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Abstract 
Parallel architectures, like the transputer-based multicomputer network, offer potentially 

enormous computational power at modest cost. However, writing programs on a multicomputer 
to exploit parallelism is very difficult due to the lack of tools to help users understand the run
time behavior of the parallel system and detect performance bottlenecks in their programs. 
This thesis examines the performance characteristics of parallel programs in a multicomputer 
network, and describes the design and implementation of a real-time performance monitoring 
tool on transputers. 

We started with a simple graph theoretical model in which a parallel computation is repre
sented as a weighted directed acyclic graph, called the execution graph. This model allows us to 
easily derive a variety of performance metrics for parallel programs, such as program execution 
time, speedup, efficiency, etc. From this model, we also developed a new analysis method called 
weighted critical path analysis(WCPA), which incorporates the notion of parallelism into criti
cal path analysis and helps users identify the program activities which have the most impact on 
performance. Based on these ideas, the design of a real-time performance monitoring tool was 
proposed and implemented on a 74-node transputer-based multicomputer. Major problems in 
parallel and distributed monitoring addressed in this thesis are: global state and global clock, 
minimization of monitoring overhead, and the presentation of meaningful data. New techniques 
and novel approaches to these problems have been investigated and implemented in our tool. 
Lastly, benchmarks are used to measure the accuracy and the overhead of our monitoring tool. 
We also demonstrate how this tool was used to improve the performance of an actual parallel 
application by more than 50%. 
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Chapter 1 

Introduction 

The transputer-based multicomputer network is a new and promising class of highly parallel 
computer system because it not only offers potentially enormous computational power at modest 
cost, but also serves as testbeds for research experiments in the field of parallel processing. The 
focus of this thesis is instrumentation, modelling and performance analysis of parallel programs 
in multicomputer networks. New instrumentation techniques are explored, and the design and 
implementation of a real-time performance monitoring tool is presented. 

1.1 The Problems 

Monitoring a computer system relies on dynamically extracting information about the ex
ecution of a program at run-time, storing it and presenting it to the user in a useful format. 
The information collected by the monitor depends on what the user wants to know about the 
behavior of his program. Two traditional areas of studying the execution of a program are 
debugging and performance analysis (Miller84]. Debugging is concerned with the correctness of 
a program, while performance analysis chiefly addresses the efficiency of the program. Perfor
mance analysis includes performance measurement and performance tuning. Performance tools 
are invaluable to the application programmer since they not only provide performance mea
surement results but also help users optimize the performance of the program. The underlying 
instrumentation mechanisms used in debugging and performance analysis are similar. The ma
jor distinction is that debugging can control the execution of the program, while a performance 
monitor simply observes rather than participates in the computation. For the purpose of mea
suring the efficiency of a program, monitoring a computation without attempting to control its 
execution offers the best opportunity to understand its behavior. The emphasis of this thesis 
is in the performance aspect of understanding the execution of a program, though the methods 
and tools we have developed are also useful in uncovering bugs in seemingly correct programs. 

Performance monitoring in uniprocessor computer systems has been studied extensively over 
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the past 20 years and is well-understood; however, research in developing methods and tools for 
monitoring, debugging, and measuring parallel systems lags behind the technological advances 
in parallel architectures, distributed operating systems and parallel programming languages. 
Uniprocessor instrumentation techniques do not generalize to a parallel and distribu ted envi
ronment. Multicomputer networks feature asynchronous concurrent activities, nondeterministic 
and nonreproducible behaviors caused by unpredictable commurucation delays , and the lack of 
central control and accurate global time [HaWy90). All these complicate the task of measuring 
and monitoring programs in parallel and distributed systems. 

1.1.1 Global State and Global Clock 

A multicomputer network consists of a large number of computing nodes which run asyn
chronously and interact with one another by passing messages. In order to obtain precise 
global states of t he entire system, the measurement tasks have to be performed simultaneously 
on different nodes . Results however must be collected at a central workstation for analysis and 
display. Unpredictable communication delays and the lack of a central control mechanism make 
it difficult to guarantee that the measurement of tasks are performed at the same time and the 
information collected from the different nodes reflects a consistent global view of the system. A 
related problem is the difficulty in obtaining global clock in the multicomputer network where 
each node has its own physical clock and the drift between them is unpredictable. In parallel 
monitoring, an accurate global clock is not only useful for ordering asynchrono us events on 
different nodes but is essential for measuring the elapsed time of message transmission. The 
logical clock approach [Lamport78] has been widely used for ordering events in asynchronous 
environments. However, it is difficult to derive absolute elapsed time using logical clocks since 
the differences of logical timestamps are not comparable to each other. Therefore, the logical 
clock approach is inadequate and inefficient to measure the performance of parallel programs 
in multicomputer networks. 

The solution used in this thesis is a global interrupt approach in which a master node 
interrupts all other nodes in the multicomputer networks to perform the measurement tasks 
almost simult aneously, giving us an accurate snapshot of the system. Only minimal hardware 
support was needed to implement this scheme on the transputer network and it can be easily 
extended to other closely coupled multicomputer architectures. 

1.1.2 Nonintrusive Monitoring 

One of the most desirable properties of any monitoring tool is that it should incur minimal 
overhead and cause minimum interference to a monitored application. In parallel systems , 
stopping or slowing down a process may alter the behavior of the entire system and even 
produce different results. Unlike monitoring a centralized system, the presence of the monitor 
in a multicomputer network may not only cause severe degradation in the performance of the 
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monitored application, but also distort the execution of the program yielding invalid results. It 
is impossible for any software monitoring tools to be totally nonintrusive since the monitoring 
software has to share the system resources with the application. Hardware monitors can be 
designed to have little or no effect on the host system, but they only provide limited, low 
level information about the activities of the host system. It is also difficult to map low level 
events to the source level program. The installation of extra hardware device requires skill and 
thorough knowledge of.the host system, and can affect the hardware design and its expected 
performance. In addition, hardware instrumentation is expensive and impractical in most cases. 
On the contrary, software monitors can present information in an application-oriented manner 
and are easy to install. But if the performance results are to accurately reflect the behavior 
of the unmonitored application, the monitoring overhead must be within an acceptable range. 
[Reed89] suggests that a less than 15% performance penalty is acceptable for a software monitor. 

The overhead introduced by a software monitor comes from the following sources: 

• CPU time to run the monitoring software; 

• memory space to store the monitoring data; 

• communication bandwidth to report monitoring results to the host; 

• extra context switches between monitoring processes and user processes. 

In a multicomputer network where local memory available on each node is very limited, 
it is impossible to store all information collected by the monitor locally until the application 
computation terminates. Experimental results show that when the frequency of reporting is 
high, up to 80% of the slowdown of the monitored application is attributable to the communi
cation overhead of the parallel monitor. Therefore, an important issue is how to minimize the 
interference of the monitoring messages to normal communications of the application program. 
Most existing systems fail to address this problem. See Chapter 2. 

· The approach investigated in this thesis is an adaptive reporting scheme in which the monitor 
tries to avoid jamming the network traffic by sending out monitoring data only when the network 
is lightly loaded. A pre-defined threshold function based on empirical data is used to determine 
whether the node is currently overloaded and whether the monitoring data should be sent. 
Limitations of this approach are also discussed in Chapter 4. 

1.1.3 Automatic Performance Tuning 

A performance tool is useful only if it can help to tune the performance of an application. It 
is a matter of how to present the performance data collected by the monitor to the user. Since 
the amount of trace data collected from all nodes in a multicomputer network is very large, 
it is important to present the information in a meaningful format so that the user will not be 
overwhelmed. Ideally the performance tool should supply users with solutions to a performance 
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problem rather than statistical numbers. It is necessary to define a few simpl metrics which 
can characterize the performance of the parallel program. Unfortunately, there is no generally 
agreed upon model for parallel computation, nor a model for the performance of these systems. 
U n.iprocessor analysis techniques cannot handle the drastically increased number of parameters 
in parallel systems. New methods for analyzing the performance of parallel programs are at 
best underdeveloped. Most existing systems only supply users with statistical summaries of the 
execution of their programs. 

In this thesis, we have developed a new performance analysis method for the multicomputer 
network, called weighted critical path analysis(WCPA). It is based on a simple parallel compu
tation model in which the computation is formalized as an execution graph constructed using 
a minimal set of process events. Common performance metrics like program execution time, 
speedup, efficiency and granularity can be easily measured using the proposed method. By 
incorporating parallelism into the critical path analysi s technique, WCPA helps users identify 
the program activities which have the most impact on the performance of their applications. 

1.2 Motivation 

The chief motivation of this thesis is the lack of tools to help users understand the run
time behavior of the parallel system and detect performance bottlenecks in their applications. 
Though progress l1as been made in developing parallel operating systems [Burns88] [Parasoft88] 
and parallel programming languages [Inmos83] fZenith90) on transputers, most existing systems 
do not provide adequate support for users to measure and analyze the performance of their 
applications. It is not unusual for the application programmer to wrhe special code a.nd insert 
it into the application in order to obtain even the simplest time measurements of the program. It 
is almost impossible to trace the execution of a parallel program on the tra.nsputers by pr inting 
diagnosis messages from various places within the program, as most people usually do to their 
sequential programs. In a parallel system like the transputer-based multicomputer wh re- most 
nodes in the network do not have direct access to externa.1 devices, diagnosis messages have to be 
routed through intermediate nodes to reach the host in order to appear on the user's terminal. 
Moreo.ver, messages from different nodes will appear in some arbitrary order. Therefore it 
is highly desirable to provide support in the underlying operating system to capture these 
interesting events, collect and reorder them, and present to the user in a meaningful format. 

Experimental results show that initial implementation of a parallel program typically yields 
disappointing performance [AnLa89]. The effort required to tune a parallel program, and the 
level of performance improvement that is eventually achieved depend heavily on the quality of 
the instrumentation that is available to the programmer. Since a parallel program typi all 
consists of many components running concurrently on asynchronous nodes, and the interaction 
among different components of the parallel program ca1l be quantitatively overwhelming and 
qualitatively complicated, it is difficult for the programmer to identify which pa.rt of l.he program 
contributes most to the performance of the entire program . It is desirable to provide analysis 
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tools to appropriately direct the attention of the programmer by efficiently measuring those 
factors that characterize the performance of the entire program. 

The successful development of performance monitoring tools relies on a good understand
ing of the performance characterization of the target system. Existing monitoring tools on 
transputers only provide simple statistical measures such as processor and link utilization on 
individual nodes during the execution of the whole program (see Section 2.2). There is a 
pressing need for new monitoring tools which can measure the overall performance of parallel 
applications and help users tune the performance of their programs. Previous work has concen
trated on instrumentation techniques or implementation tricks on the transputer rather than 
performance modelling itself. We feel that to build effective performance tools on the trans
puter, the first step is to define a simple model which can capture the performance behavior 
of parallel programs on multicomputer networks. This model is described in the first part of 
this thesis ( Chapter 3. The second part of the thesis is dedicated to the designing a parallel 
performance monitor on transputers based on the model we define. 

1.3 Objectives and Goals 

In designing a performance monitoring tool, the following are the primary goals we want to 
achieve: 

• Functionality: The tool should provide users with enough information for performance 
studies of their program. In addition to measuring resource utilization in the system, it 
should have the ability to trace system and user-defined events. 

• Extensibility: The instrumentation should not require substantial changes to the host 
system, both in hardware and software. Also, the monitoring system should be flexible 
and allow a wide range of user interfaces and analysis packages to be incorporated into 
the tool. This requires a separation of data collection and selection from data display and 
analysis and a well-defined interface between them. 

• Transparency: the instrumentation should be transparent to the application programmer. 
The user should not be required to modify his program in order to monitor it. The only 
exception to this is the case of user-defined events, which may be application dependent. 

• Efficiency: The overhead introduced by the monitor should be within an acceptable range. 

• Accuracy: The performance results reported by the monitor should reflect the behavior 
of the unmonitored application. The behavior of the program should be the same when 
running with or without the monitor. 

• User-friendliness: The monitor should be easy to use and the resulting data should be 
easy to read. A graphical interface is necessary to display the data in a user-friendly 
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manner. The monitoring tool should be flexible so that it can be turned ON and OFF 
interactively, either by the user from the host, or from within the program running on a 
multicomputer node. 

There are other secondary goals. We would like the tools to be applicable to a wide range of 
systems rather than the instrumentation of a specific hardware architecture (the transputer) or 
a specific target operating system. The approaches suggested in this thesis should be generally 
applicable to other closely-coupled multicomputer architectures. 

1.4 Thesis Outline 

This section gives a brief description of the contents of the following chapters. 
Chapter 2 is a literature survey of previous work in areas related to parallel and distributed 

monitoring. Key ideas which contributed to this thesis are identified. 
Chapter 3 presents a performance model for parallel programs on the multicomputer net

work. We give a definition of a multicomputer network and then give a simple model of 
computation on the multicomputer network. Based on this computation model, we derive a set 
of performance metrics used to characterize the performance behavior of a parallel program. 
Finally, we propose a new method for measuring and analyzing the performance of parallel 
programs on the multicomputer network. Applicability and limitations of this method is also 
discussed in Chapter 3. 

Chapter 4 describes the design and implementation of a parallel performance monitor on 
the transputers. It begins with a brief overview of the hardware and software instrumentation 
environment, followed by the description of the design of the monitoring system. Various 
techniques applied in the parallel monitor are described in detail, with new approaches to the 
problems discussed in section 1.1 and their implementation highlighted. The design of the 
graphical user interface is briefly described at the end of chapter 4. 

Chapter 5 presents the testing and verification results. The accuracy of the resource utiliza
tion results measured by the monitor is validated by comparing against artificial load programs. 
Measurement of monitoring overhead is discussed, and a comparison is made between our clock 
synchronization technique with other reported software clock synchronization algorithms for 
transputers. 

Chapter 6 shows an example of how the performance monitoring tool is used to tune the 
performance of a real parallel application. It demonstrates how it helps to discover a serious 
bug in a seemingly correct parallel program. 

Chapter 7 concludes the thesis by summarizing key ideas presented in the previous chapters 
and suggests future enhancements of the monitoring tool. 

Appendix A is a detailed description of the architecture of the transputer-based multicom
puter network. Appendix B contains a list of changes made to the target software system, 
namely the Trollius Operating System. An up-to-date bibliography on parallel and distributed 
monitoring is included at the end of the thesis. 



Chapter 2 

Related Work 

The problem of monitoring the execution of a program in a parallel and distributed system 
has attracted much attention among researchers in recent years. Prototypes of monitoring 
tools have been developed on a wide range of parallel architectures, with emphasis on either 
debugging or performance analysis [Joyce87]. These systems apply different techniques and 
achieve different degree of success in dealing with the problems presented in Section 1.1. In 
this chapter, we first make a general survey of tools developed in other distributed and parallel 
environment. Second we give a brief review of existing monitoring tools on transputers. Since 
the body of literature on parallel and distributed monitoring is large, we only present works 
that are of particular interest to performance studies and have had the most influence to the 
design of our tools. We also identify ideas that have contributed to this thesis and point out 
deficiencies in the model or design of existing systems. 

2.1 Parallel Performance Monitoring 

Among the existing tools to monitor the performance of distributed and parallel programs, 
the following systems have the most influence to the design of our tool. 

JPS [MiYa87][Miller~0] is a performance measurement system for parallel and distributed 
programs developed at the University of Wisconsin-Madison. JPS is based on the ideas proposed 
in Miller's Ph.D thesis [Miller84] and its predecessor DPM [Miller88]. JPS uses a hierarchical 
model as the framework for performance measurement. The behavior of a program is described 
at multiple levels of abstraction. Program level is the top level of the hierarchy and it describes 
the general behavior of the whole program, such as program execution time and speedup. The 
next level below is the machine level, which records summary information for each node and 
the interaction between them, such memory and CPU utilization of each machine. The process 
level ignores the machine boundary and views the distributed computation as a single group 
of communicating processes. At procedure level, a distributed program is represented as a 
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collection of sequentially executed procedure call chain for each process. The lowest level of 
the hierarchy is the primitive activities level, which is a collection of primitive activities that 
are detected to support upper level measurement. Performance metrics are defined for each 
level in the hierarchy and allow the the behavior of the program to be viewed at different 
level of detail. IPS applies different techniques to measure events at different level. Data for 
process, machine and program level are collected using event tracing, while data for procedure 
and primitive activities level are collected using periodic sampling. IPS is designed for loosely
coupled message-based distributed environment and has been implemented under the Charlotte 
Distributed Operating System as well as the 4.3BSD Unix systems. The initial version of 
IPS [MiYa.87] only supplies a simple textual user interface. The second generation of the tool 
IPS-2 [Miller90], extends the old system with an interactive graphical user interface, which 
allows the programmer to display metric in tabular or graphical form and use the analysis tools 
interactively. IPS uses the instrumentation strategy of modifying the run-time library provided 
by the underlying operating system. Hooks are automatically inserted into the a.Pplication by 
selecting a compiler option. 

IPS provides automatic guidance techniques for performance tuning. The most important 
tool it provides is to find the path that consumes the most time through a graph of the pro
gram execution history, known as critical path analysis(CPA). In this thesis, we develop a new 
variation of this which we call weighted critical path a.nalysis(WCPA). WCPA incorporates the 
notion of parallelism into CPA, in order to precisely reflect the relative importance of program 
elements to performa.nce.(See Section 3.4) An analysis technique called phase behavior analy
sis which tries to automatically detect different phases in the parallel computation. is bejng 
investigated in IPS-2. 

IPS does not address the problem of global state and global dock. It assumes that the clocks 
supplied by the underlying operating system are already synchronized among different machines. 
Also it does not address nonintrusive monitoring, especially the overhead of transferring large 
amount of trace data over the network. The overhead of IPS-2 [Miller90] ranges from 10-45%. 
Another disadvantage is that IPS is a post-mortem tool. Performance results cannot b viewed 
by the user in real-time which makes it inappropriate for long computations. 

Quartz [AnLa89], developed at the University of Washington, is a tool for tunjng para.lie! 
_program performance on a. sha,r d memory multiprocessor. The principle metrk used by Quartz 
is the total processor time spent in each section of code along with the number of other proces
sors that are concurrently busy when the section of code is being executed. When tied to the 
logical structure of the program, th is correlation provides a "smoking gun'' pointing at those 
areas of the program most likelr responsible for poor performance. Quartz is implemented on 
the shared memory Sequent Symmetry Multiprocessor. Nonintrusiveness is achieved in Quartz 
by using a dedica.ted processor statistically checkpointing to shared memory the number of 
busy processors and the state of each processor. Each procedure in the application is assigned 
a weight as the total processor time of each procedure divided by the number of concurrently 
busy processors during the execution of the procedure. To focus the programmer's attention on 
the program segments that have the greatest impact on performance, Quartz presents a list of 
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procedures sorted by its weight plus the weight of work done on its behalf. The WCPA method 
proposed in this thesis was inspired by Quartz. However, while Quartz incorporates the notion 
of parallelism into the sequential UNIX tool gprof, we incorporate the notion of parallelism into 
our own critical path analysis. 

Another interesting tool is the TMP monitoring system developed by Haban and Wybranietz 
for the INCAS experimental multicomputer environment [HaWy90]. TMP is a hybrid moni
tor which is designed t9 benefit from the advantage of both hardware and software monitors 
while overcoming their deficiencies. A special hardware support, which consists of a test and 
measurement processor(TMP), is designed and attached to each node in the multicomputer. 
TMPs are used to collect and process event trace data generated by the instrumented appli
cation. All TMPs are connected via a separate network to a central station, thereby avoiding 
any interference of transferring trace data to the host system. Since monitoring data are col
lected, processed and transferred using extra hardware devices, the operations of TMPs are 
completely transparent. The overhead introduced by the monitor is minimal (less than 0.1 % ). 
Moreover, since events are generated by software, using the semantic information about the 
program structure provided by the compiler, the monitoring software is able to present data in 
an application-oriented manner. In TMP, probes to trigger events are placed in the operating 
system kernel so that it is not necessary to recompile the user's program. The probe routines 
write a trace entry to a special memory location which is then read by the TMP hardware. 
TMP also provides a graphical user interface to display performance results. Although TMP 
achieves a very attractive degree of transparency, the degree of hardware support it requires 
makes it expensive and unportable to most multicomputer systems. The global interrupt ap
proach proposed in this thesis is partly inspired by TMP. We follow the principle of using 
minimal, affordable hardware support to achieve performance beyond the scope of any pure 
software monitoring tools. Several different approaches have been investigated in TMP to solve 
the problem of global state and global clock. 

1. A kind of logical clock algorithm (Lamport78] has been implemented to preserve the 
causality relationship of events which occur on different nodes. 

2. A software solution similar to the TEMPO algorithm [GuLa84] has been implemented to 
synchronize the clocks on different machines . 

3. The TMP hardware offers the use of a central physical clock which triggers the local time 
counter on each TMP. 

The current implementation of TMP only supports (1) and (2) and is able to synchronize the 
clocks in the order of lOOµsec. 

In summary the major drawback of their system is the need for extensive hardware support 
and the lack of advanced tools for analyzing the performance data. 
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2.2 Transputer Monitoring Tools 

The research and development of monitoring tools on transputers dates back to Capon 
and West's program transformation technique to monitor channel communications in Occam 
programs (CaWe88]. In their system, efforts are made to insert monitoring processes and 
additional communication channels between two communicating processes without changing 
the semantics of interprocess communication in Occam. It is a source level instn1mentation 
technique and programmers are required to manually transform their program before they can 
be monitored. Recently Ca.i and Turner (CaTu89] extended this approach to monitor real
time Occam programs. The emphasis of their wor.k is to use a logical clock to minimize the 
interference and achieve high transparency, in particular, to satisfy the real-time constraints in 
some applications. It is based on program transformation and requires manually modification 
of the original program. All of this work is specific to the Occam language. Neither system 
addresses the problem of global clock and reporting overhead. 

A third transputer monitor is the one developed at Hong Kong University [HoLa89]. It 
measures the processor utilization and channel communications on an individual node. Three 
different methods are used to measure the utilization of each processor: periodic probing, idle 
counting and process profiling. Monitoring overhead is reduced by using assembly transputer 
instructions and careful code optimization. Their tool is rather simple in functjonality. No 
advanced analysis is made of the data. Only statistical summaries are supplied by their tool. 

The Victor project [Shea89] at IBM provides hardware support for nonintrusive monitoring 
in transputer-based multiprocessor. Monitoring is achieved with a separate hardware status 
bus which is independent of the regular transputer links and is connected to a dedicated PS/2 
monitor system. In each node there is a scan register and a scan bus through the system that is 
controlled by the coprocessor adapter in the PS/2 coprocessor adapt r for real-time acquisition 
of status data. The information collected for each node includes link a.ctivity, host id, memory 
activity, and state of user programmable LEDs. Although the Victor h.a:rdware monHor achieves 
a high degree of transpa.ren y, lt has the same problem as most other pure hardware monitors. 
It can only be used to monitor low level activities of the system and is incapable of providing 
users with views of the system in an application oriented manner. 

One recent work in transputer monitoring is GRA VIDAL [VoZe90], a graphkal visualization 
environment fot Occam programs on arbitrary transputer networks. It provides animated user 
defined views of the algorithm during run-time. The user has to manually place special state
ments into his source code and GRAVIDAL will generate visualized version of his algorithm. 
GRAVIDAL displays CPU load and link load as well as user-defined events on each node. A 
logical clock algorithm has been implemented ln GRAVIDAL to order events on different nodes. 
GRAVIDAL does not provide an analysis tool for performance tuning since its emphasis is on 
graphical animation rather than performance studies of parallel programs. 



Chapter 3 

Performance Model 

A parallel computation can be characterized by the way different components of the paral
lel program interact. There are two main streams in parallel processor design: shared memory 
architecture and distributed memory architecture. Processes in a shared memory system com
municate via global shared variables, while processes on a distributed memory machine com
municate by message passing. The multicomputer network is a class of distributed memory, 
MIMD parallel architecture. This chapter discusses the performance characterization of parallel 
programs on a multicomputer network. 

3.1 Definition of Multicomputer Networks 

A multicomputer network is a locally concentrated set of loosely coupled autonomous nodes 
interconnected in some topology, each with a microprocssor, local memory and hardware sup
port for internode communication. Since hardware costs usually limit the number of connections 
on each node to a small number and the multicomputer network is only sparsely connected, 
messages must often be routed through a sequence of intermediate nodes to reach their desti
nations [ReFu87]. 

The multicomputer network has the following characteristics which distinguish itself from 
other parallel architectures: 

• Scalability: Computing nodes can be easily added to a multicomputer network to obtain 
extra processing power. Multicomputer networks of a large number of nodes have shown 
to have very impressive peak performance. 

• Message-based communication: Multicomputer nodes can only communicate via message 
passing over the interconnection network. This distinguishes it from tightly coupled shared 
memory architectures. 

11 
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• Geographi'cal concentmtion: Unlike loosely coupled systems which consists of nodes over a 
wide area multicomputer nodes are usually packaged into a few boxes in the same room. 

• Communication locality: In contrast to LAN-based environments where communication 
is unreliable and delays are measured in milliseconds, the communication in the multi
computer network is considered reliable and nearest neigh.hour communication is usuaJly 
measured in microseconds. 

Recent dev lopment in VLSI technology has paved the way for the development of multicom
puter networks. General purpose building blocks have been proposed to simplify the multi
computer design and construction. The lnmos transputer is among the most successful in the 
commercial market [Inmos89]. The IMS T800 transputer is a single chip with a 32-bit pro
cessor, 4 Kbytes of on-chip memory, a floatin g point unit(FPU), four bidirectional bit-serial 
communication links, and a simple interface to memory and I/0 devices. Both message passing 
and process scheduling are supported in hardware , yielding a highly efficient implementation. 
A multicomputer network can be easily constructed using IMS transputer boards. Appendix 
A of this thesis will contain more detailed information about the transputer architecture and 
construction of transputer-based multicomputer networks. 

3.2 Graph Representation of Parallel Computation 

A parallel program is composed of many concurrent processes running on asynchronous 
multicomputer nodes, interacting with one another by message passing. From the program
mers point of view basic process activities include: process creation, process destruction and 
interprocess communications. The execution of a process can be viewed as a sequence of prim
itive process events . Interproc ss communication can be synchronous or asynchronous. In this 
thesis, we mainly discuss a so called semi-synchronous interprocess communication paradigm 
which is supported by most operating systems on multicomputer networks. It is possible to 
extend this model to systems whlch support strictly synchronous and asynchronous interprocess 
communications. In the semi-asynchronous scheme, the sending process unblocks as soon as 
the message is sent, wh.ile the receiving process blocks until the expected message has arrived. 
Three types of primitive events are defined for interprocess communication activities: message 
send, receive call and message arrive. The process is suspended between a receive call event 
and the subsequent message arrive event. 

Based on the previous discussion, a parallel computation on a multkom:puter network can 
be formalized as a directed acyclic graph (DAG), called the execution graph G =< V E > 
where V is the set of nodes and E is the set of edges. A node in the graph represents a 
pro ess event. It is one of the primitive events or a user-defined event. The following is a min
imal set of primitive events for constructing the execution graph: process creation(proc_init), 
process destruction(proc__exit ), message send( msg_send), receive call( recv_call), and message ar
rive( msg_arr ). There are two types of edges in the graph, which defines a partial order over the 
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set of all the nodes. A vertical edge represents the computation activities between two consec
utive events of the same process . The direction of the edge represents the temporal ordering of 
the two events. A diagonal edge represents the communication between two processes. There 
is always an edge from a msg_send event to a corresponding msg_arr event in the graph. No 
edge exists between a recv_call event and the following msg_arr event because the process is 
suspended a.nd there is no computation between these two events. The execution graph has the 
following properties: 

• In a parallel computation with n processes, there are exactly n nodes with in degree zero, 
representing the incarnation of the processes. 

• Each node in the graph has maximum in-degree 2. 

• The maximum out-degree for each node is n if multicast is supported; 2 otherwise. 

Each node in the execution graph can be tagged with the global timestamp of the corresponding 
process event. The elapsed time between any two events can be calculated by comparing the 
two timestamps. Figure 3.1 shows the execution graph of a parallel computation with and 
without multicast. 

3.3 Performance Metrics 

In this section, we derive performance metrics for this system based on the parallel compu
tation model defined in the last section. 

As in the performance analysis of sequential programs, the overall performance of a parallel 
program can be measured by the program execution time. We assign a weight to each edge 
in the execution graph equal to the elapsed time between its source event and its destination 
event. The program execution time is given by the length of the longest path of the execution 
graph. Figure 3.2(A) shows the weighted execution graph for a parallel computation with three 
processes on two processors. Processor O timeslices between the two processes. The longest 
path, or the critical path [YaMi88), is highlighted in the graph. The program execution time is 
the sum of the weights of all the edges on the longest path, i.e. 25 + 8 + 5 + 10 + 3 + 3 + 15 = 69. 

Two other important metrics for parallel programs are speedup and efficiency. Let T( n, k) 
denotes the program execution time of a parallel computation with k processes on n processors, 
speedup is defined as S(n,k) = T(l,k)/T(n,k) and efficiency is defined as E(n,k) = S(n,k)/n. 
Speedup is bounded by the number of processors, i.e. S( n, k) ~ n. In the execution graph, let 
Ci denotes the total amount of time process i spends in computation. Assuming that the same 
amount of work is done it follows that I:7::::1 C, = T(l, k ). Substituting this in for T( n, k) in 
S(n, k ), we obtain speedup as the ratio of total computation time to program execution time: 
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. If there is no multitasking on the same processor, then Ci is the sum of the weights of all the 
vertical edges that belong to process i . In a parallel computation where some processors are 
timesliced among mult~ple processes , the calculation of Ci is more complicated. The execution 
graph has to be relabelled by assigning CPU time rather than elapsed time as the weight to 
the vertical edges in the graph. The CPU time of a vertical edge is the time the process is 
active computing between 'its source and destination event. Let P denote the CPU time and 
E denote the elapsed tj.me between the two events. P = E if there is no timeslicing. Let l:::.j 
be a t ime interval between the two events and the number of active processes on t he processor 
during an interval of t ime m; . Suppose there are l such intervals between the two events. The 
CPU time is: 

I 
p = E _ I: (mj - 1)1:::.j 

j=l ffij 

The total computation time for a process can be computed by the sum of the CPU time of all 
vertical edges that belong to that process. Figure 3.2(B) shows that the execution graph in 
(A) with its vertical edges rel abelled by the processor time. The total computation time of the 
execut ion graph is: L~=l Ci = (18 + 2 + 10) + (17 + 3 + 8) + (5 + 5 + 20) -= 85. The speedup of 
the program on 2 processors is 1.23 and its efficiency is about 62%. 

The granularity of a parallel program can be defined as the amount of time it spends 
in communication routines as compared to the total amount of computation. Let M denote 
the sum of the weights of all the diagonal edges in the execution graph. This is the total 
communication time of the program. Since the total computation time of the program is 
I::f=1 Ci, the computation to comm uni cation ratio is (I::f=1 Ci) : M. This ratio for the program 
in Figure 3.2 is 80 : 20. 

In addition to the overall performance metrics for the whole program, we are also interested 
in the resource utilization on individual nodes over a given period of time. In a multicomputer 
network, the two most important resources are processors and communication channels. Given 
a time interval b.t, the degree of parallelism achieved in the system during t::.t can be derived 
from the processor utilization of each individual node Ucpu;· Given n processors, the parallelism 
of the system is calculated by: P6.i = (I::7= 1 Ucpu.J/n. If b.t = T, then parallelism is equal to 
the efficiency of the parallel program i.e. Pt:i. t = E(n). Similarly, we can define traffic load of 
the network during b.t as: LtJ.t = (I::~1 U1ink; )/m where U1ink; denotes the utilization of link i 
during b.t and m is the total number of links in the network. 

All of the above metrics are defined at the program level. That is, they reflect the perfor
mance of the entire program. From the execution graph, it is also possible to derive performance 
metrics at the node level and process level, such as communication frequency between two nodes. 
These are simply statistical summaries and their calculation is straightforward. 

3.4 Weighted Critical Path Analysis (WCPA) 
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The performance measures described in Section 3.3 will supply users with answers to how 
efficient their programs run. It does not answer questions the efficiency of their programs or the 
locations of performance bottlenecks. The critical path analysis technique proposed in [YaMi88] 
tries to focus the user's attention to the sequence of program activities which take the longest 
time to execute. It is hoped that knowledge of the critical path of a program's execution helps 
the user identify performance problems and better understand the behavior of their program. 
While the critical path is useful in measuring the program execution time of a parallel program 
(Section 3.3), the question we would like to answer is: does the sequence of program activities 
that take the longest time to execute accurately reflect the activities which contribute most to 
the performance of the program, or are several parts of the program which take equal time to 
execute on one node equally important to the overall performance of the parallel program? A 
positive answer seems to be intuitive for those who are used to programming in a uniprocessor 
environment. However, in a parallel system, the degree of parallelism achieved has a dramatic 
impacts on the overall performance of the program. For instance, executing a segment of code 
on one node with all other nodes busy is not equivalent to executing for the sam~ period of time 
with all other nodes idle. The latter indicates a potential sequential bottleneck in the parallel 
application and thus has a more significant effect on the performance of the program. Generally 
speaking there are two ways to deal with sequential bottlenecks in parallel programs. One is 
to re-structure the program to remove the sequential component. This requires substantial 
changes to the application and may not always be possible since many parallel applications 
have an inherently sequential component. If f is the fraction of computation which has to 
be executed sequentially, the upperbound for speedup on n processors is given by Amdahl's 
law [EaZaLa89]: 

1 
S(n,k) < f + (1 - /)/n 

Another approach is to optimize the code that has to be executed sequentially, thus reducing 
the fraction of sequential computation f. Therefore, it is essential to identify the sequential 
bottlenecks in the application. Consider the portion of a critical path shown in Figure 3.3. 
Suppose the number of processor is 100. A conventional critical path analysis tool would assign 
a weight,the elapsed time, to each edge. The elapsed time between event A and event B is 100 
msec, while the elapsed time between B and C is 500 msec. It appears that the computation 
activities between event B and event C have a more significant effect on the performance of the 
program since they need longer time to execute. Since Pt::,.t = 0 between A and B, which means 
all other nodes are idle during that time interval, improving the execution time between A and 
B by 50% would reduce the program execution time by 50 msec. On the other hand, since all 
other nodes are busy between B and C, reducing the execution time between B and C has little 
or no effect on the performance of the program unless the execution time on all other nodes is 
also improved. The critical path of a parallel computation consists of a large number of events 
and it is difficult for the user to determine the relative importance of computation activities on 
the critical path to the performance of the program. The above example shows that the elapsed 
time alone is insufficient to capture the relative importance of concurrent program activities. 
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Based on the above observation, we present an analysis method, called weighted critical path 
analysis (WCPA), which incorporates the notion of parallelism into the critical path analysis. 
The purpose of WCPA is to the identify sequential components and activities with low degree of 
parallelism on the critical path. It is similar to the performance measurement technique used in 
Quartz [AnLa89] on shared memory machines(see Chapter 2). In WCPA, we apply the notion 
of parallelism to process activities on the critical path rather than to procedure activities in 
Quartz due to the unacceptable overhead of monitoring procedure level events in multicomputer 
networks. In the WCPA approach, an edge in the execution graph is weighted by two factors: 
the elapsed time between the two events and the degree of parallelism during that period. Let 
Pt:.t denote the parallel factor during time interval ll.t where ll.t is the elapsed time between 
the two events and n is the number of processors in the system, the weight assigned to the edge 
is computed by: 

When Pt:.t = 1, i.e. maximum degree of parallelism is achieved, the weight assigned to an edge 
is equal to the elapsed time ll.t; when Pt:.t = 0, i.e. there is no parallelism in the system, the 
weight is maximized at n6t. An interpretation of this is that when there is no parallelism, 
the execution on one node is wasting the resources on all other nodes, virtually consuming 
the resources of the entire system. Now, the longest weighted path in the execution graph 
represents the sequence of program activities which have the most significant effects on the 
overall performance of the parallel program. In Figure 3.3, the weight assigned to edges by the 
WCPA method is shown in brackets. Note that the weight for edge < A, B > is now 10100. 
far more than the weight of edge < B, C > 500. This correctly reflects our intuition about 
the relative importance of these program activities. A good metric to measure the relative 
importance would be the percentage of each portion on the weighted critical path out of the 
total weight of the whole path. The computation activities which weight the most on the critical 
path represents "the hottest of hot spots" in the program. Optimization of these components 
is expected to result in substantial improvement of the performance of the program. 
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3.5 Summary 

In this chapter, we introduced a graph theoretical model of parallel computation on multi
computer networks, which we called an execution graph. We show that a sufficient set of five 
primitive events: proc_init, proc_exit, msg_send, recv_call and msg_arr are adequate to con
struct the execution graph for any parallel computation. Various performance metrics can be 
derived from the execution graph. Based on this model, we also developed a method to diag
nose performance problems in parallel applications. This was based on the critical path analysis 
technique but incorporated the notion of parallelism in locating performance bottlenecks of the 
program. The method we proposed is shown to be able to reflect the relative importance of 
program activities to the overall performance more accurately than the conventional critical 
path analysis technique. The model and methods proposed in this chapter can be adapted to 
other message-based parallel and distributed environment with minor modifications. 



Chapter 4 

Design of the Parallel Monitor 

T his chapter describes the design of a parallel performan c monitor and its implementation 
on transputers. In Chapter 1, we discussed t he major issues in monitoring parall l and dis
tributed systems and possible solutions to these problems. In this chapter the technique and 
approaches used to overcome these problems are described in detail. 

4.1 Environment 

We begin with a brief description of the underlying instrumentation environment. One 
of our design goals is that the instrumentation should require minimal changes ~o the target 
hardware and software system. 

4.1.1 Hardware Architecture 

The parallel monitor is currently implemented on a 74-node transputer-based multicom
puter in the Department of Computer Science at UBC. The multicomputer consists of a Sun 
4 workstation as the host and 74 IMS T800 transputers, each containing 4 Kbytes on-chip 
RAM, 4 bidirectional serial links, and 1 Mbytes or 2 Mbytes local memory. The 74 transputer 
nodes are interconnected through 10 programmable crossbar switches. Detailed description of 
the hardware architecture of the T800 transputer and the C004 crossbar switches and their 
physical connection can be found in Appendix A of this thesis . The transputers in the network 
are connected to the host Sun workstation by a VME bus interface. There are currently seven 
connections between the host and the transputers, Nodes which do not have direct connection 
with the host can only communicate with the host through intermediate nodes. 

The interconnection topology of the transputer network can be dynamically reconfigured by 
software running on the Sun which sends switch setting commands to the crossbar switches. Fig-

20 
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ure 4.1 shows a multicomputer network with 72 transputers configured as a 8x9 2-dimensional 
cylinder . 

4.1.2 Underlying Operating System 

The target software_.system is the Trollius Operating System [Burns88), a parallel operat
ing system developed jointly at Cornell University and Ohio State University for distributed 
memory multicomputers and ported to the transputer-based multicomputer at UBC. Trollius 
provides a cross-development environment for parallel programming on transputers. It con
sis ; _, of two parts, one part which runs on the host and the second part running on transputer 
nodes. Trollius executes on top of UNIX on the host and provides a user command interface 
to boot the node, download programs to transputers, kill processes, etc. The most important 
tool provided by Trollius is message passing between processes. There are two levels of message 
passing in Trollius. The kernel level allows communication between processes on the same node: 
the network level allows communication between processes on different nodes, as well as on the 
same node. A Trollius process sending a message does not directly specify the process to receive 
the message, or vice versa. Instead, each process specifies an event type in the header of the 
message. If the event type specified by the sending and receiving process match, the message 
will be passed from the sender to the receiver. In network level message passing, the sender 
also has to specify the destination node of the message. Since the recipient of the message does 
not have to specify the source node, it can receive messages from a variety of senders. Trollius 
supports both an asynchronous and semi-synchronous interprocess communication paradigm 
as described in Chapter 3. Multicast facility is also supported in Trollius. Other tools include 
library routines for process creation, process destruction, signal handling, and access to remote 
file systems. For a detailed description of the Trollius Operating System, readers are referred 
to [Burns88). 

4.2 System Structure 

Figure 4.2 shows the basic structure of the parallel monitor. There are three major compo
nents: data generating and collection, global control, data analysis and display. One transputer 
in the network is distinguished as the master node. It is capable of interrupting all nodes in 
the system to perform measurement tasks simultaneously. 

The monitoring software running on the master node includes an interface that accepts 
monitor command from the user, and a controller that generates global interrupt signals to 
synchronize the monitoring activities on all slave nodes. The data generation and collection 
mechanism include: 

• Event probes inserted into the application running on slave nodes used to generate trace 
data, and a meter process to collect the event traces as they occur; 
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• A backend process on each slave node that performs sampling and clock synchronization 
on the arrival of global interrupt signals. 

• A buffer pool on each slave node to store the trace data and cache intermediate results 
from the meter process a.nd the backend process. The buffer manager flushes the buffers 
when they are full to make room for new trace entries. The trace data are sent back to 
the host for analysis using the message passing mechanism provided by the underlying 
operating system. 

• The collector on the host collects trace data from all of the slave nodes. 

The host collector sends the data to the data display which displays the performance results 
graphically to the user in real time on the frontend host station. Th data are also dumped to 
trace files for input to he data analysis packages. 

4.3 Basic Instrumentation Techniques 

There are two traditional ways of monitoring a computer system: event sampling and event 
tracing. 

4.3.1 Event Sampling 

Event sampling is a statistical approach to obtain an accurate estimation of the behavior 
of the computer system. The measurement task is performed at a pre-specifi d time interval 
for a long pedod of time. The main advantage of event sampling is that the amount of data it 
generates is small as compared to other approaches. This both reduces the monitoring overhead 
and simplifies the analysis. 

In order for the data collected by sampling to be represen tative, sample size should be 
large and the sampling interval should be short so that the distribution of workload is hom o
geneous [Chan87]. Event sampling has proved to be the most economical and effective way of 
measuring resource utilization of the system. In a multicomputer network, sampling can be 
used to measure the utilization of processor and communication channels on each node with 
minimal overhead. Rowever, unlike event sampling in uruprocessor systems, the sampling ac
tivities on different nodes must be coordinated to obtain results that reflect a consistent global 
view of the entire system. 

4.3.2 Event Tracing 

Unlike event sampling, event tracing measures events as they occur. Special software probes 
are inserted into strategic locations in the application programs or in the operating system kernel 



CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 25 

to trigger the recording of interesting events. Event traces are captured, buffered, and analyzed 
for display to the user. A major drawback with event tracing is that it is expensive when the 
frequency of the occurrence of the events to be traced is high. 

In multicomputer networks, the volume of events generated on all node during a parallel 
computation can be enormous, however, the buffer space available on each node is very lim
ited and the cost of transferring large amount of data across the network is extremely high. 
Therefore, event tracing is only suitable for measuring high-level events in systems with these 
characteristics. 

Another problem with event tracing in a parallel system is that though events that occur 
on the same node can be totally ordered, events from different nodes may arrive at the host 
in unpredictable order. A single clock is needed to re-order these asynchronous events on the 
host. This requires the local clocks on different node be synchronized. 

4.3.3 Hybrid Monitor 

The parallel monitor we designed was a combination of the sampling and event tracing. 
It uses sampling to measure the resource utilization on each node, but uses event tracing to 
monitor the process events defined in Chapter 3. The process events collected are used by 
the analysis tool to reconstruct the complete execution history of the parallel program and to 
provide insight into the run-time behavior of the program. 

4.4 Global Control 

4.4.1 The Global Interrupt Approach 

In order to obtain precise global state and synchronized global clock in the multicomputer 
network, we used a global interrupt approach, in which a master node interrupts all other nodes 
in the system to perform the measurement tasks almost simultaneously. A basic assumption 
is that the time required to respond to a global interrupt signal is negligible. The global 
interrupt approach can be used to start or stop a computation on all the nodes in the system. 
By generating periodic global interrupt signal, measurement tasks can be performed at some 
predefined time interval ·on system-wide basis. 

It is generally not always feasible to implement the global interrupt scheme in a loosely 
coupled distributed systems. However, the multicomputer network features geographical con
centration and communication locality, it is usually easy to extend such system to support 
global interrupt. Only minimal hardware support is needed to implement the global interrupt 
in a transputer-based multicomputer network. 
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4.4.2 Hardware Extension 

Hardware requirements for implementing global interrupt scheme in a multicomputer net
work are: 

1. A mechanism on each multicomputer node to accept interrupt signal and transfer control 
of the processor to the interrupt handling routine without delay. 

2. A mechanism to deliver the external interrupt signal to all nodes in the network. 

3. A mechanism to generate the interrupt signal, either from a multicomputer node or from 
any other external source. 

The IMS T800 transputer provides an event channel in addition to the four data channels 
on each board. When the input of the event channel is held high, the process waiting for the 
event signal is scheduled. If the process blocking on the event channel is a high priority one and 
no other high priority process is running, the latency is at most 58 processor cycles [Inmos89]. 
Since the processor speed of the T800 transputer is 20 MHz, the delay in responding is less 
than three microseconds. 

In order to deliver the global interrupt signal to a.11 transputers in the network, we built 
a special hardware circuit. The circuit is basically a fan-out with one input and 74 outputs. 
The event channel of each transputer is connected to an output of the circuit. A data channel 
on the master node is connected to the input of the circuit. The global interrupt signal is 
generated by having the master node send to the data channel connected to the input of the 
circuit. Figure 4.3 shows a picture of the department's transputer-based multicomputer with 
the hardware extension. Seventy four transputers are physically split into two boxes, with 10 
nodes in the sma.11 box and the rest of them in the big box. The global interrupt circuit is 
located on the top of the larger box. 

4.4.3 Global Sampling and Clock Synchronization 

A global interrupt is used to turn ON and OFF the monitor on all nodes dynamically. It 
is also used to perform global sampling and clock synchronization in the network. 

A high priority controller process on the master node triggers the interrupt periodically at a 
pre-specified time interval. The first interrupt signal indicates the start of the parallel monitor. 
The controller process keeps sending until the monitor has been turned OFF explicitly by the 
user. The monitor can he restarted after it has been turned OFF. 

On each slave node, there is a high priority hackend process waiting for the interrupt signal 
on the event channel. Upon the arrival of the event signal, it checks a special memory loca
tion [Beers89] to determine whether the processor and each of the data channels are currently 
busy, and increments the counters accordingly. Since the event signals are periodic , the hack
end process can also update its own local clock at a predefined interval by setting the clock 



Figure 4.3: A Picture of the Transputer-based Multicomputer 
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to the expected value. The result of sampling is reported by periodically generating an event 
entry and writing it to the buffer pool. The overhead of sampling and clock synchronization 
is low since the code to be executed is exceedingly simple. It contains only a few transputer 
instructions and runs for less than 10 µsec. If resynchronization is performed every second, the 
overhead is less than 0.0001%. The termination ofa.monitoring session is detected on each slave 
node by not receiving the interrupt signal after a pre-defined timeout period. In the current 
implementation, the timeout period is set to be twice of the sampling interval. 

The accuracy of clock synchronization will be affected if the monitor is not the only high 
priority process since the backend process will not be able to respond in a timely fashion when 
the interrupt signal arrives. Fortunately, in our environment, by default all user processes 
and Trollius server processes run in low priority. The only system processes that have to 
run in high priority are the kernel process and channel processes. The execution of these 
processes is transient. An adaptive synchronization scheme has been implemented in order to 
factor out the interference of these high priority processes to clock synchronization. In_ this 
scheme, the local clock is reset only if the monitor process gets control of the processor within 
a legitimate period of delay, say 20 microseconds; otherwise the value of the clock remains 
unchanged. Experimental result shows that this scheme reduces the worst case drift of the 
clock synchronization algorithm substantially. A limitation is that if user processes are allowed 
to run in high priority, the clock synchronization could he postponed indefinitely. This problem 
is almost impossible to avoid; however, for most applications it is common to have all user 
processes run at low priority. Section 5.3 reports on experimental results for the accuracy of 
our clock synchronization algorithm. 

4.4.4 Summary 

In this section, we have described the global interrupt approach and how it is used to 
obtain global snapshots of the system and synchronize local clocks in the transputer network. 
In contrast to the logical clock approach [Lamport78J has traditionally been used to order 
a.synchronous events and obtain a consistent global state in distributed and pal'allel systems. 
The logical clock approach has also been successfully 11Sed for parallel debugging in existing 
systems (Fowler88][VoZe90]. However, the logical time only reflects the temporal order of 
events but not the physical elapsed time. Since the differences of logical timestamps are not 
comparable with each other, logical time cannot be used to measure the performance of message 
transmission. Moreover, the expense to run the logical clock algorithm is high. Therefore, a 
logical clock did not satisfy the requirements of our system. 

Another approach to the global clock problem is the pure software clock synchronization 
algorithms which estimate the drifts between different clocks by passing messages around the 
network [Duda87][GuLa84](Shumway89]. This is a time-consuming approach since the algo
rithm involves exchanging a lot of messages among different nodes and the accuracy is disap
pointing. Chapter 5 gives a comparison between the global interrupt approach we used and the 
best known software synchronization algorithm on the transputer. 
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As compared to other techniques, the global interrupt approach has the advantage of high 
accuracy, low overhead and simple implementation. We have showed it can be applied to a 
transputer network with minimal additional hardware support. 

4.5 Event Tracing 

4.5.1 Event Generation 

There are five types of standard events traced by the monitor: proc_init, proc_exit, msg_send, 
recv_call, msg_arr. As shown in Chapter 3 these events form a sufficient set of events which 
can be used to reconstruct the execution graph of the parallel program. Users can also specify 
their own events to be traced in the program. The probes to generate standard events are 
inserted into the appropriate routines in the Trollius run-time library. Appendix B discusses in 
detail the probe routines and the changes made to the Trollius library. In order to monitor an 
applications, users must recompile their programs and link to the instrumented version of the 
runtime library. 

An additional library routine probe() is provided to allow user-specified events. The user 
is responsible for inserting the probe() call into the his source problem to generate the user
defined event. Our principle is to minimize monitoring overhead by tracing a minimal set of 
events but provide users the flexibility to monitor additional events. 

Each invocation of the probe routine generates an event trace entry. It is encoded into 
a message and sent to the meter process on the local node using the Trollius kernel message 
passing mechanism. The structure of event entries is shown in Figure 4.4. 

4.5.2 Buffer Management 

The event trace data collected by the meter process as well as the utilization data generated 
by the backend process are stored locally in a buffer pool before they are sent back to the host 
station for display and analysis. 

The buffer pool is organized as a double-buffer structure (Figure 4.5). Each buffer contains 
an identical number of trace entries. After one buffer is full, it is automatically switched to 
the other one. The buffer manager is a low priority process which periodically checks the 
status of buffers. Data in a full buffer are encoded into a message and sent to the host using 
Trollius network level message passing. The advantage of the double-buffer structure is that 
monitoring processes can continue writing trace entries to one buffer while the other is being 
flushed. Operations on the shared data structure are critical sections and are protected by 
disabling timeslicing during operations which access the buffer pool. If both buffers are full and 
new trace entries are being generated, the meter process blocks until a buffer has been emptied 
by the buffer manager. Since the backend sampling process cannot wait, it simply increments 
an overflow counter and proceeds. The overflow counter counter keeps track of the number 
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1 4 4 12 

~ROC-INIT I Times1amp Process Id Process Name 

1 4 4 12 

PROC-EXIT Timestamp Process Id 

1 4 4 4 4 4 

MSG-SEND Timestamp Process Id Event Type Dest Node MsgLength 

1 4 4 4 4 4 

CV-CALL Timestamp Process Id Event Type Buffer Size 

1 4 4 4 4 4 

MSG-ARR Timestamp Process Id Event Type Source Node MsgLength 

1 4 16 

User-defined Timestamp Auxiliary Information 
Event 

Figure 4.4: Structure of Trace Entries 
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of utilization events dropped by the monitor due to overflow. At the end of each monitoring 
session, the value of the overflow counter on each node is reported to the host monitor. 

A B 

Current Buffer 

Reserve Buffer 

Figure 4.5: Double-Buffer Structure 

4.5.3 Adaptive Reporting 

The trace data at each node are sent back to the host using Trollius network level message 
passing mechanism. The advantage of using the same communication mechanism as the ap
plication is the simplicity in implementation. It also makes the design of the parallel monitor 
more portable to other systems since there no need to change the communication mechanism 
provided by the underlying operating system. Since the communication network is multiplexed 
by the monitor and the application, status messages may interfere with normal communication 
of the application, and affect the accuracy of the performance results measured by the monitor. 
Experimental results show that when the frequency of flushing buffer is high, up to 80% of the 
slowdown of the application is caused by monitor communication (See Section 5.2). 

An adaptive reporting scheme was implemented to reduce the interference of monitoring to 
application communication. In this scheme, the monitor on each node keeps track of current 
load of the network. Monitoring data are sent only when the network is lightly loaded. The 
resource usage data measured by global sampling gives a very good indication of the current 
status of the transputer network, and this information can be used by the monitor to determine 
whether the trace data should be sent. Ideally, each node has complete load information of all 
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processors and communication channels and can make the decision based on an global picture of 
the whole system. Howev r, due to the inherent communication delay, the resource utilization 
of one node will have been already obsolete when it is propagated to the monitor on a. remote 
node. Therefore, the information collected by the monitor does not reflect the most up-to
da.te consistent global view of the system. Also, it involves passing a lot of messages in the 
network. The approach we use is a distributed algorithm in which each processor's monitor 
decides whether or not to send the monitoring data. based on local load information. A decision 
is ma.de at each step on the path the monitoring message is routed to the host. Since the load 
information on the local node is always up-to-date, the monitor is able to make an accurate 
prediction for the next step. A predefined threshold function is used by the buffer manager 
on each node to determine whether the node is currently overloaded and whether to send the 
trace data. Let Ucpu denotes the CPU utilization. lflink i is the one tile monitor uses to send 
trace data to the host, let Ui denotes the utilization of this link. The threshold function J is 
computed by: J = o.Ucpu + {3U; where o. and f3 are coefficients obtained from empirical data.. 
If J > 0.8, the node is considered overloaded and the sending of monitoring data is postponed. 
If all buffers on the local nodes are full, the buffer manager has no choice but to -flush the 
buffers regardless of the current status of the network. The buffer size, reporting intervaJ, and 
threshold function have to be selected carefully to achieve optimal performance. Chapter 5 
contains an empirical study on tuning these parameters. 

In the current implementation, the adaptive decision is made only at the first step when 
the monitoring message leaves its origin. Implementation of the complete scheme requires 
substantial changes to the routing mechanism of the underlying operating system and affects 
the portability of the monitoring system. The preliminary implementation of the adaptive 
reporting scheme shows up to 50% improvement over the static scheme in term of degradation in 
the performance of the monitored application. Experimental results indicates that the adaptive 
scheme improves the performance more substantially for communication intensive applications 
since they are more sensitive to the interference of the monitor communication. 

4.5.4 Summary 

Minimizing the communication overhead introduced the monitor is an important issue in 
monitoring multicomputer networks. Some existing systems [HaWy90] resort to a separate com
munication network for monitoring messages to eliminate the effect of monitoring. However, 
in most multicomputer networks, a separate network is not usually available for monitoring 
purpose and is expensive to install in the system. Some systems (Parasoft88] store and process 
the trace data locally until after the application computation terminates. However, in a mul
ticomputer network where buffer space on e~LCh node is extremely limited, it is impossible to 
collect adequate information about the execution of any substantial application. Moreover, this 
approach does not permit real-time monitoring, which is desirable for ma.ny applications. The 
adaptive reporting scheme has proven to be an effective approach to this problem. Refinement 
of this scheme is expected to result in further improvement of the performance of our tool. 
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4.6 User Interface 

The para.llel monitor is designed so that it can incorporate a wide range of user interfaces. 
An simple command interface has been implemented for users to start and stop the parallel 
monitor interactively at the terminal. A programming language interface is also supported by 
providing two additional library routines start_monitor() and stop_monitor() so that the user 
may turn the monitor ON and OFF from within their programs. 

Originally a simple interface was implemented to display the performance result to the 
user as text lines. The textual interface does not allow users to visualize the execution of 
their programs and was inconvenient to use. An X window-based graphical interface has been 
developed to display performance results to the user as easy-to-read chart and graphs. Here we 
give a brief description of the functionality of the graphical display.1 

The output of the graphical display includes a main menu, the network topology, the global 
clock, and the execution graph. A sample view is shown in Figure 4.6. The main menu is the 
control panel for the parallel monitor. The window in the upper right corner in Figure 4.6 
displays the topology of the transputer network. The CPU load for each node is shown in the 
square box representing a node in the network. By clicking on the link which connects node 
0 and node 1, a small rectangle box is popped up to display the utilization of the selected 
transputer link. The global clock window ( the one in the upper left corner) shows the current 
time relative to the elapsed time of the whole program. The clock value can be set, reset, start, 
stop or adjust speed by clicking on the corresponding buttons in the window. The window on 
the lower half of the screen displays the execution graph of the parallel program. Different icons 
are used to represent different types of events in the graph. In Figure 4.6, a filled left triangle 
represents a msg_send event. Open and filled right triangles represent recv_call and msg_arr 
events respectively. The communication patterns of the program can be easily visualized in the 
execution graph. Figure 4.6 shows a broadcasting from each node in the system. The vertical 
and horizontal scrolling bars allow users to conveniently browse through the execution graph 
or focus on only a portion of the execution graph. The display for both node utilizations and 
the execution graph are updated as the global clock proceeds. The user can also obtain more 
details of each event in the execution graph by clicking on the icon representing the event. A 
new window pops up with detailed description of the event being selected. For instance, if the 
selected event is a msg_send, then the sender process id, the type and length of the message, the 
destination node and the time the message was sent will be displayed to the user. The weighted 
critical path generated by the analysis tool is highlighted on the execution graph, allowing the 
user to examine the critical path graphically. The graphical interface is currently implemented 
using the InterViews [LiCaV187] C++ graphics toolkit on top of the X window system. Our 
experience shows that a graphical user interface is an indispensable component of any parallel 
and distributed monitoring tool. 

1The design and implementation of the graphical interface will be described in detail in Hilde Larsen's M.Sc. 
thesis. 
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Figure 4.6: Graphical Display of Performance Result 



Chapter 5 

Testing and Verification 

Accuracy and overhead are the two most important indicators of the success of a monitoring 
tool. In this chapter, we present the testing and verification results for our monitoring tool. 
To measure the accuracy of the monitoring data, we used an artificial application with con
trollable behavior and predictable performance. The parallel monitor is then used to measure 
these programs. The accuracy of the performance result reported by the monitor is derived 
by comparing it to the expected result of the program. Both artificial and real benchmarks 
are used to measure the overhead of the parallel monitor. Efforts have been made to isolate 
various sources of overhead and to tune the parameters of the monitoring program to obtain 
optimal performance. The accuracy and overhead of our clock synchronization technique is also 
discussed and compared with other software clock synchronization algorithms reported in the 
literature. 

5.1 Validation of Monitoring Result 

The performance results reported by the monitor is accurate if it correctly reflects the 
behavior of the application program when it runs without the monitor. In order to validate 
these results, the behavior of the monitored application must be known in advance. We have 
designed an artificial application with predictable behavior to verify the correctness of the 
monitoring results. 

The parallel monitor reports the processor and channel utilization on each node in the 
transputer network. We designed two sets of programs with artificial workload to measure the 
accuracy of the processor and link utilization reported by the monitor. Given a predefined 
time interval tlt and an expected workload e, the artificial processor load program computes 
by incrementing a dummy counter for l% of the time during tlt and sleeps the rest of the time. 
Similarly, the artificial link load programs on neighbouring nodes will keep exchanging messages 
for 1% of the time during tlt and keeps the link idle the rest of the time. To guarantee that the 

35 
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communication channels are busy, all artificial link load processes run in high priority and use 
low level transputer instructions in() and out(). The operating system level message passing 
primitives are not used in order to avoid unpndictable or extra context switches. Each artificial 
application is measured over an extended period of time: T ~ 6.t. The experiment is rep ated 
a large number of times and the average, range and standard deviation for the performance 
results reported by the monitor are calculated for each artificial workload. Table 5.1 shows the 
validation results for processor utilization. Table 5.2 shows the validation. results for link uti
lization. In both cases, f.).t = 1sec, T = lOmin, and the result is computed over 10 experiments. 
It can be seen from the tables that both processor utilization and link utilization measured by 
the monitor are very accurate, with worst case deviation less than 5% and standard deviation 
less than 2%. 

Expected Load Average Load Range Standard Deviation 
(%) (%) (%) (%) 
10 10.62 9 - 12 0.89 
20 20.72 19 - 22 1.13 
30 30.32 29 - 32 0.82 
40 40.10 40 - 41 0.30 
50 50.09 50 - 51 0.29 
60 60.08 59 - 61 0.38 
70 70.32 68 - 72 0.96 
80 80.13 78 - 81 0.88 
90 89.90 89 - 90 0.30 
100 99.90 99 - 100 0.30 

Table 5.1: Validation of Processor Utilization 

Expected Load Average Loa<l Range Standard Deviation 
(%) (%) (%) (%) 
10 10.41 9 - 12 0.83 
20 19.46 17 - 20 0.73 
30 29.00 27 - 30 0.87 
40 38.27 35 - 40 1.54 
50 48.80 46 - 50 1.09 
60 58.60 56 - 61 1.58 
70 68.82 67 - 71 1.36 
80 79.14 77 - 81 1.60 
90 89.71 87 - 92 1.69 
100 99.31 98 - 100 0.79 

Table 5.2: Validation of Communication Channel Utilization 

The accuracy of the resource utilization result is affected by the interval of global sampling. 
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The sampling interval must be short enough for the distribution of workload to be homoge
neous, but long enough to keep monitoring overhead within an acceptable range. One criteria 
for selecting the sampling interval is that it need not be performed more frequently than events 
occurs. Since the frequency of interprocess communication events in Trollius is measured in a 
few hundred microseconds, the sampling interval need not be less than 1 msec, but (probably) 
should not exceed 10 msec·. Figure 5.1 shows that the monitoring overhead decreases as the 
sampling interval increases. The overhead shown in the chart is in fact the sum of the sam
pling overhead and the reporting overhead. Reporting overhead decreases as sampling interval 
increases because trace data are reported less frequently. However, since the reporting interval 
is relatively long as compared to sampling interval, its effect on the monitored program does 
not show linear behavior. This is why in Figure 5.1 the overhead does not decrease linearly as 
sampling interval grows. Based on the result in Figure 5.1, 5 msec seems to be the best choice 
since the overhead remains almost constant at 2.5% once the sampling interval is increased to 
5 msec. The results given in Table 5.1 and Table 5.2 are measured with a global sampling 
performed every 5 msec on all nodes. 
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Figure 5.1 : Monitoring Overhead for Different Sampling Intervals 

The accuracy of performance metrics such as program execution time relies on the time 
measurement of the traced events, which in turn relies on the accuracy of the global clock. The 
accuracy of clock synchronization in the monitoring system will be discussed in Section 5.3. 

5.2 Measurement of Monitoring Overhead 
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The overhead incurred by the parallel monitor is measured by the performance penalty 
(slowdown) it introduces to the monitored appli cation. Let T be the program execut ion time 
of the parallel application when it runs without t he monitor, and TM be the program execution 
ti.me when the application runs with the monitor. The overhead is computed by (TM - T )/T x 
100%. 

In Section 1.1.2, we discussed the various sources of monitoring overhead. In our experi
ments , we isolated different sources of monitoring overhead and measured each separately. Our 
purpose was to identify which one contributed most to the overhead in our system. The parallel 
monitor is funct ionally decomposed into three components, labelled: 

• A: global sampling and clock synchronization; 

• B: event tracing; 

• C: reporting. 

The monitoring overhead caused by different components was _m a.sured by disabling one or 
more of them during different monitoring sessions. For reporting(C ), we measured both the 
static reporting scheme (Cs) and the adap tive reporting schem ( CA) as proposed in hap
ter 4. The application used to evaluate the monitor was a parallel Cholesky 's factorization 
algorithm implemented under Trollius on the transputers. The input of the program is an x n 
matrix. During the computation, the matrix is decomposed into submatrices which are pro
cessed concurrently on different nodes. The size was held constant so that as the number of 
nodes increases, the granularity of the computation becomes finer. In Table 5.3, the overhead 
to monitor this application is shown when runnmg on different topologies with constant input 
size 65 x 65. The overhead attributed to differen t components on each row. A+ Cs means 
the monitor only performs global sampling and static reporting. A+ B means it only performs 
sampling and event tracing without reporting the results to the host. Results for other rows 
can be interpreted in similar ways. 

Topology Overhead (%) 
(Mesh) 1 X 2 2x2 2x4 4x4 4x8 6x8 
A+CA 0.5 0.8 1.1 2.4 0.7 3.6 
A+B 2.0 1.2 1.5 1.4 3.7 9.7 

A+B.+Cs 2.8 2.4 5.8 8.1 42.6 45.2 
A+B+CA 2.6 2.4 5.3 5.4 20.9 39.1 

Table 5.3: Monitoring Overhead for Cholesky's Factorization Program 

The results given in Table 5.3 show that the overhead of both sampling(A) and event 
tracing(B) is low, less than 4% in most cases. It also shows that the overhead of reporting( C) 
is reasonably low when executed on topologies with less than 16 nodes (the 4 x 4 mesh). The 
granularity of the 65 x 65 matrix on 16 nodes is reasonable as each node get a 4 x 4 submatrix. 
As the computation becomes too fine-grain ed on larger topologies, e.g. the 4 x 8 or 6 x 8 
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mesh, the overhead incurred by reporting monitoring data increases dramatically to over 40o/c . 
This is because the communication of the application is so intensive that the interference w.iLh 
monitoring message severely degrades the performance of the application. The result for the 
adaptive reporting scheme (A + B + CA) indicates that substantial improvements are possible 
by reducing the interference of reporting to application ommunication. 

Table 5.4 shows the overhead introduced to the Cholesky's factorization program with dif
ferent size input. In this table the same 2 x 4 topology was used. The overhead is the sum of 
sampling, event tracing and reporting. Measurements are made for both the static reporting 
scheme and the adaptive reporting scheme. The number of events generated by the application 
for different size of input is also shown in the table. Note that overhead decreases as the input 
size increases. On a fixed number of nodes, the larger the size of the input matTix, the less 
fine-grained the parallel computation and the less overhead the monitor communi cation incurs. 
This in combination with Table 5.3 supports our claim that the major source of monitoring 
overhead lies in the communication bandwidth used to report monitoring data. We can also 
conclude from these experiments that the overhead of reporting decreases as th_e granularity of 
the parallel application grows. The result in Figure 5.3 indicates that the adaptive reporting 
scheme is an effective means to reduce the communication overhead of the parallel monitor. 
However , when the overhead is low, ad aptive and static reporting scheme behave basically the 
same (See Figure 5.4). For parallel applications with reasonable granularity, the ovel'head in
curred by the parallel monitor is within acceptable range (below the 15% performance penalty 
suggested in [Reed89]). 

Overhead (%) 
Matrix Size Number of Events Static Reporting Adaptive Reporting 

9x9 399 6.1 8.9 
29 X 29 871 8.0 6.7 
65 X 65 2032 5.8 5.3 

144 X 144 4195 2.3 1.6 
234 X 234 9388 1.1 1.1 
504 X 504 14590 1.0 1.0 

Table 5.4: Monitoring Overhead for Input of Various Matrix 

Another source of monitoring overhead which does not affect the running time of the pro
gram is the memory space allocated to store the data collected by the monitor on each node. 
Memory is often is scarce resource on transputers. It is important to minimize the buffer space 
used by monitor so that memory can be used for scaling up the size of the problem. However, 
reducing the size of the buffer pool would increase the frequency of reporting, resulting in higher 
overhead. Therefore, a trade-off has to be made between satisfying the memory constraint and 
reducing communication overhead of the monitor. Figure 5.2 shows the monitoring overhead 
for different buffer sizes for the Cholesky's factorization program with input size 65 x 65 on a 
4 x 4 mesh. 
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Figure 5.2: Monitoring Overhead for Different Buffer Size 

The default buffer size in the current implementation is 5378 bytes which could store 256 
trace entries. The user is given the flexibility to specify buffer size allocated for the parallel 
monitor on each node. 

5.3 Clock Synchronization 

A clock synchronization algorithm is acceptable if the drift between different clocks is small 
compared to the minimum interval of time between any two events. We use a global clock to 
order asynchronous events and measure the elapsed time of message transmission. Therefore 
the accuracy of the performance results we obtain heavily depends on the accuracy of th clock 
synchronization algorithm used in our system. This section presents our results fm the global 
interrupt approach we use to perform clock synchronization in the transputer network. We 
compare this approach to other software clock synchronization algorithms. 

We measured the drift between different clocks by having processes on neighbouring nodes 
exchange one single byte message for a predefined period of time. Assuming that when both 
channels are active the time to transmit a one-byte message is identical, the clock drift can 
be derived from the average difference of opposite direction message transmission time. The 
two communicating processes on the neighbouring node run in high priority and use the low 
level transputer assembly code in() and out() to exchange messages, in order to factor out the 
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interference due to context switches. Table 5.5 shows the accuracy of our clock synchronization 
algorithm. 

Resync Interval (sec) 0.1 0.5 1.0 2.0 
A verctge Drift (µsec) 0.84 1.95 3.58 5.91 

Maximum Drift (µsec) 6 7 8 14 
Sta.ndard Deviation(µsec) 1.40 1.86 2.30 3.88 

Table 5.5: Accuracy of Clock Synchronization Using Global Interrupt 

Note that higher accuracy of clock synchronization can be achieved by performing a resyn
chronization more frequently. By performing a resynchronization every second, we achieve an 
accuracy of average drift less than four microseconds and maximum drift of eight microseconds. 
Very little overhead is incurred in our scheme since the code to be executed on each node to 
perform the resynchronization is extremely efficient. It contains only a few transputer instruc
tions and runs for less than 10 µsec. If the resynchronization interval is one second. then the 
overhead is less than 0.0001 %. Also, it takes less than 10 microseconds to send a one-byte 
message across a transputer link, and the message transmission time in Trollius is measured in 
several hundred microseconds. The accuracy of clock synchronization algorithm is more than 
adequate for ordering asynchronous events and measuring message elapsed time. 

There have been a few clock synchronization algorithms for transputer networks reported in 
the literature [Shumway89l[Ca Vi88). We compared our scheme with the RING-SYNC algorithm 
in [Ca Vi88J since it reports the best accuracy among all existing algorithms. 

The RING-SYNC algorithm is based on a ring-structured transputer network in which a 
master node periodically passes a SYNC message around the ring containing the local clock 
value and the partial delay. Upon receiving a SYNC message, every slave node sets the value of 
its clock to the sum of the clock value and partial delay in the SYNC message and updates the 
clock value in the message accordingly. When the SYNC message returns to the master node, it 
recalculates the partial delay for the next SYNC message. In [Ca Vi88), they also apply linear 
regression and q-degree extrapolation to estimate the drift between two resynchronizations 
and revise the clock value. Experimental results for the RING-SYNC algorithm have been 
reported in [Ca Vi88). The maximum and typical clock drift are measured with and without 
the interference of user process, and the result is given before and after the drift correction 
using the q-degree extrapolation. Table 5.6 gives the summary of the best of their results when 
resynchronization is performed every 5 seconds. 

No Revision 1-degree Extrapolation 
NO LOAD W/ LOAD NO LOAD W/ LOAD 

Maximum Drift (µsec) 100 115 12 56 
Typical Drift (µsec) 100 115 8 36 

Table 5.6: Accuracy of RING-SYNC algorithm 
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The result of the RING-SYNC algorithm for the NO LOAD case after drift correction using 
the I-degree extrapolation seems to be almost as good as our clock synchronization using global 
interrupts. However, it deteriorates drastically in the presence of user processes .in the system. 
The reason is that the RING-SYNC algorithm h,as to share the communication channels with the 
application and thus interferes with the user's communication activities. Since passing a SYNC 
message around the ring is very expensive, especially when the number of nodes in the system is 
large. Better accuracy cannot be achieved by performing resynchronization more frequently in 
RING-SYNC. As compared to the RING-SYNC algorithm, our clock synchronization algori thm 
using global interrupts has the following advantages: 

1. Topology independent. Our approach makes no assumption about the interconnection 
of the transputer network, while the RING-SYNC algorithm only works in networks 
containing a ring. This limitation of the RING-SYNC algorithm implies that it cannot 
be directly applied to common topologies such as tree-structured networks. 

2. Application independent. The accuracy of clock synchronization using global clock is not 
affected by the application since a separate network, the global interrupt circuit, is used 
to deliver the signal. The accuracy of RING-SYNC algorithm is seriously affected if the 
application is highly communicative. 

3. Lower overhead. The overhead of the RING-SYNC is substantially higher than the global 
interrupt approach even if resynchronization is only performed rather infrequently. Run
ning the q-degree extrapolation algorithm for correction consumes extra processing power 
on each node. 

4. Higher accuracy. Even the accuracy of the RING-SYNC algorithm in the ·ideal case is 
only close to the accuracy achieved using global interrupt. The difference in the normal 
case wi th user processes in the system between the two scheme is an order of magnitude 
greater. 

5. Simple implementation. The implementation of our scheme is exceedingly straightforward 
and the code contains only a few transputer instructions. While efficient implementation 
of the RING-SYNC and the q-degree extrapolation algorithm can be tricky. 

The advantage of the RING-SYNC algorithm is that it is a pure software solution and does not 
need any extra hardware support. However, the accuracy and reliability of the global interrupt 
approach more than justified the minimal amount of extra hardware needed to implement it. 

5.4 Summary 

In this chapter, we presented the results of our experiments in measuring the accuracy and 
overhead of the parallel performance monitor developed on the transputer-based multicomputer. 
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The results indicate that both the accuracy and the overhead of our monitoring tool are within 
the desired range to achieve the goals we proposed in Section 1.3. By measuring the various 
sources of monitoring overhead we identify the communication activities of the monitor as the 
major source of overhead in our system. The results indicate that the adaptive reporting scheme 
as proposed in Chapter 4 ~s an effective means of reducing the interference of monitoring to 
application communications. A comparison is made between our clock synchronization scheme 
using global interrupts and a pure software clock synchronization. The results indicate that our 
approach is superior in accuracy, overhead, applicability and simplicity, justifying our design 
principle of relying on minimal hardware support to achieve performance beyond the realm of 
any pure software solutions. 



Chapter 6 

Performance Tuning: A Case Study 

In this chapter, an example is used to demonstrate the use of our monitoring tool to tune 
a parallel application. The application we have chosen is an image reconstruction algorithm 
implemented on transputers. 

6.1 The Parallel Image Reconstruction Algorithm 

The algorithm is a parallel versiou of a sequential algorithm used in image proc ssing to 
eliminate noise from a raw image by performing edge detection on the image. Inpu t to the 
algorithm is a raw image as an n x m ma,trix, each element representing a pixel in the image. 
The algorithm is designed for a k x k 2-dlmensional mesh. The input matrix is decomposed into 
k2 submatrices where all processors except those in the last row of the mesh receiv a square 
submatrix of size L MJNti'l,m) J. All extra. columns in the input matrix are sent to the last row 
of the mesh. Upon receiving a submatrix, each processor runs the edge detection algorithm on 
the subimage and exchanges the side columns of its submatrix with its nearest neighbours in 
order to recompute the pixels at the edges of its subimage. The computation on the subimage 
is iterated until convergence, i.e. until no more elements in its submatrix get updated. All 
processed subimages are then recombined and the para.Ile! computation terminates. 

The algorithm has been implemented under the Trollius Operating System and run on 17 
transputers configured as a 4 x 4 mesh plus an external node which has a direct connection to the 
host workstation. The network topology on which the program ru_ns is shown in the output of 
the graphical display of the parallel monitor (Figure 6.1). The transputer node adjacent to the 
host ( called the master node) reads in the raw image from the host file system. It decomposes 
the input matrix into submatrices and distributes them to all transputer nodes in the mesh. 
Each slave node computes and communicates with its neighbouring nodes using Trollius network 
level message passing primitives. The results from all slave nodes are recombined at the master 
node. The reconstructed image is then written to a file in the user's file system. The program 
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contains about 1500 lines of C code and is an integrated part of an image processing package 
developed in the Computer Science Department at UBC. 

Figure 6.1: Graphical Display of Network Topology 

6.2 Measurement and Analysis 

The program was originally implemented and debugged on transputers without the help of 
the parallel monitor, and it appeared to produce desired result. The program was recompiled 
and linked to the instrumented version of the Trollius runtime library without modification to 
its source code. The input image is a 47 x 47 square matrix. 

The first result we obtained from the parallel monitor turned out to be a debugging result 
rather than a performance result. The graphical display of the execution graph indicated that 
the monitor was unable to find the matching msg_arr events for some of the msg_send events 
on the slave nodes(Figure 6.2). This occurred near the end of the execution of the program. 
By clicking on the unmatched sending events in the graph, we examined the information about 
each of these events and discovered that some segments of the reconstructed subimage sent by 
the slave nodes were never received by the master node. The execution graph also indicated 
that all receiving events on the master node were matched. Hence, the problem was that the 
master node did not make enough receive calls when collecting subimages. With the help of 
the monitoring tool, this bug was quickly fixed. Although our tool is primarily intended as a 
performance monitor, it certainly can also be used to debug programs. It allows the user to 
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gain insight into the runtime behavior of execution of the parallel program and detect problems 
or locations where the program is behaving strangely. 
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Figure 6.2: Graphical Display of Unmatched Message Events 

Once having debugging the program, we ran the WCPA tool on the trace to obtain our 
measurement. The performance of the inital implementation was very disappointing . The 
speedup on 16 nodes was less than 3 and the efficiency is less than 20%. The ratio of computation 
vs. communication in the program was 20 : 80, which means 80% of the execution time was 
spent in communication. By examining the weighted critical path generated by our tool, we 
discovered that the communication activities to distribute and return the subimages constitutes 
the major portion of the critical path. In order to obtain precise measurement of the relative 
weight of different phases in the execution of the program, we manually inserted probes into 
the application to generate user-defined events, signifying the start of each phase: 

probe(READ_IMAGE, "reading image"); 
probe(DISTRIBUTE_IMAGE, "distributing"); 
probe(COMPUTE_IMAGE, "computing"); 
probe(RETURN_IMAGE, "returning image"); 
probe(WRITE_IMAGE, "writing image"); 

These probes were placed in the main program right before the procedure calls to execute the 
corresponding tasks. We re-ran the program under the monitor and measured the elapsed time 
and relative weight of each of the phases. For instance, the elapsed time and relative weight 
of distributing subimages was measured by the elapsed time between the DISTRIBUTE_IMAGE 
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event and the COMPUTE_IMAGE event on the weighted critical path and the percentage of the 
total weight between them. These measures were generated automatically by our analysis tool. 
The result of the analysis is shown in Table 6.1. 

I Phase in WCPA I Relative weight I 
Read Image 29% 
Distribute Image 5% 
Compute Image 8% 
Return Image 47% 
Write Image 11% 

Table 6.1: Analysis Result for Image Reconstruction Algorithm 

As shown in Table 6.1, the input and output of the image was weighted 40% on the critical 
path. This is due to the low degree of parallelism during these operations, i.e. all nodes are 
idle waiting while the master is reading from or writing to the host file system. Since only the 
master node is adjacent to the host, this 1/0 bottleneck is impossible to be completely removed. 
In the remainder of the discussion we ignore the effect of this sequential 1/0 bottleneck. 

The computation on the subimages was only weighted 8% on the critical path. This is 
because all nodes are processing the subimages in parallel and a high degree of parallelism has 
been achieved in the system. It also indicates that the code to be execute is efficient already 
and further code optimization cannot improve the performance very much . 
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Figure 6.3: Communication Activities of Distributing Subimages 
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We therefore focus our attention on the distribution and gathering phases of the computa
tion, which together were weighted 52% on the critical path. The communication pattern of 
the parallel program can easily be visualized in the graphical display of the execution graph. 
Figure 6.3 shows the commun.ication activities in the system when subimages are being dis
tributed from the master node to all slave nodes. We can see from the graph that the number 
of messages to send a submatrix appears to be excessive (A total of 11 messages are involved 
to send a subimage). Closer examination of eaclb. event in the graph revealed that the length of 
each message is only 60 bytes. To send a message using Trollius network level message passing 
primitives, the header attached to each message is more than 50 bytes. Thus sending each 
message incurred an almost 50% communication overhead. By consulting the author of the 
program, w found out that the subimages are d..i stributed column by column, i.e. each colum11 
is encoded into a separate message, regardless of the size of the subimage. Since the size of 
our input image was relatively small and each column of the submatrix con ta ined only 14- L5 

elements, there were a large number of short messages. We recommended that some of the 
columns be combined and encoded into longer messages. The program now sends th subimage 
in a single message of its size does not exceed 800 bytes. Both the number of messages and the 
communication overhead of each message were dramatically reduced. The program execution 
time of the modified version showed 55% improvement over the initial implementation. The 
weight of distributing and returning images on the critical path was reduced from 52% to 39%. 
The ratio of computation vs. communication was improved to 63:36, indicating that 63% of 
the time was spent in computation tasks. Speedup and efficiency have been improved by more 
than 100% due to the improvement of program execution time. 

6.3 Summary 

In this chapter, we have demonstrated how our monitoring tool is used to effectively improve 
the performance of a parallel application. Tuning the performance of a parallel program is a 
very sophisticated task due to the complicated interaction among concurrent components of 
the program. Effective performance tuning not only relies on the user's thorough knowledge 
about the program structure, but also depends on the information available to the user about 
the execution of the program. The information presented to the user is useful only if the user 
gains insight into the runtime behavior of the program and can appropriately focus on the 
program activities which have the most impact on the overall performance of the program. By 
combining a graphical display with the weighted critical path analysis package, our tool provides 
at a high level automatic guidance for performance tuning. In our example, the identification 
and resolution of such a performance problem in a parallel application has led to more than 
50% improvement in program execution time. 



Chapter 7 __ 

Conclusions 

7.1 Synopsis 

This thesis has studied the performance characteristics of parallel programs in multicom
puter networks, and presented the design and implementation of a real-time performance mon
itor on transputers. We started with a simple performance model which is based on a graph 
representation of parallel programs in the multicomputer network. This performance model al
lows us to easily derive a variety of performance metrics for parallel programs. From this model, 
we also developed a new analysis method, called weighted critical path analysis (WCPA), which 
has proven to be helpful detecting performance bottlenecks in parallel programs. The design 
of a real-time performance monitor was proposed based on these ideas and then implemented 
on a 74-node transputer-based multicomputer. Lastly, we set up benchmarks to validate the 
accuracy of the monitoring results and to measure the overhead incurred by the monitor. We 
also demonstrated how this tool can be used to tune the performance of an actual parallel 
application on transputers. ' 

We proposed in Section 1.3 a set of goals to guide the design of our performance monitoring 
tool. Our experience with the tool indicates that our goals have been achieved. The capability 
of measuring both resource utilization and tracing process events is clearly superior to other 
transputer performance monitoring tools. (Section 2.2). Extensibility was achieved by the 
modular structure and well-design interface between different components of the parallel mon
itor(Section 4.2). Experimental results show that both the accuracy and the overhead of the 
monitor are within acceptable ranges. Transparency is achieved by inserting software probes 
into the run-time library of the underlying operating system so that users do not have to modify 
their source programs to make them monitorable. We took advantage of a high level windowing 
environment, namely the X window system, to display performance results in a user-friendly 
manner. Although our monitoring tool was designed for the transputer-based multicomputer 
networks and implemented under the Trollius Operating System, the measurement and instru
mentation techniques developed are applicable to a wide range of distributed memory parallel 
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architectures. The performance model and the weighted critical path analysis method we pro
posed in Chapter 3 can be easily adapted to any message-based distributed systems, such as 
the LAN-based distributed environment. The use of global interrupts and the clock synchro
nization technique we used can be ported to most closely-coupled multicomputer networks with 
minimal modifications. The adaptive reporting scheme and design of the graphical interface are 
generally applicable to any performance monitoring tools for parallel and distributed programs. 

7.2 Future Work 

We conclude this thesis by suggesting possible future enhancement of our tool and specu
lating on future research directions. 

7.2.1 Enhancement of the Monitoring Tool 

The adaptive reporting scheme has not been fully implemented in the current implemen
tation. Since trace data are sent to the host using Trollius network level message passing 
mechanism, the decision on whether or not to send the data can only be made at the first 
step when it leaves its node of origin. The monitor has no control over status messages after 
they are sent. The router handles both user messages and status messages in the same way. 
Further refinement of the adaptive reporting scheme would include modification of the routing 
mechanism of the operating system so that message priorities are supported. User messages 
are given higher priority and monitoring messages are given lower priority so that user messages 
going to the same channel as status messages are handled first. Status messages are sent only 
when there is no user message waiting for the same channel or when the local buffer has been 
filled. 

Another improvement of our tool includes better integration of the monitor with the graphi
cal interface so that operation of the parallel monitor can be controlled interactively by "clicking 
a button". 

7.2.2 Alternatives to Nonintrusive Monitoring 

To reduce the overhead caused by messages sent by the monitor, we proposed the adap
tive reporting scheme(Section 4.5.3). There are other alternatives to achieve the same goal. 
One approach is to compensate for the overhead incurred by the monitoring when calculating 
performance metrics from raw trace data. For instance, to compensate for the communication 
overhead introduced by the monitor, the monitoring process on each node has to keep track of 
the number of status messages and that of user messages sent over a communication chan11el 
during a specific period of time. Using these data, it can estimate the extra queuing delay the 
status messages have caused and distribute the total delay to each of the user message on the 
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same channel. The extra delay for each step on the route is then subtracted from the total 
elapsed time of the message, thus obtaining the corrected message transmission time. In order 
to be able to compensate for the monitoring overhead, we must collect enough information 
about the execution of the monitor itself. In essence, it is a matter of how to monitor the 
monitor itself. Furthermore, an appropriate queuing model has to be developed to estimate the 
interference the monitor has caused to the application. 

A different approach that takes advantage of the global interrupt mechanism available in out 
system, is to stop the computation and communication activities of the application program in 
the whole system when performing measurement tasks and draining trace data from each node. 
Global interrupts can he used to stop all nodes simultaneously and restart the system after 
the measurement task is finished. The clock value on each node is reset to its last value when 
the system was stopped. This would completely factor out all the overhead of monitoring and 
reporting to the host. The performance results obtained should precisely reflect the behavior 
of the application as if it were run without the presence of the monitor and a high degree of 
virtual non-intrusiveness is achieved. One disadvantage of this scheme is that it is likely to 
be slow. A second problem is the difficulties in stopping the computation and communication 
activities of the application in a parallel system. Although we can remove all user processes 
temporarily from the ready queue when a global interrupt arrives, the work the system processes 
are doing on behalf of the application cannot be suspended halfway since some system services 
are needed to perform the measurement task. Moreover, process scheduling is supported by 
hardware on transputers; the manipulation of these process queues is tricky and error-prone. 
A third problem is how to deal with the user messages being transferred over a link when the 
system is stopped. The monitor must wait until the data transfer finishes before it can get 
control of the link. 

Both schemes seem to be promising alternatives to achieve non-intrusive monitoring in 
the multicomputer networks. The possibility of implementing them on transputers will be 
investigated in future research. 

7.2.3 Performance Steering 

An interesting application of our tool is to use the information provided by the monitor to 
tune the performance of the application on the fly, which is known as performance steering. 
Performance steering is especially useful for programs that run for a long period of time. say 
several days to several weeks. In addition to displaying the performance data to the user, they 
can also be used as feedback to the underlying system which can control the execution of the 
application in order to achieve optimal performance. The dynamic load balancing technique 
also falls into this category. One special feature of the transputer network is that its topology 
can be dynamically reconfigured by simply sending instructions to the crossbar switches from 
the host. Since the communication pattern of the application is reflected in the execution graph 
generated by the monitor, it can be used to minimize the communication overhead. We may, 
for instance, try to directly connect nodes which communicate frequently so that messages do 
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not have to be routed through intermediate nodes. 
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Appendix A 

Architecture of the 
Transputer-based Multicomputer 

The architecture of the IMS T800 transputer is shown in Figure A.1. The processor speed 
of all T800 transputers are pin-selected to 20 MHz. The speed of all bi-directional links are set 
to 20 Mbits/sec. 

The architecture of the IMS C004 link switch is shown in Figure A.2. The speed of all C004 
switches in the system are set to 20 Mbits/sec. 

The physical connections of the transputers, crossbar switches and VME interfaces are 
shown in Figure A.3. The transputers are connected to the Sun 4 workstation through a IMS 
B0ll board and a CSA Part 8 Interface Board. There are six links on the CSA Part 8 board. 
The four buffered links are directly connected to the transputers, and the two unbuffered links 
are connected to the daisy chain of the configuration links of the crossbar switches. Therefore. 
there are five independent data channels between the transputers and the host. There are i-1 
T800 transputers and 10 C004 switches in the array of transputers and crossbar switches. The 
first 10 transputers and first 2 switches are placed in one box, with the remaining transputers 
and switches in another larger box. There are 8 connections between the two boxes. The 
transputers in the larger box are numbered from 0 to 64, and the switches are numbered from 
0 to 7. Link 0 of transputer i are directly connected to that of transputer i + 1. Link 1, 2 
and 3 of transputer i is connected Switch i, switch succ(i) and switch pred(i) respectively. 
All transputers are partitioned into five reset groups. Therefore, up to five users can use the 
transputer-based multicomputer simultaneously. 
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Figure A.l: Architecture of the IMS T800 Transputer 

59 

LinkSpecial 
Link0Special 
Link123Special 

LinkOut0 
Linkln0 

LinkOutl 
Linklnl 

LinkOut2 
Linkln2 

LinkOut3 
linkln3 

EventReq 
EventAck 



Linkln0 

Linklnl 

Linkln31 

ConfigLinkln 

ConfigLinkOut 

-

;. 

-

32 Position 

Crossbar 

Switch 

T T 
Control 

Logic 

System 
Services 

-

LinkOut0 

LinkOutl 

LinkOut31 

Figure A.2: Architecture of the IMS C004 Crossbar Switch 

60 



< VME Bus 

I I I I I I I 
IMS 

B011 
CSA Part 8 VME Interface 

I I I I I I I 
I C004 Switch 0 I 

□ □ ...... □ 
I C004 Switch 1 I 

I I • • I I .. .. .. ...... 

I C004 Switch 8 I 

□ □ 
. .. ... □ 

I C004 Switch 9 I 

Transputers and Crossbar Switches 

Figure A.3: Physical Connections of the Transputers and the Switches 

61 



Appendix B 

Modifications to Trollius Run-time 
Library 

The following routines are inserted into the Trollius run-time library and replace existing 
ones. They are used to generate the five types of standard events defined in Section 4.5 as well 
as user-defined events. 

B.1 Definition of Monitor Parameters 

I* event type for monitoring message *I 

#define M0N_CMD -100 
#define M0N_RES -101 
#define M0N_TRACE -102 

I* monitor controlling command *I 

#define MON_BEG 
#define M0N_END 

0 

1 

typedef struct TraceEntry 
{ 

char tag; 
int data[NUM_REGS]; 

} TraceEntry; 
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typedef TraceEntry •TracePtr; 

/• all events to be monitored defined here•/ 

#define NODE_USAGE '\000' 
#define MSG_SEND '\001' 
#define MSG_RECV '\002' 
#define RECV_CALL '\003' 
#define PROC_INIT '\004' 
#define PROC_EXIT '\005' 
#define OVERFLOW '\006' 

B.2 Probes to Generate Message Events 

int msg_mon(nheader, trace_type) 
struct nmsg• nheader; 
char trace_type; 
{ 

} 

struct kmsg 
TraceEntry 

kheader; 
trace_buf; 

trace_buf.tag = trace_type; 
trace_buf.data[l] = ltot(getpid()); 
trace_buf.data[2] = ltot(nheader->nh_event); 
trace_buf.data.[3] = ltot(nheader->nh_node); 
trace_buf.data[4] = ltot(nheader->nh_length); 

kheader.k_event = MON_TRACE; 
kheader.k_type = O; 
kheader.k_flags = O; 
kheader.k_length = sizeof(trace_buf); 
kheader.k_msg =(char•) &trace_buf; 

if (ksend(tkheader)) 
return(errno); 

return(O); 
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int nsend(header) 
struct nmsg• header; 
{ 

} 

msg_mon(header, MSG_SEND); 
header->nh_data[0] = getnodeid(); 
return(do_nsend(header, NSEND)); 

int nrecv(header) 
strcut nmsg• header; 
{ 

} 

int err_ code; 

msg_mon(header, RECV_CALL); 
err_code = do_nrecv(header, NRECV); 
header->nh_node = header->nh_data[0]; 
msg_mon(header, MSG_RECV); 
return(err_code); 

B.3 Probes to Generate Process Events 

int mon_pinitO 
{ 

struct kmsg 
TraceEntry 
char• 

kheader; 
trace_buf; 
pname; 

trace_buf.tag = PROC_INIT; 
trace_buf.data[1] = ltot(getpid()); 
pname =(char•) t(trace_buf.data[2]); 
GetProcName(pname); 

kheader.k_event = MON_TRACE; 
kheader.k_type = O; 
kheader.k_flags = O; 
kheader.k_length = sizeof(trace_buf); 
kheader.k_msg =(char•) ttrace_buf; 

if (ksend(&kheader)) 
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return(errno); 
return(0); 

} 

int mon_pexitO 
{ 

struct kmsg 
TraceEntry 

kheader; 
trace_buf; 

trace_buf.tag = PROC_EXIT; 
trace_buf.data[1] = ltot(getpid()); 

k.header.k_event = MON_TRACE; 
k.header.k_type = 0; 
k.header.k_flags = 0; 
k.header.k_length = sizeof(trace_buf); 
kheader.k_msg =(char*) &trace_buf; 

} 

if (ksend(&kheader)) 
return(errno); 

return(0); 

int kinit(priority) 
int priority; 
{ 

} 

int retcd; 

retcd = kattach(priority); 
mon_pinit(); 
return(retcd); 

void kexit(status) 
int status; 
{ 

} 

mon_pexi t () ; 
_kexit(status); 
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B.4 Probes to Generate User-defined Events 

int probe(probe_type, aux_info) 
char probe_type; 
char* 
{ 

} 

aux_info; 

struct kmsg kheader; 
TraceEntry trace_buf; 
char* aux_buf; 
char aux_len; 

trace_buf.tag = probe_type; 
aux_buf =(char•) &(trace_buf.data[1]); 
aux_len = MIN(strlen(aux_info), MAX_AUX_LEN); 
strncpy(aux_buf, aux_info, aux_len); 
aux_buf[aux_len] = '\0'; 

kheader.k_event = MON_TRACE; 
kheader.k_type = O; 
kheader .k_flags = O; 
kheader .k_length = sizeof(trace_buf); 
kheader.k_msg =(char•) &trace_buf; 

if (ksend(&kheader)) 
return(errno); 

return(O); 

B.5 Monitor Controlling Routines 

int mon_control(mon_cmd) 
int mon_cmd; 
{ 

struct nmsg header; 

header.nh_node = MASTER; 
header.nh_event = MON_CMD; 
header.nh_type = O; 
header.nh_flags = O; 
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} 

header.nh_length = O; 
header.nh_msg = NULL; 
header.nh_data[O] = mon_cmd; 

if (nsend(&header)) 
return(!); 

else 
return(O); 

int startmon() 
{ 

return(mon_control(MON_BEG)); 
} 

int stopmon() 
{ 

return(mon_control(MON_END)); 
} 
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