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1. Introduction 

This paper is devoted to the proof of a single result concerning the performance of a 

certain type of switching network in a certain probabilistic situation. The type of network 

will be defined more precisely in Section 2, and the probabilistic situation in Section 3. In 

Section 4 we shall survey previous work and formulate our result. Section 5 will indicate the 

methods to be used in the proof, which will occupy Sections 6-9. Some possible extendions 

to the result will be given in Section 10. 

2. Switching Networks 

The result described in Section 1 is motivated by questions concerning a certain type 

of switching network called a "spider-web" network. We shall now describe this network, 

together with another, called a "series-parallel" network, which will provide an interesting 

comparison. 

The basic components of the networks we shall consider are 2 x 2 "crossbars". Such 

a crossbar has four terminals, two called "inlets" and two called "outlets". It contains 

four single-pole single-throw switches, one for connecting each inlet to each outlet. It 

can assume any of seven "configurations" ( see Figure 2.1 ( a-g)). In configuration (a), 

no switches are closed. In configurations (b-e), one switch is closed, connecting one of 

the inlets to one of the outlets. In configurations (f) and (g), two switches are closed, 

connecting the inlets in a one-to-one fashion with the outlets. The configurations (f) and 

(g) will have special significance for us, and will be called "orientations". The orientation 

(f) will be called "straight" and the orientation (g) will be called ''crossed". 

A "spider-web" network has, for some integer k 2: 3, 2k - 1 "stages" each containing 

2k-l crossbars. The inlets of the crossbars in the first stage are the "inputs" of the network. 

For 1 $ j $ 2k- 2, the outlets of the crossbars in the j-th stage are connected by "links" to 

the inlets of the crossbars in the (j + 1 )-st stage according to a "shuffle" pattern ( see Figure 

2.2). The outlets of the crossbars in the last stage are the "outputs" of the network. The 

inputs, links and outputs are collectively called "vertices", and they form 2k "ranks", with 

the inputs forming the 0-th rank and the outputs forming the (2k - 1 )-st. Throughout this 

paper we shall assume that k is odd, and set k = 2h + 1. (The case of even k is similar.) 

An "omega" network is constructed in the same way, except that there are only k 

stages. (Each rank of links is connected according to a shuffle pattern.) It is not hard to 

see that the "inverse omega", which is constructed in same way, except that each rank of 

links is connected according to an "inverse shuffle pattern" ( see Figure 2.3), is "isomorphic" 
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to the omega network. (This means that there are one-to-one correspondences between 

crossbars and crossbars and between vertices and vertices, such that all relationships, such 

as incidences between vertices and crossbars, are preserved.) The omega and inverse omega 

are examples of a type of network known as a "banyan", in which there is a unique path 

( comprising k crossbars alternating with k - 1 links) between each input and each output. 

A "series-parallel" network is constructed in the same way as a spider-web network, 

except that the links in the right half of the network (the k-th through (2k-2)-nd ranks) are 

connected according to an inverse shuffle pattern. A series-parallel network has an obvious 

mirror-image symmetry: it is isomorphic to the network obtained from it by reversing 

the order of the stages and the order of the ranks, inverting each connection pattern, and 

exchanging the roles of inlets and of inputs and outputs. 

The series-parallel network also has a "recursive" structure: it can be decomposed into 

an initial stage, two central subnetworks ( each of which is a series-parallel network with 

2k - 3 stages), and a final stage. This recursive structure has been exploited by Benes [B] 

to show that the series-parallel network is rearrangeable, and by !keno [I] and Pippenger 

[Pl] for the calculation of blocking probabilities. (A network is "rearrangeable" if, given 

any one-to-one correspondence between inputs and outputs, there exists an assignment of 

configurations to the crossbars that connects, through disjoint routes from the inputs to the 

outputs, each input to its corresponding output. The calculation of blocking probabilities 

will be discussed in the next section.) 

The spider-web network is isomorphic to its mirror image ( though this is not as obvious 

as for the series-parallel network; see Pippenger [P2], Appendix), and we shall frequently 

exploit this symmetry below. It does not have a recursive structure analogous to that of 

the series-parallel network, and the question of whether it is rearangeable remains open. 

It does, however, have a non-recursive decomposition that will be useful. Specifically, a 

spider-web network with 2k - 1 stages can be decomposed into a "left part" comprising 

the first k - 1 stages, a "middle" stage, and a "right part" comprising the last k - 1 stages. 

The left part itself can be decomposed into two "left sectors", each of which is isomorphic 

to an omega network with k - 1 stages. Similarly, the right part can be decomposed into 

two "right sectors", each of which is isomorphic to an omega network with k - 1 stages 

(see Figure 2.4). 

An omega network with an even number 2h of stages ( an in particular, each of the 

four sectors in a spider-web network with 2k-1 = 4h + 1 stages) also has a decomposition 

that will be useful. Specifically, it can be decomposed into a "left part" comprising the 

first h stages, and a "right part" comprising the last h stages. Similarly, the right part can 
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be decomposed into 2h "right blocks", each of which is isomorphic to an omega network 

with h stages (see Figure 2.5). 

We shall need to introduce some further terminology for subnetworks of a spider-web 

network with 2k - 1 stages. The first h stages will be called the "initial part", and the 

left blocks of the left sectors will be called "initial blocks". The last h stages will be called 

the ''final part", and the right blocks of the right sectors will be called ''final blocks". 

The remaining k = 2h + l stages will be called the "central part", the right blocks of 

the left sectors will be called "left central blocks" and the left blocks of the right sectors 

will be called "right central blocks". (The failure of this terminology to coincide with 

the hierarchical decomposition of the network is a manifestation of the lack of a recursive 

structure in the network.) 

When we refer to a subnetwork ( such as a sector or block) we shall use the term 

"inlink" to refer to the inlets of the crossbars in the first stage of the subnetwork ( as 

contrasted with the inputs of the network as a whole), and the term "outlink" to refer the 

outlets of the crossbars in the last stage of the subnetwork. 

We conclude this section with the remark that spider-web series-parallel, and omega 

networks ( and more generally, networks of a type called "rhyming" networks, studied 

by Takagi [T]) have elegant and economical implementations as "time-division" networks, 

though we have described them as "space-division" networks. Ramanan, Jordan and Sauer 

[RJS] describe this implementation for series-parallel networks, but it is not difficut to 

extend their ideas to the others we have mentioned. 

3. Probabilistic Models 

By a "state" of a network we shall mean an assignment of configurations to its cross

bars such that the closed switches form a set of disjoint paths called "routes" from certain 

of its inputs to certain of its outputs. A vertex that lies on a route of a state is said to be 

"busy" in that state; otherwise, it is said to be "idle". A path is said to be "busy" if it 

contains a busy vertex; otherwise it is said to be "idle" 

Suppose that the input v and the output w are both idle in some state. We shall say 

that v and w are "blocked" in that state if every path from v to w is busy; otherwise we 

shall say they are "linked". 

The principal question with which we shall deal in this paper is: if a network is in 

a random state, and if the input v and the output w are idle in this state, what is the 

probability that v and w are blocked in this state? This of course begs the question of 
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what we mean by a "random" state; once we have a probability distribution on the states, 

we may use it to define the "blocking probability" 

P = Pr(v, w blocked Iv idle, w idle), 

and the complementary "linking probability" 

Q = Pr( v, w linked I v idle; w idle). 

The analysis of practical switching networks (such as spider-web networks) with re

alistic probability distributions (such as the equilibrium distribution resulting when the 

network is subjected to assumed "traffic" and operated according to an assumed "policy") 

presents insurmountable difficulties owing to the astronomically large number of states of 

the network. This circumstance has led to the use of approximate analyses that are based 

on an assumed probability distribution on the states. These assumed probability distribu

tions are not justified by consideration of traffic and policy models, but the results they 

lead to may be substantiated ( at least for small networks) by empirical results observed in 

simulations. 

By a "pseudo-state" of a network we shall mean an assignment of one of two conditions, 

"busy" or "idle", to each vertex (input, link or output) in the network. A state always 

yields a pseudo-state, but the converse is false, since the busy vertices in a pseudo-state need 

not form disjoint routes from inputs to outputs. Nevertheless, a probability distribution 

on the pseudo-states of the network is sufficient to support the definition of blocking and 

linking probabilities. 

The oldest and most frequently used probability distribution is that of Lee [L] and 

Le Gall [Ll,L2]. In this model, which we shall call the "independent" model, each vertex 

is assumed to be idle or busy independently of all other vertices. The model is therefore 

completely specified by giving the probability of being busy ( the "occupancy" probability) 

or the complementary probability of being idle (the "vacancy" probability) for each vertex. 

For the networks we consider, in which the number of vertices does not vary from rank to 

rank, it is natural to assume that the occupancy probability p or the vacancy probability 

q = l - p is the same for each vertex. 

The independent model is very convenient for the calculation of blocking probabilities, 

but is subject to a significant objection, which we shall call the "continuity" objection. In 

a state, the busy vertices form disjoint routes connecting inputs to outputs, so that in 

particular the number of busy inlets equals the number of busy outlets for any crossbar. 
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The independent model does not reflect this constraint, and in fact distributes most of the 

probability over pseudo-states that do not correspond to states. 

A more refined model, addressing this objection, was proposed by Pippenger [Pl). 

In this model, which we shall call the "coherent" model, each crossbar is independently 

assigned one of two possible orientations, straight or crossed, with equal probabilites. 

These orientations establish a set of disjoint routes from the inputs to the outputs. Each 

route is then independently "accepted" with probability p or "rejected" with probability 

q = l - p. The vertices lying on accepted routes are considered busy, while those lying 

on rejected routes are considered idle. This establishes a configuration for each crossbar: 

a orientation (f) will become a configuration ( a), (b ), ( c) or (f), and a orientation (g) will 

become a configuration (a), (d), (e) or (g). Clearly this model overcomes the continuity 

objection, while preserving much of the spirit of the independent model. 

A model similar to the coherent model was proposed independently by Koverninskir 

[K). In this variant, each route is broken into two subroutes at its midpoint, and the two 

subroutes are accepted or rejected independently. This variant overcomes the continuity 

objection at all stages except the middle stage, while greatly simplifying the calculation of 

blocking probabilities. In this paper we shall use the coherent model despite its additional 

complications, since it most completely overcomes the continuity objection. 

4. Previous Results 

In 1959, !keno [I] determined the limiting value of the blocking probability in the 

independent model for series-parallel networks with many stages (see Figure 4.1). He also 

introduced spider-web networks, conjectured the limiting value of their blocking probabil

ity, and showed that this limiting probability is achieved by third type of network with a 

"random'' interconnection pattern (see Figure 4.2). 

In 1968, Takagi [T] showed that spider-web networks are optimal (in the sense of 

having the smallest blocking probability in the independent model) in a class of networks 

called "rhyming" networks. This class includes series-parallel networks, but not those with 

a random interconnection pattern. 

In 1989, Pippenger showed that limiting value of the blocking probability conjectured 

by !keno is actually achieved by spider-web networks, and that this limiting value is op

timal among all networks containing the same crossbars arranged in the same number 

of stages, but interconnected according to any pattern. Thus spider-web networks are 

"asymptotically" optimal in the independent model. 
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It should be noted that spider-web networks are optimal only asymptotically: Chung 

and Hwang [CH] have shown that there are networks with smaller blocking probability 

in the independent model, though their margin of superiority is asymptotically negligible 

(and they are not rhyming networks). 

In 1975, Pippenger introduced the coherent model and used it to determine the limit

ing value of the blocking probability for series-parallel ntworks (see Figure 4.3). At about 

the same time, Koverninskff [K] introduced his variant of the coherent model and, on the 

basis of simulations by Neiman and Vvedenskaya [NV] (see also Neiman [N], and Bas

salygo, Neiman and Vvedenskaya [BNV]), conjectured the limiting value of the blocking 

probability for spider-web networks (see Figure 4.4). This conjecture is verified in the 

present paper. 

The networks proposed by Chrmg and Hwang have not been evaluated in the coherent 

model, either analytically or empirically, but it should be noted that the result of Section 

6 applies to these networks as well as to spider-web networks, so again their margin of 

superiority (if indeed they are superior) is asymptotically negligible. 

5. Strategy and Tactics 

The overall strategy of our proof will be the same as as the one used for the independent 

model in Pippenger [P2]. When the occupancy probability is above threshold, we derive 

an upper bound to the expected number of idle paths from an input to an output, and 

show that this tends to zero. It follows that the probability that there exists an idle route 

tends to zero also. 

When the occupancy probability is below threshold, we can show that the expected 

number of idle paths tends to infinity. This does not, of course, imply that with high 

probability there exists an idle path. It would suffice to show as well that the variance of 

the number of idles paths was small ( compared with the square of the expectation), but 

the overlaps among the paths render this impossible. 

We thus divide the network into three zones, an initial zone, a central zone, and a 

final zone. We show that with high probability an idle input has access to many links 

at the interface between the initial and central zones, and that an idle output has access 

to many links at the interface between the central and final zones. The paths between 

the interfaces overlap only in very simple ways, and thus we can use the expectation-and

variance argument outlined above to show that with high probability there there is an idle 

path between accessible links in the two interfaces. 
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The tactics needed to implement this strategy differ considerably, however, from those 

sufficient for the independent model. The sweeping independence assumptions of the inde

pendent model make the calculations described above relatively easy. The coherent model, 

on the other hand, continually confronts us with problems of "weakly dependent random 

variables". There are three principal tactics we shall use to deal with these problems. 

The first tactic is "parsimonious examination" of the state of the network. By this 

we meant that we shall regard the state of the network as initially unknown to us. If we 

wish to determine whether a particular event occurs, we shall examine only those aspects 

of the state that bear upon this question, and even these we shall examine in an adaptive 

sequential fashion, so that as much as possible of the state remains unexamined. In this 

way we shall preserve as much as possible such independence as exists within the coherent 

model to simplify the calculation of probabilities of other events. (This tactic is not new 

of course; it frequently occurs, for example, in the theory of random graphs, where disjoint 

sets of potential edges are examined in different part of an argument.) 

The second tactic is one we call "separation and reconciliation". This tactic comes 

into play when even parsimonious examination fails to preserve enough independence for 

our calculations. If we wish to calculate the probability of the conjunction of two events, 

for example, we may "separate" the state into an "extended" state containing two inde

pendent "versions" of the state. If we calculate the probability of one event with respect 

to one version, and that of the other event with respect to the other version, then by the 

assumed independence of the versions, the probability of the conjunction is obtained by 

multiplication. We then attempt to "reconcile" the two versions into a single consistent 

state, without affecting the occurance of the events in question. With high probabiity we 

succeed in doing this, and we obtain an upper or lower bound to the probability of the 

conjunction by adding or subtracting the probability of failure in this process of reconcili

ation. (This tactic too has antecedents in the literature; it is an instance of what has come 

to be known as a "coupling" argument, as first used by Doeblin [D).) 

The third tactic is the introduction of "phantom" traffic in the network, in addition to 

and independently of the "true" traffic. The phantom traffic assigns to certain vertices a 

"co-condition" ( "co-busy" or "co-idle") in addition to their condition (busy or idle). This 

traffic is used to guide parsimonious examination and to govern the processes of separation 

and reconciliation. 
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6. The Blocking Regime 

Throught this section ( except for Lemma 6.2) we shall assume q < J2 - 1. Our goal 

in this section is to prove the following theorem. 

Theorem 6.1: We have 

Pr( v, w linked I v idle, w idle) -+ 0 

ask-+ oo. 

For the proof of Theorem 6.1 we shall need the following lemma and proposition. 

Lemma 6.£: We have 

Pr( v idle, w idle) -+ q2 

ask-+ oo. 

Proof: We shall say that v and w are "coupled" if they lie on the same route. There are 

22k-l paths originating at v, of which 2k-l terminate at w. Since each of these paths is 

equally likely to be the route originating at v, we have 

Pr(v,w coupled)= 2-k. 

H v and w are not coupled, the probability that they are both idle is q2 , since the routes 

on which they lie are independently rejected with probability q. If they are coupled, the 

probability that they are both idle is q, since this is the probability that the route on which 

they both lie is rejected. Thus we have 

as k-+ oo. I:::,_ 

Propo.sition 6. S: We have 

ask-+ oo. 

Pr(v idle, w idle)= q2(1 - 2-k) + q2-k 

-+q2 

Pr( v, w linked) -+ 0 

For the proof of Proposition 6.3 we shall need the following three lemmas. 

Let 1r be a path from v to w. We shall say that 7r is "coupled" if some route first 

passes through a crossbar on 1r, then passes through one or more crossbars not on 1r, and 

finally again passes through a cross bar on 1r. 

Lemma 6.4: We have 
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Proof: Consider the crossbar I in the i-th stage on 7r and the crossbar J on the j-th stage 

on 1r. There can be two distinct paths from I to J only if j - i 2: k, in which case there 

are exactly 2i-i-k paths, one of which is included in 1r. Let (2 be such a path, not included 

in 1r. For a route to include (2, the j - i - 1 crossbars on (2 between I and J must have 

appropriate orientations, and this occurs with probability l/2i-i-I _ Thus the probability 

that 1r is coupled by a route passing through I and J is at most 1/2k-I. Since there are 

(~) ways of choosing i :2: 1 and j ~ 2k - 1 such that j - i :2: k, the lemma follows. 6 

Lemma 6.5: We have 

( )
2k-1 

Pr( 1r idle I 7r not coupled) = q (1 + q)/2 . 

Proof: Let u 0 = v, • • •, u2 k+I = w be the successive vertices of 7r. When 1r is not coupled, 

the events "u0 idle", "u1 idle", ... , "u2k-I idle" form a Markov chain, since a route can 

intersect 1r only in a segment of consecutive vertices. Thus 

Pr( 1r idle I 1r not coupled) = 
Pr( u 0 idle I 1r not coupled) II Pr(u; idle I Uj-l idle, 1r not coupled). 

l~j$2k-l 

For the first factor in the right-hand side we have Pr( u0 idle I 1r not coupled) = 

Pr( u 0 idle) = q, and for each of the remaining 2k - 1 factors we have Pr( u j idle I 
Uj-l idle, 1r not coupled)= Pr(uj idle I Uj-1 idle)= (1 + q)/2, since the route through Uj 

is either the one through Uj-l (which is idle) or a new one (which is idle with probability 

q), and these alternatives each have equal probability. The lemma follows. 6 

Lemma 6. 6: We have 

Pr( 1r idle I 1r coupled) ~ q((l + q)/2) k. 

Proof: Let u 0 = v, ... , Uk be the successive vertices of 1r*, the subpath comprising the 

first k + 1 vertices of 1r. Since the first k stages of the network form a banyan, a route 

can intersect 1r* only in a segment of consecutive vertices. Thus, even if 1r is coupled, the 

events "u0 idle", "u 1 idle", ... , "uk idle" form a Markov chain. Since "1r idle" implies "1r* 

idle", we have 

Pr( 7r idle I 7r coupled) ~ 

Pr( uo idle I 7r coupled) II Pr( Uj idle I Uj-1 idle, r. coupled). 
1$j$k 
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Again the first factor is q and the remaining k factors are (1 + q)/2, so the lemma follows. 

6 

Proof of Propo~ition 6.9: Let the random variable T denote the number of idle paths from 

v to w. We have (Markov's inequality) 

Pr( v, w linked) ~ Ex(T) = L Pr( 1r idle), 
7r 

where the sum is over all paths from v tow. By Lemmas 6.4, 6.5 and 6.6 we have 

Pr( 1r idle) = Pr( 1r idle I 71' not coupled) + Pr( 1r idle I 1r coupled) Pr( 1r coupled) 

~ q((l + q)/2)2k-1 + q((l + q)/2)k (~)/2k-1 _ 

Since there are 2k-l choices for a path 71' from v tow we have 

Since q < J2 - 1, we have 

and 

as k -t oo. The proposition follows. 6 

Proof of Theorem 6.1: Since the event "v, w linked" implies the events "v idle" and "w 

idle", we have 

Pr( v, w linked I v idle, w idle) = Pr( v, w linked)/ Pr( v idle, w idle) . 

Thus Theorem 6.1 follows from Lemma 6.2 and Proposition 6.3. 6 

7. The Linking Regime 

Throughout the rest of this paper we shall assume q > J2- 1. Our goal in this section 

is to prove the following theorem. 

Theorem 7.1: We have 

Pr( v, w linked I v idle, w idle) -t 1 

ask-too. 

For the proof of Theorem 7.1 we shall need Lemma 6.2 and the following proposition. 
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Proposition 7.f: We have 

Pr( v, w linked) ----+ q2 

as k ----+ oo. 

The proof of Proposition 7.2 will be commenced in this section and completed in 

Section 9. 

Proof of Theorem 7.1: Since the event "v, w linked" implies the events "v idle" and "w 

idle", we have 

Pr(v, w linked Iv idle, w idle)= Pr(v, w linked)/ Pr(v idle, w idle). 

Thus Theorem 7.1 follows from Lemma 6.2 and Proposition 7.2. 6. 

We shall use the technique of separation and reconciliation, so we begin by describing 

the extended probability space that we shall use. We divide the network into three "zones": 

an "initial" zone comprising the 0-th through the h-th ranks, a "central" zone comprising 

the ( h + l )-st through the (3h )-th ranks, and a "final" zone comprising the (3h + 1 )-st 

through the ( 4h + 1 )-st ranks. To generate a random extended state of the network, 

we first independently assign with equal probability one of two orientations, straight or 

crossed, to each crossbar. In this way the vertices are partitioned into disjoint routes. We 

next break each route into three subroutes, called the initial, central and final subroutes, 

corresponding to the three zones of the network. (The breaks occur at the ( h + l )-st and 

(3h + 1 )-st stages.) We then independently accept each subroute with probability p and 

reject it with probability q. We declare the vertices lying on accepted subroutes to be busy 

and those on rejected subroutes to be idle. Finally, we assign each initial and each final 

subroute a "co-disposition" ( "co-accepted" or "co-rejected") in addition to its disposition 

(accepted or rejected). (Central subroutes will not be assigned co-dispositions.) The initial 

subroute containing v and the final subroute containing w will be cerrejected. Vie choose a 

parameter a (whose value will be specified later), and independently co-accept each initial 

subroute ( except the one containing v ), and each final subroute ( except the one containing 

w ), with probability a ( co-rejecting it with the complementary probability b = l - a) . We 

declare the vertices lying on co-accepted subroutes to be co-busy and those on co-rejected 

subroutes to be co-idle. 

The links in the h-th rank that lie on paths from v to w will be called "left interface 

links". There are 2h such links; they are the outlinks of the initial block that contains v, 

and each left central block contains one left interface link. A left interface link u will be 

called "accessible" if the path from v to u is idle, and "co-accessible" if that path is co-idle 
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(that is, all the vertices of that path are co-idle). The links in the (3h + 1 )-st rank that lie 

on paths from v to w will be called "right interface links". There are 2h such links; they 

are the inlinks of the final block that contains w, and each right central block contains one 

right interface link. A right interface link u will be called "accessible" if the path from u 

to w is idle, and "co-accessible" if that path is co-idle. 

Suppose that we are given a coherent state, and that we wish "separate" it into 

an extended state. We adopt the orientations of the crossbars from the coherent state. 

In this way the vertices are partitioned into disjoint routes. We break each route into 

three subroutes, and assign co-dispositions to its initial and final subroutes, as described 

above. We now accept or reject each of the three subroutes of a route according to the 

following rules. ff the route passes through a co-accessible left interface link, the initial 

subroute is accepted or rejected according as the route was accepted or rejected, and the 

central and final subroutes are independently accepted with probability p and rejected with 

probability q. Otherwise, if the route passes through a co-accessible right interface link, 

the final subroute is accepted or rejected according as the route was accepted or rejected, 

and the initial and central subroutes are independently accepted with probability p and 

rejected with probability q. Otherwise the route passes through no co-accessible interface 

link; the central subroute is accepted or rejected according as the route was accepted or 

rejected, and the initial and final subroutes are independently accepted with probability 

p and rejected with probability q. It is clear that this separation procedure takes a state 

with the coherent distribution into one with the extended distribution. 

Now suppose that we are given an extended state and that we wish to "reconcile" it 

into a coherent state. We adopt the orientations of the crossbars from the extended state. 

In this way the vertices are partitioned into disjoint routes. We accept or reject each route 

according to the following rules. If the route passes through a co-accessible left interface 

link, we accept it or reject it according as its initial subroute is accepted or rejected. 

Otherwise, if the route passes through a co-accessible right interface link, we accept it or 

reject it according as its final subroute is accepted or rejected. Otherwise the route passes 

through no co-accessible interface link; we accept it or reject it according as its central 

subroute is accepted or rejected. This reconciliation process is a deterministic inverse 

of the separation process described above; it therefore takes a state with the extended 

distribution into one with the coherent distribution. 

We shall now fix the parameters a and b, together with some others that we shall 

need later. Since q > J2 - 1, we can choose b < 1 so that t = qb > J2 - 1. We then set 

a= 1- bands = 1-t. Since 1 + t > J2, we can choose z > J2 so that z < 1 + t. Finally: 
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since b < 1, we can choose y < 2 so that y < 1 + b. The parameters a, b, s, t, y and z will 

remain fixed throughout the rest of this paper. 

8. Separation 

Our goal in this section is to prove the following proposition. 

We shall say that a vertex is "bi-idle" if it is idle and co-idle. We shall say that a path 

is "bi-idle" if all its vertices are bi-idle. We shall say that v and w are "bi-linked" in an 

extended state if there is a path 7r from v to w comprising a bi-idle initial subpath, an idle 

central subpath, and a bi-idle final subpath. 

Proposition 8.1: We have 

Pr( v, w bi-linked) -+ q2 

ask-+ oo. 

For the proof of Proposition 8.1 we shall need Proposition 8.2 Corollary 8.4 and 

Proposition 8.5 below. 

We shall say that a left interface link is "bi-accessible" if it is both accessible and 

co-accessible. We shall say that v is "ample" if there are at least Z = l zh J bi-accessible 

left interface links; otherwise, we shall say that v is "deficient". 

Proposition 8.2: We have 

Pr( v ample) -+ q 

as k -+ oo. 

For the proof of Proposition 8.2 we shall need the following lemma. 

Lemma 8.8: The conditional generating function for the number of bi-accessible left inter

face links, given that v is idle, is f(h)( (), the h-th iterate off(() = (( s + t(). 

Proof: Let us broaden the term "bi-accessible" to include all vertices u in the initial zone 

such that is a path from v to u all of whose vertices are bi-idle. For O ::;: j ::;: h, let the 

random variable Tj denote the number of bi-accessible vertices in the j-th rank. If v is idle, 

then To = 1. We seek to determine the generating function for Th under this condition. 

Each initial subroute except the one containing v is independently accepted with 

probability p and co-accepted with probability a. If we say that an inital subroute is "bi

rejected" if it is both rejected and co-rejected, and that it is "amphi-accepted" if it is either 

accepted or co-accepted, then each initial subroute except the one containing vis indepen

dently bi-rejected with probability t = qb and amphi-accepted with the complementary 

probability s = 1 - qb. 
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If u is a bi-accessible vertex in the j-th rank, where O :5 j :5 h - 1, then u is an inlet of 

a crossbar in the (j + 1 )-st stage. The bi-rejected subroute through u carries it to one bi

accessible link in the (j + 1 )-st rank. The crossbar in the (j + 1 )-st stage has another outlet 

in the (j + 1 )-st rank, and this link is bi-accessible if and only if the subroute through it is bi

rejected, which occurs with probability t. A bi-accessible vertex in the j-th rank therefore 

has either one or two "successors" in the (j + 1 )-st rank, and the generating function for 

the number of successors is f( () = (( s +t(). If there are m bi-accessible vertices in the j-th 

rank, the numbers of successors they have are independent, since the subroutes in question 

are distinct. thus the generating function for T,+1 is /( ()m. Furthermore, the numbers 

T0 , ••• , Th of bi-accessible vertices in successive ranks form a Markov chain, since the sets 

of subroutes in question are disjoint. Thus these numbers form a branching process, and if 

!;(() is the generating function for Tj, then /;+1(() = /(!;(()) is the generating function 

for Tj+I· If we define J(0)(TJ) = T/ and jU+I)(TJ) = J(i)(f(TJ)), then since the generating 

function for T0 is Jo ( T/) = T/, it follows by induction on j that the generating function for 

Tj is jU)(TJ). Taking j = h, the lemma follows. I::::. 

Proof of Proposition 8.2: Since the event "v ample" implies the event "v idle", we have 

Pr( v ample) = Pr( v ample I v idle) Pr( v idle). 

Since Pr( v idle) = q, it will suffice to show 

Pr( v ample I v idle) -+ 1, 

or equivalently 

Pr( v deficient I v idle) -+ 0, 

ask-+ oo. 

Let the random variable T denote the number of bi-accessible left interface links. By 

Lemma 8.3, the conditional generating function for T, given that vis idle, is j(h)( (). Thus 

we have (Bernstein's inequality) 

Pr(v deficient Iv idle)= Pr(T < Z Iv idle) :5 f(h)(()/(z 

for any ( < 1. 

The function/(()= ((s + t() has an attractive fixed point at ( = 0 and a repulsive 

fized point at ( = 1 with derivative f'(l) = 1 +t. We shall take ( = l- l/zh. Since 

z < l + t, the iterate j(h)(l - l/zh) is repulsed by the fixed point at unity, an attracted 

14 



to the fixed point at zero, ash--+ oo. On the other hand, 1/(1-1/zhf remains bounded 

(indeed, tends to e = 2.1718 ... ) in this limit. Thus 

for this choice of C < l, and the proposition follows. b. 

We shall say that a right interface link is "bi-accessible" if it is both accessible and 

co-accessible. We shall say that w is "ample" if there are at least Z = l zh J bi-accessible 

right interface links; otherwise, we shall say that w is "deficient". 

Corollary 8.4-· We have 

Pr( w ample) --+ q 

ask--+ oo. 

Proof: The proof is the mirror image of that of Proposition 8.2. D,. 

Let A be a set of Z = l zh J left interface links, and let B be a set of Z right interface 

links. We shall say that A and B are "joined" if there exists a path from some link a E A 

to some link b E B all of whose links ( other than a and b themselves) are idle; otherwise 

we shall say that A and B are "severed". The central zone comprises k = 2h + l successive 

stages ( the ( h + l )-st through (3h + 1 )-st stages), with pair of consecutive stages being 

interconnected according to a perfect shuffle. The central zone is therefore a "banyan": 

there is a unique path joining any left interface link to any right interface link. We shall 

say that a path from a link a E A to a link b E B is "good" if all of its links ( except for a 

and b themselves) are idle. 

Proposition 8. 5: If #A = #B = Z, then 

Pr(A,B severed)--+ 0 

as k--+ oo. 

For the proof of Proposition 8.5 we shall need the following lemma and proposition. 

We shall let the random variable T denote the number of good paths T from links 

a E A to links b E B. 

Lemma 8. 6: We have 
2 ( )2h-1 Ex(T) = Z q (l + q)/2 . 

Proof: We have 

Ex(T) = LPr(T good), 
T 
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where the sum is over all paths r from a link a E A to a link b E B. Let u1 , • •. , u2h be the 

successive vertices of r, excluding a and b. As in the proof of Lemma 6.5, the events "u 1 

·d1 " " .dl " " .dl " f M k h . d h 1 e , u2 1 e , ... , U2h 1 e orm a ar ov c a.in, an we ave 

Pr(r good)= Pr(u1 idle) IT Pr(u; good I u;-1 good). 
2$i9h 

Thus we have Pr(r good)= q((l+q)/2)2h-I. Since there are Z ways to choose a EA and 

Z ways to choose b B, the lemma follows. 6 

Proposition 8. 7: We have 

Var(T) ~ Z 2q((1 + q)/2)2h-I 

+ 2Z3q2((1 + q)/2)3h 

+ z2h2q2((l + q)/2)2h-2_ 

For the proof of Proposition 8. 7 we shall need the following three lemmas, corollary 

and proposition. 

Lemma 8.8: We have 

where 
Var1,1(T) = I: Covar(r, r'), 

a=a' ,b=b' 

Var1,2(T) = I: Covar( r, r'), 
a=a' ,b=/:b' 

Var2,1(T) = I: Covar( r, r'), 
a=/:a' ,b=b' 

Var2,2(T) = I: Covar(r;r'), 
a=/:a' ,b=/:b' 

and 

Covar( r, r') = Pr( T good, r' good) - Pr( T good) Pr( r' good). 

Proof: Expanding the square in the definition Var(T) = Ex( (T - Ex(T)) 
2
), we have 

Var(T) = L Covar(r, r'), 
r,r' 
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where the sum is over all ordered pairs of paths r, r' (identical or distinct) from links 

a, a' E A to links b, b' E B. The lemma follows by breaking the sum into four parts 

according to whether the starting links a and a', and the ending links b and b', are identical 

or distinct. 6 

Lemma 8.9: We have 
2 ( )2h-l Var1 ,1 (T) = Z q (1 + q)/2 . 

Proof: If a = a' and b = b', then by the banyan property T = r'. Thus we have 

Covar( r, r') =:; Pr( r good, r' good) = Pr( r good). 

Summing over a EA and b EB, we obtain Var1 ,1 (T)::; Ex(T). The lemma then follows 

from Lemma 8.6. ~ 

Lemma 8.10: We have 

Proof: Suppose that T and r' both begin at a, but end at b and b' =/=- b, respectively. Let 

a, u 1 , •.. , u2h, b be the successive links of T and let a, u~, ... , u;h, b' be the successive links 

of r'. If we consider a link u* in the (2h )-th rank, then there is a unique path from u* to 

the output w, since the last k = 2h + 1 stages of the network form a banyan. If we were 

to have uh = u~ = u *, there would be paths from u * through the distinct links b and b' to 

the output w, contradicting the banyan property. It follows that, for some O ::; i ::; h - 1, 

r and r' have their first i links after a in common, u1 = u~, . .. , u j = u~, and their last 

2h - i links before b and b' distinct, Ui+1 =/=- u~+1, ... , Uzh =/=- u~h. If i = 0, then T and 

r' are disjoint ( except for a), the events "r good" and "r' good" are independent, and 

Covar( r, r') vanishes. Suppose then that i 2'.: 1. Then a route can intersect the union of T 

and r' only in a segment of consecutive links in either r or r'. Thus the events "u 1 idle", 

" . dl " " . dl d / . dl " " . dl d I • dl " f M k h . . . . , Ui 1 e , Ui+l 1 e an ui+l 1 e , ... , Uzh 1 e an u 2 h 1 e orm a ar ov c am. 

Furthermore, for i + 2 ::; j ::; 2h, we have 

Pr(uj idle,uj idle I Uj-1 idle,uj--l idle)= Pr(uj idle I Uj-1 idle) Pr(uj idle I uj-l idle). 

Thus 

Pr(r good, r' good)= Pr(u1 idle) IT Pr(uj idle I Uj-1 idle) 
2<"<i _)_ 

Pr( Ui+1 idle, u~+1 idle I Ui idle) 

II Pr(uj idle I Uj-l idle) Pr(uj idle I uj-I idle) . 
i+2=s;j$2h 
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We have Pr(u1 idle)= q and Pr(ui+1 idle,ui+l idle I Ui idle)= q, since the one of the two 

routes through ui+1 and ui+l is the one through Ui (which is idle) and the other is a new 

one (which is idle with probability q). The remaining (i-1)+2(2h-i) = 4h-i-1 factors 

each equal ((1 + q)/2). Since i ~ h - l, we have 

Covar( r, r') ~ Pr( T good, r' good) 

~ q2 ((1 + q)/2)3h. 

Since there are Z ways to choose a EA and Z(Z - l) ~ Z 3 ways to choose b, b' EB with 

b =/- b', the lemma follows. 6. 

Corollary 8.11: We have 

Proof: The proof is the mirror image of that of Lemma 8.10. 6. 

Proposition 8.12: We have 

For the proof of Proposition 8.12 we shall need the following proposition. 

Consider a path T from a to b, and a path r' from a' =f a to b' =f b. By the banyan 

property of the central zone, there exist a unique path u from a to b' and a unique path 

u' from a' to b. Let 12 denote that portion of u that is disjoint from T and r', and let r/ 
denote that portion of u' that is disjoint from T and T

1
. The number of crossbars on 12 

(including the last one on T and the first one on r') will be called the "distance" between 

T and T
1

, and will be denoted .6.( T, r'). The number of crossbars on r/ is also .6.( T , r'). 

Proposition 8.19: We have 

I: 2-~(r,r') ~ z2 h2 /8 . 

T T
1 

a=Fa; ,b:;tb' 

For the proof of Proposition 8.13 we shall need the following lemma and corollary. 

The paths T and u diverge at a crossbar I within a block C of the central zone having 

a as an input. The number of crossbars on e contained within C (including the one at 

which T and u diverge) will be called the "distance" between b and b', and will be denoted 

.6.( b, b'). (By the symmetry of the network, this number depends only on b and b', and not 

on a.) 
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Lemma 8.14: We have 
L 2-A(b,b') $ Zh/2. 

b,b'EB 
b:¢b' 

Proof: Let us fix a path T from link a E A to link b E B, and vary the path a from link 

a to b' E B, where b' =f b. These paths form a tree within the block C. In this tree, the 

path to b can have at most one sibling b' with Ll(b,b') = 1, two with Ll(b,b') = 2, and so 

forth through 2h-l with Ll(b, b') = h. Thus for any b EB we have 

L 2-A(b,b') $ h/2. 
b'EB,b':¢b 

Since there are Z choices for b E B, the lemma follows. ~ 

The paths r and a' converge at a crossbar J within a block D of the central zone 

having b as an output. The number of crossbars on r/ contained within D (including the 

one at which r and a' converge) will be called the "distance" between a and a', and will 

be denoted 6( a, a'). (By the symmetry of the network, this number depends only on a 

and a', and not on b.) 

Corollary 8.15: We have 
L 2-A(a,a') $ Zh/2. 

a,a'EA 
a#a' 

Proof: The proof is the mirror image of that of Lemma 8.14. 6 

Proof of Proposition 8.1S: The L'::i.(r,r') crossbars on(! (including the last one on rand 

the first one on r') fall into three classes: there are L'::i.(b, b') in the block C of central zone 

containing a as an input, there is one in the middle stage, and there are .6.( a, a') in the 

block D' of the central zone containing b' as an output. Thus we have 

L'::i.(r,r') = 1 + .6.(a,a') + L'::i.(b,b'). 

This identity allows us to factor the sum over r and r': 

T,r
1 

a:;i:a' ,b:;i:b' 

2-A(r,r') = ( L 2-A(a,a')) ( L 2-A(b,b')) /2. 
a,a'EA b,b'EB 

a:;i:a' b=b' 

The proposition now follows from Lemma 8.14 and Corollary 8.15. 6 

Proof of Proposition 8.12: We shall say that r and r' are "coupled" if a subroute includes 

either(! or r/. This event occurs only if either the L'::i.(r, r') - 2 crossbars on(! (excluding 
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the last one on 7 and the first one on 71
) or the b.(7, 71)-2 crossbars one' (excluding the 

last one on 71 and the first one on 7) all have appropriate orientations. Thus we have 

Pr( 7, r' coupled) :5 8 · 2-A(r,r'). 

Hr and r' are not coupled, the events "r is good" and "7' is good" are conditionally 

independent, so Covar( 7, 71 I 7, r' coupled) vanishes. Thus we have 

Covar( r, 71
) :5 Pr( 7 good, 71 good I r, r' coupled) Pr( 7, 71 coupled). 

Let u1 , ••. , Uh be the successive links of the subpath 7* comprising the first h links of 

T, and let u~, ... , uh be the successive links of the subpath 71* comprising the first h links 

of 71
• Even if 7 and 71 are coupled, a route can intersect the union of 7* and 71* only in a 

segment of consecutive links. Thus we have 

Pr( 7 good, -r' good I 7, -r' coupled) :5 

Pr(u1 idle I 7,71 coupled) II Pr(uj idle I Uj-I idle,7,T 1 coupled) 
2$j$h 

Pr(u~ idle I 7,71 coupled) II Pr(uj idle I uj-l idle,7,T1 coupled). 
2$i$h 

Again we have Pr(u 1 idle I 7, 71 coupled) = Pr(u~ idle I 71 71 coupled) = q, and the 

remaining 2h - 2 factors each equal ((1 + q)/2). Thus we have 

2h-2 A( ') Covar( 7, 71
) :5 q2 ((1 + q)/2) 8. 2- r,r . 

The proposition now follows by summing over 7 and 71
, with a =/ a' and b =I b', and 

applying Proposition 8.13. 6 

Proof of Proposition 8. 7: The proof is immediate from Lemmas 8.8, 8.9 and 8.10, Corollary 

8.11 and Proposition 8.12. 6 

Proof of Proposition 8.5: We have (Chebyshev's inequality) 

Pr(A, B severed) = Pr(T = 0) :5 Var(T)/Ex(T)2
. 

The proposition thus follows from Lemma 8.6 and Proposition 8.7. 6 

Proof of Proposition 8.1: From Proposition 8.2 and Corollary 8.4 we have 

Pr(v ample, w ample)-+ q2 
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as k ---t oo, since the restriction of the extended to the initial zone is independent of the 

restriction to the final zone. H v is ample, we can let A be a set of Z bi-accessible left 

interlace links, and if w is ample, we can let B be a set of bi-accessible right interlace links. 

We thus have 

Pr(v, w bi-linked) 2: Pr(v ample, w ample) -~agPr(A, B severed) 
' 

( where the maximum is over all sets A of left interlace links and sets B of right interface 

links with #A = #B = Z), since the restriction of the extended to the central zone is 

independent of the restriction to the initial and final zones. The proposition now follows 

from Proposition 8.5. b. 

9. Reconciliation 

Our goal in this section will be to complete the proof of Proposition 7.2. To do this 

we shall need Proposition 9.1, Corollary 9.3, Lemmas 9.4 and 9.5, and Corollary 9.6 below. 

We shall say that v is "excessive" if there are more than Y = yh co-accessible left 

interlace links; otherwise we shall say that v is "moderate". 

Proposition 9.1: We have 

Pr( v excessive) ---t 0 

as k ---t oo. 

For the proof of Proposition 9.1 we shall need the following lemma. 

Lemma 9.2: The generating function for the number of co-accessible left interface links is 

g(h)(77), the h-th iterate of 9(77) = 77(a + b77). 

Proof: The proof is analogous to that of Lemma 8.3, with "co-" concepts replacing "bi-" 

concepts. 6 

Proof of Proposition 9.1: Let the random variable T denote the number of co-accessible 

left interface links. By Lemma 9.2 g<h\77) is the generating function for T. For any ry > l 
we have (Bernstein's inequality) 

Pr(v excessive)= Pr(T > Y) S g<h)(77)/77Y. 

The function g( ry) = 77( a + b77) has a repulsive fixed point at 77 = 1 with deriviative 

g'(l) = 1 + b. Since 1 + b < y, we can choose x such that 1 + b < x < y. We shall take 

77 = 1 + 1/xh. Since x > l + b, the iterate g(h)(l + 1/xh) remains bounded (indeed\ tends 
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to unity) ash-+ oo. On the other hand, since x < y, 1/(1 + 1/xhf tends to zero in this 

limit. Thus 

for this choice of T/ > 1, and the proposition follows. 6 

We shall say that w is "excessive" if there are more than Y = yh co-accessible right 

interface links; otherwise we shall say that w is "moderate". 

Corollary 9.9: We have 

Pr( w excessive) -+ 0 

ask-+ oo. 

Proof: The proof is the mirror image of that of Proposition 9.1. 6 

HK is a set of left interface links, and L is a set of right interface links, we shall say 

that K and L "conflict" if there exists a central subroute from some link in K to some 

link in L. 

Lemma 9.4: H #K:::; Y and #L:::; Y, we have 

Pr( K, L conflict) -+ 0 

ask-+ oo. 

Proof: By the banyan property of the central zone, there is a unique path r between any 

link a E K and any link b E L. There is a central subroute from a to b only if the 2h + 1 

crossbars on r all have appropriate orientations, which occurs with probability 1/22h+l. 

Since there are at most y ways to choose a E J{ and at most Y ways to choose b E L, we 

have 

Pr( K, L conflict) :::; Y2 /22
h+i = (y /2) 2

h /2. 

Since y < 2, the lemma follows. 6 

For the purposes of the following lemma and corollary, we shall break each central 

subroute into two sub-subroutes: a "left central" sub-subroute and a "right central" sub

subroute. (The break occurs at the middle stage.) ff M is a set of left interface links and 

D is a right central block, we shall say that M and D "clash" if there is a left central 

sub-subroute from some link in M to a middle crossbar that shares a link with D. 

Lemma 9.5: H #M:::; Y, we have 

Pr(M, D clash) -+ 0 
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ask--+ oo. 

Proof: Let a be a link in M and let C be the left central block having a as an inlink. By 

the banyan property in the central zone, there is unique outlink b of C through which any 

path from a into D must pass, and there is a unique path {} from a to b in C. There is 

a left central sub-subroute from a to b only if the h crossbars on {} all have appropriate 

orientations, and this occurs with probability I/2h. Since there are at most Y ways to 

choose a E M, we have 

Pr(M,D clash)::; Y/2h = (y/2l. 

Since y < 2, the lemma follows. b. 

H N is a set of right interface links and C is a left central block, we shall say that N 

and C "clash" if there is a right central sub-subroute from a middle crossbar that shares 

a link with C to some link in M. 

Corollary 9.6: H #N ~ Y, we have 

Pr(N, C clash)--+ 0 

as k --+ oo. 

Proof: The proof is the mirror image of that of Lemma 9.5. 6 

Proof of Propo~ition 7.2: Suppose that we are given an extended state and we wish to find 

an idle path from v to w. We shall do this in four steps as follows. 

In the first step, we shall verify that v and ware both moderate. By Proposition 9.1 

and Corollary 9.3, we shall succeed with probability approaching unity. We shall let ]{, 

with #K ::; Y, be the set of co-accessible left interface links, and let L, with #L ~ Y be 

the set of co-accessible right interface links. In verifying these conditions and determining 

these sets, only the restriction of the extended state to the initial and final zones need be 

examined; indeed, only the orientations of crossbars and the co-dispositions of subroutes 

in these zones need be examined. 

In the second step, we shall verify that K and L do not conflict. In verifying this 

condition, we need only examine the restriction of the extended state to the central zone, 

which is hitherto unexamined. Thus Lemma 9.4 applies to show that we shall again succeed 

with probability approaching unity. 

Furthermore, if we now pretend that we have not examined the restriction of the 

extended state to the central zone, the conditional probabilities of further events will 

be affected only by factors approaching unity, since the condition we have just verified 
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had probability approaching unity. (It is worth observing that we cannot use the same 

argument to pretend that we have not examined the restriction of the extended state to 

the initial and final zones, since we observed the values of of the sets Kand M, and these 

values are not assumed with probabilty approaching unity.) 

In the third step, we shall verify that v and w are bi-linked, with the idle path -,r com

prising the bi-idle initial subpath o, the idle central subpath T, and the bi-idle final subpath 

/3. Since we have already examined the crossbar orientations and subroute co-dispositions 

in the initial and final zones, we now need only examine the subroute dispositions in the 

initial and final zones (intersecting the sets of accessible interface links with the sets K and 

L to obtain sets A and B of bi-accessible interface links, with #A = #B = Z), and the 

extended state restricted to those central blocks that have a bi-accessible interface link, 

and those middle crossbars that share a link with such blocks. By Proposition 8.1, we shall 

succeed with probabilty approaching q2 • 

We shall say that an interface link is "uni-accessible" if it is co-accessible but not 

bi-accessible. At this point, we have still not examined those central blocks that have a 

uni-accessible interface link. 

In the fourth step, we shall verify that the set M ~ K of Wli-accessible left interface 

links does not clash with the right central block D through which T passes, and that set N ~ 

L of uni-accessible right interface links does not clash with the left central block C through 

which T passes. In verifying this condition, we need only examine the crossbar orientations 

in central blocks that have a Wli-accessible link, which are hitherto unexamined. Thus 

Lemma 9.5 and Corollary 9.6 apply to show that we shall again succeed with probability 

approaching unity. 

If we complete these four steps, which we do with probability approaching q2 , we have 

a path -,r establishing that v and w are bi-linked in the extended state. \Ve claim that r. 

also established that v and w are linked in the coherent state obtained by reconciliation. 

First, the subpath a must remain idle after reconciliation. Indeed, the initial subroutes 

through its vertices are bi-rejected, and therefore terminate at bi-accessible left interface 

links. Routes through such links take their dispositions from their initial subroutes, so 

these routes are rejected, and the vertices of a remain idle. 

Second, the subpath /3 must remain idle after reconciliation. Indeed, the final sub

routes through its vertices are bi-rejected, and therefore originate at bi-accessible right 

interface links. Routes through such links take their dispositions from their final sub

routes, unless they also pass through a bi-accessible left interface link, which they cannot 
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do since K and L do not conflict. Thus these routes are rejected, and the vertices of (3 

remain idle. 

Third, the subpath T must remain idle after reconciliation. Indeed, central subroutes 

through these links are rejected. Routes take their disposition from their central subroute 

unless they pass through a co-accessible interface link. Thus a route including rejected 

central subroute can be accepted only if it passes through a uni-accessible interface link, 

which it cannot since M does not clash with the right central block D through which r 

passes and N does not clash with the left central block C through which r passes. Thus 

these routes are rejected, and the links of T remain idle. 

Thus, if we complete the four steps described above, which we do with probability 

approaching q2 , v and w are linked. 6. 

10. Conclusion 

There is a striking agreement between the analytic result of this paper and the empir

ical observations of Neiman and Vvedenskaya (NV]. It should be kept in mind, however, 

that the assumptions, as well as the methodologies, of these two studies differ. We assume 

a probability distribution on the states; their assumption concern the traffic offered by the 

subscribers and policy by which the network is operated. It would be interesting, though 

presumably also difficult, to reformulate and reprove the result of this paper in a setting 

closer to those explored by simulations. 
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2.1 A 2 x 2 crossbar has seven "modes": one (a) has no established connections, four (b-e) have one 
connection, and two (f-g) have two connections. The last two are the "configurations" : "straight" (f) 
and "crossed" (g). 

2.2 The "shuffle" connection pattern (k = 3). 

2.3 The "inverse shuffle" connection pattern (k = 3). 

2.4 A spider-web network with 2k - 1 stages can be partitioned into two 'left sectors", which are banyan 
networks with k - 1 stages, 21:-l crossbars in the "middle" s tage, and two "right sectors", which are 
banyan networks with k - 1 stages. 

2.5 A banyan network with 2h stages can be partitioned into 2h "left blocks" and 2h "right blocks", all of 
which are banyan networks with h stages. 

4.1 The limiting value of the blocking probability (plotted against occupancy probability) for series-parallel 
networks in the independenL model. Below the t hreshold p = (2 - ./2)/2, the blocking probabili ty is 
p = (2p - p2 ) 2 /(1 - p)4 . Above the threshold it is unity. 

4.2 The limiting value of the blocking probability (plotted against occupancy probabil ity) for spider-w b 
networks in the independent mod.el. Below the th reshold p = (2 - ,/2)/2, the blocking probability is 
P = (2p2(1- p) 2 - p4)/(l - p)4, reaching the value P = 8,/2- 11 at the t hreshold . Above the t h.resliold 
it is unity. 

4.3 The limiting value of the blocking probability (plotted against occupancy probability) for series-parallel 
networks in the coherent model. Below the threshold p = 2 - v'2, the blocking probabil ity is P = 
p2 /2( 1 - p ) 2• Above the threshold it is unity. 

4.4 The limiting value of the blocking probability (plotted against occupancy probabi l.iLy) for spider-web 
networks in the coherent model. Below the threshold p = 2 - ./2, the blocking probability is zero. 
Above the threshold it is unity. 
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