aid, invokeld, USEROP1, 0);

CHAPTER 3. DATA TRANSFER 69

}

}

}

while(1) ;

break;

I* this is the main client process which will bind to the main server *I
PROCESS client()
{

CONNINFO *cinfo, *rcinfo;
PresentationAddress destPaddr;
OCTS *octs, *dataocts;
LIST *list;
T02 t02;
OID BERoid, ASNloid;
IDX *dataidx;
PID sspid;
int aid;
OUTCOME *Outcomep;

I* create new frame for bind arguments *I
NewFrame();

cinfo = (CONNINFO *) TempMalloc(sizeof(CONNINFO));
bzero(&cinfo, sizeof(CONNINFO));

'***'
I* first, set up the called and calling addresses •/

destPaddr.pSelector =(OCTS *)Malloc(sizeof(OCTS) + strlen(PSELECTOR) + 1);
strcpy(destPaddr.pSelector->data, PSELECTOR);
destPaddr.pSelector->len = strlen(PSELECTOR);
destPaddr.pSelector->next = NULL;

CHAPTER 3. DATA TRANSFER 70

.. . do same for destPaddr.sSelector and destPaddr.tSelector ...

I* build the network address •/
octs = (OCTS *) Malloc(sizeof(OCTS) + strlen(NADDRESS) + 1);
octs->next = NULL;
octs->len = strlen(NADDRESS) + 1;
bcopy(NADDRESS, octs->data, strlen(NADDRESS) + 1);

I* construct the net. address list - this address being the only element *I
list= NULL;
ListAdd(&list, octs);
destPaddr.nAddress = list;

cinfo->calledAddr =.&destPaddr;

... do similar setup for the calling address . . .
cinfo->callingAddr = &srcPaddr;

!***'
/• now make the presentation context definition list *I

/•setup object identifiers for ASN.1 and BER•/
ASN1oid.len = 3;
ASN1oid.oid[O] = ISO;
ASN1oid.oid[1] = STANDARD;
ASN1oid.oid[2] = ASN1;

... do same for BERoid

t02.r11 = 1;
t02.r12 = tASN1oid;

list= NULL;
ListAdd(&list, &BERoid);
t02.r13 = list;

list= NULL;

/• presentation context identifier •/
/• abstract syntax name •/

/• list of transfer syntax names

CHAPTER 3. DATA TRANSFER

ListAdd(&list, &t02);
cinfo->pcdl = list;

71

I* list of presentation contexts

'***'
I* now make some connect data *I
datalen = strlen(CONNECTDATA);
dataocts = (OCTS *) Malloc(sizeof(OCTS) + datalen);
dataocts->next = NULL;
dataocts->len = datalen;
bcopy(DATAOCTS, dataocts->data, datalen);

I* encode this octet string *I
dataidx = (IDX *) Encode_octs(0, 0, 0, dataocts);

I* load bind data into CONNINFO structure (makeACSEuserinfo shovn below) *I
cinfo->ACSEuserinfo = (UNIV) makeACSEuserinfo(dataidx, &BERoid, NULL);

'***'
I* now make default context name •/
dcn.r11 = &ASN1oid;
dcn.r12 = tBERoid;
cinfo->dcn = &den;

'***'
I* indicate that we would like to use remote operations over this conn ... •/
cinfo->useRose = USEROSE;

'***'
/• and fill in the rest - i.e .. application context name, session *I
/• requirements, called Title and Qualifier, this presentation context, *I
/• session references, etc ... •/
cinfo->calledTitle = NULL;
cinfo->calledQualifier = NULL;
cinfo->calledAPinvid = NULL;
cinfo->calledAEinvid = NULL;
. . . and do the rest ...

CHAPTER 3. DATA TRANSFER 72

l***I
/• now, create a process to handle requests directed at the initiator, •/
/• called "smallserver" •I
sspid = Create(smallserver, 4000, "smallserver", 0, NORM);

l***I
/• go ahead and Bind(). The address of the returned CONNINFO is returned •/
/• in rcinfo. The association id (or error code) is returned in aid. •/
/• Remember that Bind() will send out topmost memory frame to the comma •I
I• process. •I
aid= Bind(cinfo, trcinfo, sspid);

/• when Bind() returns, a new topmost memory frame will exist containing •I
/• the Bind() results. •I

'***!
/• now that the connection has been established (we are assuming that the•/
/• aid returned is a positive integer) we are free to request operations •I
I* over this connection. •I

/• first, build an octet string to send as an argument
datalen = strlen(OPERATIONARG);
dataocts = (OCTS •) Malloc(siz~of(OCTS) + datalen);
dataocts->next = NULL;
dataocts->len = datalen;
bcopy(OPERATIONARG, dataocts->data, datalen);

I• encode this octet string•/
dataidx = (IDX •) Encode_octs(0, 0, 0, dataocts);

/• now we have an IDX list to use as the operations arguments. For this •I
/• operation we will assume an operation value of USEROP1 and an •/
/• invocation identifier of 3. Remember that the Invoke() call will take•/
I* the top memory frame and pass it to the {\em comms} process. It will,•/
I• on return, also provide a new top memory frame containing the results.•/
I* therefore there is no net gain or loss of memory frames. •/

CHAPTER 3. DATA TRANSFER 73

res= Invoke(aid, 3, USEROP1, dataidx, toutcomep);

/* when Invoke() returns {\em res} will hopefully equal RORESULT and the•/
I* result arguments (if any) will be in outcomep->arg.

l***I
/• if we are done with the connection, we can now use Unbind() to release•/
/• it. •/

/• first, make a CONNINFO structure to pass Unbind parameters and data •/
cinfo = (CONNINFO •) TempMalloc(sizeof(CONNINFO));

bzero(cinfo, sizeof(CONNINFO));

cinfo->ureq = DUPLEX;
cinfo->ACSEuserinfo = NULL;

cinfo->thisPC = 1;
cinfo->thisTSN = NULL;
cinfo->ACSEReason = NULL;

etc.

I• now go ahead and call Unbind(). Unbind() will pass the top memory

I• to the {\em comms} process and supply a new one (with returned

I• values on return. So, as with Invoke() there is no net gain or loss

I• of memory frames for the calling process.

Unbind(aid1, cinfo, trcinfo);

The proposed responder (server) will be notified of the connection request if it is blocked

on the Await() subroutine. A typical server would be as follows:

•I
•I
•I
•I

CHAPTER 3. DATA TRANSFER 74

/• this is the server process which will respond to the clients requests •/
PROCESS server()
{

int aid;
InvokeIDType invokeid;
UNIV arg; I• universal or any other type•/
CONNINFO •rcvdCinfo, •cinfo;
PIO workerpid;

RegisterServer();

while(1)
{

operation= Await(&aid, &invokeid, &arg):
/• remember that Await(), on return, will push a new memory frame•/

switch(operation)
{

case BINDOP:
{

!•***!
I• for this example we will create a worker to handle the•/
/• new association. Remember that when Await() returned, •/
/• there was a new memory frame pushed onto our memory •/
/• stack containing (in this case) the Bind() arguments. •/
/• TransferAssociation() will give our top memory frame to•/
/• the association recipient. •I

rcvdCinfo = (CONNINFO *) arg;

... get whatever info is desired from rcvdCinfo ...

NewFrame(); /• to pass to comms via AcceptBind() •/
cinfo = (CONNINFO •) TempMalloc(sizeof(CONNINFO));

fill cinfo with your Bind() result information in
a way similar to that done for Bind() above. Be
sure to indicate the use of remote operations to

CHAPTER 3. DATA TRANSFER 75

}

... corre~pond with the initiator.

I• now - create a worker to deal with the association •/
workerpid = Create(worker, 8000, 11 worker 11

, rcinfo, NORM);

/• accept the connection
AcceptBind(aid, &cinfo);

I• and give it to the newly created worker
if(TransferAssociation(aid, workerpid))

printf(11 server: can 1 t transfer association\n11
);

}

break;

default:

}

printf(11 got unknown operation= ¼d\n 11
, operation);

FreeTempMem(); I• to get rid of pushed memory frame •I
break;

Note in the above example that this main server always creates workers to handle the

new associations. Unless one of these workers is killed or dies with an active connection

still in existence, the main server will never get an event other than a Bind indication. It

will be the worker that will receive all subsequent events for the new association. Here is

an example of what this worker might look like:

PROCESS worker(conninfo)
CONNINFO •conninfo;
{

int aid;
OP operation;
InvokeIDType invokeid;
OUTCOME •outcomep;
UNIV arg;

\

CHAPTER 3. DATA TRANSFER

aid= conninfo->usercid;

take whatever other information might be required
from the received Bind() arguments

76

/* the transfer of the association gives this process one memory frame, *I
/* and it will get another each time Await() returns. *I
while(1)

{

operation= Await(&aid, &invokeld, &arg);

switch(operation)
{

case ·UNBINDOP:
{

CONNINFO *cinfo;

cinfo = (CONNINFO •) TempMalloc(sizeof(CONNINFO));

... fill cinfo with unbind results ...

/• AcceptUnbind() passes top memory frame to comma-process •I
AcceptUnbind(aid, tcinfo);

... if this is our only connection we may want to Pexit() ...
}

break;

case USEROP1: /• some positive value *I

... perform requested operation

I* now send result which passes top memory frame to comms •I
Result(aid, invokeld, USEROP1, 0);
break;

case USEROP2:
I* here, as part of service, do Invoke() back to client - •/

CHAPTER 3. DATA TRANSFER 77

}

}

/* in this example, samllserver will receive the Invoke() •I
OUTCOME •outcomep;

... do preliminary setup

I* send a request back to the client *I
result= Invoke(aid, invokeid, USEROP1, 0, &outcomep);

act on results received from the client

send results to clients initial request using Result() . ..

break;

case ABORTOP:
PexitO;
break;

I* if this is processes' only connection •I

default:

}

FreeTempMemO ;
break;

The following example subroutine makes a list of external for use in the A CSEuserlnfo

field of the CONNINFO structure:

/• this routine makes up the sequence of external required for ACSE userinfo *I
I* It will only make a one element sequence, and encodes the user data as •/
/* an ANY (single-ASN1-type) rather than an OCTS (octet aligned) or BITS *I

CHAPTER 3. DATA TRANSFER 78

I* (arbitrary). *I
LIST *makeACSEuserinfo(info, oid, pci)
IDX *info; I* pointer to encoded user info *I
OID

int
{

}

Oid; I pointer to encoding rule OID or NULL (ISO 8824 - 32.6) *I
pci; I presentation_ context identifier *I

LIST
EXT

*list;
*node;

/* defined in the ASN.1 library *I
I* defines in the ASN.1 library *I

I* TempMalloc is a memory allocation routine - see Threads documentation *I
node= (EXT*) TempMalloc(sizeof(EXT));

node->dref = oid;
node->iref = pci;
node->value = NULL;

node->ed.choice
node->ed.data.single

list= NULL;

= single_asnl_tag;
= (UNIV) info;

I* see the ASN.1 documentation for the ListAdd subroutine•/
ListAdd(&list, node);

return(list);

The resulting list may be assigned to the CONNINFO structure as follows:

cinfo.ACSEuserinfo = (UNIV) makeACSEuserinfo(dataidx, &BERoid, NULL);

The receiver of a CONNINFO structure containing ACSEuserlnfo may decode this

information as follows:

result= (void *)getACSEuserinfo(cinfo->ACSEuserinfo, &oid, &pci);
I* now decode result as required *I

The routine getACSEuserlnfo is as follows:

CHAPTER 3. DATA TRANSFER 79

/• this routine will get the user information form the sequence of external •/
/• used for ACSEuserinfo, and return a pointer to a buffer. The routine will•/
I* cope properly whether the single-ASN1-type or the octet-aligned type was •/
I• chosen for encoding - but will only deliver the data in the first element•/
/• in the sequence regardless of how many exist.
void •getACSEuserlnfo(list, oid, pci)
LIST *list;
OID **oid; I• abstract syntax (direct reference) of received information •I
i~t **pci; I• presentation context identifier (indirect reference) •/
{

EXT •node; I• external type - see ASN.1 documentation
void •retval;

if(! list)
return((void•) 0);

node= (EXT•) ListNext(list);

if(oid)
•oid = node->dref;

if(pci)

•pci = node->iref;

switch(node->ed.choice)
{

case single_asnl_tag:
retval =(void•) node->ed.data.single;
break;

case octet_aligned_tag:
retval =(void•) node->ed.data.octet.data;
break;

default:
sprintf(dbuf, "getACSEuserinfo: can't cope with encoding choice ¼d11 ,

noae->ed.choice);
lilerr(dbuf) ;
retval =(void•) -1;

I
j'

CHAPTER 3. DATA TRANSFER 80

break;
}

return(retval);
}

Chapter 4

CASNl - The ASN.1 Compiler

4.1 Introduction

CASNl is a compiler for translating ASN.1 type specifications into C language definitions

and for generating BER encoding/decoding routines for every defined type. The com

piler takes as input an ASN .1 module specification. The compiler generates three files of

importance. The first file contains C language type definitions which correspond to the

ASN.1 types given in the input specification. The second file contains encode routines.

These routines take as a parameter a C structure or variable which represents an instance

of an ASN .1 type. From the values in this parameter the encode routines generate the

corresponding BER (basic encoding rules) representation. The third file contains decode

routines. These routines take, as input, a BER encoding. The BER encoding is decoded

and a C structure or variable (of the same type that is generated by the compiler and used

as input by the encode routines) is generated and filled with the decoded value(s).

4.2 The defs.c File

The most important part of using CASNl is understanding the C language structures

and type definitions generated by it. These defined structures and variables are used to

pass values to the encode routines, and to return values from the decode routines. The

81

CHAPTER 4. CASNl - THE ASN.1 COMPILER 82

ASN.1 type language has some built-in types from which the ASN.1 programmer is a~le

to compose new types. These new types may be created by renaming existing types or

by using AS N .1 mechanisms for combining types together in to structures such as sets or

sequences. Regardless of how complex the user-defined types become, they may always be

traced back to ASN.1 built-in types.

4.2.1 CASNl Built-In Types

The C language structures and types generated by CASNl follow the same type-composition

idea as their ASN.1 counterparts. CASNl defines a C language type for every built-in

ASN.1 type. For example, a BITSTRING ASN.1 type is represented by CASNl as a C

structure containing fields for the bit string length, the values of the bits and a next pointer

to form these BITS structures into a list. An INTEGER ASN .1 type is represented by the

C type int. In order to understand the definitions generated by the CASNl compiler, one

must first be familiar with the CASN 1 representations of the ASN .1 built-in types.

These types follow:

typedef unsigned char bool;

typedef struct BITS
{

struct BITS *next;
long len;
char data[1];
} BITS;

typedef struct OCTS
{

struct OCTS *next;
long len;

/• pointer to next OCTS structure
/• length of the octet string

char data[1]; I• pointer or value to the octet string•/
} OCTS;

typedef struct DID

CHAPTER 4. CASNl - THE ASN.1 COMPILER

{

int len; I* number of oid components< 20 *I
int oid[20]; I* object identifier components *I
} OID;

#define UTC_Z_TIME
#define UTC_D_TIME
#define GNL_Z_TIME
#define GNL_D_TIME
#define GNL_L_TIME
typedef struct TIME

{

int
int
int

year;
month;
day;

int hour;
int minute;
float second;
float diff;
int zone;
} TIME;

0 I* UTC time with Z
1 I* UTC time with differential
2 I* Generalized time with Z
3 I* Generalized time with differential *I
4 I* Generalized local time *I

I* year
I* month
I* hour

19** or**, (0 .. ?)

1 12

1 31

I* day o 23 *I
I* minute: 0 59 *I
I* second: 0 59 *I
I* difference between local time and UTCtime •/
/• flag for time type: (0, 1, 2, 3, 4) *I

#define single_asn1_tag OxaOOOOOOO
#define octet_aligned_tag Ox80000001
#define arbitrary_tag

typedef struct CODING
{

int choice;
union

{

ANYtype sing-le:
OCTS octet;
BITS arbitrary;
} data;

}CODING;

typsdef struct EXT

Ox80000002

/• single ASN.1 type•/
I* octet aligned *I
I* arbitrary *I

83

CHAPTER 4. CASNl - THE ASN.1 COMPILER

{

DID •dref;
int •iref;
OCTS •value;
CODING ed;
} EXT;

#define Set LIST*
#define Seq LIST*
#define OF(type)

Th~ BITS Structure

I• direct reference (optional)

I* indirect reference (optional)

I• data value descripter (optional)

I• Encoding policy choice

84

•I
•I
•I
•I

The BITS structure represents the ASN .1 BIT STRING type. This structure contains

three fields. The first field, next, is a pointer to a BITS structure and allows the BITS

structure to be formed into a list. The second field, /en, indicates the length of the bitstring

in units of bits. The final field, data, contains the actual bitstring. If a bit string equal

to 110110001 is to be represented, the BITS structure could be created in the following

manner:

BITS *bitsrep;

/• the data field will take two octets (9 bits) and therefore one extra •I
/• octet must be allocated at the end of the BITS structure. Also, see •I
/• the Threads documentation for information regarding TempMalloc(). •I

bitsrep =(BITS*) TempMalloc(sizeof(BITS) + 1);

bitsrep->next = NULL;
bitsrep->len = 9; /• 9 bits in this bitstring *I
bitsrep->data(O] = Oxd8; I* hex value of first 8 bits in bitstring *I
bitsrep->data[1] = Ox01; I• hex value of last bit in bitstring •I

CHAPTER 4. CASNl - THE ASN.1 COMPILER 85

A number of operations on the BITS structure have been implemented for the conve

nience of the application programmer. The headers for these routines are as follows:

BITS* BITSinit(str, length)
char *str;
int length;

int BITSLen(bits, length, unb)
BITS *bits;
int *len;
int *unb;

char* BITSToChar(bits, b)
BITS *bits;
byte **b;

BITS *BITSDup(str)
BITS *str;

int BITSSet(str, whichBit)
BITS* str;
int whichBit;

bool BITSClr(str, whichBit)
BITS* str;
int whichBit;

bool BITSTest(str, whichBit)
BITS* str;
int whichBit;

int BITSEqual(str1, str2)
BITS* str1;
BITS* str2;

CHAPTER 4. CASNl - THE ASN.l COMPILER 86

BITSinit() creates a BITS data structure given a character string (representing a se

quence of bits) and a length specifying the number of bits in the string. This structure is

allocated from the top memory frame of the calling process.

BITSLen() returns the number of bits in a BITS structure and the number of unused

bits in the last octet. These values are returned by way of the length and unb parameters.

On call, these parameters must point to sufficient memory to each hold an integer. The

length is also returned as the return value of the subroutine.

BITSToChar() serializes a BITS structure into a character string.

BITSDup() allocates (from the top memory frame of the calling process) and returns

a copy of the given BITS structure.

BITSSet() sets the specified bit in the BITS structure and returns a non-zero value on

success .

BITSClr() clears the specified bit in the BITS structure and returns a non-zero value

on success.

BITSTest() returns the value of the specified bit.

BITS Equal() compares two BITS structures and returns a non-zero value if equal.

The OCTS Structure

The OCTS structure represents the ASN .1 OCTET STRING type. This structure contains

three fields. The first field, next, is a pointer to an OCTS structure and allows the OCTS

structure to be formed into a list. The second field, Zen, indicates the length of the string

in units of octets. The final field, data, contains the actual string.

A number of operations on this OCTS structure have been provided for convenience.

The headers for these routines are as follows:

OCTS* OCTSinit(str, length)
char *Str

CHAPTER 4. CASNl - THE ASN.1 COMPILER

int length

OCTS* OCTSBld(str)
char *str

int OCTSLen(octslist)
OCTS *octslist

char* OCTSToChar(str)
OCTS *Str

OCTS* OCTSDup(str)
OCTS *str

OCTS* OCTSAppend(str1, str2)
OCTS *str1
OCTS *str2

87

OCTSinit() creates and returns an OCTS data structure. The data in the structure

is that given by the argument str of length length. The memory for the new structure is

allocated from the top memory frame of the calling process.

OCTSBld() performs the same function as OCTSinit() except that OCTSBld() takes

as a parameter a null-terminated string to use as the OCTS data. Neither the length of

the data nor the data itself in the OCTS structure include the null-terminator.

OCTSLen() counts and returns the total length of data in a list of OCTS structures.

OCTSToChar() returns the data contained in a list of OCTS structures. The data is

returned in one contiguous buffer. A null-terminator is added to this buffer which is not

part of the original OCTS data. The memory for the returned buffer is allocated from the

top memory frame of the calling process.

OCTSDup() produces and returns a duplicate of the OCTS structure provided as the

argument. If the original consists of a list of OCTS structures, the routine will return one

OCTS structure containing the data from the list of structures concatenated together.

CHAPTER 4. CASNl - THE ASN.1 COMPILER 88

OCTSAppend() concatenates the OCTS list pointed to by str2 onto the end of the list

pointed to by strl. The new (combined) list is returned.

The 01D Structure

The OID structure represents the ASN.1 OBJECT IDENTIFIER type. This structure

contains two fields. The first field, Zen, contains the number of components of the object

identifier being represented. The second field, oid, is an array of integers. This array

contains the actual components of the identifier. Note that an object identifier represented

using the OID structure may have a maximum of only 20 components.

The TIME Structure

The TIME structure is used to represent GeneralizedTime and UTCTTime values. This

structure has eight fields. Field year is an integer representing the calendar year. The year

may be given as 19xx or xx, where xx is in the range 0 to 99. Month is an integer field

with possible values being 1 to 12. Day, hour, minute and second are all integer fields with

possible values being 1 to 31, 0 to 23, 0 to 59 and Oto 59 respectively. Diff is a float field

representing the local time differential and must take a value in the range -59.99 to +59.99.

Finally, zone is an integer variable representing the time type and must take one of the

values UTC_Z_TJME, UTC_D_TJME, GNL_Z_TJME, GNL_D_TJME or GNL_L_TJME.

The EXT Structure

The ASN.1 EXTERNAL type is represented by the CASNl EXT structure. This structure

is made up of four fields. The dreffield is a pointer to an object identifier (described above)

representing the direct reference of the external type. The indirect reference is represented

by the irefinteger pointer field. The object descriptor portion of the ASN.1 external type

is represented by the value field. This filed contains human-readable text and is a pointer

to the OCTS type. All of these fields are optional and if not included are assigned the

CHAPTER 4. CASNl - THE ASN.1 COMPILER 89

value NULL. The fourth field, ed, contains the external data. This data is represented by

the CODING CASNl structure and may consist of any one of three types. The choice field

of the CODING structure indicates the type of encoding for the external data. The choices

are single_asnLtag, octet_aligned_tag and arbitrary_tag. The choice field corresponds to the

value of the data union in the CODING structure. If the external data is a single ASN.1

type then the choice field takes the value single_asnLtag and the single field of the data

union should point to an IDX list. If the external data is octet aligned then the choice field

takes the value octet_aligned_tag and the octet field of the data union contains the data in

the form of an OCTS structure. Finally, if the external data is neither an ASN.1 type nor

octet aligned then the choice field takes the value arbitrary_tag and the arbitrary field of

the data union contains the data in the form of a BITS structure.

The LIST Structure

There are four ways in the ASN .I language to combine more than one type or instance into

a new type. To create a new type which is an ordered collection of various other types, the

SEQUENCE ASN.1 type is used. This is equivalent to a Pascal record or C structure. The

ASN.1 SEQUENCE OF type generates a new type from an ordered collection of instances

of one type. This is equivalent to a Pascal or C array. The ASN.1 SET type defines a new

type from an unordered collection of various other types. Finally, the ASN .1 SET OF type

creates a new type from an unordered collection of instances of one type.

CASNl represents ASN.1 SEQUENCE and SET types using C structures. An ASN.1

SEQUENCE or SET which is composed of various other ASN.1 types will be translated

into a C structure containing fields for each of the constituent types. For example, if

one of the fields in a SEQUENCE is an OCTET STRING then there will be a field in

the generated C structure of type OCTS or pointer to OCTS. In general if the OCTET

STRING was optional the generated field will be a pointer to an OCTS structure (thus

allowing its exclusion). Otherwise, the field will be of type OCTS.

CASNl represents SET OF and SEQUENCE OF types using a list data structure.

CHAPTER 4. CASN1 - THE ASN.1 COMPILER 90

The list nodes are defined by CASNl (as type LIST) and various utility routines have

been provided for the creation and manipulation of these lists. The definitions for the list

structures follow:

typedef struct LIST_ITEM
{

UNIV
struct LIST_ITEM •next;
} LIST_ITEM;

typedef struct LIST
{

uint_32 count;
LIST_ITEM •top;
LIST_ITEM •next;
} LIST;

Where the count field records the list length (number of list items), the top field points

to the first node of the list and the next field points to the current node of the list. In

structure LISTJTEM, the next field is pointer to the next list item and the item field

points to the item value.

The headers for the list utility routines are as follows:

LIST_ITEM •ListitemCreate()

LIST •ListCreate()

int ListCount(list)
LIST •list;

UNIV *ListFirst(list)
LIST •list;

UNIV •ListNext(list)

CHAPTER 4. CASNl - THE ASN.1 COMPILER

LIST *list;

LIST *ListAdd(list, item)
LIST **list;
UNIV item;

LIST *ListAppend(list, item)
LIST **list;
UNIV item;

bool ListEOL(list)
LIST *list;

void ListRemove(list)
LIST *list;

bool ListEmpty(list)
LIST *list;

LIST *ListMerge(dst, list)
LIST •dst;
LIST *list;

LIST *ListCopy(list, copyitem)
LIST *list;
void *(•copyitem)();

void ListFor(list)
LIST •list;

91

ListltemCreate() allocates memory for a LIST..ITEM from the top memory frame of the

calling process and initializes the item and next fields to NULL. A pointer to the created

and initialized structure is returned.

List Create() allocates memory for a LIST structure from the top memory frame of the

calling process and initializes the top and next fields to NULL. The count field is initialized

to 0. A pointer to the created and initialized structure is returned.

CHAPTER 4. CASNl - THE ASN.1 COMPILER 92

ListCount() takes a pointer to a LIST as its argument . This routine counts the number

of items in the list, sets the appropriate field in the LIST structure, and returns the number

computed.

ListFirst() takes a pointer to a LIST as its argument. This routine returns t~e first

item in the list (not the first LISTJTEM structure, but the value in the item field of the

first LISTJTEM structure). Before returning, the next item in the list is set to be the

second one.

ListNext() takes a pointer to a LIST as its argument. This routine returns the item in

the LIST JTEM currently pointed to by the LIS T's next field. The next field is advanced

one node.

ListAdd() requires two parameters, the address of a pointer to a list, and an item to

be added to the list. If the list parameter points to a location containing the value NULL,

a new LIST is created. In any case, a new LIST JTEM is created and initialized so that

the item field contains the value passed as the parameter item. This LISTJTEM is then

added at the front of the list. The count field of the list is incremented and the next field

is set to point to the first LISTJTEM.

ListAppend() performs the same function as ListAdd() except that instead of adding

the new item to the front of the LIST, it is instead appended at the end of the LIST. The

next field of the LIST is set to point to the item just appended.

ListEOL() takes a pointer to a LIST as its argument. This routine returns TRUE if

the next field points to a LIST JTEM (actually, if it has any value other than NULL) and

FALSE otherwise.

ListRemove() takes a pointer to a LIST as its argument. This routine removes the

LISTJTEM from the LIST which is currently po'inted to by the list's next field.

ListEmpty() takes a pointer to a LIST as its argument. This routine returns TRUE if

the argument is NULL or if the top field of the supplied LIST is NULL. Otherwise, FALSE

is returned.

CHAPTER 4. CASNl - THE ASN.1 COMPILER 93

List Merge() takes two LIST pointers as its arguments. This routine appends the second

LIST to the first LIST. The count field of the first list is updated to reflect the new elements

in the list. While the second LIST is not altered, its elements are now part of both lists

and changes made to one LIST may cause undesirable effects on the other.

List Copy() requires two parameters. The first parameter is a pointer to a LIST, and

the second parameter is a pointer to a subroutine. This routine creates a duplicate of

the supplied LIST. The new LIST is allocated from the top memory frame of the calling

process. The individual items are duplicated by this routine using the subroutine supplied

as the second parameter. It is assumed 'by ListCopy() that the supplied subroutine takes an

item as its single parameter and returns a duplicate item. The type of the parameter and

result for the supplied subroutine is the same type as is held in the item field of LIST JTEM

nodes for the LIST supplied.

ListFor() takes a pointer to a LIST as its argument. This macro can be used in place

of a for-loop construct to step through the items in the supplied LIST. The current item

is referenced in the body of the for-loop by using the next field of the LIST structure.

This information should be helpful in understanding the C definitions generated by the

CASNl compiler. It is necessary that the CASNl user understand these definitions as they

are used to convey data to the encode routines, and to pass back results from the decode

routines.

4.3 The encode.c File

The * .encode.c file generated by CASNl contains subroutines to encode each of the ASN .1

type definitions includP.d in the compiler specification. Each of these routines requires four

parameters and returns a linked list of IDX nodes.

The first three parameters to the encode routines are the tag class, form and code for

the type being encoded. These parameters are used by some encode routines, and ignored

by others. The encode routines may be examined to determine whether these parameters

I

CHAPTER 4. CASNl - THE ASN.1 COMPILER 94

are used. The final parameter is an instance of a type defined in * .defs.c (generated by

CASNl). This is the parameter which contains the data to be encoded. The type of

this 'parameter corresponds to the name of the encode routine. For example, the routine

Encode_TYPEX() requires as its third argument either a variable of type TYPEX or a

pointer to a variable of type TYPEX. As indicated previously, this structure or simple

variable must be filled with the values to be encoded. It is important that all fields and

sub fields are correctly initialized. If a field is optional, its yalue should either be NULL or

a valid pointer.

The returned value is a pointer to the first node in a linked list of IDX nodes. These

nodes contain the encoding generated by the encoding routine. This list is used as a

parameter to the remote operations data transfer routines.

If it is necessary to serialize the data contained within the IDX list into a single con

tiguous buffer, SerIDX() may be called. The header for this routine is as follows:

byte *serIDX(P, B, LEN)

IDX *P;

byte **B;

int *LEN;

This routine takes a pointer to an IDX list as the first parameter. Parameters Band

LEN are pointers to memory large enough for a byte pointer and integer respectively.

SerIDX() serializes the IDX list into a single contiguous buffer, returning the location of

the buffer in the space pointed to by parameter B, and the length of the buffer in the

location pointed to by parameter LEN. A pointer to the serialized buffer is also returned.

4.4 The decode.c File

The * .decode.c file generated by CASNl contains subroutines to decode ASN .1 encodings

(encoded using the basic encoding rules). Each of these routines requires five parameters

CHAPTER 4. CASNl - THE ASN.1 COMPILER 95

and returns a structure corresponding to the ASN .1 type being decoded.

The first three parameters to the decode routines are the class, form and code for the

initial tag being decoded. These parameters are only used by some of the generated decode

routines. The routines themselves may be examined to determine when these parameters

are meaningful. The fourth parameter is always necessary. This parameter contains the

address of a pointer variable. The pointer variable whose address i~ passed must contain

the address of the first byte to be decoded by the routine. On return from the decode

routine, the pointer variable points immediately past the decoded portion of the buffer.

The final parameter is a pointer to a structure· allocated to hold the decode results. This

parameter is optional. If a NULL value is passed as this parameter the decode routine

will allocate storage for the result structure from the top memory frame of the calling

process. The type of this parameter is the C type generated by CASNl which corresponds

to the type of data being decoded. The name of the decode routine reflects the type of

this parameter. For example, the routine Decode_CTYPE() will require either a variable

of type CTYPE or a pointer to a variable of type CTYPE. This routine returns a pointer

to a variable of type CTYPE which is filled with the decoded values.

4.5 Examples

The following is a simple example of the use of CASNl. The ASN .1 source for this example

consists of the following listing:

Sample DEFINITIONS::=
BEGIN

-- a person may be a male or female

PERSON .. - CHOICE {
female [1] Femalelnfo,
male [2] Malelnfo
}

CHAPTER 4. CASN1 - THE ASN.1 COMPILER

Femaleinfo . ·= SEQUENCE
{

maidenName NameType OPTIONAL,
husbandsName NameType OPTIONAL,
genericinfo GenericinfoType
}

Maleinfo .. - SEQUENCE
{

wifesName NameType OPTIONAL,
genericinfo GenericinfoType
}

GenericinfoType .. - SEQUENCE
{

VehicleSet .. -
VehicleType : :=

address
age
name
married

AddressType,
INTEGER,
NameType,
BOOLEAN,

vehicles VehicleSet OPTIONAL,
occupation OccupationType OPTIONAL
}

SET OF VehicleType

INTEGER
{

volvo (0),

generalMotors (1).

ford (2).

chrysler (3),

nissan (4).

toyota (5).

honda (6).

bmw (7).

mercedes (8),

other (9)

}

96

CHAPTER 4. CASNl - THE ASN.l COMPILER 97

NameType .. - OCTET STRING

AddressType .. - OCTET STRING

Occupation Type : := OCTET STRING

END

This ASN.1 source describes a person. The person may be male or female. The infor

mation for males and females contain some information specific to their type (maidenName

and husbandsName or wifesName), as well as some information applicable to both males

and females (genericlnfo). The name of the file containing this ASN.1 source is sample.

This source is compiled using the ASN.1 compiler using the following comm~d:

CASN1 sample

The result of this compilation is the creation of several files. These files are all placed in

the directory ./out. If no such directory exists, one is created. If the directory does exist,

its contents are removed before compilation begins. All of the files of importance created

by this run of CASNl begin with the module name of the ASN.1 module (Sample). The

files produced are Sample.defs.c, Sample.encode.c and Sample.decode.c.

The file containing C definitions corresponding to the ASN.1 types in the specification

is Sample.defs.c. The listing for this file is as follows:

#include 11 /casnl/defs.h11

#include 11 /casnl/element.h11

extern bool .
/• a person may
typedef OCTS
IDX

OccupationType

ASN1_ERROR_FLAG;
be a male or female•/

•OccupationType; /• OCTET STRING•/
•Encode_OccupationType();
Decode_OccupationType();

CHAPTER 4. CASNl - THE ASN.1 COMPILER

typedef OCTS
IDX
AddressType

AddressType; I OCTET STRING *I
*Encode_AddressType();
Decode_AddressType();

typedef OCTS
IDX

NameType; I OCTET STRING *I

NameType
*Encode_NameType();
Decode_NameType();

typedef int VehicleType; I* INTEGER *I
#define volvo 0
#define generalMotors 1

#define ford 2

#define chrysler 3

#define nissan 4

#define toyota 5

#define honda 6

#define bmv 7

#define mercedes 8

#define other 9

IDX
VehicleType

typedef Set

•Encode_VehicleType();
Decode_VehicleType();

0f(VehicleType) VehicleSet; /• SET OF *I
IDX •Encode_VehicleSet();

VehicleSet Decode_VehicleSet();

typedef struct GenericinfoType {/• SET/SEQ •I
AddressType
int
NameType
bool
VehicleSet

address;/* AddressType *I
age; I* INTEGER *I
name; /• NameType *I
married;/* BOOLEAN•/
vehicles; /• VehicleSet •/

OccupationType occupation; I• OccupationType •/
} GenericinfoType;
IDX •Encode_GenericinfoType();
GenericinfoType •Decode_GenericinfoType();

98

CHAPTER 4. CASNl - THE ASN.1 COMPILER 99

typedef struct Malelnfo { /•SET/SEQ•/
NameType wifesName; /• NameType *I
GenericinfoType *genericlnfo; I* GenericinfoType(constructor) •I

} Male!nfo;
!DX *Encode_Male!nfo();
Malelnfo *Decode_Male!nfo();

typedef struct Femalelnfo { I* SET/SEQ •I

}

IDX

NameType
NameType

maidenName;
husbandsName;

GenericinfoType •genericinfo;
Female!nfo;

•Encode_Female!nfo();
Female!nfo *Decode_Female!nfo();

typedef struct PERSON {
int choice;
union {

Female!nfo *female;
#define PERSON_female_tag OxaOOOOOOl

Malelnfo •male;
#define PERSON_male_tag OxaOOOOOO2

}

IDX
PERSON

} data;
PERSON;

*Encode_PERSON();
•Decode_PERSON();

I• NameType *I
I• NameType •I
I• GenericinfoType(constructor) •I

I• CHOICE •I
I* indicate the choice of data•/
I• choices *I

I* CONTEXT 1 Female!nfo(constructor) •I

I• CONTEXT 2 Male!nfo(constructor) •I

Notice that every ASN.1 type created in the specification has a corresponding type in

the file Sample.defs.c. Note also that the definitions in this file are built upon the basic

(built-in) types described earlier in this document.

As an example, take the ASN.1 type (in module Sample) Femaleinfo. The correspond

ing C structure has a field for each of the fields defined in the ASN .1 specification. The last

field, genericinfo refers to another constructed type, as it does in the ASN.1 specification.

Note also that the field vehicles of structure GenericinfoType is defined as a "Set Of Vehi

cleSet". Remember that as described above, Set is defined as LIST *, and OF(X) is defined

to nothing. This means that the definition in Sample.defs.c "typedef Set Of(VehicleType)

CHAPTER 4. CASNl - THE ASN.1 COMPILER 100

VehicleSet" means that the variable VehicleSet is simply a pointer to a LIST.

For every type defined in the file Sample.defs.c, both encode and decode routines are

created. Generally, however, ·it is only the top-level encode and decode routines which are

called by the application. For this example, an application would only call the routine

to encode an instance of the structure PERSON, and never explicitly call the routine

to encode, for example, a VehicleSet. The top-level routines to encode and decode the

PERSON structure will call the lower level routines as part of their function.

The listings for the files Sample.encode.c and Sample.decode.c are as follows with the

encode file first:

/• file Sample.encode.c •/

#include 11 Sample.defs.c"
/• a person may be a male or female•/

IDX

short
short
long
OccupationType
{

•Encode_OccupationType (class, form, code, OccupationType_VP)
class;
form;
code;
OccupationType_VP;

IDX •p;

}

IDX

short
short

p = (IDX •) Encode_octs (class, form, code, OccupationType_VP);

return (p);

•Encode_AddressType (class, form, code, AddressType_VP)
class;
form;

long
Address Type

code;
AddressType_VP;

{

IDX *p;
p = (IDX *) Encode_octs (class, form, code, AddressType_VP);

CHAPTER 4. CASNl - THE ASN.1 COMPILER

return (p);
}

IDX
short
short
long
NameType
{

IDX *p;

*Encode_NameType (class, form, code, NameType_VP)
class;
form;
code;
NameType_ VP;

p = (IDX *) Encode_octs (class, form, code, NameType_VP);

return (p);
}

IDX
short
short
long
VehicleType
{

IDX *p;

•Encode_VehicleType (class, form, code, VehicleType_VP)
class;
form;
code;
VehicleType_VP:

p = (IDX *) Encode_int (class, form, code, VehicleType_VP);

return (p);
}

IDX
short
short
long
VehicleSet
{

IDX *p;

•Encode_VehicleSet (class ·, form, code, VehicleSet_VP)
class;
form;
code;
VehicleSet_VP;

p = (IDX *) Encode_struct_beg (class, form, code);
ListFor (VehicleSet_VP)

Encode_VehicleType (UNIVERSAL, PRIMITIVE, 2,
(VehicleSet_VP)->next->item);

101

CHAPTER 4. CASNl - THE ASN.1 COMPILER

}

Encode_struct_end (DEFINITE)';
return (p);

102

IDX
short

•Encode_GenericinfoType (class, form, code, GenericinfoType_VP)
class;

short form;
long code;
GenericinfoType •GenericinfoType_VP;
{

IDX *p;
p = (IDX •) Encode_struct_beg (class, form, code);
Encode_AddressType (UNIVERSAL, PRIMITIVE, 4,

GenericinfoType_VP->address);
Encode_int (UNIVERSAL, PRIMITIVE, CODE_INTEGER,

GenericinfoType_VP->age);
Encode_NameType (UNIVERSAL, PRIMITIVE, 4,

GenericinfoType_VP->name);
Encode_bool (UNIVERSAL, PRIMITIVE, CODE_BOOLEAN,

GenericinfoType_VP->married);
if (GenericinfoType_VP->vehicles != NULL)
{

Encode_VehicleSet (UNIVERSAL, CONSTRUCTOR, 17,
GenericinfoType_VP->vehicles);

}

if (GenericinfoType_VP->occupation != NULL)
{

Encode_OccupationType (UNIVERSAL, PRIMITIVE, 4,
GenericinfoType_VP->occupation);

}

Encode_struct_end (DEFINITE);
return (p);

}

IDX
short
short
long
Maleinfo

*Encode_Maleinfo (class, form, code, Malelnfo_VP)
class;
form;
code;

•Malelnfo_VP;

CHAPTER 4. CASNl - THE ASN.1 COMPILER

{

}

IDX

short
short

IDX *p;
p =(!DX•) Encode_struct_beg (class, form, code);
if (Maleinfo_VP->wifesName != NULL)
{

}

Encode_NameType (UNIVERSAL, PRIMITIVE, 4,
Maleinfo_VP->wifesName);

Encode.GenericinfoType (UNIVERSAL, CONSTRUCTOR, 16,
Maleinfo_VP->genericinfo);

Encode_struct~end (DEFINITE);
return (p);

•Encode_Female!nfo (class, form, code, Female!nfo_VP)
class;
form;

long
Female!nfo

code;
•Female!nfo_VP;

{

}

!DX *P:
p =(!DX•) Encode_struct_beg (class, form, code);
if (Femaleinfo_VP->maidenName != NULL)
{

Encode_NameType (UNIVERSAL, PRIMITIVE, 4,
Femaleinfo_VP->maidenName);

}.

if (Femaleinfo_VP->husbandsName != NULL)
{

}

Encode_NameType (UNIVERSAL, PRIMITIVE, 4,
Femaleinfo_VP->husbandsName);

Encode_GenericlnfoType (UNIVERSAL, CONSTRUCTOR, 16,
Femaleinfo_VP->genericinfo);

Encode_struct_end (DEFINITE);
return (p);

•Encode_PERSON (class, form, code, PERSON_VP)

103

CHAPTER 4. CASNl - THE ASN.1 COMPILER

short
short
long
PERSON
{

class;
form;
code;

*PERSON_VP;

IDX *Pi
switch (PERSON_VP->choice)
{

case PERSON_female_tag:
p = (IDX •) Encode_struct_beg (CONTEXT, CONSTRUCTOR, 1);
Encode_Femaleinfo (UNIVERSAL, CONSTRUCTOR, 16,

PERSON_VP->data.female);
Encode_struct_end (DEFINITE);
break;

case PERSON_male_tag:

default:

p = (IDX *) Encode_struct_beg (CONTEXT, CONSTRUCTOR, 2);

Encode_Maleinfo (UNIVERSAL, CONSTRUCTOR, 16,

PERSON_VP->data.male);
Encode_struct_end (DEFINITE);
break;

error (11 Encode_PERSON No such choice\n");
};·

return (p);
}

/• file Sample.decode.c •I

#include 11 Sample.defs.c 11

/• a person may be a male or female•/

OccupationType Decode_OccupationType (class, form, code, B,
OccupationType_VP)

short
short

class;
form;

long code;
byte **B;
OccupationType OccupationType_VP;
{

104

CHAPTER 4. CASNl - THE ASN.1 COMPILER

}

if (ASN1_ERROR_FLAG == TRUE)
return (FALSE);

OccupationType_VP = (OCTS •) Decode_octs (class, form, code,
B, OccupationType_VP);

return (OccupationType_VP);

105

Address Type
short

Decode_AddressType (class, form, code, B, AddressType_VP)
class;

short form;
long code;
byte
Address Type
{

**B;
AddressType_VP;

}

NameType
short
short
long
byte
NameType
{

}

if (ASN1_ERROR_FLAG == TRUE)
return (FALSE);

AddressType_VP = (OCTS *) Decode_octs (class, form, code,
B, AddressType_VP);

return (AddressType_VP);

Decode_NameType (class, form, code, B, NameType_VP)
class;
form;
code;

**B;
NameType_VP;

if (ASN1_ERROR_FLAG == TRUE)
return (FALSE);

NameType_VP = (OCTS •) Decode_octs (class, form, code, B,
NameType_VP);

return (NameType_VP);

CHAPTER 4. CASNl - THE ASN.1 COMPILER 106

VehicleType Decode_VehicleType (class. form, code, B, VehicleType_VP)
short class;
short form;
long code;
byte ••B;
VehicleType VehicleType_VP;
{

}

if (ASN1_ERROR_FLAG == TRUE)
return (FALSE);

VehicleType_VP = (int) Decode_int (class, form, code, B,
VehicleType_VP);

return (VehicleType_VP);

VehicleSet
short
short

Decode_VehicleSet (class, form, code, B, VehicleSet_VP)
class;
form;

long code;
byte
VehicleSet
{

**B;
VehicleSet_VP;

}

if (ASN1_ERROR_FLAG =• TRUE)
return (FALSE);

Decode_struct_beg (class, form, code, B);
VehicleSet_VP = ListCreate ();
while (ListEnd (•B))

ListAppend (&(VehicleSet_VP), (UNIV)
Decode_VehicleType (UNIVERSAL, PRIMITIVE, 2, B, O));

Decode_struct_end (B);
return (VehicleSet_VP);

GenericinfoType •Decode_GenericinfoType (class. form. code, B,
GenericinfoType_VP)

short class;

CHAPTER 4. CASNl - THE ASN.l COMPILER

short form;
long code;
byte **B;
GenericinfoType •GenericinfoType_VP;
{

}

if (ASN1_ERROR_FLAG == TRUE)
return (FALSE);

if (GenericinfoType_VP == NULL)
GenericinfoType_VP = (GenericinfoType •)

GETBUF (sizeof (GenericinfoType));
Decode_struct_beg (class, form, code, B);
GenericinfoType_VP->address = (AddressType)

Decode_AddressType (UNIVERSAL, PRIMITIVE, 4, B,
GenericinfoType_VP->address);

GenericinfoType_VP->age = (int)
Decode_int (UNIVERSAL, PRIMITIVE, CODE_INTEGER, B,
GenericinfoType_VP->age);

GenericinfoType_VP->name = (NameType)
Decode_NameType (UNIVERSAL, PRIMITIVE, 4, B,
GenericinfoType_VP->name);

GenericinfoType_VP->married = (bool)
Decode_bool (UNIVERSAL, PRIMITIVE, CODE_BOOLEAN, B,
GenericinfoType_VP->married);

if (TestTag (UNIVERSAL, CONSTRUCTOR, 17, •B) != FALSE)
{

}

GenericinfoType_VP->vehicles = (VehicleSet)
Decode_VehicleSet (UNIVERSAL, CONSTRUCTOR, 17, B,
GenericinfoType_VP->vehicles);

if (TestTag (UNIVERSAL, PRIMITIVE, 4, •B) != FALSE)
{

}

GenericinfoType_VP->occupation c (OccupationType)
Decode_OccupationType (UNIVERSAL, PRIMITIVE, 4, B,
GenericlnfoType_VP->occupation);

Decode_struct.end (B);
return (Ge, InfoType_VP);

107

CHAPTER 4. CASNl - THE ASN.1 COMPILER

Maleinfo
short
short
long
byte
Maleinfo
{

•Decode_Maleinfo (class, form, code, B, Maleinfo_VP)
cla~s;
form;
code;

**B;
•Male Info_ VP;

}

if (ASN1_ERROR_FLAG == TRUE)
return (FALSE);

if (Maleinfo_VP == NULL)
Malelnfo_VP = (Maleinfo •) GETBUF (sizeof (Maleinfo));

Decode_struct_beg (class, form, code, B);

if (TestTag (UNIVERSAL, PRIMITIVE, 4, •B) != FALSE)
{

}

Maleinfo_VP->vifesName = (NameType)
Decode_NameType (UNIVERSAL, PRIMITIVE, 4, B,
Maleinfo_VP->wifesName);

Maleinfo_VP->genericinfo = (GenericinfoType •)
Decode_GenericinfoType (UNIVERSAL, CONSTRUCTOR, 16, B,
Maleinfo_VP->genericinfo);

Decode_struct_end (B);
return (Maleinfo_VP);

Femaleinfo
short
short

•Decode_Femaleinfo (class, form, code, B, Femaleinfo_VP)
class;
form;

long code;
byte
Femaleinfo

**B;
•Femaleinfo_VP;

{

if (ASN1_ERROR_FLAG == TRUE)
return (FALSE);

if (Femaleinfo_VP == NULL)

108

Femaleinfo_VP = (Femaleinfo •) GETBUF (sizeof (Femaleinfo));
Decode_struct_beg (class, form, code, B);
if (TestTag (UNIVERSAL, PRIMITIVE, 4, •B) != FALSE)
{

CHAPTER 4. CASNl - THE ASN.1 COMPILER

}

PERSON
short
short
long
byte
PERSON
{

}

Femaleinfo_VP->maidenName = (NameType)
Decode_NameType (UNIVERSAL, PRIMITIVE, 4, B,
Femaleinfo_VP->maidenName);

if (TestTag (UNIVERSAL, PRIMITIVE, 4, •B) != FALSE)
{

}

Femaleinfo_VP->husbandsName = (NameType)
Decode_NameType (UNIVERSAL, PRIMITIVE, 4, B,
Femaleinfo_VP->husbandsName);

Femaleinfo_VP->genericinfo = (GenericinfoType •)
Decode_GenericinfoType (UNIVERSAL, CONSTRUCTOR, 16, B,
Femaleinfo_VP->genericinfo);

Decode_struct_end (B);
return (Femaleinfo_VP);

•Decode_PERSON (class, form, code, B, PERSON_VP)
class;
form;
code;

**Bi
•PERSON_VP;

if (ASN1_ERROR_FLAG == TRUE)
return (FALSE);

if (PERSON_VP == NULL)
PERSON_VP •(PERSON•) GETBUF (sizeof (PERSON));

PERSON_VP->choice = GetTag (•B);
switch (PERSON_VP->choice)
{

case PERSON_female_tag:
Decode_struct_beg (CONTEXT, CONSTRUCTOR, 1, B);
PERSON_VP->data.female = (Femaleinfo •)

Decode_Femaleinfo (UNIVERSAL, CONSTRUCTOR, 16, B,
PERSON_VP->data.female);

Decode_struct_end (B);
break;

case PERSON_male_tag:

109

I·

CHAPTER 4. CASNl - THE ASN.1 COMPILER

}

Decode_struct_beg (CONTEXT, CONSTRUCTOR, 2, B);
PERSON_VP->data.male = (Maleinfo *)

Decode_Maleinfo (UNIVERSAL, CONSTRUCTOR, 16, B,
PERSON_VP->data.male);

Decode_struct_end (B);
break;

default:
(int) (*B) += (*(LENS - 1));
error ("Decode_PERSON No such choice\n");

};

return (PERSON_VP);

110

An examination of these three included files will show each of the C types defined for

their corresponding ASN .1 types, and an encode and decode routine for each. An example

of code using these types and routines follows:

#include "standards.h"
#include 11 os.h"
#include "Sample .defs.c"

bool ASN1_ERROR_FLAG;

PERSON *makePerson()
{

PERSON
Femaleinfo

•tempPerson;
*female;

GenericinfoType *otherinfo;
LIST *tempList;

I* allocate storage (on top memory frame) for PERSON structure *I
tempPerson =(PERSON*) TempMalloc(sizeof(PERSON));

/* make this person a female *I
tempPerson->choice = PERSON_female_tag; I* defined in Sample.defs.c •I

/• allocate storage (on top memory frame) for Femaleinfo structure •I

CHAPTER 4. CASNl - THE ASN.1 COMPILER 111

}

female= (Femaleinfo •) TempMalloc(sizeof(Femaleinfo));
tempPerson->data.female = female;

/• make her maiden name and husbands name•/
female->maidenName = OCTSBld(11 smith11);

female->husbandsName = OCTSBld(11 Jones 11) ;

I• now make the generic information •I
otherinfo = (GenericinfoType *) TempMalloc(sizeof(Genericin£oType));
female->genericinfo = otherinfo;

otherinfo->address = OCTSBld(11 2170 Wilshire Way"
otherinfo->age = 27;

otherinfo->name = OCTSBld("Mary Jones");
otherinfo->married = TRUE;

I* now make a list of vehicle types owned ... •I
tempList = NULL; I• initialize to empty•/
ListAppend(ttempList, bmw);
ListAppend(&tempList, mercedes);

) ;

ListAppend(&tempList, other); I* SAAB - yuppies you know•/

otherinfo->vehicles = tempList;

/• occupation is an optional field - lets leave it out for this record •I
otherinfo->occupation = NULL;

return(tempPerson);

/• this routine constitutes
/• PERSON structure •I
PROCESS encode_decode()

a Threads process to encode and decode the

{

IDX •idxList;
PERSON •decodedPerson;
int len;
char •buf;

CHAPTER 4. CASNl - THE ASN.1 COMPILER 112

}

ASN1_ERROR_FLAG c O;

/* make a PERSON and encode her using BER•/
idxList = Encode_PERSON(0, 0, 0, makePerson());

I* serialize the encoded buffers into one contiguous beffer for decoding •I
serIDX(idxList, &buf, &len);

I* decode the buffer which was perviously encoded *I
decodedPerson = Decode_PERSON(0, 0, 0, &buf, 0);

/• the memory for the decodedPerson is allocated from the top memory•/
I* frame of the calling process.
/* the decodedPerson should be identical to the structure created by•/
/• makePerson(). The application may now examine this structure for •/
/• printing - etc.

mainp()
{

Create(encode_decode, 6000, 11 encode_decode 11
, 0, NORM);

}

Part III

Persistent Storage

113

Chapter 5

Persistent Object Store

5.1 Introduction

Operations to store, access, and manage arbitrary objects on · disk are provided by the

Object Store. As far as the object store is concerned, an object is simply zero or more

contiguous bytes. In addition to basic object 1/0, the Object Store provides inverted

indexes and atomic transactions.

The Object Store uses a database similar to Unix's dbm and can typically locate an

object without any disk ac~esses. An object that is smaller than KBUFFER..SIZE - 1

bytes is stored directly in the database. A bigger object, however, is stored in its own Unix

file, with its entry in the database containing the name of the file.

5.1.1 Objects

Each object is associated with an object type and each object type is uniquely identified by

a type/managerNo pair:

typedef struct
{

uint_8
uint_8
} TM;

type;
managerNo;

114

CHAPTER 5. PERSISTENT OBJECT STORE

Each object is named by a unique identifier called a UID:

typedef struct
{

uint_32
uint_16
TM
} UID;

timeOfDay;
serial;
type;

115

Certain information about an object type must be passed to the Object Store. This

information is stored in a structure that contains the object type identifier, the name of

the database file to use for all objects of this type, and pointers to functions for serializing

(encoding), deserializing (decoding), and indexing objects of this type.

typedef struct ObjTypeDefn
{

TM typeManager;
char *volwne;
void (*encode)(void *object, char **buffer, long *length);
void (*decode)(void **object, char *buffer, long length);
Set Of(OCTS) (*index)(void *object);
} ObjTypeDefn;

5.1.2 Interfaces

Many Object Store functions return one of the following result codes:

typedef enum
{

ObjOk, ObjUpdateError, ObjBindError, ObjOpenError,
ObjAILFull, ObjNotFound, ObjExists
} ObjRc;

The following functions are provided by the Object Store:

ObjRc Objlnit(table, create)

I.
i
I ,,

CHAPTER 5. PERSISTENT OBJECT STORE

ObjTypeDefn *table;
bool create;

void ObjTerm(typeManager)
TM •typeManager;

UID *DbjNew(typeManager)
TM *typeManager;

ObjRc ObjDispose(uid)
UID •uid;

ObjRc ObjMap(uid, data)
UID •uid;
char **data;

ObjRc ObjSecure(instance, uid)
UNIV •instance;
UID •uid;

Set Of(UID) ObjLookup(typeManager, keyValue)
TM •typeManager;
OCTS *keyValue;

bool ObjRPbegin(typeManager, mode)
TM •typeManager;
int mode;

bool ObjRPcommit(typeManager, mode)
TM •typeManager;
int mode;

bool ObjRPabort(typeManager, mode)
TM •typeManager;
int mode;

116

CHAPTER 5. PERSISTENT OBJECT STORE 117

Objlnit() must be called before an object type is used. If create is non-zero, the database

is created if it does not exist .

ObjTerm() closes the database associated with the object type. This should not be

called if there is a transaction in progress.

ObjNew() creates a new zero-length object and returns its UID.

ObjDispose() destroys an object given its UID.

ObjMap() reads an object given its UID and sets data to point to the object.

ObjSecure() updates an object given its UID and new instance data. The object must

be in memory, as the result of an ObjNew() or ObjMap(), before ObjSecure() can be called.

ObjSecure() calls the encoding and indexing routines for the object type.

ObjLookup() takes a key and returns a (possibly empty) set of corresponding UIDs.

The Object Store provides atomic transactions. ObjRPbegin() starts a transaction, Ob

jRPcommit() commits the transaction, and ObjRPabort() aborts the transaction. These

functions return TRUE on success, FALSE on failure. If a crash occurs before ObjRPcom

mit() commits the updates or if ObjRPabort() is called, all modifications to the database

since ObjRPbegin() are undone. The mode parameter must be 1 (QBJ_UPDATE) if the

transaction calls ObjNew() or ObjSecure(); any other value implies a read-only transaction.

