
Performance Monitoring in
Multi-transputer Networks

by
Jie Cheng Jiang1

Technical Report 90-32
October 1990

Department of Computer Science
The University of British Columbia

Vancouver, B.C. V6T 1 W5
Canada

1Currently with MPR Teltech Ltd ., Burnaby, B.C., Canada. Email: jiang@handel.mpr.ca

Abstract
Parallel architectures, like the transputer-based multicomputer network, offer potentially

enormous computational power at modest cost. However, writing programs on a multicomputer
to exploit parallelism is very difficult due to the lack of tools to help users understand the run
time behavior of the parallel system and detect performance bottlenecks in their programs.
This thesis examines the performance characteristics of parallel programs in a multicomputer
network, and describes the design and implementation of a real-time performance monitoring
tool on transputers.

We started with a simple graph theoretical model in which a parallel computation is repre
sented as a weighted directed acyclic graph, called the execution graph. This model allows us to
easily derive a variety of performance metrics for parallel programs, such as program execution
time, speedup, efficiency, etc. From this model, we also developed a new analysis method called
weighted critical path analysis(WCPA), which incorporates the notion of parallelism into criti
cal path analysis and helps users identify the program activities which have the most impact on
performance. Based on these ideas, the design of a real-time performance monitoring tool was
proposed and implemented on a 74-node transputer-based multicomputer. Major problems in
parallel and distributed monitoring addressed in this thesis are: global state and global clock,
minimization of monitoring overhead, and the presentation of meaningful data. New techniques
and novel approaches to these problems have been investigated and implemented in our tool.
Lastly, benchmarks are used to measure the accuracy and the overhead of our monitoring tool.
We also demonstrate how this tool was used to improve the performance of an actual parallel
application by more than 50%.

11

Acknowledgement
First of all and above all, I would like to thank my supervisors Dr. Samuel Chanson and

Dr. Alan Wagner for their patience, support and understanding. The advice I received from
Sam has gone far beyond academic research. And Alan, who never runs out of creative ideas,
always gave me friendly guidance when my work seemed to be at an impasse.

I would like to extend special thanks to my project partner Hilde Larsen for doing an
excellent job in programming the graphical user interface. Also thanks to Ola Siksik for donating
her programs as benchmarks for our monitoring tool. Many other people in the Department of
Computer Science at UBC have also contributed to this thesis. Ming Lau, hardware technician
of the department, built the hardware circuit to generate global interrupts in the transputer
network. Don Acton helped me to set up the system. Norm Goldstein and H.V. Sreekantaswamy
proofread the final draft of this thesis. I am also grateful to the people of the Trollius project,
especially Greg Burns of Ohio State University and Jim Beers of Cornell Theory Center, for
their help and suggestion in the installation and instrumentation of Trollius Operating System.

Lastly, I am indebted to my family for their constant support and encouragement. This
thesis is dedicated to my grandparents.

Ill

Contents

Abstract

Acknowledgement

Contents

List of Tables

List of Figures

1 Introduction
1.1 The Problems

1.1.1 Global State and Global Clock
1.1.2 Nonintrusive Monitoring
1.1.3 Automatic Performance Tuning .

1.2 Motivation
1.3 Objectives and Goals .
1.4 Thesis Outline

2 Related Work
2.1 Parallel Performance Monitoring
2.2 Transputer Monitoring Tools

3 Performance Model
3.1 Definition of Multicomputer Networks
3.2 Graph Representation of Parallel Computation
3.3 Performance Metrics
3.4 Weighted Critical Path Analysis (WCPA)
3.5 Summary

iv

11

iii

lV

V

Vl

1
1
2
2
3
4
5
6

7
7
9

11
11
12
13
15
19

4 Design of the Parallel Monitor
4.1 Environment

4.1.1 Hardware Architecture .
4.1.2 Underlying Operating System .

4.2 System Structure
4.3 Basic Instrumentation Techniques

4.3.1 Event Sampling .
4.3.2 Event Tracing . .
4.3.3 Hybrid Monitor .

4.4 Global Control
4.4.1 The Global Interrupt Approach .
4.4.2 Hardware Extension
4.4.3 Global Sampling and Clock Synchronization .
4.4.4 Summary ...

4.5 Event Tracing
4.5.1 Event Generation ..
4.5.2 Buffer Management
4.5.3 Adaptive Reporting
4.5.4 Summary

4.6 User Interface

5 Testing and Verification
5.1 Validation of Monitoring Result .
5.2 Measurement of Monitoring Overhead
5.3 Clock Synchronization
5.4 Summary

6 Performance Tuning: A Case Study
6.1 The Parallel Image Reconstruction Algorithm
6.2 Measurement and Analysis
6.3 Summary

7 Conclusions
7 .1 Synopsis .
7.2 Future Work

7.2.1 Enhancement of the Monitoring Tool.
7.2.2 Alternatives to Nonintrusive Monitoring
7 .2.3 Performance Steering

A Architecture of the Transputer-based Multicomputer

V

20
20
20
21
21
24
24
24
25
25
25
26
26
28
29
29
29
31
32
33

35
35
37
40
42

44
44
45
48

49
49
50
50
50
51

58

B Modifications to Trollius Run-time Library
B.1 Definition of Monitor Parameters ..
B.2 Probes to Generate Message Events ..
B.3 Probes to Generate Process Events . . .
B.4 Probes to Generate User-defined Events
B.5 Monitor Controlling Routines

vi

62
62
63
64
66
66

List of Tables

5.1 Validation of Processor Utilization 36
5.2 Validation of Communication Channel Utilization 36
5.3 Monitoring Overhead for Cholesky's Factorization Program 38
5.4 Monitoring Overhead for Input of Various Matrix 39
5.5 Accuracy of Clock Synchronization Using Global Interrupt . 41
5.6 Accuracy of RING-SYNC algorithm • I e I O I I I • 41

6.1 Analysis Result for Image Reconstruction Algorithm 47

Vll

List of Figures

3.1 An Example of Execution Graphs
3.2 Assigning Weight to An Extended Execution Graph
3.3 A Portion of the Critical Path

4.1 A Multi-Transputer Network Configured as a 8x9 2-D Cylinder
4.2 Basic Structure of the Parallel Monitor
4.3 A Picture of the Transputer-based Multicomputer
4.4 Structure of Trace Entries
4.5 Double-Buffer Structure
4.6 Graphical Display of Performance Result .

5.1 Monitoring Overhead for Different Sampling Intervals
5.2 Monitoring Overhead for Different Buffer Size .

6.1 Graphical Display of Network Topology
6.2 Graphical Display of Unmatched Message Events
6.3 Communication Activities of Distributing Subimages

A.l Architecture of the IMS T800 Transputer
A.2 Architecture of the IMS C004 Crossbar Switch . . .
A.3 Physical Connections of the Transputers and the Switches

viii

14
16
18

22
23
27
30
31
34

37
40

45

46
47

59
60
61

Chapter 1

Introduction

The transputer-based multicomputer network is a new and promising class of highly parallel
computer system because it not only offers potentially enormous computational power at modest
cost, but also serves as testbeds for research experiments in the field of parallel processing. The
focus of this thesis is instrumentation, modelling and performance analysis of parallel programs
in multicomputer networks. New instrumentation techniques are explored, and the design and
implementation of a real-time performance monitoring tool is presented.

1.1 The Problems

Monitoring a computer system relies on dynamically extracting information about the ex
ecution of a program at run-time, storing it and presenting it to the user in a useful format.
The information collected by the monitor depends on what the user wants to know about the
behavior of his program. Two traditional areas of studying the execution of a program are
debugging and performance analysis (Miller84]. Debugging is concerned with the correctness of
a program, while performance analysis chiefly addresses the efficiency of the program. Perfor
mance analysis includes performance measurement and performance tuning. Performance tools
are invaluable to the application programmer since they not only provide performance mea
surement results but also help users optimize the performance of the program. The underlying
instrumentation mechanisms used in debugging and performance analysis are similar. The ma
jor distinction is that debugging can control the execution of the program, while a performance
monitor simply observes rather than participates in the computation. For the purpose of mea
suring the efficiency of a program, monitoring a computation without attempting to control its
execution offers the best opportunity to understand its behavior. The emphasis of this thesis
is in the performance aspect of understanding the execution of a program, though the methods
and tools we have developed are also useful in uncovering bugs in seemingly correct programs.

Performance monitoring in uniprocessor computer systems has been studied extensively over

1

CHAPTER 1. INTRODUCTION 2

the past 20 years and is well-understood; however, research in developing methods and tools for
monitoring, debugging, and measuring parallel systems lags behind the technological advances
in parallel architectures, distributed operating systems and parallel programming languages.
Uniprocessor instrumentation techniques do not generalize to a parallel and distribu ted envi
ronment. Multicomputer networks feature asynchronous concurrent activities, nondeterministic
and nonreproducible behaviors caused by unpredictable commurucation delays , and the lack of
central control and accurate global time [HaWy90). All these complicate the task of measuring
and monitoring programs in parallel and distributed systems.

1.1.1 Global State and Global Clock

A multicomputer network consists of a large number of computing nodes which run asyn
chronously and interact with one another by passing messages. In order to obtain precise
global states of t he entire system, the measurement tasks have to be performed simultaneously
on different nodes . Results however must be collected at a central workstation for analysis and
display. Unpredictable communication delays and the lack of a central control mechanism make
it difficult to guarantee that the measurement of tasks are performed at the same time and the
information collected from the different nodes reflects a consistent global view of the system. A
related problem is the difficulty in obtaining global clock in the multicomputer network where
each node has its own physical clock and the drift between them is unpredictable. In parallel
monitoring, an accurate global clock is not only useful for ordering asynchrono us events on
different nodes but is essential for measuring the elapsed time of message transmission. The
logical clock approach [Lamport78] has been widely used for ordering events in asynchronous
environments. However, it is difficult to derive absolute elapsed time using logical clocks since
the differences of logical timestamps are not comparable to each other. Therefore, the logical
clock approach is inadequate and inefficient to measure the performance of parallel programs
in multicomputer networks.

The solution used in this thesis is a global interrupt approach in which a master node
interrupts all other nodes in the multicomputer networks to perform the measurement tasks
almost simult aneously, giving us an accurate snapshot of the system. Only minimal hardware
support was needed to implement this scheme on the transputer network and it can be easily
extended to other closely coupled multicomputer architectures.

1.1.2 Nonintrusive Monitoring

One of the most desirable properties of any monitoring tool is that it should incur minimal
overhead and cause minimum interference to a monitored application. In parallel systems ,
stopping or slowing down a process may alter the behavior of the entire system and even
produce different results. Unlike monitoring a centralized system, the presence of the monitor
in a multicomputer network may not only cause severe degradation in the performance of the

CHAPTER 1. INTRODUCTION 3

monitored application, but also distort the execution of the program yielding invalid results. It
is impossible for any software monitoring tools to be totally nonintrusive since the monitoring
software has to share the system resources with the application. Hardware monitors can be
designed to have little or no effect on the host system, but they only provide limited, low
level information about the activities of the host system. It is also difficult to map low level
events to the source level program. The installation of extra hardware device requires skill and
thorough knowledge of.the host system, and can affect the hardware design and its expected
performance. In addition, hardware instrumentation is expensive and impractical in most cases.
On the contrary, software monitors can present information in an application-oriented manner
and are easy to install. But if the performance results are to accurately reflect the behavior
of the unmonitored application, the monitoring overhead must be within an acceptable range.
[Reed89] suggests that a less than 15% performance penalty is acceptable for a software monitor.

The overhead introduced by a software monitor comes from the following sources:

• CPU time to run the monitoring software;

• memory space to store the monitoring data;

• communication bandwidth to report monitoring results to the host;

• extra context switches between monitoring processes and user processes.

In a multicomputer network where local memory available on each node is very limited,
it is impossible to store all information collected by the monitor locally until the application
computation terminates. Experimental results show that when the frequency of reporting is
high, up to 80% of the slowdown of the monitored application is attributable to the communi
cation overhead of the parallel monitor. Therefore, an important issue is how to minimize the
interference of the monitoring messages to normal communications of the application program.
Most existing systems fail to address this problem. See Chapter 2.

· The approach investigated in this thesis is an adaptive reporting scheme in which the monitor
tries to avoid jamming the network traffic by sending out monitoring data only when the network
is lightly loaded. A pre-defined threshold function based on empirical data is used to determine
whether the node is currently overloaded and whether the monitoring data should be sent.
Limitations of this approach are also discussed in Chapter 4.

1.1.3 Automatic Performance Tuning

A performance tool is useful only if it can help to tune the performance of an application. It
is a matter of how to present the performance data collected by the monitor to the user. Since
the amount of trace data collected from all nodes in a multicomputer network is very large,
it is important to present the information in a meaningful format so that the user will not be
overwhelmed. Ideally the performance tool should supply users with solutions to a performance

CHAPTER 1. INTRODUCTION 4

problem rather than statistical numbers. It is necessary to define a few simpl metrics which
can characterize the performance of the parallel program. Unfortunately, there is no generally
agreed upon model for parallel computation, nor a model for the performance of these systems.
U n.iprocessor analysis techniques cannot handle the drastically increased number of parameters
in parallel systems. New methods for analyzing the performance of parallel programs are at
best underdeveloped. Most existing systems only supply users with statistical summaries of the
execution of their programs.

In this thesis, we have developed a new performance analysis method for the multicomputer
network, called weighted critical path analysis(WCPA). It is based on a simple parallel compu
tation model in which the computation is formalized as an execution graph constructed using
a minimal set of process events. Common performance metrics like program execution time,
speedup, efficiency and granularity can be easily measured using the proposed method. By
incorporating parallelism into the critical path analysi s technique, WCPA helps users identify
the program activities which have the most impact on the performance of their applications.

1.2 Motivation

The chief motivation of this thesis is the lack of tools to help users understand the run
time behavior of the parallel system and detect performance bottlenecks in their applications.
Though progress l1as been made in developing parallel operating systems [Burns88] [Parasoft88]
and parallel programming languages [Inmos83] fZenith90) on transputers, most existing systems
do not provide adequate support for users to measure and analyze the performance of their
applications. It is not unusual for the application programmer to wrhe special code a.nd insert
it into the application in order to obtain even the simplest time measurements of the program. It
is almost impossible to trace the execution of a parallel program on the tra.nsputers by pr inting
diagnosis messages from various places within the program, as most people usually do to their
sequential programs. In a parallel system like the transputer-based multicomputer wh re- most
nodes in the network do not have direct access to externa.1 devices, diagnosis messages have to be
routed through intermediate nodes to reach the host in order to appear on the user's terminal.
Moreo.ver, messages from different nodes will appear in some arbitrary order. Therefore it
is highly desirable to provide support in the underlying operating system to capture these
interesting events, collect and reorder them, and present to the user in a meaningful format.

Experimental results show that initial implementation of a parallel program typically yields
disappointing performance [AnLa89]. The effort required to tune a parallel program, and the
level of performance improvement that is eventually achieved depend heavily on the quality of
the instrumentation that is available to the programmer. Since a parallel program typi all
consists of many components running concurrently on asynchronous nodes, and the interaction
among different components of the parallel program ca1l be quantitatively overwhelming and
qualitatively complicated, it is difficult for the programmer to identify which pa.rt of l.he program
contributes most to the performance of the entire program . It is desirable to provide analysis

CHAPTER 1. INTRODUCTION 5

tools to appropriately direct the attention of the programmer by efficiently measuring those
factors that characterize the performance of the entire program.

The successful development of performance monitoring tools relies on a good understand
ing of the performance characterization of the target system. Existing monitoring tools on
transputers only provide simple statistical measures such as processor and link utilization on
individual nodes during the execution of the whole program (see Section 2.2). There is a
pressing need for new monitoring tools which can measure the overall performance of parallel
applications and help users tune the performance of their programs. Previous work has concen
trated on instrumentation techniques or implementation tricks on the transputer rather than
performance modelling itself. We feel that to build effective performance tools on the trans
puter, the first step is to define a simple model which can capture the performance behavior
of parallel programs on multicomputer networks. This model is described in the first part of
this thesis (Chapter 3. The second part of the thesis is dedicated to the designing a parallel
performance monitor on transputers based on the model we define.

1.3 Objectives and Goals

In designing a performance monitoring tool, the following are the primary goals we want to
achieve:

• Functionality: The tool should provide users with enough information for performance
studies of their program. In addition to measuring resource utilization in the system, it
should have the ability to trace system and user-defined events.

• Extensibility: The instrumentation should not require substantial changes to the host
system, both in hardware and software. Also, the monitoring system should be flexible
and allow a wide range of user interfaces and analysis packages to be incorporated into
the tool. This requires a separation of data collection and selection from data display and
analysis and a well-defined interface between them.

• Transparency: the instrumentation should be transparent to the application programmer.
The user should not be required to modify his program in order to monitor it. The only
exception to this is the case of user-defined events, which may be application dependent.

• Efficiency: The overhead introduced by the monitor should be within an acceptable range.

• Accuracy: The performance results reported by the monitor should reflect the behavior
of the unmonitored application. The behavior of the program should be the same when
running with or without the monitor.

• User-friendliness: The monitor should be easy to use and the resulting data should be
easy to read. A graphical interface is necessary to display the data in a user-friendly

CHAPTER 1. INTRODUCTION 6

manner. The monitoring tool should be flexible so that it can be turned ON and OFF
interactively, either by the user from the host, or from within the program running on a
multicomputer node.

There are other secondary goals. We would like the tools to be applicable to a wide range of
systems rather than the instrumentation of a specific hardware architecture (the transputer) or
a specific target operating system. The approaches suggested in this thesis should be generally
applicable to other closely-coupled multicomputer architectures.

1.4 Thesis Outline

This section gives a brief description of the contents of the following chapters.
Chapter 2 is a literature survey of previous work in areas related to parallel and distributed

monitoring. Key ideas which contributed to this thesis are identified.
Chapter 3 presents a performance model for parallel programs on the multicomputer net

work. We give a definition of a multicomputer network and then give a simple model of
computation on the multicomputer network. Based on this computation model, we derive a set
of performance metrics used to characterize the performance behavior of a parallel program.
Finally, we propose a new method for measuring and analyzing the performance of parallel
programs on the multicomputer network. Applicability and limitations of this method is also
discussed in Chapter 3.

Chapter 4 describes the design and implementation of a parallel performance monitor on
the transputers. It begins with a brief overview of the hardware and software instrumentation
environment, followed by the description of the design of the monitoring system. Various
techniques applied in the parallel monitor are described in detail, with new approaches to the
problems discussed in section 1.1 and their implementation highlighted. The design of the
graphical user interface is briefly described at the end of chapter 4.

Chapter 5 presents the testing and verification results. The accuracy of the resource utiliza
tion results measured by the monitor is validated by comparing against artificial load programs.
Measurement of monitoring overhead is discussed, and a comparison is made between our clock
synchronization technique with other reported software clock synchronization algorithms for
transputers.

Chapter 6 shows an example of how the performance monitoring tool is used to tune the
performance of a real parallel application. It demonstrates how it helps to discover a serious
bug in a seemingly correct parallel program.

Chapter 7 concludes the thesis by summarizing key ideas presented in the previous chapters
and suggests future enhancements of the monitoring tool.

Appendix A is a detailed description of the architecture of the transputer-based multicom
puter network. Appendix B contains a list of changes made to the target software system,
namely the Trollius Operating System. An up-to-date bibliography on parallel and distributed
monitoring is included at the end of the thesis.

Chapter 2

Related Work

The problem of monitoring the execution of a program in a parallel and distributed system
has attracted much attention among researchers in recent years. Prototypes of monitoring
tools have been developed on a wide range of parallel architectures, with emphasis on either
debugging or performance analysis [Joyce87]. These systems apply different techniques and
achieve different degree of success in dealing with the problems presented in Section 1.1. In
this chapter, we first make a general survey of tools developed in other distributed and parallel
environment. Second we give a brief review of existing monitoring tools on transputers. Since
the body of literature on parallel and distributed monitoring is large, we only present works
that are of particular interest to performance studies and have had the most influence to the
design of our tools. We also identify ideas that have contributed to this thesis and point out
deficiencies in the model or design of existing systems.

2.1 Parallel Performance Monitoring

Among the existing tools to monitor the performance of distributed and parallel programs,
the following systems have the most influence to the design of our tool.

JPS [MiYa87][Miller~0] is a performance measurement system for parallel and distributed
programs developed at the University of Wisconsin-Madison. JPS is based on the ideas proposed
in Miller's Ph.D thesis [Miller84] and its predecessor DPM [Miller88]. JPS uses a hierarchical
model as the framework for performance measurement. The behavior of a program is described
at multiple levels of abstraction. Program level is the top level of the hierarchy and it describes
the general behavior of the whole program, such as program execution time and speedup. The
next level below is the machine level, which records summary information for each node and
the interaction between them, such memory and CPU utilization of each machine. The process
level ignores the machine boundary and views the distributed computation as a single group
of communicating processes. At procedure level, a distributed program is represented as a

7

CHAPTER 2. RELATED WORK 8

collection of sequentially executed procedure call chain for each process. The lowest level of
the hierarchy is the primitive activities level, which is a collection of primitive activities that
are detected to support upper level measurement. Performance metrics are defined for each
level in the hierarchy and allow the the behavior of the program to be viewed at different
level of detail. IPS applies different techniques to measure events at different level. Data for
process, machine and program level are collected using event tracing, while data for procedure
and primitive activities level are collected using periodic sampling. IPS is designed for loosely
coupled message-based distributed environment and has been implemented under the Charlotte
Distributed Operating System as well as the 4.3BSD Unix systems. The initial version of
IPS [MiYa.87] only supplies a simple textual user interface. The second generation of the tool
IPS-2 [Miller90], extends the old system with an interactive graphical user interface, which
allows the programmer to display metric in tabular or graphical form and use the analysis tools
interactively. IPS uses the instrumentation strategy of modifying the run-time library provided
by the underlying operating system. Hooks are automatically inserted into the a.Pplication by
selecting a compiler option.

IPS provides automatic guidance techniques for performance tuning. The most important
tool it provides is to find the path that consumes the most time through a graph of the pro
gram execution history, known as critical path analysis(CPA). In this thesis, we develop a new
variation of this which we call weighted critical path a.nalysis(WCPA). WCPA incorporates the
notion of parallelism into CPA, in order to precisely reflect the relative importance of program
elements to performa.nce.(See Section 3.4) An analysis technique called phase behavior analy
sis which tries to automatically detect different phases in the parallel computation. is bejng
investigated in IPS-2.

IPS does not address the problem of global state and global dock. It assumes that the clocks
supplied by the underlying operating system are already synchronized among different machines.
Also it does not address nonintrusive monitoring, especially the overhead of transferring large
amount of trace data over the network. The overhead of IPS-2 [Miller90] ranges from 10-45%.
Another disadvantage is that IPS is a post-mortem tool. Performance results cannot b viewed
by the user in real-time which makes it inappropriate for long computations.

Quartz [AnLa89], developed at the University of Washington, is a tool for tunjng para.lie!
_program performance on a. sha,r d memory multiprocessor. The principle metrk used by Quartz
is the total processor time spent in each section of code along with the number of other proces
sors that are concurrently busy when the section of code is being executed. When tied to the
logical structure of the program, th is correlation provides a "smoking gun'' pointing at those
areas of the program most likelr responsible for poor performance. Quartz is implemented on
the shared memory Sequent Symmetry Multiprocessor. Nonintrusiveness is achieved in Quartz
by using a dedica.ted processor statistically checkpointing to shared memory the number of
busy processors and the state of each processor. Each procedure in the application is assigned
a weight as the total processor time of each procedure divided by the number of concurrently
busy processors during the execution of the procedure. To focus the programmer's attention on
the program segments that have the greatest impact on performance, Quartz presents a list of

CHAPTER 2. RELATED WORK 9

procedures sorted by its weight plus the weight of work done on its behalf. The WCPA method
proposed in this thesis was inspired by Quartz. However, while Quartz incorporates the notion
of parallelism into the sequential UNIX tool gprof, we incorporate the notion of parallelism into
our own critical path analysis.

Another interesting tool is the TMP monitoring system developed by Haban and Wybranietz
for the INCAS experimental multicomputer environment [HaWy90]. TMP is a hybrid moni
tor which is designed t9 benefit from the advantage of both hardware and software monitors
while overcoming their deficiencies. A special hardware support, which consists of a test and
measurement processor(TMP), is designed and attached to each node in the multicomputer.
TMPs are used to collect and process event trace data generated by the instrumented appli
cation. All TMPs are connected via a separate network to a central station, thereby avoiding
any interference of transferring trace data to the host system. Since monitoring data are col
lected, processed and transferred using extra hardware devices, the operations of TMPs are
completely transparent. The overhead introduced by the monitor is minimal (less than 0.1 %).
Moreover, since events are generated by software, using the semantic information about the
program structure provided by the compiler, the monitoring software is able to present data in
an application-oriented manner. In TMP, probes to trigger events are placed in the operating
system kernel so that it is not necessary to recompile the user's program. The probe routines
write a trace entry to a special memory location which is then read by the TMP hardware.
TMP also provides a graphical user interface to display performance results. Although TMP
achieves a very attractive degree of transparency, the degree of hardware support it requires
makes it expensive and unportable to most multicomputer systems. The global interrupt ap
proach proposed in this thesis is partly inspired by TMP. We follow the principle of using
minimal, affordable hardware support to achieve performance beyond the scope of any pure
software monitoring tools. Several different approaches have been investigated in TMP to solve
the problem of global state and global clock.

1. A kind of logical clock algorithm (Lamport78] has been implemented to preserve the
causality relationship of events which occur on different nodes.

2. A software solution similar to the TEMPO algorithm [GuLa84] has been implemented to
synchronize the clocks on different machines .

3. The TMP hardware offers the use of a central physical clock which triggers the local time
counter on each TMP.

The current implementation of TMP only supports (1) and (2) and is able to synchronize the
clocks in the order of lOOµsec.

In summary the major drawback of their system is the need for extensive hardware support
and the lack of advanced tools for analyzing the performance data.

CHAPTER 2. RELATED WORK

2.2 Transputer Monitoring Tools

The research and development of monitoring tools on transputers dates back to Capon
and West's program transformation technique to monitor channel communications in Occam
programs (CaWe88]. In their system, efforts are made to insert monitoring processes and
additional communication channels between two communicating processes without changing
the semantics of interprocess communication in Occam. It is a source level instn1mentation
technique and programmers are required to manually transform their program before they can
be monitored. Recently Ca.i and Turner (CaTu89] extended this approach to monitor real
time Occam programs. The emphasis of their wor.k is to use a logical clock to minimize the
interference and achieve high transparency, in particular, to satisfy the real-time constraints in
some applications. It is based on program transformation and requires manually modification
of the original program. All of this work is specific to the Occam language. Neither system
addresses the problem of global clock and reporting overhead.

A third transputer monitor is the one developed at Hong Kong University [HoLa89]. It
measures the processor utilization and channel communications on an individual node. Three
different methods are used to measure the utilization of each processor: periodic probing, idle
counting and process profiling. Monitoring overhead is reduced by using assembly transputer
instructions and careful code optimization. Their tool is rather simple in functjonality. No
advanced analysis is made of the data. Only statistical summaries are supplied by their tool.

The Victor project [Shea89] at IBM provides hardware support for nonintrusive monitoring
in transputer-based multiprocessor. Monitoring is achieved with a separate hardware status
bus which is independent of the regular transputer links and is connected to a dedicated PS/2
monitor system. In each node there is a scan register and a scan bus through the system that is
controlled by the coprocessor adapter in the PS/2 coprocessor adapt r for real-time acquisition
of status data. The information collected for each node includes link a.ctivity, host id, memory
activity, and state of user programmable LEDs. Although the Victor h.a:rdware monHor achieves
a high degree of transpa.ren y, lt has the same problem as most other pure hardware monitors.
It can only be used to monitor low level activities of the system and is incapable of providing
users with views of the system in an application oriented manner.

One recent work in transputer monitoring is GRA VIDAL [VoZe90], a graphkal visualization
environment fot Occam programs on arbitrary transputer networks. It provides animated user
defined views of the algorithm during run-time. The user has to manually place special state
ments into his source code and GRAVIDAL will generate visualized version of his algorithm.
GRAVIDAL displays CPU load and link load as well as user-defined events on each node. A
logical clock algorithm has been implemented ln GRAVIDAL to order events on different nodes.
GRAVIDAL does not provide an analysis tool for performance tuning since its emphasis is on
graphical animation rather than performance studies of parallel programs.

Chapter 3

Performance Model

A parallel computation can be characterized by the way different components of the paral
lel program interact. There are two main streams in parallel processor design: shared memory
architecture and distributed memory architecture. Processes in a shared memory system com
municate via global shared variables, while processes on a distributed memory machine com
municate by message passing. The multicomputer network is a class of distributed memory,
MIMD parallel architecture. This chapter discusses the performance characterization of parallel
programs on a multicomputer network.

3.1 Definition of Multicomputer Networks

A multicomputer network is a locally concentrated set of loosely coupled autonomous nodes
interconnected in some topology, each with a microprocssor, local memory and hardware sup
port for internode communication. Since hardware costs usually limit the number of connections
on each node to a small number and the multicomputer network is only sparsely connected,
messages must often be routed through a sequence of intermediate nodes to reach their desti
nations [ReFu87].

The multicomputer network has the following characteristics which distinguish itself from
other parallel architectures:

• Scalability: Computing nodes can be easily added to a multicomputer network to obtain
extra processing power. Multicomputer networks of a large number of nodes have shown
to have very impressive peak performance.

• Message-based communication: Multicomputer nodes can only communicate via message
passing over the interconnection network. This distinguishes it from tightly coupled shared
memory architectures.

11

CHAPTER 3. PERFORMANCE MODEL 12

• Geographi'cal concentmtion: Unlike loosely coupled systems which consists of nodes over a
wide area multicomputer nodes are usually packaged into a few boxes in the same room.

• Communication locality: In contrast to LAN-based environments where communication
is unreliable and delays are measured in milliseconds, the communication in the multi
computer network is considered reliable and nearest neigh.hour communication is usuaJly
measured in microseconds.

Recent dev lopment in VLSI technology has paved the way for the development of multicom
puter networks. General purpose building blocks have been proposed to simplify the multi
computer design and construction. The lnmos transputer is among the most successful in the
commercial market [Inmos89]. The IMS T800 transputer is a single chip with a 32-bit pro
cessor, 4 Kbytes of on-chip memory, a floatin g point unit(FPU), four bidirectional bit-serial
communication links, and a simple interface to memory and I/0 devices. Both message passing
and process scheduling are supported in hardware , yielding a highly efficient implementation.
A multicomputer network can be easily constructed using IMS transputer boards. Appendix
A of this thesis will contain more detailed information about the transputer architecture and
construction of transputer-based multicomputer networks.

3.2 Graph Representation of Parallel Computation

A parallel program is composed of many concurrent processes running on asynchronous
multicomputer nodes, interacting with one another by message passing. From the program
mers point of view basic process activities include: process creation, process destruction and
interprocess communications. The execution of a process can be viewed as a sequence of prim
itive process events . Interproc ss communication can be synchronous or asynchronous. In this
thesis, we mainly discuss a so called semi-synchronous interprocess communication paradigm
which is supported by most operating systems on multicomputer networks. It is possible to
extend this model to systems whlch support strictly synchronous and asynchronous interprocess
communications. In the semi-asynchronous scheme, the sending process unblocks as soon as
the message is sent, wh.ile the receiving process blocks until the expected message has arrived.
Three types of primitive events are defined for interprocess communication activities: message
send, receive call and message arrive. The process is suspended between a receive call event
and the subsequent message arrive event.

Based on the previous discussion, a parallel computation on a multkom:puter network can
be formalized as a directed acyclic graph (DAG), called the execution graph G =< V E >
where V is the set of nodes and E is the set of edges. A node in the graph represents a
pro ess event. It is one of the primitive events or a user-defined event. The following is a min
imal set of primitive events for constructing the execution graph: process creation(proc_init),
process destruction(proc__exit), message send(msg_send), receive call(recv_call), and message ar
rive(msg_arr). There are two types of edges in the graph, which defines a partial order over the

CHAPTER 3. PERFORMANCE MODEL 13

set of all the nodes. A vertical edge represents the computation activities between two consec
utive events of the same process . The direction of the edge represents the temporal ordering of
the two events. A diagonal edge represents the communication between two processes. There
is always an edge from a msg_send event to a corresponding msg_arr event in the graph. No
edge exists between a recv_call event and the following msg_arr event because the process is
suspended a.nd there is no computation between these two events. The execution graph has the
following properties:

• In a parallel computation with n processes, there are exactly n nodes with in degree zero,
representing the incarnation of the processes.

• Each node in the graph has maximum in-degree 2.

• The maximum out-degree for each node is n if multicast is supported; 2 otherwise.

Each node in the execution graph can be tagged with the global timestamp of the corresponding
process event. The elapsed time between any two events can be calculated by comparing the
two timestamps. Figure 3.1 shows the execution graph of a parallel computation with and
without multicast.

3.3 Performance Metrics

In this section, we derive performance metrics for this system based on the parallel compu
tation model defined in the last section.

As in the performance analysis of sequential programs, the overall performance of a parallel
program can be measured by the program execution time. We assign a weight to each edge
in the execution graph equal to the elapsed time between its source event and its destination
event. The program execution time is given by the length of the longest path of the execution
graph. Figure 3.2(A) shows the weighted execution graph for a parallel computation with three
processes on two processors. Processor O timeslices between the two processes. The longest
path, or the critical path [YaMi88), is highlighted in the graph. The program execution time is
the sum of the weights of all the edges on the longest path, i.e. 25 + 8 + 5 + 10 + 3 + 3 + 15 = 69.

Two other important metrics for parallel programs are speedup and efficiency. Let T(n, k)
denotes the program execution time of a parallel computation with k processes on n processors,
speedup is defined as S(n,k) = T(l,k)/T(n,k) and efficiency is defined as E(n,k) = S(n,k)/n.
Speedup is bounded by the number of processors, i.e. S(n, k) ~ n. In the execution graph, let
Ci denotes the total amount of time process i spends in computation. Assuming that the same
amount of work is done it follows that I:7::::1 C, = T(l, k). Substituting this in for T(n, k) in
S(n, k), we obtain speedup as the ratio of total computation time to program execution time:

CHAPTER 3. PERFORMANCE MODEL

Process 1

proc-init

msg-send

msg-send

recv-call

Process 2 Process 3

proc-init

recv-calli

msg-arr

recv-call

I

msg-arr 1

proc-init

recv-calli

msg-send recv-call

msg-arr

recv-call
msg-send

rnsg-arr

proc-ex1 proc-exit proc-exit

(A) Parallel computation without multicast

Process 1

proc-init

rnsg-send

recv-call

rnsg-arr

rnsg-send

proc-exi t

P rocess 2

proc-1rnt

recv-callf

recv-call
I
I
I

msg-arr '

recv-calJ
I
I
I

proc-exit

14

Process 3

proc-1m!

recv-call

recv-call

msg-arr

proc-exit

(B) Parallel computation with multicast

Figure 3.1: An Example of Execution Graphs

CHAPTER 3. PERFORMANCE MODEL 15

. If there is no multitasking on the same processor, then Ci is the sum of the weights of all the
vertical edges that belong to process i . In a parallel computation where some processors are
timesliced among mult~ple processes , the calculation of Ci is more complicated. The execution
graph has to be relabelled by assigning CPU time rather than elapsed time as the weight to
the vertical edges in the graph. The CPU time of a vertical edge is the time the process is
active computing between 'its source and destination event. Let P denote the CPU time and
E denote the elapsed tj.me between the two events. P = E if there is no timeslicing. Let l:::.j
be a t ime interval between the two events and the number of active processes on t he processor
during an interval of t ime m; . Suppose there are l such intervals between the two events. The
CPU time is:

I
p = E _ I: (mj - 1)1:::.j

j=l ffij

The total computation time for a process can be computed by the sum of the CPU time of all
vertical edges that belong to that process. Figure 3.2(B) shows that the execution graph in
(A) with its vertical edges rel abelled by the processor time. The total computation time of the
execut ion graph is: L~=l Ci = (18 + 2 + 10) + (17 + 3 + 8) + (5 + 5 + 20) -= 85. The speedup of
the program on 2 processors is 1.23 and its efficiency is about 62%.

The granularity of a parallel program can be defined as the amount of time it spends
in communication routines as compared to the total amount of computation. Let M denote
the sum of the weights of all the diagonal edges in the execution graph. This is the total
communication time of the program. Since the total computation time of the program is
I::f=1 Ci, the computation to comm uni cation ratio is (I::f=1 Ci) : M. This ratio for the program
in Figure 3.2 is 80 : 20.

In addition to the overall performance metrics for the whole program, we are also interested
in the resource utilization on individual nodes over a given period of time. In a multicomputer
network, the two most important resources are processors and communication channels. Given
a time interval b.t, the degree of parallelism achieved in the system during t::.t can be derived
from the processor utilization of each individual node Ucpu;· Given n processors, the parallelism
of the system is calculated by: P6.i = (I::7= 1 Ucpu.J/n. If b.t = T, then parallelism is equal to
the efficiency of the parallel program i.e. Pt:i. t = E(n). Similarly, we can define traffic load of
the network during b.t as: LtJ.t = (I::~1 U1ink;)/m where U1ink; denotes the utilization of link i
during b.t and m is the total number of links in the network.

All of the above metrics are defined at the program level. That is, they reflect the perfor
mance of the entire program. From the execution graph, it is also possible to derive performance
metrics at the node level and process level, such as communication frequency between two nodes.
These are simply statistical summaries and their calculation is straightforward.

3.4 Weighted Critical Path Analysis (WCPA)

CHAPTER 3. PERFORMANCE MODEL

14

4

··· ····· ·· ········ ·······-····· ··· ·· ·· ··
proc-init

. . ! pn,c.;nhl 5

.............. ~~ P.~~~.i~~l recv-call

msg-send

recv-call

I
I

msg-arr:

15

recv-call

....
! proc-ex.it

proc-exit

I
I
I
I

26)

I
I
I
I

(msg-arr 5

20

Node 2

: ~~~.~;

(A) An execution graph with multitasking

proc-init

18

msg-arr

proc-exit

proc-init

recv-call
I

• I
I

: pmc-;ru,

15
1 recv-call
: I
: I
: I

17:

(msg-arr 5

20

8
j proc-exiL

proc-exit Node 2

Node I: ············· ········ ·· ·· ·· ············

(B) Relabelling the execution graph in (A)

Figure 3.2: Assigning Weight to An Extended Execution Graph

16

CHAPTER 3. PERFORMANCE MODEL 17

The performance measures described in Section 3.3 will supply users with answers to how
efficient their programs run. It does not answer questions the efficiency of their programs or the
locations of performance bottlenecks. The critical path analysis technique proposed in [YaMi88]
tries to focus the user's attention to the sequence of program activities which take the longest
time to execute. It is hoped that knowledge of the critical path of a program's execution helps
the user identify performance problems and better understand the behavior of their program.
While the critical path is useful in measuring the program execution time of a parallel program
(Section 3.3), the question we would like to answer is: does the sequence of program activities
that take the longest time to execute accurately reflect the activities which contribute most to
the performance of the program, or are several parts of the program which take equal time to
execute on one node equally important to the overall performance of the parallel program? A
positive answer seems to be intuitive for those who are used to programming in a uniprocessor
environment. However, in a parallel system, the degree of parallelism achieved has a dramatic
impacts on the overall performance of the program. For instance, executing a segment of code
on one node with all other nodes busy is not equivalent to executing for the sam~ period of time
with all other nodes idle. The latter indicates a potential sequential bottleneck in the parallel
application and thus has a more significant effect on the performance of the program. Generally
speaking there are two ways to deal with sequential bottlenecks in parallel programs. One is
to re-structure the program to remove the sequential component. This requires substantial
changes to the application and may not always be possible since many parallel applications
have an inherently sequential component. If f is the fraction of computation which has to
be executed sequentially, the upperbound for speedup on n processors is given by Amdahl's
law [EaZaLa89]:

1
S(n,k) < f + (1 - /)/n

Another approach is to optimize the code that has to be executed sequentially, thus reducing
the fraction of sequential computation f. Therefore, it is essential to identify the sequential
bottlenecks in the application. Consider the portion of a critical path shown in Figure 3.3.
Suppose the number of processor is 100. A conventional critical path analysis tool would assign
a weight,the elapsed time, to each edge. The elapsed time between event A and event B is 100
msec, while the elapsed time between B and C is 500 msec. It appears that the computation
activities between event B and event C have a more significant effect on the performance of the
program since they need longer time to execute. Since Pt::,.t = 0 between A and B, which means
all other nodes are idle during that time interval, improving the execution time between A and
B by 50% would reduce the program execution time by 50 msec. On the other hand, since all
other nodes are busy between B and C, reducing the execution time between B and C has little
or no effect on the performance of the program unless the execution time on all other nodes is
also improved. The critical path of a parallel computation consists of a large number of events
and it is difficult for the user to determine the relative importance of computation activities on
the critical path to the performance of the program. The above example shows that the elapsed
time alone is insufficient to capture the relative importance of concurrent program activities.

CHAPTER 3. PERFORMANCE MODEL 18

pf=0 pf=l

0 100
A-

(10100) 0 500
B -

(500) 0
Figure 3.3: A Portion of the Critical Path

Based on the above observation, we present an analysis method, called weighted critical path
analysis (WCPA), which incorporates the notion of parallelism into the critical path analysis.
The purpose of WCPA is to the identify sequential components and activities with low degree of
parallelism on the critical path. It is similar to the performance measurement technique used in
Quartz [AnLa89] on shared memory machines(see Chapter 2). In WCPA, we apply the notion
of parallelism to process activities on the critical path rather than to procedure activities in
Quartz due to the unacceptable overhead of monitoring procedure level events in multicomputer
networks. In the WCPA approach, an edge in the execution graph is weighted by two factors:
the elapsed time between the two events and the degree of parallelism during that period. Let
Pt:.t denote the parallel factor during time interval ll.t where ll.t is the elapsed time between
the two events and n is the number of processors in the system, the weight assigned to the edge
is computed by:

When Pt:.t = 1, i.e. maximum degree of parallelism is achieved, the weight assigned to an edge
is equal to the elapsed time ll.t; when Pt:.t = 0, i.e. there is no parallelism in the system, the
weight is maximized at n6t. An interpretation of this is that when there is no parallelism,
the execution on one node is wasting the resources on all other nodes, virtually consuming
the resources of the entire system. Now, the longest weighted path in the execution graph
represents the sequence of program activities which have the most significant effects on the
overall performance of the parallel program. In Figure 3.3, the weight assigned to edges by the
WCPA method is shown in brackets. Note that the weight for edge < A, B > is now 10100.
far more than the weight of edge < B, C > 500. This correctly reflects our intuition about
the relative importance of these program activities. A good metric to measure the relative
importance would be the percentage of each portion on the weighted critical path out of the
total weight of the whole path. The computation activities which weight the most on the critical
path represents "the hottest of hot spots" in the program. Optimization of these components
is expected to result in substantial improvement of the performance of the program.

CHAPTER 3. PERFORMANCE MODEL 19

3.5 Summary

In this chapter, we introduced a graph theoretical model of parallel computation on multi
computer networks, which we called an execution graph. We show that a sufficient set of five
primitive events: proc_init, proc_exit, msg_send, recv_call and msg_arr are adequate to con
struct the execution graph for any parallel computation. Various performance metrics can be
derived from the execution graph. Based on this model, we also developed a method to diag
nose performance problems in parallel applications. This was based on the critical path analysis
technique but incorporated the notion of parallelism in locating performance bottlenecks of the
program. The method we proposed is shown to be able to reflect the relative importance of
program activities to the overall performance more accurately than the conventional critical
path analysis technique. The model and methods proposed in this chapter can be adapted to
other message-based parallel and distributed environment with minor modifications.

Chapter 4

Design of the Parallel Monitor

T his chapter describes the design of a parallel performan c monitor and its implementation
on transputers. In Chapter 1, we discussed t he major issues in monitoring parall l and dis
tributed systems and possible solutions to these problems. In this chapter the technique and
approaches used to overcome these problems are described in detail.

4.1 Environment

We begin with a brief description of the underlying instrumentation environment. One
of our design goals is that the instrumentation should require minimal changes ~o the target
hardware and software system.

4.1.1 Hardware Architecture

The parallel monitor is currently implemented on a 74-node transputer-based multicom
puter in the Department of Computer Science at UBC. The multicomputer consists of a Sun
4 workstation as the host and 74 IMS T800 transputers, each containing 4 Kbytes on-chip
RAM, 4 bidirectional serial links, and 1 Mbytes or 2 Mbytes local memory. The 74 transputer
nodes are interconnected through 10 programmable crossbar switches. Detailed description of
the hardware architecture of the T800 transputer and the C004 crossbar switches and their
physical connection can be found in Appendix A of this thesis . The transputers in the network
are connected to the host Sun workstation by a VME bus interface. There are currently seven
connections between the host and the transputers, Nodes which do not have direct connection
with the host can only communicate with the host through intermediate nodes.

The interconnection topology of the transputer network can be dynamically reconfigured by
software running on the Sun which sends switch setting commands to the crossbar switches. Fig-

20

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 21

ure 4.1 shows a multicomputer network with 72 transputers configured as a 8x9 2-dimensional
cylinder .

4.1.2 Underlying Operating System

The target software_.system is the Trollius Operating System [Burns88), a parallel operat
ing system developed jointly at Cornell University and Ohio State University for distributed
memory multicomputers and ported to the transputer-based multicomputer at UBC. Trollius
provides a cross-development environment for parallel programming on transputers. It con
sis ; _, of two parts, one part which runs on the host and the second part running on transputer
nodes. Trollius executes on top of UNIX on the host and provides a user command interface
to boot the node, download programs to transputers, kill processes, etc. The most important
tool provided by Trollius is message passing between processes. There are two levels of message
passing in Trollius. The kernel level allows communication between processes on the same node:
the network level allows communication between processes on different nodes, as well as on the
same node. A Trollius process sending a message does not directly specify the process to receive
the message, or vice versa. Instead, each process specifies an event type in the header of the
message. If the event type specified by the sending and receiving process match, the message
will be passed from the sender to the receiver. In network level message passing, the sender
also has to specify the destination node of the message. Since the recipient of the message does
not have to specify the source node, it can receive messages from a variety of senders. Trollius
supports both an asynchronous and semi-synchronous interprocess communication paradigm
as described in Chapter 3. Multicast facility is also supported in Trollius. Other tools include
library routines for process creation, process destruction, signal handling, and access to remote
file systems. For a detailed description of the Trollius Operating System, readers are referred
to [Burns88).

4.2 System Structure

Figure 4.2 shows the basic structure of the parallel monitor. There are three major compo
nents: data generating and collection, global control, data analysis and display. One transputer
in the network is distinguished as the master node. It is capable of interrupting all nodes in
the system to perform measurement tasks simultaneously.

The monitoring software running on the master node includes an interface that accepts
monitor command from the user, and a controller that generates global interrupt signals to
synchronize the monitoring activities on all slave nodes. The data generation and collection
mechanism include:

• Event probes inserted into the application running on slave nodes used to generate trace
data, and a meter process to collect the event traces as they occur;

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR

VME BUS

SUN 4

Workstation

Figure 4.1: A Multi-Transputer Network Configured as a 8x9 2-D Cylinder

22

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 23

Host

Display

Master

f onttoll1 [furerface]

____ Ar_b_itr_~_~e_t_w_o_rk ____ ~

Slave [B;ffe~
Mgr

Slave [Bu:er]
Mgr

ackend Meter

Event _________________________ __,

Figure 4.2: Basic Structure of the Parallel Monitor

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 24

• A backend process on each slave node that performs sampling and clock synchronization
on the arrival of global interrupt signals.

• A buffer pool on each slave node to store the trace data and cache intermediate results
from the meter process a.nd the backend process. The buffer manager flushes the buffers
when they are full to make room for new trace entries. The trace data are sent back to
the host for analysis using the message passing mechanism provided by the underlying
operating system.

• The collector on the host collects trace data from all of the slave nodes.

The host collector sends the data to the data display which displays the performance results
graphically to the user in real time on the frontend host station. Th data are also dumped to
trace files for input to he data analysis packages.

4.3 Basic Instrumentation Techniques

There are two traditional ways of monitoring a computer system: event sampling and event
tracing.

4.3.1 Event Sampling

Event sampling is a statistical approach to obtain an accurate estimation of the behavior
of the computer system. The measurement task is performed at a pre-specifi d time interval
for a long pedod of time. The main advantage of event sampling is that the amount of data it
generates is small as compared to other approaches. This both reduces the monitoring overhead
and simplifies the analysis.

In order for the data collected by sampling to be represen tative, sample size should be
large and the sampling interval should be short so that the distribution of workload is hom o
geneous [Chan87]. Event sampling has proved to be the most economical and effective way of
measuring resource utilization of the system. In a multicomputer network, sampling can be
used to measure the utilization of processor and communication channels on each node with
minimal overhead. Rowever, unlike event sampling in uruprocessor systems, the sampling ac
tivities on different nodes must be coordinated to obtain results that reflect a consistent global
view of the entire system.

4.3.2 Event Tracing

Unlike event sampling, event tracing measures events as they occur. Special software probes
are inserted into strategic locations in the application programs or in the operating system kernel

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 25

to trigger the recording of interesting events. Event traces are captured, buffered, and analyzed
for display to the user. A major drawback with event tracing is that it is expensive when the
frequency of the occurrence of the events to be traced is high.

In multicomputer networks, the volume of events generated on all node during a parallel
computation can be enormous, however, the buffer space available on each node is very lim
ited and the cost of transferring large amount of data across the network is extremely high.
Therefore, event tracing is only suitable for measuring high-level events in systems with these
characteristics.

Another problem with event tracing in a parallel system is that though events that occur
on the same node can be totally ordered, events from different nodes may arrive at the host
in unpredictable order. A single clock is needed to re-order these asynchronous events on the
host. This requires the local clocks on different node be synchronized.

4.3.3 Hybrid Monitor

The parallel monitor we designed was a combination of the sampling and event tracing.
It uses sampling to measure the resource utilization on each node, but uses event tracing to
monitor the process events defined in Chapter 3. The process events collected are used by
the analysis tool to reconstruct the complete execution history of the parallel program and to
provide insight into the run-time behavior of the program.

4.4 Global Control

4.4.1 The Global Interrupt Approach

In order to obtain precise global state and synchronized global clock in the multicomputer
network, we used a global interrupt approach, in which a master node interrupts all other nodes
in the system to perform the measurement tasks almost simultaneously. A basic assumption
is that the time required to respond to a global interrupt signal is negligible. The global
interrupt approach can be used to start or stop a computation on all the nodes in the system.
By generating periodic global interrupt signal, measurement tasks can be performed at some
predefined time interval ·on system-wide basis.

It is generally not always feasible to implement the global interrupt scheme in a loosely
coupled distributed systems. However, the multicomputer network features geographical con
centration and communication locality, it is usually easy to extend such system to support
global interrupt. Only minimal hardware support is needed to implement the global interrupt
in a transputer-based multicomputer network.

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 26

4.4.2 Hardware Extension

Hardware requirements for implementing global interrupt scheme in a multicomputer net
work are:

1. A mechanism on each multicomputer node to accept interrupt signal and transfer control
of the processor to the interrupt handling routine without delay.

2. A mechanism to deliver the external interrupt signal to all nodes in the network.

3. A mechanism to generate the interrupt signal, either from a multicomputer node or from
any other external source.

The IMS T800 transputer provides an event channel in addition to the four data channels
on each board. When the input of the event channel is held high, the process waiting for the
event signal is scheduled. If the process blocking on the event channel is a high priority one and
no other high priority process is running, the latency is at most 58 processor cycles [Inmos89].
Since the processor speed of the T800 transputer is 20 MHz, the delay in responding is less
than three microseconds.

In order to deliver the global interrupt signal to a.11 transputers in the network, we built
a special hardware circuit. The circuit is basically a fan-out with one input and 74 outputs.
The event channel of each transputer is connected to an output of the circuit. A data channel
on the master node is connected to the input of the circuit. The global interrupt signal is
generated by having the master node send to the data channel connected to the input of the
circuit. Figure 4.3 shows a picture of the department's transputer-based multicomputer with
the hardware extension. Seventy four transputers are physically split into two boxes, with 10
nodes in the sma.11 box and the rest of them in the big box. The global interrupt circuit is
located on the top of the larger box.

4.4.3 Global Sampling and Clock Synchronization

A global interrupt is used to turn ON and OFF the monitor on all nodes dynamically. It
is also used to perform global sampling and clock synchronization in the network.

A high priority controller process on the master node triggers the interrupt periodically at a
pre-specified time interval. The first interrupt signal indicates the start of the parallel monitor.
The controller process keeps sending until the monitor has been turned OFF explicitly by the
user. The monitor can he restarted after it has been turned OFF.

On each slave node, there is a high priority hackend process waiting for the interrupt signal
on the event channel. Upon the arrival of the event signal, it checks a special memory loca
tion [Beers89] to determine whether the processor and each of the data channels are currently
busy, and increments the counters accordingly. Since the event signals are periodic , the hack
end process can also update its own local clock at a predefined interval by setting the clock

Figure 4.3: A Picture of the Transputer-based Multicomputer

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 28

to the expected value. The result of sampling is reported by periodically generating an event
entry and writing it to the buffer pool. The overhead of sampling and clock synchronization
is low since the code to be executed is exceedingly simple. It contains only a few transputer
instructions and runs for less than 10 µsec. If resynchronization is performed every second, the
overhead is less than 0.0001%. The termination ofa.monitoring session is detected on each slave
node by not receiving the interrupt signal after a pre-defined timeout period. In the current
implementation, the timeout period is set to be twice of the sampling interval.

The accuracy of clock synchronization will be affected if the monitor is not the only high
priority process since the backend process will not be able to respond in a timely fashion when
the interrupt signal arrives. Fortunately, in our environment, by default all user processes
and Trollius server processes run in low priority. The only system processes that have to
run in high priority are the kernel process and channel processes. The execution of these
processes is transient. An adaptive synchronization scheme has been implemented in order to
factor out the interference of these high priority processes to clock synchronization. In_ this
scheme, the local clock is reset only if the monitor process gets control of the processor within
a legitimate period of delay, say 20 microseconds; otherwise the value of the clock remains
unchanged. Experimental result shows that this scheme reduces the worst case drift of the
clock synchronization algorithm substantially. A limitation is that if user processes are allowed
to run in high priority, the clock synchronization could he postponed indefinitely. This problem
is almost impossible to avoid; however, for most applications it is common to have all user
processes run at low priority. Section 5.3 reports on experimental results for the accuracy of
our clock synchronization algorithm.

4.4.4 Summary

In this section, we have described the global interrupt approach and how it is used to
obtain global snapshots of the system and synchronize local clocks in the transputer network.
In contrast to the logical clock approach [Lamport78J has traditionally been used to order
a.synchronous events and obtain a consistent global state in distributed and pal'allel systems.
The logical clock approach has also been successfully 11Sed for parallel debugging in existing
systems (Fowler88][VoZe90]. However, the logical time only reflects the temporal order of
events but not the physical elapsed time. Since the differences of logical timestamps are not
comparable with each other, logical time cannot be used to measure the performance of message
transmission. Moreover, the expense to run the logical clock algorithm is high. Therefore, a
logical clock did not satisfy the requirements of our system.

Another approach to the global clock problem is the pure software clock synchronization
algorithms which estimate the drifts between different clocks by passing messages around the
network [Duda87][GuLa84](Shumway89]. This is a time-consuming approach since the algo
rithm involves exchanging a lot of messages among different nodes and the accuracy is disap
pointing. Chapter 5 gives a comparison between the global interrupt approach we used and the
best known software synchronization algorithm on the transputer.

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 29

As compared to other techniques, the global interrupt approach has the advantage of high
accuracy, low overhead and simple implementation. We have showed it can be applied to a
transputer network with minimal additional hardware support.

4.5 Event Tracing

4.5.1 Event Generation

There are five types of standard events traced by the monitor: proc_init, proc_exit, msg_send,
recv_call, msg_arr. As shown in Chapter 3 these events form a sufficient set of events which
can be used to reconstruct the execution graph of the parallel program. Users can also specify
their own events to be traced in the program. The probes to generate standard events are
inserted into the appropriate routines in the Trollius run-time library. Appendix B discusses in
detail the probe routines and the changes made to the Trollius library. In order to monitor an
applications, users must recompile their programs and link to the instrumented version of the
runtime library.

An additional library routine probe() is provided to allow user-specified events. The user
is responsible for inserting the probe() call into the his source problem to generate the user
defined event. Our principle is to minimize monitoring overhead by tracing a minimal set of
events but provide users the flexibility to monitor additional events.

Each invocation of the probe routine generates an event trace entry. It is encoded into
a message and sent to the meter process on the local node using the Trollius kernel message
passing mechanism. The structure of event entries is shown in Figure 4.4.

4.5.2 Buffer Management

The event trace data collected by the meter process as well as the utilization data generated
by the backend process are stored locally in a buffer pool before they are sent back to the host
station for display and analysis.

The buffer pool is organized as a double-buffer structure (Figure 4.5). Each buffer contains
an identical number of trace entries. After one buffer is full, it is automatically switched to
the other one. The buffer manager is a low priority process which periodically checks the
status of buffers. Data in a full buffer are encoded into a message and sent to the host using
Trollius network level message passing. The advantage of the double-buffer structure is that
monitoring processes can continue writing trace entries to one buffer while the other is being
flushed. Operations on the shared data structure are critical sections and are protected by
disabling timeslicing during operations which access the buffer pool. If both buffers are full and
new trace entries are being generated, the meter process blocks until a buffer has been emptied
by the buffer manager. Since the backend sampling process cannot wait, it simply increments
an overflow counter and proceeds. The overflow counter counter keeps track of the number

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 30

1 4 4 12

~ROC-INIT I Times1amp Process Id Process Name

1 4 4 12

PROC-EXIT Timestamp Process Id

1 4 4 4 4 4

MSG-SEND Timestamp Process Id Event Type Dest Node MsgLength

1 4 4 4 4 4

CV-CALL Timestamp Process Id Event Type Buffer Size

1 4 4 4 4 4

MSG-ARR Timestamp Process Id Event Type Source Node MsgLength

1 4 16

User-defined Timestamp Auxiliary Information
Event

Figure 4.4: Structure of Trace Entries

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 31

of utilization events dropped by the monitor due to overflow. At the end of each monitoring
session, the value of the overflow counter on each node is reported to the host monitor.

A B

Current Buffer

Reserve Buffer

Figure 4.5: Double-Buffer Structure

4.5.3 Adaptive Reporting

The trace data at each node are sent back to the host using Trollius network level message
passing mechanism. The advantage of using the same communication mechanism as the ap
plication is the simplicity in implementation. It also makes the design of the parallel monitor
more portable to other systems since there no need to change the communication mechanism
provided by the underlying operating system. Since the communication network is multiplexed
by the monitor and the application, status messages may interfere with normal communication
of the application, and affect the accuracy of the performance results measured by the monitor.
Experimental results show that when the frequency of flushing buffer is high, up to 80% of the
slowdown of the application is caused by monitor communication (See Section 5.2).

An adaptive reporting scheme was implemented to reduce the interference of monitoring to
application communication. In this scheme, the monitor on each node keeps track of current
load of the network. Monitoring data are sent only when the network is lightly loaded. The
resource usage data measured by global sampling gives a very good indication of the current
status of the transputer network, and this information can be used by the monitor to determine
whether the trace data should be sent. Ideally, each node has complete load information of all

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 32

processors and communication channels and can make the decision based on an global picture of
the whole system. Howev r, due to the inherent communication delay, the resource utilization
of one node will have been already obsolete when it is propagated to the monitor on a. remote
node. Therefore, the information collected by the monitor does not reflect the most up-to
da.te consistent global view of the system. Also, it involves passing a lot of messages in the
network. The approach we use is a distributed algorithm in which each processor's monitor
decides whether or not to send the monitoring data. based on local load information. A decision
is ma.de at each step on the path the monitoring message is routed to the host. Since the load
information on the local node is always up-to-date, the monitor is able to make an accurate
prediction for the next step. A predefined threshold function is used by the buffer manager
on each node to determine whether the node is currently overloaded and whether to send the
trace data. Let Ucpu denotes the CPU utilization. lflink i is the one tile monitor uses to send
trace data to the host, let Ui denotes the utilization of this link. The threshold function J is
computed by: J = o.Ucpu + {3U; where o. and f3 are coefficients obtained from empirical data..
If J > 0.8, the node is considered overloaded and the sending of monitoring data is postponed.
If all buffers on the local nodes are full, the buffer manager has no choice but to -flush the
buffers regardless of the current status of the network. The buffer size, reporting intervaJ, and
threshold function have to be selected carefully to achieve optimal performance. Chapter 5
contains an empirical study on tuning these parameters.

In the current implementation, the adaptive decision is made only at the first step when
the monitoring message leaves its origin. Implementation of the complete scheme requires
substantial changes to the routing mechanism of the underlying operating system and affects
the portability of the monitoring system. The preliminary implementation of the adaptive
reporting scheme shows up to 50% improvement over the static scheme in term of degradation in
the performance of the monitored application. Experimental results indicates that the adaptive
scheme improves the performance more substantially for communication intensive applications
since they are more sensitive to the interference of the monitor communication.

4.5.4 Summary

Minimizing the communication overhead introduced the monitor is an important issue in
monitoring multicomputer networks. Some existing systems [HaWy90] resort to a separate com
munication network for monitoring messages to eliminate the effect of monitoring. However,
in most multicomputer networks, a separate network is not usually available for monitoring
purpose and is expensive to install in the system. Some systems (Parasoft88] store and process
the trace data locally until after the application computation terminates. However, in a mul
ticomputer network where buffer space on e~LCh node is extremely limited, it is impossible to
collect adequate information about the execution of any substantial application. Moreover, this
approach does not permit real-time monitoring, which is desirable for ma.ny applications. The
adaptive reporting scheme has proven to be an effective approach to this problem. Refinement
of this scheme is expected to result in further improvement of the performance of our tool.

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 33

4.6 User Interface

The para.llel monitor is designed so that it can incorporate a wide range of user interfaces.
An simple command interface has been implemented for users to start and stop the parallel
monitor interactively at the terminal. A programming language interface is also supported by
providing two additional library routines start_monitor() and stop_monitor() so that the user
may turn the monitor ON and OFF from within their programs.

Originally a simple interface was implemented to display the performance result to the
user as text lines. The textual interface does not allow users to visualize the execution of
their programs and was inconvenient to use. An X window-based graphical interface has been
developed to display performance results to the user as easy-to-read chart and graphs. Here we
give a brief description of the functionality of the graphical display.1

The output of the graphical display includes a main menu, the network topology, the global
clock, and the execution graph. A sample view is shown in Figure 4.6. The main menu is the
control panel for the parallel monitor. The window in the upper right corner in Figure 4.6
displays the topology of the transputer network. The CPU load for each node is shown in the
square box representing a node in the network. By clicking on the link which connects node
0 and node 1, a small rectangle box is popped up to display the utilization of the selected
transputer link. The global clock window (the one in the upper left corner) shows the current
time relative to the elapsed time of the whole program. The clock value can be set, reset, start,
stop or adjust speed by clicking on the corresponding buttons in the window. The window on
the lower half of the screen displays the execution graph of the parallel program. Different icons
are used to represent different types of events in the graph. In Figure 4.6, a filled left triangle
represents a msg_send event. Open and filled right triangles represent recv_call and msg_arr
events respectively. The communication patterns of the program can be easily visualized in the
execution graph. Figure 4.6 shows a broadcasting from each node in the system. The vertical
and horizontal scrolling bars allow users to conveniently browse through the execution graph
or focus on only a portion of the execution graph. The display for both node utilizations and
the execution graph are updated as the global clock proceeds. The user can also obtain more
details of each event in the execution graph by clicking on the icon representing the event. A
new window pops up with detailed description of the event being selected. For instance, if the
selected event is a msg_send, then the sender process id, the type and length of the message, the
destination node and the time the message was sent will be displayed to the user. The weighted
critical path generated by the analysis tool is highlighted on the execution graph, allowing the
user to examine the critical path graphically. The graphical interface is currently implemented
using the InterViews [LiCaV187] C++ graphics toolkit on top of the X window system. Our
experience shows that a graphical user interface is an indispensable component of any parallel
and distributed monitoring tool.

1The design and implementation of the graphical interface will be described in detail in Hilde Larsen's M.Sc.
thesis.

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 34

lloln Neru
(E)

=====(Se\14>]

~ c eo,,,, l

l!ilPnfD,_,..

Figure 4.6: Graphical Display of Performance Result

Chapter 5

Testing and Verification

Accuracy and overhead are the two most important indicators of the success of a monitoring
tool. In this chapter, we present the testing and verification results for our monitoring tool.
To measure the accuracy of the monitoring data, we used an artificial application with con
trollable behavior and predictable performance. The parallel monitor is then used to measure
these programs. The accuracy of the performance result reported by the monitor is derived
by comparing it to the expected result of the program. Both artificial and real benchmarks
are used to measure the overhead of the parallel monitor. Efforts have been made to isolate
various sources of overhead and to tune the parameters of the monitoring program to obtain
optimal performance. The accuracy and overhead of our clock synchronization technique is also
discussed and compared with other software clock synchronization algorithms reported in the
literature.

5.1 Validation of Monitoring Result

The performance results reported by the monitor is accurate if it correctly reflects the
behavior of the application program when it runs without the monitor. In order to validate
these results, the behavior of the monitored application must be known in advance. We have
designed an artificial application with predictable behavior to verify the correctness of the
monitoring results.

The parallel monitor reports the processor and channel utilization on each node in the
transputer network. We designed two sets of programs with artificial workload to measure the
accuracy of the processor and link utilization reported by the monitor. Given a predefined
time interval tlt and an expected workload e, the artificial processor load program computes
by incrementing a dummy counter for l% of the time during tlt and sleeps the rest of the time.
Similarly, the artificial link load programs on neighbouring nodes will keep exchanging messages
for 1% of the time during tlt and keeps the link idle the rest of the time. To guarantee that the

35

CHAPTER 5. TESTING AND VERIFICATION 36

communication channels are busy, all artificial link load processes run in high priority and use
low level transputer instructions in() and out(). The operating system level message passing
primitives are not used in order to avoid unpndictable or extra context switches. Each artificial
application is measured over an extended period of time: T ~ 6.t. The experiment is rep ated
a large number of times and the average, range and standard deviation for the performance
results reported by the monitor are calculated for each artificial workload. Table 5.1 shows the
validation results for processor utilization. Table 5.2 shows the validation. results for link uti
lization. In both cases, f.).t = 1sec, T = lOmin, and the result is computed over 10 experiments.
It can be seen from the tables that both processor utilization and link utilization measured by
the monitor are very accurate, with worst case deviation less than 5% and standard deviation
less than 2%.

Expected Load Average Load Range Standard Deviation
(%) (%) (%) (%)
10 10.62 9 - 12 0.89
20 20.72 19 - 22 1.13
30 30.32 29 - 32 0.82
40 40.10 40 - 41 0.30
50 50.09 50 - 51 0.29
60 60.08 59 - 61 0.38
70 70.32 68 - 72 0.96
80 80.13 78 - 81 0.88
90 89.90 89 - 90 0.30
100 99.90 99 - 100 0.30

Table 5.1: Validation of Processor Utilization

Expected Load Average Loa<l Range Standard Deviation
(%) (%) (%) (%)
10 10.41 9 - 12 0.83
20 19.46 17 - 20 0.73
30 29.00 27 - 30 0.87
40 38.27 35 - 40 1.54
50 48.80 46 - 50 1.09
60 58.60 56 - 61 1.58
70 68.82 67 - 71 1.36
80 79.14 77 - 81 1.60
90 89.71 87 - 92 1.69
100 99.31 98 - 100 0.79

Table 5.2: Validation of Communication Channel Utilization

The accuracy of the resource utilization result is affected by the interval of global sampling.

CHAPTER 5. TESTING AND VERIFICATION 37

The sampling interval must be short enough for the distribution of workload to be homoge
neous, but long enough to keep monitoring overhead within an acceptable range. One criteria
for selecting the sampling interval is that it need not be performed more frequently than events
occurs. Since the frequency of interprocess communication events in Trollius is measured in a
few hundred microseconds, the sampling interval need not be less than 1 msec, but (probably)
should not exceed 10 msec·. Figure 5.1 shows that the monitoring overhead decreases as the
sampling interval increases. The overhead shown in the chart is in fact the sum of the sam
pling overhead and the reporting overhead. Reporting overhead decreases as sampling interval
increases because trace data are reported less frequently. However, since the reporting interval
is relatively long as compared to sampling interval, its effect on the monitored program does
not show linear behavior. This is why in Figure 5.1 the overhead does not decrease linearly as
sampling interval grows. Based on the result in Figure 5.1, 5 msec seems to be the best choice
since the overhead remains almost constant at 2.5% once the sampling interval is increased to
5 msec. The results given in Table 5.1 and Table 5.2 are measured with a global sampling
performed every 5 msec on all nodes.

Overhead (%)
l : ··· ··· ... : : : : : :

.

. : : : : : i
8 : : : : : : :

0 o o o O o I
o o o o o I

o • o o o I ·········· ········ ·· . ··· ········· ····· ·················· ····· ··· ·· ·············
• • ■ • • . ' . . .

I O O 0

2 L L \ \ : : ; ;
o o • o o I o I
I • o • • 0 •
: : : : : ! !

2 3 4 5 6 7 8

Sampling Interval (msec)

Figure 5.1 : Monitoring Overhead for Different Sampling Intervals

The accuracy of performance metrics such as program execution time relies on the time
measurement of the traced events, which in turn relies on the accuracy of the global clock. The
accuracy of clock synchronization in the monitoring system will be discussed in Section 5.3.

5.2 Measurement of Monitoring Overhead

CHAPTER 5. TESTING AND VERIFICATION 38

The overhead incurred by the parallel monitor is measured by the performance penalty
(slowdown) it introduces to the monitored appli cation. Let T be the program execut ion time
of the parallel application when it runs without t he monitor, and TM be the program execution
ti.me when the application runs with the monitor. The overhead is computed by (TM - T)/T x
100%.

In Section 1.1.2, we discussed the various sources of monitoring overhead. In our experi
ments , we isolated different sources of monitoring overhead and measured each separately. Our
purpose was to identify which one contributed most to the overhead in our system. The parallel
monitor is funct ionally decomposed into three components, labelled:

• A: global sampling and clock synchronization;

• B: event tracing;

• C: reporting.

The monitoring overhead caused by different components was _m a.sured by disabling one or
more of them during different monitoring sessions. For reporting(C), we measured both the
static reporting scheme (Cs) and the adap tive reporting schem (CA) as proposed in hap
ter 4. The application used to evaluate the monitor was a parallel Cholesky 's factorization
algorithm implemented under Trollius on the transputers. The input of the program is an x n
matrix. During the computation, the matrix is decomposed into submatrices which are pro
cessed concurrently on different nodes. The size was held constant so that as the number of
nodes increases, the granularity of the computation becomes finer. In Table 5.3, the overhead
to monitor this application is shown when runnmg on different topologies with constant input
size 65 x 65. The overhead attributed to differen t components on each row. A+ Cs means
the monitor only performs global sampling and static reporting. A+ B means it only performs
sampling and event tracing without reporting the results to the host. Results for other rows
can be interpreted in similar ways.

Topology Overhead (%)
(Mesh) 1 X 2 2x2 2x4 4x4 4x8 6x8
A+CA 0.5 0.8 1.1 2.4 0.7 3.6
A+B 2.0 1.2 1.5 1.4 3.7 9.7

A+B.+Cs 2.8 2.4 5.8 8.1 42.6 45.2
A+B+CA 2.6 2.4 5.3 5.4 20.9 39.1

Table 5.3: Monitoring Overhead for Cholesky's Factorization Program

The results given in Table 5.3 show that the overhead of both sampling(A) and event
tracing(B) is low, less than 4% in most cases. It also shows that the overhead of reporting(C)
is reasonably low when executed on topologies with less than 16 nodes (the 4 x 4 mesh). The
granularity of the 65 x 65 matrix on 16 nodes is reasonable as each node get a 4 x 4 submatrix.
As the computation becomes too fine-grain ed on larger topologies, e.g. the 4 x 8 or 6 x 8

CHAPTER 5. TESTING AND VERIFICATION 39

mesh, the overhead incurred by reporting monitoring data increases dramatically to over 40o/c .
This is because the communication of the application is so intensive that the interference w.iLh
monitoring message severely degrades the performance of the application. The result for the
adaptive reporting scheme (A + B + CA) indicates that substantial improvements are possible
by reducing the interference of reporting to application ommunication.

Table 5.4 shows the overhead introduced to the Cholesky's factorization program with dif
ferent size input. In this table the same 2 x 4 topology was used. The overhead is the sum of
sampling, event tracing and reporting. Measurements are made for both the static reporting
scheme and the adaptive reporting scheme. The number of events generated by the application
for different size of input is also shown in the table. Note that overhead decreases as the input
size increases. On a fixed number of nodes, the larger the size of the input matTix, the less
fine-grained the parallel computation and the less overhead the monitor communi cation incurs.
This in combination with Table 5.3 supports our claim that the major source of monitoring
overhead lies in the communication bandwidth used to report monitoring data. We can also
conclude from these experiments that the overhead of reporting decreases as th_e granularity of
the parallel application grows. The result in Figure 5.3 indicates that the adaptive reporting
scheme is an effective means to reduce the communication overhead of the parallel monitor.
However , when the overhead is low, ad aptive and static reporting scheme behave basically the
same (See Figure 5.4). For parallel applications with reasonable granularity, the ovel'head in
curred by the parallel monitor is within acceptable range (below the 15% performance penalty
suggested in [Reed89]).

Overhead (%)
Matrix Size Number of Events Static Reporting Adaptive Reporting

9x9 399 6.1 8.9
29 X 29 871 8.0 6.7
65 X 65 2032 5.8 5.3

144 X 144 4195 2.3 1.6
234 X 234 9388 1.1 1.1
504 X 504 14590 1.0 1.0

Table 5.4: Monitoring Overhead for Input of Various Matrix

Another source of monitoring overhead which does not affect the running time of the pro
gram is the memory space allocated to store the data collected by the monitor on each node.
Memory is often is scarce resource on transputers. It is important to minimize the buffer space
used by monitor so that memory can be used for scaling up the size of the problem. However,
reducing the size of the buffer pool would increase the frequency of reporting, resulting in higher
overhead. Therefore, a trade-off has to be made between satisfying the memory constraint and
reducing communication overhead of the monitor. Figure 5.2 shows the monitoring overhead
for different buffer sizes for the Cholesky's factorization program with input size 65 x 65 on a
4 x 4 mesh.

CHAPTER 5. TESTING AND VERIFICATION 40

Overhead (%)

220

200

180

160

140

120

100

... ·r ! r

.. , T l' T

: :+ r:r + :::::::::
..... 1 , , T

:: ::::::r::: ... r::::::r::::::r ::::::: ::::::::: ::: :: :::: :::::::::
80 , !-.... .. _J ,
60 : 1 r 1 .. ·····

: : : ;
40 -i .. ·······1·· , :·······
2 0 ; 1....... , T........

! ~ :
64 128 192 256 320 384 448 512

Buffer Size (# entries. l entry= 21 Bytes)

Figure 5.2: Monitoring Overhead for Different Buffer Size

The default buffer size in the current implementation is 5378 bytes which could store 256
trace entries. The user is given the flexibility to specify buffer size allocated for the parallel
monitor on each node.

5.3 Clock Synchronization

A clock synchronization algorithm is acceptable if the drift between different clocks is small
compared to the minimum interval of time between any two events. We use a global clock to
order asynchronous events and measure the elapsed time of message transmission. Therefore
the accuracy of the performance results we obtain heavily depends on the accuracy of th clock
synchronization algorithm used in our system. This section presents our results fm the global
interrupt approach we use to perform clock synchronization in the transputer network. We
compare this approach to other software clock synchronization algorithms.

We measured the drift between different clocks by having processes on neighbouring nodes
exchange one single byte message for a predefined period of time. Assuming that when both
channels are active the time to transmit a one-byte message is identical, the clock drift can
be derived from the average difference of opposite direction message transmission time. The
two communicating processes on the neighbouring node run in high priority and use the low
level transputer assembly code in() and out() to exchange messages, in order to factor out the

CHAPTER 5. TESTING AND VERIFICATION 41

interference due to context switches. Table 5.5 shows the accuracy of our clock synchronization
algorithm.

Resync Interval (sec) 0.1 0.5 1.0 2.0
A verctge Drift (µsec) 0.84 1.95 3.58 5.91

Maximum Drift (µsec) 6 7 8 14
Sta.ndard Deviation(µsec) 1.40 1.86 2.30 3.88

Table 5.5: Accuracy of Clock Synchronization Using Global Interrupt

Note that higher accuracy of clock synchronization can be achieved by performing a resyn
chronization more frequently. By performing a resynchronization every second, we achieve an
accuracy of average drift less than four microseconds and maximum drift of eight microseconds.
Very little overhead is incurred in our scheme since the code to be executed on each node to
perform the resynchronization is extremely efficient. It contains only a few transputer instruc
tions and runs for less than 10 µsec. If the resynchronization interval is one second. then the
overhead is less than 0.0001 %. Also, it takes less than 10 microseconds to send a one-byte
message across a transputer link, and the message transmission time in Trollius is measured in
several hundred microseconds. The accuracy of clock synchronization algorithm is more than
adequate for ordering asynchronous events and measuring message elapsed time.

There have been a few clock synchronization algorithms for transputer networks reported in
the literature [Shumway89l[Ca Vi88). We compared our scheme with the RING-SYNC algorithm
in [Ca Vi88J since it reports the best accuracy among all existing algorithms.

The RING-SYNC algorithm is based on a ring-structured transputer network in which a
master node periodically passes a SYNC message around the ring containing the local clock
value and the partial delay. Upon receiving a SYNC message, every slave node sets the value of
its clock to the sum of the clock value and partial delay in the SYNC message and updates the
clock value in the message accordingly. When the SYNC message returns to the master node, it
recalculates the partial delay for the next SYNC message. In [Ca Vi88), they also apply linear
regression and q-degree extrapolation to estimate the drift between two resynchronizations
and revise the clock value. Experimental results for the RING-SYNC algorithm have been
reported in [Ca Vi88). The maximum and typical clock drift are measured with and without
the interference of user process, and the result is given before and after the drift correction
using the q-degree extrapolation. Table 5.6 gives the summary of the best of their results when
resynchronization is performed every 5 seconds.

No Revision 1-degree Extrapolation
NO LOAD W/ LOAD NO LOAD W/ LOAD

Maximum Drift (µsec) 100 115 12 56
Typical Drift (µsec) 100 115 8 36

Table 5.6: Accuracy of RING-SYNC algorithm

CHAPTER 5. TESTING AND VERIFICATION 42

The result of the RING-SYNC algorithm for the NO LOAD case after drift correction using
the I-degree extrapolation seems to be almost as good as our clock synchronization using global
interrupts. However, it deteriorates drastically in the presence of user processes .in the system.
The reason is that the RING-SYNC algorithm h,as to share the communication channels with the
application and thus interferes with the user's communication activities. Since passing a SYNC
message around the ring is very expensive, especially when the number of nodes in the system is
large. Better accuracy cannot be achieved by performing resynchronization more frequently in
RING-SYNC. As compared to the RING-SYNC algorithm, our clock synchronization algori thm
using global interrupts has the following advantages:

1. Topology independent. Our approach makes no assumption about the interconnection
of the transputer network, while the RING-SYNC algorithm only works in networks
containing a ring. This limitation of the RING-SYNC algorithm implies that it cannot
be directly applied to common topologies such as tree-structured networks.

2. Application independent. The accuracy of clock synchronization using global clock is not
affected by the application since a separate network, the global interrupt circuit, is used
to deliver the signal. The accuracy of RING-SYNC algorithm is seriously affected if the
application is highly communicative.

3. Lower overhead. The overhead of the RING-SYNC is substantially higher than the global
interrupt approach even if resynchronization is only performed rather infrequently. Run
ning the q-degree extrapolation algorithm for correction consumes extra processing power
on each node.

4. Higher accuracy. Even the accuracy of the RING-SYNC algorithm in the ·ideal case is
only close to the accuracy achieved using global interrupt. The difference in the normal
case wi th user processes in the system between the two scheme is an order of magnitude
greater.

5. Simple implementation. The implementation of our scheme is exceedingly straightforward
and the code contains only a few transputer instructions. While efficient implementation
of the RING-SYNC and the q-degree extrapolation algorithm can be tricky.

The advantage of the RING-SYNC algorithm is that it is a pure software solution and does not
need any extra hardware support. However, the accuracy and reliability of the global interrupt
approach more than justified the minimal amount of extra hardware needed to implement it.

5.4 Summary

In this chapter, we presented the results of our experiments in measuring the accuracy and
overhead of the parallel performance monitor developed on the transputer-based multicomputer.

CHAPTER 5. TESTING AND VERIFICATION 43

The results indicate that both the accuracy and the overhead of our monitoring tool are within
the desired range to achieve the goals we proposed in Section 1.3. By measuring the various
sources of monitoring overhead we identify the communication activities of the monitor as the
major source of overhead in our system. The results indicate that the adaptive reporting scheme
as proposed in Chapter 4 ~s an effective means of reducing the interference of monitoring to
application communications. A comparison is made between our clock synchronization scheme
using global interrupts and a pure software clock synchronization. The results indicate that our
approach is superior in accuracy, overhead, applicability and simplicity, justifying our design
principle of relying on minimal hardware support to achieve performance beyond the realm of
any pure software solutions.

Chapter 6

Performance Tuning: A Case Study

In this chapter, an example is used to demonstrate the use of our monitoring tool to tune
a parallel application. The application we have chosen is an image reconstruction algorithm
implemented on transputers.

6.1 The Parallel Image Reconstruction Algorithm

The algorithm is a parallel versiou of a sequential algorithm used in image proc ssing to
eliminate noise from a raw image by performing edge detection on the image. Inpu t to the
algorithm is a raw image as an n x m ma,trix, each element representing a pixel in the image.
The algorithm is designed for a k x k 2-dlmensional mesh. The input matrix is decomposed into
k2 submatrices where all processors except those in the last row of the mesh receiv a square
submatrix of size L MJNti'l,m) J. All extra. columns in the input matrix are sent to the last row
of the mesh. Upon receiving a submatrix, each processor runs the edge detection algorithm on
the subimage and exchanges the side columns of its submatrix with its nearest neighbours in
order to recompute the pixels at the edges of its subimage. The computation on the subimage
is iterated until convergence, i.e. until no more elements in its submatrix get updated. All
processed subimages are then recombined and the para.Ile! computation terminates.

The algorithm has been implemented under the Trollius Operating System and run on 17
transputers configured as a 4 x 4 mesh plus an external node which has a direct connection to the
host workstation. The network topology on which the program ru_ns is shown in the output of
the graphical display of the parallel monitor (Figure 6.1). The transputer node adjacent to the
host (called the master node) reads in the raw image from the host file system. It decomposes
the input matrix into submatrices and distributes them to all transputer nodes in the mesh.
Each slave node computes and communicates with its neighbouring nodes using Trollius network
level message passing primitives. The results from all slave nodes are recombined at the master
node. The reconstructed image is then written to a file in the user's file system. The program

44

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 45

contains about 1500 lines of C code and is an integrated part of an image processing package
developed in the Computer Science Department at UBC.

Figure 6.1: Graphical Display of Network Topology

6.2 Measurement and Analysis

The program was originally implemented and debugged on transputers without the help of
the parallel monitor, and it appeared to produce desired result. The program was recompiled
and linked to the instrumented version of the Trollius runtime library without modification to
its source code. The input image is a 47 x 47 square matrix.

The first result we obtained from the parallel monitor turned out to be a debugging result
rather than a performance result. The graphical display of the execution graph indicated that
the monitor was unable to find the matching msg_arr events for some of the msg_send events
on the slave nodes(Figure 6.2). This occurred near the end of the execution of the program.
By clicking on the unmatched sending events in the graph, we examined the information about
each of these events and discovered that some segments of the reconstructed subimage sent by
the slave nodes were never received by the master node. The execution graph also indicated
that all receiving events on the master node were matched. Hence, the problem was that the
master node did not make enough receive calls when collecting subimages. With the help of
the monitoring tool, this bug was quickly fixed. Although our tool is primarily intended as a
performance monitor, it certainly can also be used to debug programs. It allows the user to

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 46

gain insight into the runtime behavior of execution of the parallel program and detect problems
or locations where the program is behaving strangely.

- .:: r I I I \\ --
I/ I 117 I \

I I \ \J. ' \ - -

I I ~ - l - - r _:;

- -
I \ I -

\ -- ~

:; l r -
\ I -

/1 -
J

~

.: r .J I .:; - J JI I ~ - -
r I I I

11 I (I I / r -
.: .: .: -

[I/ I I I I II I
[/ I I 1J I I }, II _/1 -

::
-'~-===-r_.-=='-'

203 204 204 204 205 205 205 205 205

I

Figure 6.2: Graphical Display of Unmatched Message Events

Once having debugging the program, we ran the WCPA tool on the trace to obtain our
measurement. The performance of the inital implementation was very disappointing . The
speedup on 16 nodes was less than 3 and the efficiency is less than 20%. The ratio of computation
vs. communication in the program was 20 : 80, which means 80% of the execution time was
spent in communication. By examining the weighted critical path generated by our tool, we
discovered that the communication activities to distribute and return the subimages constitutes
the major portion of the critical path. In order to obtain precise measurement of the relative
weight of different phases in the execution of the program, we manually inserted probes into
the application to generate user-defined events, signifying the start of each phase:

probe(READ_IMAGE, "reading image");
probe(DISTRIBUTE_IMAGE, "distributing");
probe(COMPUTE_IMAGE, "computing");
probe(RETURN_IMAGE, "returning image");
probe(WRITE_IMAGE, "writing image");

These probes were placed in the main program right before the procedure calls to execute the
corresponding tasks. We re-ran the program under the monitor and measured the elapsed time
and relative weight of each of the phases. For instance, the elapsed time and relative weight
of distributing subimages was measured by the elapsed time between the DISTRIBUTE_IMAGE

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 47

event and the COMPUTE_IMAGE event on the weighted critical path and the percentage of the
total weight between them. These measures were generated automatically by our analysis tool.
The result of the analysis is shown in Table 6.1.

I Phase in WCPA I Relative weight I
Read Image 29%
Distribute Image 5%
Compute Image 8%
Return Image 47%
Write Image 11%

Table 6.1: Analysis Result for Image Reconstruction Algorithm

As shown in Table 6.1, the input and output of the image was weighted 40% on the critical
path. This is due to the low degree of parallelism during these operations, i.e. all nodes are
idle waiting while the master is reading from or writing to the host file system. Since only the
master node is adjacent to the host, this 1/0 bottleneck is impossible to be completely removed.
In the remainder of the discussion we ignore the effect of this sequential 1/0 bottleneck.

The computation on the subimages was only weighted 8% on the critical path. This is
because all nodes are processing the subimages in parallel and a high degree of parallelism has
been achieved in the system. It also indicates that the code to be execute is efficient already
and further code optimization cannot improve the performance very much .

. ~~
I I \I II I I \ I \ \I \I \\ \ \ \\ \ \ \\ \

I \ \ \ I \ i\ \ \ \\\ '\ \\ \ \
I I I \ \\ \'\\ \\\\ w
I ~ I 1\ I \\\ \ \~\'\\'

I ,\\J \ _\\\.\ \
\ I \\ \ 'i \\ '\ ~

I
-

I
..,

~ I 'i ' I .\ \
\ ~
\ \
I \
\ \ \ l

I I
I I

' ' ' ' ' ' ' ' I ' ' ' ' ' ' ' I ' ' ' ,., lll '" '" u·, "" ,., ,.,
"'' ... , ... '"' Ill ,.,

"'
,., 117 117 ,., ,., ,.,

"" lOI

L. a • ..-•• ·.:~,-.;·-;n;_;.._ • ,..; ... ••• aJ • .; •• -:_;.•1 t•••• J:.• •~• •• .. ~.;~:-I..,;:•,._,,:::,.: l:11; S:_ ••• • • . ,. ...

Figure 6.3: Communication Activities of Distributing Subimages

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 48

We therefore focus our attention on the distribution and gathering phases of the computa
tion, which together were weighted 52% on the critical path. The communication pattern of
the parallel program can easily be visualized in the graphical display of the execution graph.
Figure 6.3 shows the commun.ication activities in the system when subimages are being dis
tributed from the master node to all slave nodes. We can see from the graph that the number
of messages to send a submatrix appears to be excessive (A total of 11 messages are involved
to send a subimage). Closer examination of eaclb. event in the graph revealed that the length of
each message is only 60 bytes. To send a message using Trollius network level message passing
primitives, the header attached to each message is more than 50 bytes. Thus sending each
message incurred an almost 50% communication overhead. By consulting the author of the
program, w found out that the subimages are d..i stributed column by column, i.e. each colum11
is encoded into a separate message, regardless of the size of the subimage. Since the size of
our input image was relatively small and each column of the submatrix con ta ined only 14- L5

elements, there were a large number of short messages. We recommended that some of the
columns be combined and encoded into longer messages. The program now sends th subimage
in a single message of its size does not exceed 800 bytes. Both the number of messages and the
communication overhead of each message were dramatically reduced. The program execution
time of the modified version showed 55% improvement over the initial implementation. The
weight of distributing and returning images on the critical path was reduced from 52% to 39%.
The ratio of computation vs. communication was improved to 63:36, indicating that 63% of
the time was spent in computation tasks. Speedup and efficiency have been improved by more
than 100% due to the improvement of program execution time.

6.3 Summary

In this chapter, we have demonstrated how our monitoring tool is used to effectively improve
the performance of a parallel application. Tuning the performance of a parallel program is a
very sophisticated task due to the complicated interaction among concurrent components of
the program. Effective performance tuning not only relies on the user's thorough knowledge
about the program structure, but also depends on the information available to the user about
the execution of the program. The information presented to the user is useful only if the user
gains insight into the runtime behavior of the program and can appropriately focus on the
program activities which have the most impact on the overall performance of the program. By
combining a graphical display with the weighted critical path analysis package, our tool provides
at a high level automatic guidance for performance tuning. In our example, the identification
and resolution of such a performance problem in a parallel application has led to more than
50% improvement in program execution time.

Chapter 7 __

Conclusions

7.1 Synopsis

This thesis has studied the performance characteristics of parallel programs in multicom
puter networks, and presented the design and implementation of a real-time performance mon
itor on transputers. We started with a simple performance model which is based on a graph
representation of parallel programs in the multicomputer network. This performance model al
lows us to easily derive a variety of performance metrics for parallel programs. From this model,
we also developed a new analysis method, called weighted critical path analysis (WCPA), which
has proven to be helpful detecting performance bottlenecks in parallel programs. The design
of a real-time performance monitor was proposed based on these ideas and then implemented
on a 74-node transputer-based multicomputer. Lastly, we set up benchmarks to validate the
accuracy of the monitoring results and to measure the overhead incurred by the monitor. We
also demonstrated how this tool can be used to tune the performance of an actual parallel
application on transputers. '

We proposed in Section 1.3 a set of goals to guide the design of our performance monitoring
tool. Our experience with the tool indicates that our goals have been achieved. The capability
of measuring both resource utilization and tracing process events is clearly superior to other
transputer performance monitoring tools. (Section 2.2). Extensibility was achieved by the
modular structure and well-design interface between different components of the parallel mon
itor(Section 4.2). Experimental results show that both the accuracy and the overhead of the
monitor are within acceptable ranges. Transparency is achieved by inserting software probes
into the run-time library of the underlying operating system so that users do not have to modify
their source programs to make them monitorable. We took advantage of a high level windowing
environment, namely the X window system, to display performance results in a user-friendly
manner. Although our monitoring tool was designed for the transputer-based multicomputer
networks and implemented under the Trollius Operating System, the measurement and instru
mentation techniques developed are applicable to a wide range of distributed memory parallel

49

CHAPTER 7. CONCLUSIONS 50

architectures. The performance model and the weighted critical path analysis method we pro
posed in Chapter 3 can be easily adapted to any message-based distributed systems, such as
the LAN-based distributed environment. The use of global interrupts and the clock synchro
nization technique we used can be ported to most closely-coupled multicomputer networks with
minimal modifications. The adaptive reporting scheme and design of the graphical interface are
generally applicable to any performance monitoring tools for parallel and distributed programs.

7.2 Future Work

We conclude this thesis by suggesting possible future enhancement of our tool and specu
lating on future research directions.

7.2.1 Enhancement of the Monitoring Tool

The adaptive reporting scheme has not been fully implemented in the current implemen
tation. Since trace data are sent to the host using Trollius network level message passing
mechanism, the decision on whether or not to send the data can only be made at the first
step when it leaves its node of origin. The monitor has no control over status messages after
they are sent. The router handles both user messages and status messages in the same way.
Further refinement of the adaptive reporting scheme would include modification of the routing
mechanism of the operating system so that message priorities are supported. User messages
are given higher priority and monitoring messages are given lower priority so that user messages
going to the same channel as status messages are handled first. Status messages are sent only
when there is no user message waiting for the same channel or when the local buffer has been
filled.

Another improvement of our tool includes better integration of the monitor with the graphi
cal interface so that operation of the parallel monitor can be controlled interactively by "clicking
a button".

7.2.2 Alternatives to Nonintrusive Monitoring

To reduce the overhead caused by messages sent by the monitor, we proposed the adap
tive reporting scheme(Section 4.5.3). There are other alternatives to achieve the same goal.
One approach is to compensate for the overhead incurred by the monitoring when calculating
performance metrics from raw trace data. For instance, to compensate for the communication
overhead introduced by the monitor, the monitoring process on each node has to keep track of
the number of status messages and that of user messages sent over a communication chan11el
during a specific period of time. Using these data, it can estimate the extra queuing delay the
status messages have caused and distribute the total delay to each of the user message on the

CHAPTER 7. CONCLUSIONS ,51

same channel. The extra delay for each step on the route is then subtracted from the total
elapsed time of the message, thus obtaining the corrected message transmission time. In order
to be able to compensate for the monitoring overhead, we must collect enough information
about the execution of the monitor itself. In essence, it is a matter of how to monitor the
monitor itself. Furthermore, an appropriate queuing model has to be developed to estimate the
interference the monitor has caused to the application.

A different approach that takes advantage of the global interrupt mechanism available in out
system, is to stop the computation and communication activities of the application program in
the whole system when performing measurement tasks and draining trace data from each node.
Global interrupts can he used to stop all nodes simultaneously and restart the system after
the measurement task is finished. The clock value on each node is reset to its last value when
the system was stopped. This would completely factor out all the overhead of monitoring and
reporting to the host. The performance results obtained should precisely reflect the behavior
of the application as if it were run without the presence of the monitor and a high degree of
virtual non-intrusiveness is achieved. One disadvantage of this scheme is that it is likely to
be slow. A second problem is the difficulties in stopping the computation and communication
activities of the application in a parallel system. Although we can remove all user processes
temporarily from the ready queue when a global interrupt arrives, the work the system processes
are doing on behalf of the application cannot be suspended halfway since some system services
are needed to perform the measurement task. Moreover, process scheduling is supported by
hardware on transputers; the manipulation of these process queues is tricky and error-prone.
A third problem is how to deal with the user messages being transferred over a link when the
system is stopped. The monitor must wait until the data transfer finishes before it can get
control of the link.

Both schemes seem to be promising alternatives to achieve non-intrusive monitoring in
the multicomputer networks. The possibility of implementing them on transputers will be
investigated in future research.

7.2.3 Performance Steering

An interesting application of our tool is to use the information provided by the monitor to
tune the performance of the application on the fly, which is known as performance steering.
Performance steering is especially useful for programs that run for a long period of time. say
several days to several weeks. In addition to displaying the performance data to the user, they
can also be used as feedback to the underlying system which can control the execution of the
application in order to achieve optimal performance. The dynamic load balancing technique
also falls into this category. One special feature of the transputer network is that its topology
can be dynamically reconfigured by simply sending instructions to the crossbar switches from
the host. Since the communication pattern of the application is reflected in the execution graph
generated by the monitor, it can be used to minimize the communication overhead. We may,
for instance, try to directly connect nodes which communicate frequently so that messages do

1·

CHAPTER 7. CONCLUSIONS 52

not have to be routed through intermediate nodes.

Bibliography

[AnLa89] T. E. Anderson and E. D. Lazowska, Quartz: A tool for tuning parallel program
performance, Technical Report 89-09-05, Dept. of Computer Science, Univ. of Washington,
Sept. 1989.

[AnJo87] F. Andre and A. Joubert, SiGLe: An evaluation tool for distributed systems, Proc.
IEEE Intl. Conf. on Parallel Processing, 1987, pp.466-472.

[Babb87] R. G. Babb, et al, Multi-level monitoring of parallel programs, Technical Report,
Dept. of Computer Science, Oregon Graduate Center, Rpt. No. CS/E 87-013, Nov. 1987.

[Ba Wi83] P. Bates and J. Wileden, High-level debugging of distributed systems: the behavioral
abstraction approach, ACM SIGPLAN Notice, Vol. 18, No. 8, Aug. 1983.

[Beers89] J. Beers, Private communication, 1989.

[Beilner88] H. Beilner, Measuring with slow clocks, Technical Report, TR-88-003, International
Computer Science Institute, Berkeley, CA, July 1988

[Bran89] W. C. Brantley, et al, RP3 performance monitoring hardware, Instrumentation for
Future Parallel Computing Systems, Addison-Wesley, 1989.

[BuMi89] H. Burkhart and R. Millen, Performance-measurement tools in a multiprocessor en
vironment, IEEE Trans. on Computers, Vol. 38, No. 5, May 1989.

[Burns88] G. D. Burns, Trollius operating system definition, Trollius Documentation Series,
Ohio Supercomputer Center, Oct. 1988.

[CaTu89] W. Cai and S. Turner, Highly transparent monitoring of real-time occam programs,
Proc. of 2nd Conf. of North American Transputer User Group, Oct. 1989, pp.41-52.

[CaWe88] P. C. Capon and A. J. West, Monitoring Occam channels by programming transfor
mation, Proc. of 1988 Transputer Conference, 1988, pp. 160-169.

[CaVi88] V. Carlini and U. Villano, A simple algorithm for clock synchronization in transputer
network, Software - Practice and Experience, Vol. 18, No. 4, Apr. 1988.

53

BIBLIOGRAPHY 54

[Chan87] S. C. Chan, Designing and implementation of an event monitor for the Unix operating
system, M.Sc. Thesis, Dept. of Computer Science, Univ. of British Columbia, April 1987.

(Couch88] A. L. Couch, Graphical representation of program performance on hypercube
message-passing mutliprocessors, Ph.D. dessertation, Dept. of Mathematics, Tufts Uni
versity, May 1988.

(EaZaLa89] D. L. Eager, J. Zahorjan and E. D. Lazowska, Speedup versus efficiency in parallel
systems, IEEE Trans. on Computers, Vol. 38, No. 3, march 1989.

(Duda87] A. Duda, et al, Estimating global time in distributed systems, Proc. of 7th Intl. Conf.
on Dist. Comp. Syst., Sept. 1987, pp.299-306.

[Emrath88] P. A. Emrath, S. Ghosh and D. A. Padua, Event synchronization analysis for
debugging parallel programs, Center for Supercomputing Research and Development, Univ.
of Illinois at Urbana-Champaign, CSRD Rpt. No. 839, Dec. 1988.

[Fromm83] H. Fromm, et al, Experience with performance measurement and modelling of a
processor array, IEEE Trans. on Computers, Vol. C-32, No. 1, Jan. 1983, pp. 15-31.

(Fowler88] R. Fowler, et al, An integrated approach to parallel program debugging and perfor
mance analysis on large-scale multiprocessors, Proc. of Workshop on Parallel and Dis
tributed Debugging, May 1988, pp.163.

[Gait86] J. Gait, A probe effect in concurrent programs, Software - Practice and Experience,
Vol. 16, No. 3, March 1986, pp.225-233.

[GaMo84] H. Garcia-Molina, et al, Debugging a distributed system, IEEE Trans. · on Software
Engi~eering, Vol. SE-10, No. 2, march 1984.

(GuLa84] R. Gusella and S. Latti, TEMPO - A network time controller for a distributed Berke
ley Unix system, IEEE Distributed Processing Tech. Comm. Newsletter, Vol. 6, No. 2, June
1984.

[HaSh89] D. Haban and K. Shin, Application of real-time monitoring to scheduling tasks with
random execution times, Technical Report, International Computer Science Institute,
Berkeley, CA, TR-89-028, May 1989.

[HaWy89] D. Haban and D. Wybrantietz, Monitoring and measuring parallel systems using a
non-instrusive rule-based system, Technical Report, International Computer Science Insti
tute, Berkeley, CA, TR-89-030, May 1989.

[HaWy90] D. Haban and D. Wybrantietz, A hybrid monitor for behaviour and performance
analysis of distributed systems, IEEE Trans. on Software Engineering, Vol. 16, No. 2, Feb.
1990.

BIBLIOGRAPHY

[HeBr89] D. Helmbold and D. Bryan, Design of run-time monitors for concurre.nt programs,
Technical Report, No. CSL-TR-89-395, Computer Systems Laboratory, Stanford Univ.,
Oct. 1989.

[HoCu87] P. A. Hough and J. E. Cuny, Belvedere: prototype of a pattern-oriented debugger
for highly parallel computation, Proc. of 1987 Intl. Conf. on Parallel Processing, 1987,
pp.735-738.

[HoLa89] D. N. M. Ho, S. W. Lau and F. C. M. Lau, Efficient tools for transputer monitoring,
Proc. of 2nd Conf. of North American Transputer User Group, Oct. 1989, pp.27-40.

[Inmos83] Inrnos Corporation, Occam Programming Manual, 1983.

[Inmos89] Inmos Corporation, The Transputer Databook, Second Edition, 1989.

[JiWaCh90] J. Jiang, A. Wagner and S. Chanson, Tmon: A real-time performance monitor for
transputer-based multicomputer, To appear in Proc. of the 4th Conf. of North American
Transputer Users Group, Oct. 1990.

[Joyce87] J. Joyce, et al, Monitoring distributed systems ACM Trans. on Computer Systems,
Vol. 5, No. 2, May 1987, pp.121-150.

[KaF190] A. Karp and H. Flatt, Measuring parallel processor performance, Communication of
ACM, Vol. 33, No. 5, May 1990.

[KeSc87] T. Kerola and H. Schwetunm, Monit: A performance monitoring tool for parallel and
pseudo parallel programs ACM Performance Evaluation Review, Vol. 15, No. 1, pp.163-174.

[Lamport78] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communication of ACM, Vol. 21, No. 7, July 1978.

[L_eRo85] R. J. LeBlanc and A. D. Robbins, Event-driven monitoring of distributed programs,
Proc. of 5th Intl. Conf. on Dist. Comp. Syst., May 1985, pp.515-522.

[LeMe8 7] T. J. Leblanc and J. M. Mellor-Crummey, Debugging parallel programs with instant
replay, IEEE Trans. on Computers, Vol. C-36, No. 4, April 1987.

[LiCaV187] M. A. Linton, P. R. Calder and J. M. Vlissides, InterViews: A C++ Graphical
Interface Toolkit, Proc. of the USENIX C++ Workshop, Nov. 1987.

[Malony89] A. D. Malony, et al, An integrated performance data collection, analysis and visu
alization systems, Dept. of Computer Science, Univ. of Illinois, Rpt. No. UIUCDCS-R-89-
1504, March 1989.

[MaPi88] A. D. Malony and J. R. Pickert, An environment architecture and its use in per
formance data analysis, Center for Supercomputing Research and Development, Univ. of
Illinois, Rpt. No. 829, Oct. 1988.

BIBLIOGRAPHY .56

[McDaniel77] G. McDaniel, METRIC: A kernel instrumentation system for distributed envi
ronment, Proc. of 6th ACM Symp. on Operating System Principles, Nov. 1977. pp.93-99.

[McHe89] C. E. McDowell and D. P. Helmbold, Debugging concurrent programs, ACM Com
puting Surveys, Vol. 21, No. 4, Dec. 1989.

[Miller84] B. P. Miller, Performance characterization of distributed programs, Technical Re
port, Computer Science Division(EECS), Univ. of California, Berkeley, TR No. UCB/CSD
84/197, Aug. 1984.

[Miller88] B. P. Miller, DPM: A measurement system for distributed programs, IEEE Trans. on
Computers, Vol. 37, No. 2, Feb. 1988.

[Miller90] B. P. Miller, et al, IPS-2: the second generation of a parallel program measurement
system, IEEE Trans. on Parallel and Distributed Systems, Vol. 1, No. 2, Apr . 1990.

[MiMa86] B. P. Miller, C. Macrander and S. Sechrest, A distributed program monitor for Berke
ley Unix, Software - Practice and Experience, Vol. 16, No. 3, March 1986, pp.22.5-233.

[MiYa87] B. P. Miller, C.-Q. Yang, JPS: An interactive and automatic performance measure
ment tool for parallel and distributed programs, Proc. of 7th Intl Conf Distributed Com
puting Systems. Sept. 1987.

[Mohan84] J. Mohan, Performance of parallel programs: model and analyses, Ph.D. Thesis,
Dept. of Computer Science, Carnegie-Mellon Univ., July 1984.

[Nelson89] H. Nelson, Experience with performance monitors, Instrumentation for Future Par
allel Computing Systems, Addison-Wesley, 1989.

[OgSc85] D. Ogle and K. Schwan, The real-time collection and analysis of dynamic information
in a distributed system, Technical Report, Computer and Information Science Research
Center, Ohio State Univ., OSU-CISRC-TR-85-12, Sept. 1985.

[Parasoft88] Parasoft Corporation, An overview of the EXPRESS system, Technical Notes,
1988.

[Reed89] D. Reed, Distributed Memory Working Group Summary, Instrumentation for Future
Parallel Computing Systems, Addison-Wesley, 1989

[ReFu87] D. Reed and R. Fujimoto, Multicomputer networks: message-based parallel processing,
The MIT Press Series in Scientific Computation, 1987.

[Sart85] S. Sartzetakis, et al, A real-time multiprocessor performance monitoring tool, Proc. of
IEEE Electroniccom 1985, Oct. 1985, pp.104-108.

[SeRu85] Z. Segall and L. Ruldolph, PIE: A programming and instrumentation rnvironment
for parallel proressing, IEEE Software, Vol. 2, No. 6, Nov. 1985, pp.22-37.

BIBLIOGRAPHY .57

[Shea89] D. G. Shea, et al, Monitoring and simulation of processing strategies for la,ge knowl
edge bases on the IBM Victor multiprocessor, Proc. of 2nd Conf. of the North American
Transputer User Group, Oct. 1989, pp.11-26.

[Shephard86] R. Shephard, Extraordinary use of transputer links, Inmos Technical Notes, Nov.
1986.

[Shumway89) M. Shumway, Synchronizing clocks in multi-transputer networks, Inmos Technical
Notes, Aug. 1989.

[Snodgers88] R. Sondgers, A relational approach to monitoring complex systems, ACM Trans.
on Comp. Syst., Vol. 6, No. 2, May 1988.

[SpKe88] M. Spezialetti and J. Kearns, A general approach to recognizing event occurences in
distributed computations, Proc. of IEEE 8th Intl. Conf. on Dist. Comp. Syst.. June 1988,
pp .300-307.

[Sterling88) T. Sterling, et al, Multiprocessor performance measurement using embedded instru
mentation, Proc. of IEEE Intl. Conf. on Parallel Processing, Vol. 1, Aug. 1988, pp.156.

[VoZe90) 0. Vornberger and K. Zeppenfeld, Graphical visualization of distributed algorithms,
Proc. of 3rd Conf. of North American Transputer Users Group, Apr. 1990, pp.223-234.

[YaMi88] C.-Q. Yang and B. P. Miller, Critical path analysis for the execution of parallel and
distributed programs, Proc. of 8th IEEE Intl. Conf. on Distributed Comp. Syst., June 1988,
pp.482-489.

[Zenith90] S. E. Zenith, Linda coordination language; subsystem kernel architecture (on trans
puters), Research Report, Dept of Computer Science, Yale University, YALEU/DCS/RR-
794, May 1990.

Appendix A

Architecture of the
Transputer-based Multicomputer

The architecture of the IMS T800 transputer is shown in Figure A.1. The processor speed
of all T800 transputers are pin-selected to 20 MHz. The speed of all bi-directional links are set
to 20 Mbits/sec.

The architecture of the IMS C004 link switch is shown in Figure A.2. The speed of all C004
switches in the system are set to 20 Mbits/sec.

The physical connections of the transputers, crossbar switches and VME interfaces are
shown in Figure A.3. The transputers are connected to the Sun 4 workstation through a IMS
B0ll board and a CSA Part 8 Interface Board. There are six links on the CSA Part 8 board.
The four buffered links are directly connected to the transputers, and the two unbuffered links
are connected to the daisy chain of the configuration links of the crossbar switches. Therefore.
there are five independent data channels between the transputers and the host. There are i-1
T800 transputers and 10 C004 switches in the array of transputers and crossbar switches. The
first 10 transputers and first 2 switches are placed in one box, with the remaining transputers
and switches in another larger box. There are 8 connections between the two boxes. The
transputers in the larger box are numbered from 0 to 64, and the switches are numbered from
0 to 7. Link 0 of transputer i are directly connected to that of transputer i + 1. Link 1, 2
and 3 of transputer i is connected Switch i, switch succ(i) and switch pred(i) respectively.
All transputers are partitioned into five reset groups. Therefore, up to five users can use the
transputer-based multicomputer simultaneously.

58

64 bit Floating Point Unit

/ I"-

I ' 32 bit System

Services \ I Processor

Link

I I Timers 32 Services -
bits

1

,

' Link
Interface -

4K bytes \ I

of I \
I ' Link -

On-chip Interface
\ I

RAM ' I

I ' Link -
Interface ~

I' I
I ' External I \ Link -

Memory \ I Interface
\ I

Interface I \

Event -
-

' I

' V

Figure A.l: Architecture of the IMS T800 Transputer

59

LinkSpecial
Link0Special
Link123Special

LinkOut0
Linkln0

LinkOutl
Linklnl

LinkOut2
Linkln2

LinkOut3
linkln3

EventReq
EventAck

Linkln0

Linklnl

Linkln31

ConfigLinkln

ConfigLinkOut

-

;.

-

32 Position

Crossbar

Switch

T T
Control

Logic

System
Services

-

LinkOut0

LinkOutl

LinkOut31

Figure A.2: Architecture of the IMS C004 Crossbar Switch

60

< VME Bus

I I I I I I I
IMS

B011
CSA Part 8 VME Interface

I I I I I I I
I C004 Switch 0 I

□ □ □
I C004 Switch 1 I

I I • • I I

I C004 Switch 8 I

□ □
. □

I C004 Switch 9 I

Transputers and Crossbar Switches

Figure A.3: Physical Connections of the Transputers and the Switches

61

Appendix B

Modifications to Trollius Run-time
Library

The following routines are inserted into the Trollius run-time library and replace existing
ones. They are used to generate the five types of standard events defined in Section 4.5 as well
as user-defined events.

B.1 Definition of Monitor Parameters

I* event type for monitoring message *I

#define M0N_CMD -100
#define M0N_RES -101
#define M0N_TRACE -102

I* monitor controlling command *I

#define MON_BEG
#define M0N_END

0

1

typedef struct TraceEntry
{

char tag;
int data[NUM_REGS];

} TraceEntry;

62

typedef TraceEntry •TracePtr;

/• all events to be monitored defined here•/

#define NODE_USAGE '\000'
#define MSG_SEND '\001'
#define MSG_RECV '\002'
#define RECV_CALL '\003'
#define PROC_INIT '\004'
#define PROC_EXIT '\005'
#define OVERFLOW '\006'

B.2 Probes to Generate Message Events

int msg_mon(nheader, trace_type)
struct nmsg• nheader;
char trace_type;
{

}

struct kmsg
TraceEntry

kheader;
trace_buf;

trace_buf.tag = trace_type;
trace_buf.data[l] = ltot(getpid());
trace_buf.data[2] = ltot(nheader->nh_event);
trace_buf.data.[3] = ltot(nheader->nh_node);
trace_buf.data[4] = ltot(nheader->nh_length);

kheader.k_event = MON_TRACE;
kheader.k_type = O;
kheader.k_flags = O;
kheader.k_length = sizeof(trace_buf);
kheader.k_msg =(char•) &trace_buf;

if (ksend(tkheader))
return(errno);

return(O);

63

int nsend(header)
struct nmsg• header;
{

}

msg_mon(header, MSG_SEND);
header->nh_data[0] = getnodeid();
return(do_nsend(header, NSEND));

int nrecv(header)
strcut nmsg• header;
{

}

int err_ code;

msg_mon(header, RECV_CALL);
err_code = do_nrecv(header, NRECV);
header->nh_node = header->nh_data[0];
msg_mon(header, MSG_RECV);
return(err_code);

B.3 Probes to Generate Process Events

int mon_pinitO
{

struct kmsg
TraceEntry
char•

kheader;
trace_buf;
pname;

trace_buf.tag = PROC_INIT;
trace_buf.data[1] = ltot(getpid());
pname =(char•) t(trace_buf.data[2]);
GetProcName(pname);

kheader.k_event = MON_TRACE;
kheader.k_type = O;
kheader.k_flags = O;
kheader.k_length = sizeof(trace_buf);
kheader.k_msg =(char•) ttrace_buf;

if (ksend(&kheader))

64

return(errno);
return(0);

}

int mon_pexitO
{

struct kmsg
TraceEntry

kheader;
trace_buf;

trace_buf.tag = PROC_EXIT;
trace_buf.data[1] = ltot(getpid());

k.header.k_event = MON_TRACE;
k.header.k_type = 0;
k.header.k_flags = 0;
k.header.k_length = sizeof(trace_buf);
kheader.k_msg =(char*) &trace_buf;

}

if (ksend(&kheader))
return(errno);

return(0);

int kinit(priority)
int priority;
{

}

int retcd;

retcd = kattach(priority);
mon_pinit();
return(retcd);

void kexit(status)
int status;
{

}

mon_pexi t () ;
_kexit(status);

65

B.4 Probes to Generate User-defined Events

int probe(probe_type, aux_info)
char probe_type;
char*
{

}

aux_info;

struct kmsg kheader;
TraceEntry trace_buf;
char* aux_buf;
char aux_len;

trace_buf.tag = probe_type;
aux_buf =(char•) &(trace_buf.data[1]);
aux_len = MIN(strlen(aux_info), MAX_AUX_LEN);
strncpy(aux_buf, aux_info, aux_len);
aux_buf[aux_len] = '\0';

kheader.k_event = MON_TRACE;
kheader.k_type = O;
kheader .k_flags = O;
kheader .k_length = sizeof(trace_buf);
kheader.k_msg =(char•) &trace_buf;

if (ksend(&kheader))
return(errno);

return(O);

B.5 Monitor Controlling Routines

int mon_control(mon_cmd)
int mon_cmd;
{

struct nmsg header;

header.nh_node = MASTER;
header.nh_event = MON_CMD;
header.nh_type = O;
header.nh_flags = O;

66

}

header.nh_length = O;
header.nh_msg = NULL;
header.nh_data[O] = mon_cmd;

if (nsend(&header))
return(!);

else
return(O);

int startmon()
{

return(mon_control(MON_BEG));
}

int stopmon()
{

return(mon_control(MON_END));
}

67

