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Abstract 

A method is described to compute the curvature at each point on a visible surface. 
The idea is to use the intensity values recorded from multiple images obtained from the 
same viewpoint but under different conditions of illumination. This is the idea of pho­
tometric stereo. Previously, photometric stereo has been used to obtain local estimates 
of surface orientation. Here, an extension to photometric stereo is described in which 
the spatial derivatives of the intensity values are used to determine the principal curva­
tures, and associated directions, at each point on a visible surface. The result shows 
that it is possible to obtain reliable local estimates of both surface orientation and sur­
face curvature without making global smoothness assumptions or requiring prior image 
segmentation. 

The method is demonstrated using images of several pottery vases. No prior 
assumption is made about the reflectance characteristics of the objects to be analyzed. 
Instead, one object of known shape, a solid of revolution, is used for calibration pur­
poses. 

1. Fellow of the Canadian Institute for Advanced Research. 
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1 Introduction 

The purpose of computational vision is to produce descriptions of a 3D world from 2D images 
of that world, sufficient to carry out a specified task. Computer vision systems are required 
to perform at least three generic tasks: 1) recognition 2) localization and 3) inspection. 
Research emphasis typically is placed on recognition tasks. But, increasingly applications 
require careful attention to localization and to inspection. Localization is the determination 
of the 3D position and attitude of a known object or surface. Inspection is the detailed 
monitoring of known surfaces for defects or changes. Robustness on any task is improved 
when computer vision systems make use of all the information available in an image, not 
just that obtained from a sparse set of features. 

This paper demonstrates that reliable local estimates of the curvature at each point on 
a visible surface can be determined using photometric stereo. These estimates are obtained 
prior to image segmentation and are not based on any global measure of surface smoothness. 
Photometric stereo itself is not new. It was first described by Woodham in his thesis [1] and 
in subsequent journal articles [2, 3]. Photometric stereo determines a dense representation of 
the orientation at each visible point on a surface. First implemented by Silver [4], photometric 
stereo has since been used by Horn, Ikeuchi and colleagues both for recognition tasks [5] and 
for localization tasks [6, 7, 8, 9, 10]. 

The overall approach is based on principles of physical optics. An image irradiance equa­
tion is developed to determine image irradiance as a function of surface orientation. This 
equation cannot be inverted locally since image brightness provides only one measurement 
while surface orientation has two degrees of freedom. Photometric stereo allows for the local 
determination of surface orientation by using multiple images, obtained with the identical 
geometry but under different conditions of illumination. Three ( or more) images overcon­
strain the solution. Computations of local surface orientation can be fast, accurate and 
robust. Once surface orientation is known, surface curvature also is determined locally from 
the partial derivatives of image irradiance. Local curvature estimates also are robust since, 
once again, the solution is overconstrained. 

Physical optics determines that an image irradiance equation exists but says very little 
about the particular form that image irradiance equation must take. Of course, one can 
exploit situations where the reflectance properties of a material are known to be of a par­
ticular functional form. Formal analysis of these situations helps to establish the existence, 
uniqueness and robustness of solution methods under varying degrees of uncertainty and 
approximation. Implementation also is facilitated because the resulting computations typi­
cally involve equations of known form with unknown coefficients that can be determined as 
a problem of parameter estimation. 
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Here, no prior assumption is made about the reflectance characteristics of the objects 
to be analyzed. Instead, reflectance properties are measured using a calibration object of 
known shape, in this case a s<;>lid of revolution. Measurements from a calibration object 
of known shape are directly appHcable to the analysis of other objects of unknown shape 
but made of the same material and illuminated and viewed under the same conditions. In 
principle, materials with a.ny reflectance properties can be handled. 

Section 2 provides the background and theory. Section 3 discusses a particular imple­
mentation and reports on the experiments performed. Finally, Section 4 prov.ides a brief 
discussion and summary of the conclusions following from the work reported. 
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2 Background and Theory 

A given spatial arrangement of objects, made of a given set of materials, illuminated in a 
given way, and viewed from a given vantage point, determine an image according to the 
laws of physical optics. Geometric equations determine where each point on a visible surface 
appears in the image and corresponding radiometric equations determine its brightness and 
color. 

The standard geometry of shape from shading is assumed. That is, let the object surface 
be given explicitly by z = f( x, y) in a left-handed Euclidean coordinate system, where the 
viewer is looking in the positive Z direction, image projection is orthographic, and the image 
XY axes coincide with the object XY axes. The gradient, (p, q), is defined by 

aJ(x, y) 
p = ax 

and 
8.f(x,y) 

q = 8y 

so that a surface normal vector is [p, q, -1]. An image irradiance equation can be written as 

E(x, y) = R(p, q) (2) 

where E( x, y) is the image irradiance and R(p, q) is called the reflectance map. A reflectance 
map combines information about surface material, scene illumination and viewing geome­
try into a single representation that determines image brightness as a function of surface 
orientation. 

Given an image, E(x, y), and the corresponding reflectance map, R(p, q), the problem 
of shape from shading is to determine a smooth surface, z = f(x, y), that satisfies the im­
age irradiance equation over some domain 0, including any initial conditions that may be 
specified on the boundary an or elsewhere. There is a substantial, but scattered, literature 
on shape from shading. Two essential references are Horn's text [ll] and the collection of 
papers edited by Horn and Brooks [12]. With a single image, shape from shading problems 
typically are solved by exploiting a priori constraints on the reflectance map, R(p, q ), a priori 
constraints on surface curvature, or global smoothness constraints. Photometric stereo, on 
the other hand, makes use of additional images. 

2.1 Photometric Stereo 

Photometric stereo uses multiple images obtained under the identical geometry but under 
different conditions of illumination. For example, two image irradiance equations 

(3) 
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provide two equations in the two unknowns, p and q. But, these equations are, in general, 
nonlinear so that the solution typically is not unique. Three image irradiance equations 

E1(x,y) - R1(p,q) 
E2(x,y) - R2(P,q) 
E3(x,y) - R3(p,q) 

(4) 

in general overconstrain the solution at each point, ( x, y), because three intensity measure­
ments, E1(x,y), E2(x,y), and E3 (x,y), are used to estimate two unknowns, p and q. 

Conceptually, the idea of photometric stereo is straightforward. Using a calibration object 
of known shape, one can build a lookup table mapping triples of measured brightness values, 
[E1 , E2 , E3], to the corresponding gradient, (p, q). If each image is accurate to 28 = 256 gray 
values then the full table would have 28 x 28 x 28 = 224 entries. Literally building a table 
of this size may be prohibitive, in terms of memory. Various table compression techniques 
are possible. Indeed, one would expect the resulting table to be sparse since Equation ( 4) 
defines the parametric equations, in parameters p and q, of a surface in E1 , E2 , E3 space. 

In any event, computation of the solution can be fast, accurate and robust, as various 
implementations have demonstrated. But, even though the computation of surface orienta­
tion can be accurate and robust, there can still be problems in locally differentiating surface 
orientation to obtain surface curvature. This would certainly be the case, for example, if the 
gradients represented were quantized into too small a set of possibilities. 

Therefore, it is useful to examine what more information about surface curvature can 
be extracted from the image irradiance equation. Before doing this, it first is necessary to 
define a representation for surface curvature. 

2 .2 Surface Curvature 

There are three degrees of freedom to the curvature at a point on a smooth surface. Conse­
quently, three parameters are required to specify curvature. One representation is in terms 
of the 2 x 2 matrix of second partial derivatives of the surface z = J(x, y). Let H be the 
matrix, 

[ 

82 J(x,y) 8
2 J(x,y) l 

H _ az2 azav 
- a2 f(x,y) c32 J(x,u) 

8y&x fP11 

(5) 

His called the Hessian matrix of z = f(x,y). For notational convenience, let 

82 f ( X, Y) 82 f ( X, Y) [}2 f ( X Y) {)2 f ( X, Y) 
Px = 8x2 , Pv = 8x8y ' qx = 8yox and qv = 8y2 (6) 
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It may appear that four parameters are required to specify H. But, for smooth surfaces, 
H is symmetric. That is, p11 = qx, Therefore, only three parameters are required after 
all. His a viewer-centered representation of surface curvature because its definition depends 
on the explicit form of the surface function, z = f(x,y), and on the fact that the viewer is 
looking in the positive Z direction. 

From the Hessian, H, and the gradient, (p, q), one can determine a viewpoint invariant 
representation of surface curvature. Let C be the matrix, 

(7) 

Further, let k1 and k2 be the two eigenvalues of C, with associated eigenvectors w1 and w2 • 

Then, k1 and k2 are the principal curvatures, with directions w1 and w2 , at z = f(x, y). The 
principal curvatures, k1 and k2 , are viewpoint invariant surface properties since they do not 
depend on the viewer-centered XYZ coordinate system. In differential geometry, there are a 
variety of surface representations from which viewpoint invariant principal curvatures can, 
in principle, be determined. Equation (7) determines principal curvatures from the Hessian 
matrix, H, and the gradient, (p, q). The terms in Equation (7) involving the gradient, (p, q), 
can be interpreted as the corrections required to account for the geometric foreshortening 
associated with viewing a surface element obliquely. 

The directions w1 and w2 are viewpoint dependent. Although the directions of principal 
curvature are orthogonal in the object-centered coordinate system defined by the local surface 
normal and tangent plane, they are not, in general, orthogonal when projected onto the image 
plane. Thus, k1 , k2 , w1 and w2 together constitute four independent parameters that can be 
exploited. (Because they are viewpoint dependent, the directions w 1 and w2 are not often 
used in surface representations proposed for object recognition. Note, however, that Brady 
et. al. [13] argue that, in many cases, the lines of curvature form a natural parameterization 
of a surface). 

The Gaussian curvature, K, also called the total curvature; is the product, K = k1 k2 , of 
the principal curvatures. The mean curvature, H, is the average, H = (k1 + k2 )/2, of the 
principal curvatures. It follows from elementary matrix theory that 

1 
K = det (C) and H = 2 trace (C) (8) 

The expression for K further simplifies to 

(9) 

5 



Thus, the sign of det (H) is the sign of the Gaussian curvature. Besl and Jain [14, 15] classify 
sections of surface into one of eight basic types based on the sign and zeros of Gaussian and 
mean curvature. 

Clearly, if one could locally determine the Hessian, H, then one could locally compute 
the curvature matrix, C, using the gradient, (p, q), obtained from photometric stereo and 
Equation (7). Given C, one could examine its eigenvalue/eigenvector structure to determine 
any local curvature representation involving the principal curvatures, k1 and k2 , and their 
associated directions, w1 and w2 , including both the Gaussian curvature, K, and the mean 
curvature, H. 

2.3 Determining the Hessian 

By taking partial derivatives of the image irradiance Equation (2) with respect to x and y, 
two equations are obtained which can be written as the single matrix equation 

(Here, and in what follows, subscripts x, y, p and q denote partial differentiation and the 
dependence of Eon ( x, y) and of Ron (p, q) often is omitted for clarity). The vector [ Ex, Ey] 
is normal to the contour of constant brightness in the image, E ( x, y), at the given point 
(x,y). The vector [Rp,R9] is normal to the contour of constant brightness in the reflectance 
map, R(p, q), at the given gradient (p, q). Equation (10) alone is not enough to determine 
the Hessian, H. But, with photometric stereo, one such equation is obtained for each image. 
With two light source photometric stereo 

H = [Elx E2x] [Rlp _ R2p]-l 
E1y E2y R1q R2q 

(11) 

With three light source photometric stereo 

(12) 

where 

M (13) 
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(T denotes matrix transpose). Equation (12) is the standard least squares estimate of the 
solution to an overdetermined set of linear equations. It can be extended, in the obvious 
way, to situations in which more than three light sources are used. 

It is useful to consider whether the matrix inverses required in Equations (11) and (12) 
can be guaranteed to exist. The essential observation is that the matrices whose inverses 
are required are defined entirely in terms of the reflectance maps, Ri(P, q), independent of 
the particular images, Ei ( x, y). Thus, for a particular surface material, the key factor to 
control the existence and robustness of the computation is the nature and the distribution of 
the light sources. No useful local information is obtained when [Rp, Rq] is zero. This occurs 
at local extrema of R(p, q) and at gradients, (p, q), shadowed from the light source. There 
also may be gradients, (p, q), where two of the [Rp, Rq] vectors are nearly parallel. Local 
degeneracies can be eliminated and the effects of shadows minimized when three, rather than 
two, light source photometric stereo is used. 

It also is important to note that in Equation (12) the magnitude of (.Hp, Rq] plays the role 
of a "weight" that pulls the three source solution towards an image irradiance ·equation for 
which the magnitude of [Rp, Rq] is large ( and consequently away from an image irradiance 
equation for which the magnitude of [Rp, Rq] is small). This has a desirable effect because 
locations in an image at which the magnitude of [Rp, Rq] is small will contribute minimal 
information, and thus it is good that they are discounted. Because of this, points that are 
shadowed with respect to one of the light sources need not be considered as a special case. 
Indeed, when one of the [Rp, Rq] vectors is zero, the three light source solution, given by 
Equation (12), reduces to the two light source solution, given by Equation (11). 

2.4 Integrability 

As we saw above, if a surface is locally smooth then the Hessian, H, is symmetric. Given 
two images, E;(x,y) and Ej(x,y), i -f.j, with corresponding reflectance maps, R;(p,q) and 
Rj(P, q), the Hessian, H, is given by Equation (11). When one expands Equation (11) and 
checks the resulting matrix for symmetry, one finds that H is symmetric iff 

(14) 

( · denotes vector inner product). Therefore, in a three light source configuration, one obtains 
three equations, as in Equation (14) above, involving the vectors [Eix, Eiy] and [Rip, Rjq], 
i = 1, 2, 3 j = 1, 2, 3 i -:/= j. These equations can be used to check the consistency of the local 
estimates of the Hessian matrix, H. Alternatively, it is possible that lack of consistency 
could be used to detect discontinuities in surface orientation. 
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In any event, when one estimates the Hessian, H1 using either Equation (11) or (12), it is 
unlikely that the estimated Hessian, H, will be exactly symmetric, owing to numerical error. 
Symmetry can be forced by projecting :A onto the closest symmetric matrix. An obvious 
candidate for the closest symmetric matrix is the so-called symmetric part of H, given by 

,. ,. T 
H+H 

2 
(15) 

Frankot and Chellappa [16] observed that their projection of a non-integrable set of gradients, 
(p, q), onto a (closest) integrable set caused additional smoothing, leading to more rapid 
convergence in their shape from shading algorithm. Using Equation (15), one can project the 
estimated Hessian, fl, onto a (closest) symmetric matrix. This can be done after estimating 
the Hessian, H, with Equation (11) or (12) and prior to estimating the curvature matrix, C, 
with Equation (7). 

2.5 Validating the Estimate of the Hessian 

One would like to exploit the redundancy inherent in an overdetermined problem in order 
evaluate the validity of the estimated solution. The validity of estimate of the Hessian, H, 
can be expressed quantitatively using an extension of Equation (10). Define a matrix of 
residuals, R = hi], by 

(16) 

Using the Frobenius matrix norm, a relative error term is given by the ratio 

(17) 

This error term combines components due to measurement uncertainty in [Eix, Eiy] and to 
systematic modeling error either in the image irradiance equations ( 4) or in the determination 
of [Rip, Riq], i = 1, 2, 3. 
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3 Implementation and Experimental Results 

3.1 Experimental Setup 

The objects used in this study were pottery vases. Pottery, in bisque form, is a reasonably 
diffuse reflector although no particular assumption is made ( or required) concerning the 
underlying surface reflectance function. The vases were imaged from a distance of about 3m 
using a CCD camera equipped with a C-mount 50mm telephoto lens. In this configuration, 
the variation in surface relief is small compared to the distance to the camera so that image 
projection is well modeled as orthographic. Each vase was imaged three times from the 
identical viewpoint but under different conditions of illumination. The different illuminations 
were achieved using three different light sources, each of which was a standard 35mm slide 
projector. Each projector was focussed, to the extent possible with standard lenses, to 
produce a collimated beam. The light sources were sufficiently distant that any variation 
in surface relief was negligible compared to the distance to the light source. Therefore, it 
is reasonable to assume that scene irradiance was independent of depth. The CCD camera 
was operated with its automatic gain control (AGC) suppressed. This is required so that 
the brightness values obtained for images of different scenes, but under identical conditions 
of illumination, can be directly compared. The effect of inter-reflection was minimized by 
housing the vases in a custom "studio" with matte black walls and ceiling. All other lights 
in the room were turned off prior to each image acquisition. 

3.2 Calibration 

One way to obtain a reflectance map is to measure it using a calibration object of known 
shape. Measurements from a calibration object support the analysis of other objects provided 
the other objects are made of the same material and are illuminated and viewed under the 
same imaging conditions. Calibration by measurement has the added benefit of automatically 
compensating for the transfer characteristics of the sensor. Ideally, the calibration object 
would have visible surface points spanning the full range of gradients, (p, q). A sphere, for 
example, is a good choice. Solids of revolution are another choice. For a solid of revolution, 
it is possible to determine the gradient, (p, q ), and the Hessian matrix, H, at each visible 
surface point by geometric analysis of the object's bounding contour. 

To simplify calibration, we make the axis of the solid of revolution parallel to the image 
plane. Without loss of generality, we can assume a coordinate system in which this axis is 
aligned with the image Y-axis. Under these assumptions, a solid of revolution is the volume 
swept out by moving a circular cross section along the image Y-axis while magnifying or 
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contracting it in a smoothly varying way. Let r = h(y) be the radius of the circular cross 
section and let h'(y) and h"(y) be its first and second derivatives with respect toy. 

If (x, y) is any visible surface point, the corresponding gradient, (p, q), is given by 

X 
p = 

Jr2 - x2 
and 

-t h'(y) 
q = 

Jr2 - x2 

and the elements of the corresponding Hessian matrix, H, are given by 

r2 
Px = 3 

(r2 - x2)2 

x2 h'(y)2 
- r (r 2 - x 2) h"(y) 

(18) 

(19) 

Figure 1 shows the three images of the calibration vase obtained from the three different 
light source positions. The object's bounding contour i easily determined. The par icular 
method used consists of three steps. First, the three images are summed together. Second, 
the intensity histogram of the sum is computed. Third, a single threshold js selected to 
separate object points from background points. Simple thresholding of the summed. image 
is sufficient because, by design, the histogram always is distinctly bimodal. Once the ob j ct 
silhouette is determined, values for h'(y) and h"(y) can be estimated . Of course, some 
smoothing of the bounding contour is required to overcome local qua;ntization effects. Here, 
smoothjng and derivativ estimation is combined by filtering the boundary curve with the 
first and second derivatives of the Gaussian using the particular method described by Lowe 
[17]. 

Thus a solid of revolution is a useful alibration object because it_ is possible) by geo­
metric analysis alone, to determin the gradient, (p, q), the Hessian matrix, H and, ush1g 
Equation (7) , the principal curvatures and associated directions at each vi sible surface point. 
At each (x, y)i the five parameters required, p q, Px, qy and Py = qx, depend only on r, h'(y) 
and h"(y). In practice, the measurement of r, h'(y) and h"(y) can be made both accurate 
and robust. 

3.3 Lookup Tables for Photometric Stereo 

Photometric stereo does not, in fact require that reflectance maps be determined explicitly. 
It is sufficient that the required information be represented implicit ly in the lookup tables 
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used to determine the gradient, (p, q), as a function of the measured triple of brightness 
values, [E1, E2, Ea], 

Here, the lookup table constructed was of dimension 25 x 25 x 25 = 215
• For the given 

table size, the goal is to use the available entries to provide the best resolution possible in 
the estimate of the gradient, (p, q). The technique of histogram equalization was used to 
achieve table compression. Table entries are disproportionately allocated to brightness values 
that occur frequently on the calibration object. This provides good discrimination between 
nearby brightness values that occur frequently at the expense of poorer discrimination in 
ranges of brightness values that occur less frequently or not at all. 

Each image point on the calibration object was sampled. The brightness triple, [E1 , E 2 , E3 ], 

determined the table location. The corresponding gradient was calculated using Equa­
tion (18). The gradient was then converted into a unit surface normal and entered into 
the table. Multiple triples, [E1 , £ 2 , E3 ], an map to the same table location. The resulting 
surface normals were averaged and converted back to gracLi nts as a post-processing step. 
Some table interpolation is done, at the user's discretion, also as a post-processing step to 
fill in missing table entries. 

By construction, this lookup table achieves good discrimination between brightness triples, 
[E1 , E 2 E 3 ] that correspond to possible measurements -from points on the calibration object. 
Space in the table is not effectively utilized for this purpose when entries are allocated to 
impossible brightness triples [E 1 , E 2 , E 3]. Thus, the partfcular lookup Lable design is not 
best for segmentation, defined in this context to be the separation of object points from 
non-objects points. 

Once the lookup table is established, images from the other objects are quickly analyzed. 
For each additional object, the input is the triple of images, £ 1 (x, y ), E2 (x, y ), and E3 (x, y ), 
and the output is a file giving the gradient, (p, q), at each point. A bitmap file also is 
produced to indicate those points at which the gradient, (p, q), was estimated. 

3.4 Determining the Reflectance Maps 

The reflectance maps, R1(p,q), R2 (p q), and R3 (p,q) are required for curvature estimation . 
since their partial derivatives with respect to p and q, are needed in Equations (11) and 
(12). To determine the reflectan e map, it is convenient to solve the inverse of Equation (18). 
That is, given a gradient, (p, q), we want to determine a visible surface point, (x, y), at which 
to measure brightness. This can be done in a two step process. First, given (p, q),' we find a 
value of y such that 

h'( ) - -q 
y - ✓1 + p2 (20) 
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In general, this value of y will not be unique. In practice, it is convenient to choose a range 
for y over which the function h'(y) is monotonic. This guarantees that a unique value of y 
can be obtained. Given y, we also know the radius, r = h(y), and we obtain the required x 
as 

rp 
X -- ✓1 + p2 

(21) 

Figure 2(a) shows the analysis of the occluding boundary of the calibration object of Figure 1. 
Superimposed upon the boundary, as a thicker curve, is the portion chosen over which 
h'(y) is monotonic. Normals to the boundary curve also are plotted at selected intervals. 
Unfortunately, not all values of the gradient, (p, q), occur in Figure 2(a). One way to obtain . 
additional coverage is to repeat the analysis using three additional images (not shown) of 
the calibration object simply placed upside down. Thjs analysis is shown in Figure 2(b). 
Figure 3 shows the three reflectance maps obtained by combining the results of Figures 2(a) 
and 2(b). In Figure 3, the axis tick marks are one unit apart so that the range covered is 
-2.5 $ p ~ 2.5 and - 2.5 $ q ~ 2.5. Some areas still are missing (i.e., black) in all t.hree 
reflectance maps, R1 (p, q), R2(p, q) and R3(p, q), because the results of Figures 2(a) and 2{b) 
do not yet span the full range of possible gradients. One remedy would be to combine the 
above results with measurements from three additional images of the same calibration vase 
re-positioned so that the axis of revolution was aligned with the image X-axis. This was not 
done here. 

3.5 Determining Surface Curvature 

To determine surface curvature at each surface point, w need to know the gradient, (p, q), 
and the twelve partial derivatives, E;:i:, E;11 , R..,,, R.q, i = l , 2, 3. The gradient, (p, q), is 
obtained as the output from photometric stereo, as described in Section 3.3. The reflectance 
maps, R;(p, q), i = 1, 2 3, are obtained as described in Section 3.4. The imag s, E;(x, y ), and 
reflectance maps are further processed to estimate partial derivatives. One could compute 
the twelve partial derivatives explicitly by combining th appropriate directional derivative 
with some degree of local Gaussian smoothing. 1n the current implementation, there was 
insufficient memory available to store all twelve partial derivative results. Therefore, each 
image and reflectance map was smoothed with a 2D Gaussian and the required partial 
derivatives were estimated using simple local differencing, as required. This reduced the 
on-line storage requirement to the six files, Ei(x,y), Ri(p,q), i = 1,2,3, and the gradients, 
(p, q). 

For each object point for which the gradient is known and for which R;(p, q) is defined, 
Equation (12) is used to estimat the Hessian matrix, H. The resulting Hessian is made 
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symmetric using Equation (15). The curvature matrix, C, is determined using Equation (7). 
From the matrix C, the principal curvatures, k1 and k2 , their associated directions, w1 and 
w2 , the Gaussian curvature, K, and the mean curvature, H, are derived, as deseribed in 
Section 2.2. The relative error of the estimate of H also is determined using Equation (17). 

3.6 Results 

This paper is not about surface reconstruction directly. Nevertheless, it is convenient to 
perform some surface reconstruction in order to examine the results of photometric stereo. 

Reconstructing a surface, z = J(x y), given the gradi nt, (p, q), is a problem of integra­
tion. Given a point, (x, y ), and the corresponding gradient (p, q), the change in height dz, 
corresponding to a small movement [dx, dy] is given by 

dz = p dx + q dy (22) 

This suggests a very simple surface reconstruction scheme. Given an initial point, z0 = J(x0 , y0 ), 

one can use Equation (22) to trace a path along which depth is reconstructed. Figure 4 shows 
a plot of a surface reconstructed from the results of photometric stereo applied to the cali­
bration object of Figure 1. Given an initial value, z0 = f(xo, Yo), Equation (22) was used to 
reconstruct a single depth profile in the vertical (i.e., column) direction. Using the values so 
obtained as initial conditions, Equation (22) was then used to reconstruct depth profiles in 
the horizontal direction, one profile for each image row. 

The images shown in Figure 1 are 256 x 256. To avoid clutter, Figure 4 plots every fourth 
row and column. No smoothing has been performed. The quality of the reconstruction is 
due to the local accuracy achieved with photometric stereo. Of course, one would expect 
this example to be accurate since, after all, it is the example of the calibration object itself. 

Figure 5 shows curvature results for the calibration object. In this and in the examples 
to follow, the figure consists of three parts, ( a), (b) and ( c). The mean curvature, H, is 
shown in Figure 5(a). The Gaussian curvature, K, is shown in Figure 5(b). The results 
are scaled to 28 = 256 values and offset so that middle gray represents zero, lighter points 
represent positive values and darker points represent negative values. The relative error of 
the estimate of the Hessian, computed using Equation ( 17), is shown in Figure 5( c). Darker 
points represent larger relative error. As one would expect, curvature remains relatively 
constant over the body of the calibration vase. At the base and at the neck; negative 
curvatures are seen. 

Figure 6 shows three images of the calibration vase now with its top in place. Each image 
is 320 x 256. These images were obtained with the identical conditions of illumination as in 
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Figure 1. Figure 7 shows a plot of a surface reconstructed from the results of photometric 
stereo. T he surface reconstruction and subsequent plotting were performed exact ly as de­
scribed above for Figure 4. Again, no smoothing bas b en performed. The quali ty of Lh_e 
reconstruction is due to the local accuracy achieved with photometric stereo. Detail at the 
neck and at the top is well maintained . 

Figure 8 shows curvature results for the topped vase. As expected, the results for the 
body of the vase are very close to those obtained in Figure 5. Interesting local detail emerges 
at the top. High positive mean and Gaussian curvature is seen at the top tip and at the lip 
where the top sits on the base. Negat ive mean and Gaussian curvature separates the lip of 
the top from the main body of the top. 

Figure 9 shows the three images obtained for the most complex object analyzed, a long 
necked vase with a handle. Each image is 320 x 192. Again, these images w re obtained 
with the identical conditions of illumination as in Figure 1. Figure 10( a) shows a plot of a 
surface reconstructed from the results of photometric ster o. The surface reconstruction and 
subsequent plotting were performed exactly as described above for Figure 4. In thi s case, 
while the simple surface reconstruction algorithm is sufficient to give some idea of the local 
accuracy achieved with photometric stereo, it is not sufficient to obtain a recons ruction 
over the entire surface. Any scheme based on Equation (22) will be suspect since it will be 
difficult to make errors that propagate along the neck compatible with errors that propagate 
along the handle. 

Figure lO(b) shows a plot of a surface reconstructed from the results of photometric 
stereo using an implementation of Harris' method of surface reconstruction [18, 19]. This 
method finds the surface, z = f ( x, y), that minimizes 

(23) 

Imposing a global smoothness term (p; + p~ + q; + q;), helps to combine the handle and Lhe 
neck in the reconstruction. At the same time, in the absence of prior boundary conditions, 
the global smoothness term causes t he depth discontinuities at the top and at the bottom of 
the vase to be lost. The result in Figure lO(a) preserves local detail but is incomplete. The 
result in Figure lO(b) is complete but fails to preserve local detail. 

Figure 11 shows CUl'vature results for the long necked vase with a h andle. This example 
provides the greatest variety of curvature values of any of the exarnpl s considered. The 
long neck has moderately high positive mean curvature and negative Gaussian curvature, 
except for its middle section where it is essentially cylindrical and the Gaussian curvature is 
effectively zero. The handle has very high positive mean curvature throughou t . Its Gaussian 
curvature is highly positive al the top where the handle curves sharply. Elsewhere along the 
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handle, the Gaussian curvature is nearly zero since the handle is nearly cylindrical. Where 
the handle joins the main body of the vase, both the mean curvature and the Gaussian 
curvature become sharply negative. The relative error measure is quite low on the neck, on 
the handle and especially where the handle joins the main body of the vase. This indicates 
that the local curvature estimates are reliable. 

Finally, it is important to point out that all the curvature results shown in Figures 5, 8 and 
11 are dense, local estimates. Any apparent global coherence of the result is a consequence of 
the computation, not a consequence of any global smoothness assumption embedded therein. 
In particular, the object boundary plays no role in the computation. The local results would 
be identical even if the object boundary was obscured. 
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4 Discussion and Conclusions 

Multiple images acquired under the identical viewing geometry but different conditions of 
illumination provide additional local constraint to determine shape from shading. · One way 
to exploit this fact is to obtain better estimates of local surface orientation. Photometric 
stereo does this accurately and robustly with minimal computational requirements compared 
to the iterative schemes typically required for shape from shading from a single image. 

Here, it has been demonstrated that one can obtain, in addition, estimates of local 
second-order surface curvature. This represents a new capability for local shading analysis. 
The computational requirements remain quite modest. The method described does require 
knowledge of [Rp, Rq] for each image. But, this also is the case for methods for determining 
shape from shading from a single image. The method also requires estimates of [Ex, Ey] for 
each image. Interestingly, Horn's original method for shape from shading, based on harac­
teristic strip expansion, also required estimates of [Ex, Ey], Modern variational formulations 
of shape from shading, however, typically do not require [E:11, E11 ]. Of course, estimates of 
[Ex, E11 ] are required for several other vision problems, including edge detection and opti­
cal flow. Thus, multiple light source curvature estimation does not place undue demands 
on what is to be measured, compared to alternatives. The resulting computation is direct 
without requiring any iteration steps. 

The particular formulation for curvature, given in Equation (7), was proposed in (1, 3). As 
argued above, this expression nicely decouples a viewer-centered representation for curvature, 
given by the Hessian, H, from viewpoint dependent foreshortening, given in terms of the 
gradient, (p, q). The Hessian matrix is key because it relates the intensity gradient, [Ex, Ey], 
and the reflectance map gradient, [.R,,, R9]. The notion that intensity gradients can be used 
to estimate the Hessian, H, was noted in [l] and further developed , in the context of multiple 
light sources1 by Wolff [20, 21) . Penna and Chen [22) also considered shape from shading 
with multiple light sources. They derived analytic expressions for · surface curvature based 
on the assumption of Lambertian reflectance and single distant point light sources. 

The current work, including an earlier conference paper [23), represents the first exper­
imental demonstration that surface curvatures can, in fact, be estimated locally in shape 
from shading. The approach makes no prior assumption about the reflectance properties of 
the objects in view. In particular, it does not assume Lambertian ( or any other) reflectance 
function. The robustness of the approach do s depend on the accuracy with whi~h the re­
flectance maps, R(p,q), and their gradients, [Rp,Rq], are known. Careful calibration can 
lead to accuracy in measurement. Careful choice and positioning of the light sources can be 
used to make the computation of the Hessian, H, well-conditioned. 

As shapes analyzed b come more complex, segmentation based on surface curvature be-
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comes more important. To specify the local properties of a surface up to curvature requires 
six para.meters since there is one degree of freedom for range, two for surface orientation 
and three for curvature. If only a single measurement, say range, is available locally, then 
the problem is underconstrained. The usual approach is to interpolate a high-order surface 
with desired properties using measurements otained over extended regions. But, this be­
gins to beg the question since one no longer has reliable local estimates of curvature upon 
which segmentation can be based. The approach demonstrated here is to seek additional 
local information. Multiple images acquired from the same viewpoint but under different 
conditions of illumination provide useful additional information. In principle, each image 
provides three independent pieces of local information, one for brightness and two for the 
two partial spatial derivatives of brightness. (To be truly independent, one would need an 
image sensor that measured partial dedvatives direct1y). With three images one obtains 
nine local measurements wh.icb is sufficient to overconstrain the local solution. Thus, ac­
curacy in local curvature estimation relates directly to the quality of imaging. Robustness 
can be achieved by overdetermining the computation locally, rather than by imposing global 
smoothness constraints. 

Segmentation has always been a "chicken-and-egg" problem in computational vision. The 
contribution of this work is to demonstrate that surface curvature can be computed locally 
and reliably prior to segmentation. This, in turn, should allow future segmentation schemes 
to be more robust. 
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Figure Captions 

Figure 1 Three images of the vase used as the calibration object. Light source 1 comes from 
a direction to the left and slightly above the viewing direction. Light source 2 comes from a 
direction to the right and slightly above the viewing direction. Light source 3 comes almost 
exactly from the viewing direction. E1 (x, y ), E 2(x, y) and E3 (x, y) are shown respectively as 
(a), (b ), and ( c). 

Figure 2 Geometric analysis of the boundary of the caUbration object is used to determine 
the gradient (p, q), at each image point, (x, y). Superimposed upon the boundary, as the 
thicker curve, is the portion chosen over whlch h'(y) is monotonic. Selected normals to the 
boundary curve also are shown. The analysis of the images of Figure 1 is shown in (a) . In 
order to obtain additional coverage in the gradient space, the analysis was repeated using 
three additional images (not shown) of the calibration object placed upside down. This 
analysis is shown in (b). 

Figure 3 The three reflectance maps determined by measurements from the calibration 
object. R1 (p, q), R2 (p, q) and R3 (p, q) are shown respectively as (a;) (b ), and ( c) . The 
axis tick marks are one unit apart so that the range covered is -2.5 :::; p :::; 2.5 and 
-2.5 :::; q :::; 2.5. The black areas in (c) correspond to gradients not obtained from the 
calibration object, either from Figure 2(a) or from Figure 2(b). Additional dark areas in (a) 
and (b) correspond to points shadowed from the light source. 

Figure 4 Plot of the surface of the calibration vase reconstructed from the gradients, (p, q), 
obtained from photometric stereo. 

Figure 5 Curvature results for the calibration vase. The mean curvature, H is shown in 
(a). The Gaussian curvature, K is shown in (b). In each case the result has been scaled so 
that middle gray is zero, lighter points represent positive values and darker points repres nt 
negative values. The relative error of the estimate of the Hessian is shown in (c). Darker 
points represent larger relative error. 

Figure 6 Three images of the calibration vase with its top in place. The three images wer 
obtained with the identical conditions of illumination as in Figure 1. E1(x,y), E2.(x,y) and 
E3(x,y) are shown respectively as (a), (b), and (c). 

Figure 7 Plot of the surface of the calibration vase with its top in place reconstructed from 
the gradients, (p, q), obtained from photometric stereo. 
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Figure 8 Curvature results for the calibration vase with its top in place. The mean curva­
ture, H, is shown in (a). The Gaussian curvature, K, is shown in (b). The relative error of 
the estimate of the Hessian is shown in (c). 

Figure 9 Three images of the most complex object analyzed, a long necked vase with a 
handle. Again, the three images were obtained with the identical conditions of illumination 
as in Figure 1. E1(x,y), E2(x,y) and E3 (x,y) are shown respectively as (a), (b), and (c). 

Figure 10 Plots of the surface of the long necked vase with a handle. The result with the 
algorithm used for Figures 4 and 7 is shown in (a). The result using an implementation of 
Harris' method of surface reconstruction is shown in (b). 

Figure 11 Curvature results for the long necked vase with a handle. The mean curvature, 
H, is shown in (a). The Gaussian curvature, K, is shown in (b). The relative error of the 
estimate of the Hessian is shown in ( c). 
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Surface plot of topped vase 



Figure 8 

(a) 

(b) 

(c) 



Figure 9 

(a) 

(b) 

(c) 



Figure 10 

(a) 

Surface plot of handled vase 
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Surface plot of handled vase (Harris reconstruction) 
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