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ABSTRACT 

We show that using a type of divided-difference test as an a posteriori 

error criterion, the solutions of a class of simple adaptive algorithms for numeri

cal integration and function approximation such as a piecewise Newton-Cotes 

rule or a piecewise Lagrange interpolation, are guaranteed to have an 

approximation-theoretic property of near-optimality. Namely, upon successful 

termination of the algorithm the solution is guaranteed to be close to the solu

tion given by the spline interpolation method on the same mesh to within any 

prescribed tolerance. 

This research was partially BUpported by the Natural Sciences and Engineering Research Council of Canada 
under Grant OGP0041639. 
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1. Introduction 

A posteriori estimation, or estimation of truncation error in an algorithm for 

numerical approximation such as numerical integration, function approximation or 

solutions of differential equations, is an important part of practical numerical computa

tion. A good a posteriori error criterion makes both the algorithm efficient and the 

solution reliable. This is often achieved through the use of local and adaptive approxi

mations. Namely, in an algorithm, both the approximation and the error estimate are 

computed locally, and the amount of computation is distributed in the different regions 

in accordance with the contributions to the total error from these regions as detected 

by the local error estimates. A good example is an adaptive quadrature for approxi-
6 

mating £1(t)dt. In such an algorithm the interval of integration [a,b] is divided into a 

number of panels and the integral is approximated locally in each panel. The size of a 

panel and whether it will be further sub-divided both depend on the local error relative 

to errors in other panels as determined by certain local error checks. 

A local, adaptive algorithm of this type has the advantage that in a region where 

the input function is well-behaved only a small number of panels will be used and so 

an accurate solution can be obtained with a small computatio~al cost, whereas a region 

where the input function is "rough" is likely to be detected by a good error estimator 

and handled with extra care to ensure a satisfactory solution, which sometimes means 

switching to a special rule for that region. The main disadvantage of these adaptive 

methods has been their lack of theoretical basis. They have neither known theoretical 

superiority over non-adaptive methods nor even any approximation-theoretic proper

ties. 

The main difficulty that underlies the lack of a theoretical basis is that in solving 

a numerical approximation problem such as a numerical integration problem the 

known information during computation is usually incomplete and insufficient to 

guarantee an error bound. For example, an error estimate for a quadrature 
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approximation relies only on a finite number of computed integrand values, which are 

not enough to ensure its correctness. Any algorithm can be "fooled" on a well

contrived set of examples. 

A traditional theoretical approach to establish the optimality of a numerical qua

drature is to show that it is the best in the sense of minimizing the worst-case error on 

a set of integrands among a class of quadratures. For example, the best quadrature in 

the sense of Sard ( or the optimal quadrature) minimizes the worst-case error for 

integrands in a bounded subset of a normed function space with certain regularity, 

among those quadratures which use the same points of function evaluation ( or which 

use the same number of points of function evaluation) (see, e.g., Schoenberg (1969)). 

In particular, these methods include the spline interpolation methods. However, these 

quadratures are not being used very often in practice for the reason that they do not 

have the flexibility for adaptation. They a.re global methods for which adding new 

points of function evaluation requires recomputing the whole quadrature including the 

coefficients. Even though there a.re theories which say that adaptation has no advan

tage in the worst-case in this model, it is unrealistic to expect that in practice one can 

often observe a priori the very specific assumptions of the model, i.e., the correct regu

larity and the correct known bound on a certain higher derivative. 

In this paper, we show that, in the case of numerical integration and function 

approximation, a posteriori estimation can bridge this gap between the practice of 

local, adaptive approximation on the one hand and the theory of optimality enjoyed by 

some of the global, non-adaptive methods on the other. We present a class of simple a 

posteriori error criteria which, when coupled with simple quadrature formulas, produce 

adaptive quadrature algorithms whose solutions at termination are guaranteed to pos

sess a property of near-optimality. More specifically, we show that using a type of a 

posteriori divided-difference test and simple local approximation methods such as a 

Newton-Cotes rule, the solution of an algorithm upon termination is guaranteed to be 

,. 
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close to the solution given by the spline interpolation method on the same mesh, to 

within any prescribed tolerance (Theorem 1 ). This is despite that, a priori, this simple 

approximation method may not possess any such property. As a corollary, due to the 

optimality of the spline interpolation method the solution of our algorithm is within 

the prescribed tolerance to being best a posteriori in a sense similar to that of the best 

quadrature in the sense of Sard (Theorem 2). 

Our results also serve as the technical basis for a probabilistic theory of error 

analysis for the adaptive quadrature algorithms. Theorem 1 is in fact a key lemma for 

proving that an estimate produced by a modified a posteriori error criterion of this 

type is an upper bound on the conditional expected error of approximation of the qua

drature solution given the computed integrand values, under an appropriate assump

tion of a probability distribution on a set of integrands (Corollary 1). This probabilis

tic theory (vs. the traditional worst-case theory) was recently developed in Gao (1989) 

and Gao (1990). 

In the following we describe our results in technical terms. 

Our setting is the approximation of the value of a linear operator L from C§[a,b] to 

a normed space W, where do[a,b] ={I: [a,b] - R; p> continuous; /O(a) = 0, I= 0, l, · · · , k} . 

In particular, for integration W = R and L is a linear functional, for function approxi

mation W = do[a,b] and Lis the identity mapping I, and for derivative function approxi

mation W = do'"1[a,b] and L is the derivative operator D. For a given input/ E C~a,b], an 

algorithm is allowed to evaluate / at any point z E [a,b]. Let An(/) E W be the approxi

mation to L(/) computed by the algorithm using values of / at n points g}?:1 where 

a= t0 < t1 < ti< · · · < tn = b. We assume that the partition g}~o of [a,b] and the 

approximation An satisfy the following assumptions. 

Assumption A There exist constants c1 > O and c2 > O, such that 

(1) 
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where h; = ti- t.,..1, i = 1, 2, · · ·, n. 

Assumption B The interval [a,b] is divided into N panels [T0, TJ, [Ti, T2], ••• , 

[TN-1, T..J, where Ti= tu, i = 0, 1, · · · , N, N = n/1, and / is a fixed positive integer that 

divides n. There exist constants cNj ~ O, j = 1, 2, · · · , N, bounded above by a constant 

independent of N, and a positive integer p, such that 

(2) 

for any /E ct[a,b]. Here Hi= Ti-Tf-i, j= 1, 2, · · ·, N, and 11-llwdenotes the norm of W. 

Assumption B is valid for various piecewise (composite) polynomial approximation 

methods, e.g., piecewise Lagrange interpolation, composite Newton-Cotes or Gauss 

rules, etc. 

The a posteriori error criterion in Theorem 1 is a slight modification of the follow

ing heuristic divided difference test obtained by replacing the maximum of the kth 

derivative over [T,-1, T.J in (2) with the maximum of the adjacent kth divided 

differences: 

N 
max 
l<i<n 

IIL(f) - AJJ)llw ~ 'IJcNiHJ' 
j:::1 (t.._.tJri1~1, T)l=rf> 

(3) 

for any / E do[a,b]. Here [t.,...t, t.,..1>+-1, • • • , tJ f is the kth divided difference of f at 

t.,..1:, tt-l>+-1, • · • , ti. The divided differences are defined recursively a.s 

[t •. t- . . . , tJ f _ [tt-1+1, tt-f+2,.'', tJ !- [t...,, t...;+1, · · · 1 t.,..J f 
9-11 i-fl-lt I - , . _ t · . 

I t-1 
(4) 

i = 1, 2, · · ·, n, j ~ 1; and [tJ f = J(ti), for all i. We use the convention t-i = 2a - ti, and 

J(t_J = O, i > O, for divided differences near the interval endpoint a. 

Let s1 be the natural spline interpolant of / at points { tilf:1 in the Hilbert space 

m-+1[a,b) = {g E do[a,b]: g<»1) E L2[a,b)}. Namely, s1 is the (unique) element of _m+1[a,b] that 

satisfies the constraints sjti) = /(ti), i = 1, 2, · · · , n, and 
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b 
where 11-IIH= (<.,.>H)1l2 is the norm of Jro+1[a,b) and <g, h>n= fa/"'+1>(t)h<"'+1>(t)dt is the 

inner product of Jro+1[a,b). A reference on the natural splines is Prenter (1975). The 

relation between the natural spline interpolation and the best quadrature in the sense 

of Sard was studied in, among others, Schoenberg (1969), and Karlin (1969). 

We have the following main theorem. 

Theorem 1 There exists a constant c > 0 such that 

(5) 

for any /E da[a,b]. 

In numerical approximation, often it is reassuring to know that one's computed 

solution is close to the solution of a different method. In fact, many automatic quadra

ture algorithms use as an a posteriori error criterion the local differences between the 

approximate solution and another local approximation obtained by a different quadra

ture. Our result is stronger. By Theorem 1, as an a posteriori error criterion the 

right-hand-side formula in (5) guarantees that the approximate solution is globally 

close to another approximation that has a minimal-norm property. Furthermore, this 

other solution need not even be computed explicitly, and the error criterion employed 

to achieve this is a sum of local error checks just as in many other algorithms in prac

tice (see, e.g., Davis & Rabinowitz (1984)). 

The following probabilistic result for the case of numerical integration is a corol

lary of Theorem 1. Its proof and more details of the probabilistic theory are in Gao 

(1990). 

b 
Corollary 1 Let' W = R, and llnllw= lol, for any o E R, and let L(f) = LAt)dt, and 

n 
A(/)= Qn(/) := lJaJ{ti), for any /E do[a,b]. Assume that the likelihood of an arbitrary 

i=l 



- 7 -

/E do[a,b] is distributed according to the Wiener measure on do[a,b]. Then there exist 

bNi > 0, j = 1, 2, · · · , N, bounded above by a constant independent of N, such that, 

for a.ny /E do[a,b]. 

N 
+ ( CE CNj w,-112 

j:1 
max 
l<Kri 

[t...,tJn[T;-1, T)#:¢ 

(6) 

Also a corollary to Theorem 1, the next theorem concerns the near-optimality of 

the solution in the case of numerical integration. Again let W = R, and llollw= lo-I, for 

b . n · 

any a ER, and let L(/) = ltt)dt, and A,.(/)= Q,l/) := IJaJ{ti), for any/ E do(a,b]. For any 
a i::1 

b n 
constant M > lls,AIH, let m(M;{tiJt1) = in/ su'P 11 g(t)dt - lJbJ{ti)I, the minimal worst-case 

{bJ ge.1tH[a,b) a i::l 
i,ti)=J(tJ 

i::1,2 · • · ,n 
1191(J6M 

error on the set of integrands {gEHt+1[a,b]: g(ti)=J{ti), i = 1, 2, · · · , n; IIYIIJ6M} over all qua

dratures that use the same points of function evaluation { ti}t1• 

2. Proof of the theorems 

Lemma 1 Under assumption A, there exists a constant e > O such that 

max 
t<i<n 

(t._.1,tJtl(T;-1• T)#=<P 

for any /E do[a,b]. 

(8) 
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Proof By the recursive definition of the divided differences ( 4), for any 

{9) 

where {9) follows by Assumption A. Q.E.D. 

Lemma 2 There exists constants d1 > o, d2 > O, and "3 > O, such that for any 

/E do(a,b], 

N 

IIL(s1) - A,{l)llw :5 d1 :E CNJ Hf 
i=l 

max 
l<Kn 

I [ t.-k, t.-1>+-1, · · · , tJ I I 
[tH'tJn1ii-t• T)M 

for some ,,,, o,, j = 1, 2, · · · , N, where o, E (T;-1, T~ and 

(10) 

(11) 

Proof For every j: 1 :5 j :5 N, let o, E [T;-1, T) be such that s}'k)(o,) = sup lsY:>(t)I, and 
Tj-1:SfST, 

cn.oose any one [tq-,1:, t~1, • • • , tJ f such that [tr-k>tJn(T;-1, T~ 'F ,p. By a well known fact 

of divided differences {see, e.g., Gao (1989)), there exists 'Ii E (tt-i,t9) such that 

•J...'1,) = kl (tf-ob t,-J,+1, · • · , t~ f. It follows from Assumption A that there exists a constant 

"3 > 0 such that 1'7, - B,1 :5 d3 H,. Thus, by Assumption B, 
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j=l 
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ma.x 
i: l<i<n 

[ti-1,tJn[Ti1, T)f., 

N N 9. 

S k!l:J cN,BJ' ~~ I [t.,..t, ti-~1, · · ·, tJ/1 + d!12 ?2i cNjw,+1l2(J,,'(s}l>+-l)(t))2dt)1l2 

j=l [ti-1,tJn[~1, T)f., 

Q.E.D. 

Lemma 3 There exists a constant c> O such that 

N 9 N 

~ cNjBf+112(J,,'(s?;+-l)(t))2dt) 1l2 S ctt cN,w,+-1l2 ~fsxn I [ti-k-l, t.,..t, · · ·, tJ/1 (12) 
[ti--.lt-1,tJn( T,-1, T.,)#4> 

for any /E ct[a,b]. 

Proof The following is true of the natural splines (see, e.g., Gao (1989)): for any 

given f e ~[a,b}, there exist coefficients bi e R", i = 1, 2, · · · , n, such that 

n 
= l:JbiBlt), for any t e [a,b]. Here {B,(t)}i'::1 are the B-splines, i.e., 

i=l 

where the (k+l)st divided difference [ti-JJ-l, ti--k, · · · , tJ"' operates on the variable x m 

(t - x)!, i = 1, 2, · · · , n, and 

(t - x)~ = { 0, 
(t - xl, 

t $ X 

t > X 

B,{t) has the property that it vanishes outside [t.,.....i,tJ; also, let NJ..t) = AV1B,{t), where 

i = 1, 2, · · · , n (13) 
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N 
$ cilJ CNj er-1/2( 

j::1 
E A;lb~l/2 

l<i<fl 
[t..,.1,tJ(l(riJ')Fcf> 

(14) 

for some constant ci > o, where (14) follows from (13) and (11), noting that by (11) the 

sum E has only a constant number of terms. Here without loss of generality 
l<t<fl 

[t..,.1,tJ(l(ri,' )#:cf> 

it is assumed that ,,.,, < o,. Furthermore, 

N N N 
~ C . n.rt-1/2( ~!LJ NJ J A;1b~)1/2 < ci(EH,)1f2(E c'j.,, IljP ( E A;1b1) )1/2 

j=l 

where 

l<i<n 
[t..,.1,tJ(l('1j9)Fcf> 

On the other hand, 

(see, e.g., de Boor (1976)) 

j=l j=l 

fl 

l<i<n 
[t..,.._1,tJ(l(riJB )M 

< ci(b - a) 1l2(EA;16~ 
i=l 

fl 
= ci( b - a)l/2(E r i A;1bn112 

i=l 

d,-~P ,~, J , i = 1, 2, · · · , n. 

(15) 
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Let GB= ( b-,)nxn, where 

i, j = 1, 2, · · · , n, 

i, j = 1, 2, · · · , n, 

and let 

and b = ( 61, 62, • • • , bn) T. Also denote by Diag( Ji) a diagonal matrix whose diagonal 

entries are d1, di, · · · , dn. Then, 

Therefore, 

By (14) and (15), 

(16) 

where (16) holds because a similarity transformation does not alter the 2-norm of a 

symmetric matrix. By de Boor (1976), there exists a constant c; > 0 such that 

IIGiJlb ~ c; 

Thus, 
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n 

= ci(b - a)112c; k! ( IJ (t~1>-1 - ti) ([t~l>-l• t~,., · · · , tJ /)2 ( 
i:::l 

N 

= ci( b - a)1l2c; k! ( E ci,IljP ( 
j=l 

E ( t~l>--1 - t;) ( [ t~l>--1, t~/p · · · , tJ /J2)) 112 

N 

:5 ci( b - a) 1l2c; k! E cNi Hf ( 
j=l 

N 
max 
l<i<n 

l<i<n 
[ e .... 1,tJ()( 'IJ' )ii=</> 

l<i<n 
[t..,..1,tJ(")('IJ')il:¢ 

'.5 c'lJ CNjar-1/2 

j=l 
[t .... 1,tJn(T;-1, T}#="' 

where (17) is obtained using (11) and Assumption A. Q.E.D. 

Proof of Theorem 1 Apply Lemmas 2, 3 and 1 in that order. Q.E.D. 

i = 1, 2, · · · , n, 

b b b b 1£ g(t)dt - Qn(f)I :5 1£ g(t)dt- £ sjt)dtl + 1£ sjt)dt - Qn(.f)I 

b b N 

< l£g(t)dt-£sjt)dtl + cIJ cNjnr112 

j:::l 

by Theorem 1. Thus it suffices to show that 

(17) 

1;e,, the spline interpolation solution minimizes worst-case error on the set of 

integrands {ge,m+i[a,b]: g(ti)=J(ti), i = 1, 2, · · ·, n; IIYIIJ6M} among all quadratures that use 

the same points of function evaluation {ti}~1. Indeed, 

6 n 

SUI) 11 g(t)dt - lJbJ{ti)I = 
ge~l(a,6) a i=l 

b b n 
sup 11 h(t)dt + 1 sJ.t)dt- 'IJbJ{ti)I 

hE~l[a,b) a a i:::l 

tl.,tJ=J(tJ l(_tJ=O 
i:::12 · · · n 

ll~ff6M 
i::: l 2 · • · n 
llh-f-a)IJ6M 



= .SUJ) 

hE~1[a,b] 
l(t;):O 

i::1 12, · · · ,n 
ll~IJ.6(Al--ll•Jlt)1

'
2 
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(18) 

where (18) holds because of an elementary fact of the natural splines that <sf, h> H = O, 

for any he H~1[a,b], h(tJ = O, i = 1, 2, · · · , n (see, e.g., Prenter (1975)), and therefore 

Since the set {he Bt+'1[a,b]: h(t.)=0, i = 1, 2, · · · , n; llhllH $ (.AP-ll.s.Alt)1l2
} is convex and 

balanced, the right hand side of (18) is minimized by choosing {bi}:1:1 such that 

n b 

EbJ{t;) -1 sf..t)dt = 0. 
i:::l a 

Arguments of this type can be fowid in, e.g., Micchelli .& Rivlin (1985), and Traub & 

Woznia.kowski (1980). Q.E.D. 
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