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Abstract 

Most approaches to model-based diagnosis describe a diagnosis for 
a system as a set of failing components that explains the symptoms. In 
order to characterize the typically very large number of diagnoses, usu­
ally only the minimal such sets of failing components are represented. 
This method of characterizing all diagnoses is inadequate in general, in 
part because not every superset of the faulty components of a diagnosis 
necessarily provides a diagnosis. In this paper we analyze the notion 
of diagnosis in depth exploiting the notions of implicate/implicant and 
prime implicate/implicant. We use these notions to propose two al­
ternative approaches for addressing the inadequacy of the concept of 
minimal diagnosis. First, we propose a new concept, that of kernel di­
agnosis, which is free of the problems of minimal diagnosis. Second, we 
propose to restrict the axioms used to describe the system to ensure 
that the concept of minimal diagnosis is adequate. 

1 Fellow, Canadian Institute for Advanced Research. 
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1 Introduction 

The diagnostic task is to determine why a correctly designed system is not 
functioning as it was intended - the explanation for the faulty behavior being 
that the particular system under consideration is at variance in some way with 
its design. One of the main subtasks of diagnosis is to determine what could 
be wrong with a system given the observations that have been made. 

Most approaches to model-based diagnosis [4] characterize all the diag­
noses for a system as the minimal sets of failing components which explain the 
symptoms. Although this method of characterizing diagnoses is adequate for 
diagnostic approaches which model only the correct behavior of components, it 
does not generalize. For example, it does not necessarily extend to approaches 
which incorporate models of faulty behavior (23] or which incorporate strate­
gies for exonerating components [18]. In particular, not every superset of the 
faulty components of a diagnosis necessarily provides a diagnosis. In this pa­
per we analyze the notion of diagnosis in depth and propose two approaches 
for addressing the inadequacy of minimal diagnoses. First, we propose an 
alternative notion, that of kernel diagnosis, which is free of the problems of 
minimal diagnosis. Second, we propose to restrict the axioms used to describe 
the system to ensure that the concept of minimal diagnosis is adequate. 

2 Problems with minimal diagnosis 

Insofar as possible we follow Reiter's (19] framework. 

Definition 1 A system is a triple (SD, COMPS, OBS) where: 

1. SD, the system description, is a set of first-order sentences. 

2. COMPS, the system components, is a finite set of constants. 

3. OBS, a set of obseroations, is a set of first-order sentences. 

Our framework does not require a distinction between between SD and OBS. 
We do so only because this is the convention in the diagnosis literature. 

Most model-based diagnosis papers [7, 8, 12, 18, 19, 23] define a diagnosis 
to be a set of failing components with all other components presumed to be 
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• 

behaving normally. We represent a diagnosis as a conjunction which explicitly 
indicates whether each component is normal or abnormal. This representa­
tion of diagnosis captures the same intuitions as the previous definitions but 
generalizes more naturally. 

We adopt Reiter's (19] convention that AB(c) is a literal which holds when 
component c ECOMPS is behaving abnormally. (Some of the model-based 
diagnosis literature uses -,O1((c) instead of AB(c) but this is just terminology 
and does not affect the results of this paper.) Depenrung on the exact defi­
nition of fault for the diagnostic task being addressed, abnormality will mean 

· something different. This is reflected in how AB is used in the sentences of 
SD. For example, in GDE [7], being abnormal does not restrict the possible 
behaviors in any way since AB only appears in the form -,AB(x) __. M where 
Mis the correct behavior of component x. In [18] being abnormal means tl1at 
component behavior necessarily deviates from correct behavior since AB only 
appears in the form -,.AB(x) = M. We return to this issue in Section 6. 

Definition 2 Given two sets of components Gp and Cn define 'D( Gp, Cn) to 
be the conjunction: 

[ /\ AB(c)] /\ [ /\ -,AB(c)]. 
c€Cp cECn 

A diagnosis is a sentence describing one possible state of the system, where 
this state is an assignment of the status normal or abnormal to each system 
component. 

Definition 3 Let 6 c;,COMPS. A diagnosis/or (SD,COMPS,OBS) is'D(6,COMPS-
6) such that: 

· SD U OBS U {'D(6, COM PS - 6)} 

is satisfiable. 

The following important observation follows directly from the definition 
(similar to proposition 3.1 of [191): 

Remark 1 A diagnosis exists for (SD,COMPS,OBS) iff SD U OBS is satis­
fiable. 

Unfortunately, there may be 2ICOMPSI diagnoses. Therefore we seek a 
parsimonious characterization of the diagnoses of a system. 
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Definition 4 A diagnosis D( Li, COMPS - Li) is a minimal diagnosis iff for 
no proper subset Li' of Li is D(Li', COM PS - Li') a diagnosis. 

Thus a minimal diagnosis is determined by a minimal set of components which 
can be assumed to be faulty, while assuming the remaining components are 
functioning normally. 

Note that these definitions subsume Reiter's (19]. Reiter's definition of the 
concept of diagnosis corresponds to our notion of minimal diagnosis. Reiter 
provides no definition corresponding to our notion of a diagnosis. All the 
results of [19] therefore apply to our concept of a minimal diagnosis. 

The following is an easy consequence of the above definitions: 

Remark 2 If D( Li, COMPS - Li) is a diagnosis, then there is a minimal 
diagnosis D(Li',COMPS-Li') such that Li'~ Li. 

Most previous approaches to model-based diagnosis have assumed that 
the converse holds, i.e., if D(Li',COMPS - A') is a minimal diagnosis and 
if A' ~ A, then 1J( A, COMPS - Li) is a diagnosis. As we see in section 
6, the converse holds under the assumptions usually made. However, as we 
relax these assumptions, for example by allowing fault models or exoneration 
axioms, the converse fails to hold and we must explore alternative means for 
parsimoniously characterizing all diagnoses. 

Remark 3 IJD(Li',COMPS-Li') is a minimal diagnosis and Li' CA, then 
D(Li, COM PS - Li) need not be a diagnosis. 

Thus, not every superset of the faulty components of a minimal diagnosis need 
provide a diagnosis. To see why, consider the following two simple examples. 
The first example arises if we presume we know all the possible ways a com­
ponent can fail such as in (23]. 

Example 1 Consider the simple two inverter circuit of Fig. 1. If we are making 
observations at different times, then we must represent this in SD in some way. 
One scheme is to introduce observation time t as a parameter. Thus the model 
for an inverter is: 

INVERTER(x)-+ [,AB(x)-+ [in(x,t) = 0 = out(x,t) = 1]). 
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Figure 1: Two inverters 

We assume that SD is extended with the appropriate axioms for binary arith­
metic, etc. Suppose the input is O and the output is 1: in(/1, To) = 0, out(J2, To) = 
1. There are three possible diagnoses: AB(Ii) /\ -,AB(I2), AB(I2) /\ -iAB(Ii) 
and AB(Ii) A AB(I2 ); these are characterized by the first two diagnoses, which 
are minimal. Suppose we know that the inverters we are using have only two 
failure modes: they short their output to their input or their output becomes 
stuck at 0. We model this as: 

I NV ERTER(x) A AB(x)-+ [SA0(x) V SHORT(x)], 

SA0(x) -+ out(x, t) = 0, 

SHORT(x) -+ out(x, t) = in(x, t). 

From these models we can infer that it is no longer possible that both / 1 and 
/ 2 are faulted. Intuitively, if / 2 is faulted and producing the observed 1, then it 
cannot be stuck at 0, and must have its input shorted to its output. But then 
11 must be outputting a 1 and there is no faulty behavior of 11 which produces 
a 1 for an input of 0. Thus AB(/1 ) A AB(/2 ) is no longer a diagnosis, but the 
minimal diagnoses (remain) unchanged. 

The only way to determine which of / 1 or 12 is actually faulted is to 
make additional observations. For example, if we observed out(/1 , T0 ), we 
could distinguish whether / 1 or / 2 is faulted. Suppose 11 is faulted such that 
out(/1 , To) = 0. To identify the actual failure mode of / 1 we have to observe 
out(Ii, T1 ) or out(/2 , Ti) given in(I1, T1 ) = 1. 

This example shows that the use of exhaustive fault models such as in 
[23] leads to difficulties with the usual definition of diagnosis. One way to 
avoid this difficulty is not to presume all the faulty behaviors are known as 
in [8]. However, if we do not know all the faulty behaviors, then nothing 
useful can ever be inferred from a component being abnormal which defeats the 
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purpose of fault modes in the first place ( this is addressed in [8)) by introducing 
probabilities). 

Example 2 The usual definition of diagnosis encounters similar difficulties 
with the TRIAL framework of [18). In this framework a component is consid­
ered faulty if it is actually manifesting a faulty behavior given the current set 
of inputs. If we are only concerned with one set of inputs, then every compo­
nent is modeled as a biconditional. Thus, the inverters of Fig. 1 are instead 
described by: 

INVERTER(x)--+ [-iAB(x) = [in(x) = 0 = out(x) = 1]]. 

Suppose the input and output are measured to be 0. There are only two 
diagnoses (the second of which is minimal): 

It is not possible that one inverter is faulted and the other not: Each in­
verter exonerates the other. In terms of (18], each inverter is an alibi for 
the other. Thus, although ,AB(I1 ) /\ -,AB(l2 ) is a minimal diagnosis, neither 
,AB(I1)/\ AB(I2 ) nor AB(I1 )/\-,AB(I2 ) are diagnoses. Again, we see that by 
including axioms which restrict faulty behavior in any way, the usual definition 
of diagnosis is inadequate to characterize all diagnoses. 

In the remainder of this paper we explore two approaches to address this 
problem: (1) find an alternative means to characterize all diagnoses, and (2) 
restrict the form of SD U OBS such that the notion of minimal diagnosis does 
characterize all diagnoses. We first require some preliminaries. 

3 Minimal diagnoses 

The minimal diagnoses are conveniently defined in terms of the familiar [16] 
notions of implicates and implicants (see [15, 20] for similar uses of these 
notions). 

Definition 5 An AB-literal is AB(c) or ,AB(c) for some c E COMPS. 

Definition 6 An AB-clause is a disjunction of AB-literals containing no 
complementary pair of AB-literals. A positive AB-clause is an AB-clause 
all of whose literals are positive. 
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Note that the empty clause is considered a positive AB-clause. 

Definition 7 A conflict of (SD,COMPS OBS) is an AB-clause entailed by 
SD U OBS. A positive conflict is a conflict all of whose literals are positive. 

If SD U OBS is propositional, then a conflict is any AB-clause which is an 
implicate of SD U OBS. 

The conflicts provide an intermediate step in determining the diagnoses 
and are central to many diagnostic frameworks. The reason for this can be 
understood intuitively as follows. The diagnostic task is to determine mal­
functions, and therefore the primary source of diagnostic information about a 
system are the discrepancies between expectations and observations. A con­
flict represents such a fragment of diagnostic information. For example, the 
conflict AB(A) V AB(B) might result from the discrepancy between observing 
x = 1 while expecting it to be 2, if components A and B were normal. As a 
consequence, we infer that at least one of A or Bis abnormal, i.e., the conflict 
AB(A) V AB(B). Most researchers have focussed only on positive conflicts. 
(As most previous research has focused on the positive conflicts, they usually 
represented conflicts as sets of abnormal components.) However, as we see in 
Section 4, the non-positive conflicts are important when we model faults and 
do exoneration. 

Remark 4 A diagnosis exists for (SD,COMPS,OBS) iff the empty clause is 
not a conflict of (SD,COMPS,OBS). 

Theorem 1 Suppose (SD,GOMPS,OBS) is a system, II is its set of conflicts, 
and~~ COMPS. Then V(l:~.,COMPS - ~) is a diagnosis iff 

II U {'D(t1, COM PS - f1)} 

is satisfiable. 

P1·oof. =} Consider a diagnosis D. Since SD U OBS U {D} is satisfiable, so is 
TU {D} for any set T of sentences entailed by SD U OBS. Since II consists 
of clauses entailed by SD U OBS, II U {D} must be satisfiable. 

<= Conversely, consider a f1 ~ COMPS for which ITU {V(6,COMPS-t1)} 
is satisfiable. Suppose SD U OBS U {'D(f1, COM PS - 6)} is unsatisfiable. 
Therefore, 

SD u OBS F ,'D(f1, COMPS - ~). 

7 



But ,V(6., COM PS - 6-) is an AB-clause so it must be in II, contradicting 
the fact that ITU {V(~,COMPS- ~)} is satisfiable. □ 

Definition 8 A minimal conflict of (SD, COMPS, OBS) is a conflict no proper 
subclause of which is a conflict of (SD,COMPS,OBS). 

Thus, if SD U OBS is propositional, then a minimal conflict is any AB­
clause which is a prime implicate of SD U OBS. 

Theorem 2 Suppose (SD, COMPS, OBS) is a system, II is its set of minimal 
conflicts, and~~ COMPS. Then 'D(~,COMPS - ~) is a diagnosis iff 

II U {'D(~,COMPS - ~)} 

is satisfiable. 

Proof. II is logically equivalent to the set of conflicts of (SD,COMPS,OBS). 
The result now follows from Theorem 1. □ 

Remark 5 If all the minimal conflicts of (SD,COMPS,OBS} are non-empty 
and positive, then V(COM PS,{}) is a diagnosis. 

As the minimal conflicts determine the diagnoses, they play a central role 
in most diagnostic frameworks. 

Example 3 Consider the familiar circuit of Fig. 2. Suppose the component 
models are: 

ADDER(x)--+ [,AB(x)--+ out(x) = inl(x) + in2(x)] 

MULTIPLIER(x)--+ [,AB(x)--+ out(x) = inl(x) x in2(x)] 

As before we assume that SD is extended with the appropriate axioms for 
arithmetic, etc. With the given inputs, there are two minimal conflicts: 

AB(Ai) V AB(Mi) V AB(M2 ) 

AB(A1 ) V AB(M1 ) V AB(M3) V AB(A2), 
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Figure 2: F =AC+ BD,G =CE+ BD 

and four familiar minimal diagnoses: 

out 

out 

'D( {Ai}, {A2, M1, M2, M3}) : AB(A1)1\..,AB(A2)A-,AB(Mi)l\..,AB(M2)1\..,AB(M3) 

'D( {Mt}, {A1, A2, M2, M3}): AB(M1)1\..,AB(A1)1\..,AB(A2)1\..,AB(M2)1\..,AB(M3) 

'D( {M2, M3}, {A1, A2, Mi}): AB(M2)1\AB(M3)1\..,AB(A1)1\-,AB(A2)1\..,AB(Mi) 

'D( {A2, M2}, {A1, M1, M3}): AB(A2)1\AB(M2)1\-,AB(A1)1\-,AB(Mt)l\..,AB(M3). 

To prove the next two theorems we need the following lemma. 

Lemma 1 Suppose that II is the set of minimal conflicts of (SD,COMPS,OBS), 
and that A is a minimal set such that, 

II U { -,AB(c)} 
cECOMPS-A 

is satisfiable. Then 'D(A, COM PS - A) is a minimal diagnosis. 

Proof. By the minimality of A, we have, for each c' E A, that 

II U { I\ -,AB( c)} U {-,AB( c')} 
cECOMPS-A 
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is unsatisfiable, i.e. for each c' E ~, 

II U { ,AB(c)} F AB(c') 
cECOMPS-t::,,. 

so 
II U { I\ ,AB(c)} F /\ AB(c'). 

cECOMPS-t::,,. c'et::,,. 

Moreover, by hypothesis, 

II U { I\ ,AB(c)} 
cECOMPS-t::,,. 

is satisfiable. Hence, II U { V( ~, COMPS - ~)} is satisfiable, so by Theorem 2 
V(~, COM PS - ~) is a diagnosis. It remains only to show that ~ is a 
minimal set such that V(~, COM PS - ~) is a diagnosis. But this is easy, for 
if V(~', COM PS - ~') were a diagnosis for a strict subset~' of~, then 

II U { I\ ,AB(c)} 
cECOMPS-t::,,.' 

would be satisfiable, contradicting the hypothesis of this lemma. □ 

Definition 9 A conjunction C of literals covers a conjunction D of literals iff 
every literal of C occurs in D. 

Definition 10 Suppose E is a set of propositional formulas. A conjunction of 
literals 1r containing no pair of complementary literals is an implicant of E iff 
1r entails each formula in E. 1r is a prime implicant of E iff the only implicant 
of E covering 1r is 1r itself. 

Theorem 3 (Characterization of minimal diagnoses) V(~, COMPS-~) is 
a minimal diagnosis of (SD,COMPS,OBS) iff Acee:,,. AB(c) is a prime implicant 
of the set of positive minimal conflicts of (SD,COMPS,OBS). 

A proof of this theorem is given by Corollary 4.5 of (19). The following is 
a direct proof in the terminology of this paper. 

Proof. => Suppose II+ is the set of positive minimal conflicts for (SD,COMPS,OBS), 
and that V(~, COM PS-~) is a diagnosis. By Theorem 2, IIU{V(~, COM PS­
~)} is satisfiable where II is the set of minimal conflicts of (SD,COMPS,OBS). 
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Since TI+ ~ II, n+u{V(L\., COM PS-6.)} is also satisfiable. Since -V(L\., COM PS-
6.) contains every possible AB-literal or its n gation, every clause of rr+ must 
contain a literal of V(L\., COM PS - 6.). Therefore, 

(\ AB( c) (\ ,AB( c) I= TI+. 
cEA ceCOMPS-A 

Since TI+ contains only positive literals, the negative literals are irrelevant: 

Since V(.6., COM PS - .6.) is a minimal diagnosis, no subset of 6. has this 
property. Hence, /\cet:. AB(c) is not only an implicant but a prime implicant 
of TI+. 

¢= Suppose TI and rr+ are the sets of minimal and positive minimal conflicts 
for (SD,COMPS,OBS), and that AceA AB(c) is a prime implicant of TI+. We 
prove that 6. is a minimal set such that 

TI u { I\ ,AB(c)} 
cECOMPS-A 

is satisfiable. The result will then follow from lemma 1. Suppose then that 

II U { I\ 
cECOMPS-A 

is unsatisfiable, so that 

V AB(c) 
ceCOMPS-A 

which is a positive clause. Because TI consists of minimal conflicts, it fol­
lows that some clause of TI+ contains literals of VceCOMPS-A AB(c). But this 
cannot be since AceA AB(c) is a prime implicant of n+. Hence 

TIU { I\ 
cECOMPS-A 

is satisfiable. We now prove 6. is a minimal set with this property. Every con­
flict in rr+ has the form VceA'uK AB(c) for some 6.' ~ 6. and K ~ COMPS -
6.. Moreover, for each 8 E 6., some such conflict contains V(.6., COMPS-6.) 
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else Acet::. AB( c) is not a prime implicant of II+. We prove that some conflict in 
II+ containing 'D(~, COM PS~~) must have the form 'D(~, COMPS-~)V 
V kEK AB( k). For if not, then every conflict in II+ which contains 'D( ~,COMPS­
~) must have the form 'D(~,COMPS - ~) V 'D(h',COMPS - h') V · ·· V 
VkeK AB(k), where h' E ~ and h' =/. b. But then AceA-{6} AB(c) is a smaller 
implicant than AceA AB(c), yielding a contradiction. Hence, for each h E ~ 
there is a conflict of the form V(.6., COM PS - .6.) V VkeK AB(k) where/{~ 
COMPS - .6.. Hence, for each b E .6. 

V(.6., COM PS - .6.) V V AB(c) 
cECOMPS-A 

is a conflict so that, 

II U { /\ ,AB(c)} 
cE{6}u(COMPS-A) 

is unsatisfiable. Since we have already proved that 

II U { I\ ,AB(c)} 
cECOMPS-A 

is satisfiable, ~ must be a minimal set with this property. □ 

This theorem underlies many model-based diagnostic algorithms. The first 
step, conflict recognition, finds positive minimal conflicts, and the second step, 
candidate generation, finds prime implicants. Clearly, if we were only inter­
ested in minimal diagnoses, then we would only be interested in identifying the 
positive minimal conflicts, but, in general, we must consider the non-positive 
minimal conflicts as well. 

We now have the machinery to state precisely when the minimal diagnoses 
characterize all diagnoses. 

Theorem 4 The following are equivalent: 

1. IJV(.6.', COM PS - .6.') is a minimal diagnosis for (SD,COMPS,OBS), 
then V(~,COMPS-.6.) is a diagnosis/or (SD,COMPS,OBS) for every 
.6. such that COMPS ;? .6. 2 .6.' {i.e., every superset of the faulty 
components of a minimal diagnosis provides a diagnosis). 

2. All minimal conflicts of (SD,COMPS,OBS) are positive. 
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Proof. 1 => 2. Suppose, for Gp, Cn ~ COMPS, that 

V AB(c) V V -iAB(c) 
cECp cECn 

is a conflict of (SD,COMPS,OBS). Then 

V AB(c) V V ..,AB(c) 
cECp cECOMPS-Cp 

is a conflict, so that the negation of this, which is V(COMPS - Cp,Cp), 
is not a diagnosis. We prove that VceCp AB(c) is a conflict, from which 
the result follows. Suppose not. Then SD U OBS U {-iAB(c) I c E A} 
is satisfiable. Let A 2 Gp be a maximal subset of COMPS such that 
SDUOBSU{-iAB(c) I c EA} is satisfiable. By lemma 1, V(COMPS-A,A 
is a minimal diagnosis. Since A 2 Gp, then by property 1 of the theorem, 
V( COMPS - Gp, Gp) is a diagnosis, contradicting our previously established 
result. 
2 => 1. Suppose V(A', COM PS-A') is a minimal diagnosis and COM PS 2 
A 2 A'. By Theorem 2, if II is the set of minimal conflict of (SD, COM PS, OBS), 
then II U {V(A', COM PS - A')} is satisfiable. Since for each c E COM PS 
either AB(c) or -iAB(c) occurs in V(A', COMPS - A'), this means that 
every AB-clause of II contains a literal of V(A', COM PS - A') and this lit­
eral is positive since the AB-clauses are positive. Hence, because A 2 A', 
each AB-clause of II contains a positive literal of V(A,COMPS - A), so 
II U {V(A,COMPS - A)} is satisfiable, whence 2J(A,COMPS - A) is a 
diagnosis. D 

In Example 1, AB(l1 ) A -iAB(J2 ) was a diagnosis, but AB(I1 ) A AB(I2 ), 

which has more faulty components, was not. By Theorem 4 this must arise 
because one of the minimal conflicts is not positive. In this example. +he neg­
ative clause, -iAB(I1 ) V -,AB(J2 ), is a minimal conflict, which follo¥. .- ..iirectly 
from the fault models of 11 and 12 • 

4 Partial diagnoses 

Suppose we have the following two diagnoses for a three component system: 
AB(c1 )/\AB(c2)AAB(c3 ) and AB(c1 )/\AB(c2 )/\-iAB(c3 ). We can interpret 
this as saying that c1 and c2 are faulty, and that c3 may or may not be faulty. 

13 



Thus, the two diagnoses may be represented more compactly by AB( c1 ) A. 
AB(c2)- In fact, we can view this as a 'partial' diagnosis in which we are 
uncommitted to the status of c3 ; no matter what that status is, it leads to a 
diagnosis. This is the basis for Poole's observation [1 7) that a diagnosis need 
not commit to a status for each component whenever that status is a 'don't 
care'. Accordingly, we introduce the concept of a partial diagnosis. This 
concept also has the nice side effect of providing a convenient representation 
characterizing the set of all diagnoses. 

Definition 11 A partial diagnosis for (SD, COMPS, OBS) is a satisfiable con­
junction P of AB-literals such that for every satisfiable conjunction of AB­
literals <P covered by P, SD U OBS U {¢} is satisfiable. 

The following is an easy consequence of this definition: 

Remark 6 If P is a partial diagnosis of (SD,COMPS,OBS) and C is the set 
of all components mentioned in P, then 

PA. A(c) 
cECOMPS-C 

is a diagnosis, where each A(c) is AB(c) or ,AB(c). 

Thus, a partial diagnosis P represents the set of all diagnoses which contain P 
as a subconjunct. It is natural then to consider the minimal such P's, which 
we call kernel diagnoses. 

Definition 12 A kernel diagnosis is a partial diagnosis with the property that 
the only partial diagnosis which covers it is itself. 

The following easy result provides exactly the characterizing property we have 
been looking for: 

Theorem 5 {Characterization of diagnoses) 1)(fl,COMPS - fl) is a diag­
nosis iff there is a kernel diagnosis which covers it. 
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Consider the example of Fig. 1. Without the introduction of fault models 
there were three diagnoses: AB(r1 ) A -,AB(l2 ), -,AB(Ii) A AB(I2 ), AB(Ii) A 

AB(l2) which are characterized by the two kernel diagnoses: AB(11 ) and 
AB(12)- With the addition of the fault models, the kernel diagnoses become: 
AB(J1) A -,AB(l2) and -,AB(I1 ) A AB(I2)-

Partial and kernel diagnoses can be particularly easily characterized in 
terms of prime implicants and minimal conflicts. Recall that a conjunction of 
literals 1r containing no pair of complementary literals is an implicant of~ iff 
1r entails each formula in ~-

Theorem 6 The partial diagnoses of (SD, COMPS, OBS) are the implicants 
of the minimal conflicts of (SD,COMPS,OBS). 

Proof. Let II be the set of all conflicts of (SD,COMPS,OBS). Since II is 
logically equivalent to the set of minimal conflicts of (SD,COMPS,OBS), it is 
sufficient to prove that the partial diagnoses are the implicants of II. As a 
further simplification, we appeal to the following analog of Theorem 2, whose 
proof is similar: 
K is a partial diagnosis iff II U 2 is satisfiable for every satisfiable conjunct 2 
of AB-literals covered by I<. 
:::} Suppose I< is a partial diagnosis. We prove I( I= 1r for each 1r E II, whence 
I( is an implicant of II. Suppose not. Then 1{ ~ 1r for some 1r E II, which 
means that no literal of 71" occurs in K. Let £ be the set of those literals of 1r 

which are not complements of literals of I<. Consider P = I( A Aier. -,/. PA 1r 

is unsatisfiable. But I< covers P, contradicting the fact that 1( is a partial 
diagnosis. 
<= Suppose that I( is an implicant of II. We prove J( is a partial diagnosis. 
Since I( I= IT for each 71" E II, C I= 71" for each satisfiable conjunct C of AB­
literals covered by J(. Hence II U { C} is satisfiable for any such C so that I( 

is a partial diagnosis. D 

Corollary 1 (Characterization of kernel diagnoses) The kernel diagnoses of 
{SD,COMPS,OBS) are the prime implicants of the minimal conflicts of SD U 
OBS. 

Proof. Let II be the set of minimal conflicts of (SD,COMPS,OBS). 
=> If J( is a kernel diagnosis, then by Theorem 6 it is an implicant of II. We 
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prove it is prime. If not, then for some C distinct from K but covering K, 
C I= 1r for each 1r E IT. Hence, for every satisfiable conjunct D of AB-literals 
covered by C, D I= 1r. Thus TIU {D} is satisfiable for each such D, which 
means that I< is not a kernel diagnosis, contradiction. 
¢: Suppose K is a prime implicant of IT. Then by Theorem 6 it is a partial 
diagnosis. Suppose K is not a kernel diagnosis. Then there is a conjunct 
C covering . I< but distinct from I< such that C is a partial diagnosis. By 
Theorem 6, C is an implicant of IT, contradicting the fact that K is a prime 
implicant of IT. □ 

As a consequence of this corollary and Theorem 3, if all minimal conflicts 
are positive, then there is a simple one-to-one correspondence between minimal 
diagnoses and kernel diagnoses. 

Corollary 1 provides a direct way of computing the kernel diagnoses. One 
way of doing this is to convert the CNF-form of the minimal conflicts to DNF 
and simplify as follows (we omit the proof): 

1. 'Multiply' the minimal conflicts to give a disjunction of conjunctions. 

2. Delete any conjunction containing a complementary pair of literals. 

3. Delete any conjunction covered by some other conjunction. 

4. The remaining conjunctions are the prime implicants of the original min­
imal conflicts, and hence the kernel diagnoses. 

Example 4a Consider Example 3. There are two minimal conflicts: 

AB(A1 ) V AB(M1 ) V AB(M2 ) 

AB(A1) V AB(M1 ) V AB(M3) V AB(A2 ), 

and four kernel diagnoses: 
AB(At) 

AB(M1 ) 

AB(M2 ) /\ AB(M3) 

AB(M2 ) /\ AB(A2 ). 

As all minimal conflicts are positive, these diagnoses correspond one-to-one to 
the familiar minimal diagnoses. 
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Example 4b Suppose we used slightly different component models: 

ADDER(x) ~ [-,AB(x) = [out(x) = inl(x) + in2(x)J] 

MULTIPLIER(x)-+ [-,AB(x) = [out(x) = inl(x) x in2(x)J]. 

In this case the minimal conflicts become: 

AB(Ai) V AB(M1) V AB(M2) 

AB(A1) V AB(A2) V AB(M1) V AB(M3) 

AB(A2) V -,AB(M2) V AB(M3) 

AB(A2) V AB(M2) V -,AB(M3) 

-,AB(A2) V AB(M3) V AB(M2), 

and the kernel diagnoses become: 

-,AB(A2) I\ AB(M1) I\ -,AB(M2) I\ -,AB(M3 ) 

AB(A2) I\ AB(M1) I\ AB(M3 ) 

AB(A1 ) I\ -,AB(A2) I\ ,AB(M2 ) I\ ,AB(M3 ) 

AB(Ai) I\ AB(A2) I\ AB(M3 ) 

AB(A2) I\ AB(M2) 

AB(M2) I\ AB(M3 ). 

Note that because the positive minimal conflicts are unchanged, the set of 
minimal diagnoses remains unchanged. 

In this example there are only a few more kernel diagnoses than minimal 
diagnoses (6 vs. 4). However, one possible disadvantage of this approach 
is that there may sometimes be exponentially more kernel diagnoses than 
diagnoses. 

It is interesting to note that the set of minimal conflicts may be redundant. 
In Example 4b, the first and third minimal conflicts entail the second: 

AB(A1) V AB(M1) V AB(M2) 
AB(A2) V ,AB(M2) V AB(M3 ) 

AB(A1 ) V AB(A2) V AB(M1) V AB(M3) 
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Therefore, the second minimal conflict is redundant. Such redundancy can 
only occur if there are non-positive minimal conflicts. Unfortunately, these 
observations do not seem to be of much practical use because there is no easy 
way to tell whether there are enough minimal conflicts without first finding 
them all. 

Definition 13 A set of kernel diagnoses is irredundant iff it is a smallest 
cardinality set with the property that every diagnosis is covered by at least one 
of its elements. 

Theorem 7 If all minimal conflicts are positive there is exactly one irredun­
dant set of kernel diagnoses, namely the set of all kernel diagnoses. 

A system can have multiple irredundant sets of kernel diagnoses. 

Example 5 Consider a circuit having three components A, B, C and the two 
minimal conflicts: 

AB(A) V AB(B) V AB(C) 

,AB(A) V ,AB(B) V ,AB(C) 

These have six prime implicants (i.e., kernel diagnoses). 

AB(A) I\ ,AB(B) 

,AB(A) I\ AB(C) 

AB(B) I\ ,AB(C) 

,AB(A) I\ AB(B) 

AB(A) I\ ,AB(C) 

,AB(B) I\ AB(C) 

There are two irredundant sets of kernel diagnoses: 

{AB(A) I\ ,AB(B), ,AB(A) I\ AB(C), AB(B) I\ ,AB(C)} 

{ ,AB(A) I\ AB(B), AB(A) I\ ,AB(C), ,AB(B) I\ AB(C)}. 
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Our analysis of kernel diagnoses corresponds exactly to the classical analy­
sis in switching theory of so-called two level minimization of boolean functions 
(e.g. , the Quine-McCluskey algorithm [13, 16]). The problem there is to syn­
thesize a circujt realizing a given function as a disjunction of conjunctions o( 
literals in such a way as to minimize the number of and-, or- and not-gates. 
Such circuits are characterized by irredundant sets of prime implicants of the 
given function. In the case of diagnosis, the given boolean function is specified 
by Il, the s~t of conflicts of SD U OBS. The kernel diagnoses are the prime 
implicants of II, and the minimal sets of kernel diagnoses sufficient to cover 
every diagnosis are the irredundant sets of prime implicants of II. It is well 
known from switching theory that the minimization problem is computation­
ally intractable; there may be too many prime implicants, and even if there 
aren't, finding an irredundant subset of them is NP-hard. Therefore, designers 
of VLSI circuits have developed various approximation techniques [1]. Because 
of the exact correspondence with diagnosis, we can expect to profit from these 
techniques. 

It can be useful to construct irredundant sets of partial diagnoses containing 
non-kernel diagnoses. For example, for probability calculations it is useful (as 
far as possible) to ensure that no two of the partial diagnoses have a common 
superset. The probability calculus of [7, 8, 18) computes the probabilities of 
outcomes by combining the probabilities of partial diagnoses. For example, if 
some outcome holds in two diagnoses A and B then its probability is: 

P(A VB) = P(A) + P(B) - P(A I\ B) 

If A and B have no common superset, then P(A I\ B) = 0. This can result in 
an exponential speed up in the probability calculations. 

5 Prime diagnoses 

Raiman [18] proposes a notion of prime diagnosis to characterize diagnoses. In 
his TRIAL architecture, components are individually incriminated and exon­
erated. Therefore1 he characterizes the diagnoses of a system in terms of the 
diagnoses involving its individual components. The following is a generaliza­
tion of his definition. 

Definition 14 Given (SD,COMPS,OBS), a prime diagnosis for ceCOMPS 
is a minimal diagnosis for (SD,COMPS,OBS U {AB(c)}) 
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Prime diagnoses characterize all diagnoses as follows. 

Theorem 8 (Raiman) Suppose V(~,COMPS - ~) is a diagnosis. Then 
for each Ci E ~ there is a prime diagnosis V(~i, COM PS - ~i) for Ci such 
that~= Ui ~i-

Unfortunately, Example 1 shows that not every union leads to a diagnosis. 
The prime diagnoses are: 

P(/1) = {AB(Ii) I\ ,AB(I2)} 

P(h) = {AB(/2) A ,AB(/1)} 

However, AB(Ii) I\ AB(J2) is not a diagnosis. Thus, prime diagnoses are 
inadequate to characterize diagnoses. 

Raiman (18] implicitly assumes all minimal conflicts contain at most one 
negative literal. In this case Raiman shows that the converse of Theorem 8 
holds which makes prime diagnoses adequate for characterizing diagnoses. 
This useful property holds if SD U OBS is horn, but we do not know of 
any more general practical condition on SD U OBS which ensures it. 

6 Restricting the system description 

Our overall objective is to find methods of characterizing all diagnoses. We 
saw that minimal diagnoses were inadequate for this task in general and we 
examined kernel and prime diagnoses as alternatives. Another approach is to 
restrict the form of the system so that minimal diagnoses do characterize all 
diagnoses. We know from Theorem 4 that a necessary and sufficient condition 
ensuring that every superset of the faulty components of a minimal diagnosis 
provides a diagnosis is that all minimal conflicts be positive. Unfortunately, we 
are not aware of any simple necessary and sufficient condition on the syntactic 
form of a system which ensures that all minimal conflicts are positive. Clearly 
both OBS and SD need to be restricted because definition 1 allows non­
positive AB-clauses to be part of OBS and SD. In this section we explore 
some commonly used practical restrictions on OBS and SD that suffice to 
ensure that the minimal diagnoses do characterize all diagnoses. In these 
definitions we assume that OBS and SD can be expressed as a set of first­
order clauses. 
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Definition 15 A system (SD,COMPS,OBS) is ignorant of abnormal behavior 
if in the clausal form of SD U OBS every occurrence of an AB-predicate is 
positive. 

We call this the Ignorance of Abnormal Behavior (IAB) condition. For 
example, if all axioms of SD in which AB appears follow the schema: 

which is equivalent to the clause, 

AB(x) V -,At V · · · V -,An V C1 V · · • V Cm, 

where the Ai and Ci are literals not mentioning AB, and if every AB-literal (if 
any) in OBS is positive, then IAB holds. The IAB condition is used in all of 
the model-based diagnosis frameworks which rely on knowing only the correct 
behavior of components (where the Ai specify the component type and the Ci 
specify the various possible normal behavior modes for the component). 

Theorem 9 If (SD, COMPS, OBS) satisfies the JAB condition and V(~. COMPS­
~) is a diagnosis for (SD,COMPS,OBS), then V(~',COMPS- 6') is a di­
agnosis for (SD,COMPS,OBS) for every 6.':::) 6. where 6.' ~ COMPS. 

Proof. If AB only appears positively in SDUOBS, then only positive minimal 
conflicts are possible. The result now follows from Theorem 4. □ 

The converse of this theorem is false. A less restrictive and more useful 
definition is: 

Definition 16 A system (SD,COMPS,OBS) has limited knowledge of abnor­
mal behavior if for every component c E COMPS and any V( Gp, Cn) where 
cf/. Gp and c ff. Cn and Cp,Cn ~ COMPS that if SDU OBSU {AB(c)} and 
SDUOBSU{V(Cp,Cn)} are satisfiable, then SDUOBSU{V(CpU{c},Cn)} 
is satisfiable. 

We call this the Limited Knowledge of Abnormal Behavior (LKAB) con­
dition. As shown later in Theorem 10, this condition provides a general char­
acterization of a class of systems for which there is insufficient knowledge of 
abnormal behavior to rule out any diagnosis implicating a set of faulty com­
ponents given a diagnosis implicating a subset of them. 
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Remark 7 If (SD1 COMPS, OBS) satisfies the JAB condition, then it satisfies 
the LI{ AB condition. 

Proof. Consider each AB(c) c E COMPS. If AB occurs only positively in 
SD U OBS, then AB(c) cannot appear negatively in any minimal conflict. 
Thus, SD U OBS U {AB(c)} is always satisfiable. And, therefore, if SD U 
OBS U {V(Cp,Cn)} is satisfiable where c </. Gp and c </. Cn, then SD U 
OBSU {V(Cp,Cn)} U {AB(c)} is satisfiable. o 

Theorem 10 If (SD,COMPS,OBS) satisfies the LKAB condition and'D(A, COM PS­
~) is a diagnosis for (SD,COMPS,OBS), then V(A', COM PS - A') is a di-
agnosis for (SD,COMPS,OBS) for every~'::> A where A'~ COMPS and 
for each c EA' SD U OBS U {AB(c)} is satisfiable. 

Proof. Consider a diagnosis 'D( A, COMPS - A) and each c E COMPS - A 
for which c EA' SDUOBSU{AB(c)} is satisfiable. If'D(A,COMPS-A) is 
a diagnosis, then { V( A, COMPS -A)} US DUO BS is satisfiable by definition 
of diagnosis. Then, by LKAB {'D(A, COMPS-A-{c} )}UAB(c)USDUOBS 
is satisfiable and hence {V(AU {c}, COM PS-A-{c})} USDU OBS is also. 
By iterating this process we prove the theorem. D 

Sherlock [8] exploits the LKAB condition. In Sherlock all axioms in SD 
mentioning AB have one of the following two forms: 

,AB(x) A A(x)-+ G1(x) V · · · V Gm(x) 

AB(x) A A(x)-+ F1(x) V · · · V Fm(x) V U(x) 

where G;(x) describes a possible normal behavior for component x, F;(x) de­
scribes a possible faulty behavior for a component x. U ( x) specifies an un­
known behavior so the only occurences of the literal U ( x) are in clauses of the 
form, ,A(x) V ,U(x) V ,G;(x) and ,A(x) V ,U(x) V ,F;(x). Furthermore, 
G;(x), F;(x), U(x) only occur negatively in other clauses. 

We show that by using resolution, a complete inference procedure, the 
LKAB conditions are met. Consider every AB(c) c E COM PS. We only need 
focus on those conclusions which follow from the axioms in which AB appears 
negatively. Notice that every axiom in which AB(c) appears negatively, U(c) 
appears positively. Consider the only two other types of clauses in which U(c) 
appears. The clause ,A(c) V ,U(c) V ,F;(c) contains the negations of two of 
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the literals of the problematic AB-clause, therefore these two clauses do not 
resolve with each other. However, the problematic AB-clause can resolve with 
,A(c) V ,U(c) V ,G;(c) to produce 

AB(c) A A(c) __. F1(c) V · · · V Fm(c) V ,G;(c). 

G1(c) only appears positively in clauses containing ,AB(c), therefore these 
clauses cannot resolve as well. As there are no other possible resolutions and 
the only sentences containing AB in OBS are atomic, the addition of AB(c) 
can never make some 'D(Cp, Cn) unsatisfiable unless ,AB(c) E OBS. Thus 
LKAB holds. 

For example, in Sherlock the axioms mentioning AB for an inverter are: 

,AB(x) A INVERTER(x) __. G(x), 

AB(x) A INVERTER(x) __. Sl(x) V S0(x) V U(x). 

And some of the other axioms for inverters are: 

,JNVERTER(x) V ,G(x) V ,Sl(x) 

,JNVERTER(x) V ,G(x) V ,S0(x) 

--,J NV ERT ER(x) V ,G(x) V ,U(x) 

,/NV ERTER(x) V ,S0(x) V ,Sl(x) 

,JNVERTER(x) V ,S0(x) V ,U(x) 

,JNVERTER(x) V ,Sl(x) V ,U(x) 

INVERTER(x) A G(x) __. [IN(x) = 0 = OUT(x) = 1) 

INVERTER(x) A Sl(x) __. OUT(x) = 1 

INVERTER(x) A SO(x) __. OUT(x) = 0 

From a purely logical point of view these clauses which mention U(x) convey 
no information, however, in the Sherlock framework every behavioral mode 
is assigned a probability and U(x) behavioral modes are assigned very small 
probability. 
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7 Summary 

The notions of minimal and prime diagnosis are inadequate to characterize 
diagnoses generally. We argue that the notion of kernel diagnosis which des­
ignates some components as normal, others abnormal, and the remainder as 
being either, is a better way to characterize diagnoses. We avoid significant 
complexity if kernel diagnoses contain only positive literals (i.e., all minimal 
conflicts are positive). This can be achieved by limiting the description of the 
system to ensure this. This can be achieved by limiting the description of the 
system to obey the IAB or LKAB condition which formalize the intuitions 
underlying many existing diagnosis systems. 

There are usually a large number of minimal conflicts and kernel diagnoses 
( or prime diagnoses, or minimal diagnoses). Therefore, the brute-force applica­
tion of the techniques suggested in this paper is not practical. The contribution 
of this paper is that it provides a clear logical framework for characterizing the 
space of diagnoses. It thus provides the specification for an ideal diagnostician. 
In practice, some focussing strategy must be brought to bear. One approach is 
to exploit hierarchical information as in [12). Another approach is to focus the 
reasoning to identify the most relevant conflicts in order to find the most prob­
able diagnoses [8, 10). However, both of these approaches require additional 
information: the structural hierarchy and probabilistic information. 
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