
Towards Structured Parallel Computing
Part I

A Theory of Algorithm Design and Analysis
for Distributed-Memory Architectures

by

Feng Gao

Technical Report 89-27
December, 1989

Computer Science Department

University of British Columbia

Vancouver, B.C. V6T 1W5 Canada

TOWARDS STRUCTURED PARALLEL COMPUTING
Part I

A Theory of Algorithm Design and Analysis
for Distributed-Memory Architectures

Feng Gao

Computer Science Department
University of British Columbia

Vancouver, B.C. V6T 1W5 Canada
December, 1989

ABSTRACT

This paper advocates a architecture-independent, hierarchical approach to

algorithm design and analysis for distributed-memory architectures, in contrast

to the current trend of tailoring algorithms towards specific architectures. We

show that, rather surprisingly, this new approach can achieve uniformity

without sacrificing optimality. In our particular framework there are three lev

els of algorithm design: design of a network-independent algorithm in a

network-independent programming environment, design of virtual architectures

for the algorithm, and design of emulations of the virtual architectures on phy

sical architectures. We propose and substantiate through a complete complexity

analysis of the example of ordinary matrix multiplication, the following thesis:

architecture-independent optimality can lead to portable optimality. Namely, a

single network-independent algorithm, when optimized network-independently,

with the support of properly chosen virtual architectures, can be implemented

on a wide spectrum of networks to achieve optimality on each of them with

respect to both computation and communication. Besides its implications to

the methodology of parallel algorithm design, our theory also suggests new

questions for theoretical research in parallel computation on interconnection

networks.

Thia rmearch was partially 1111pported by the Natw-al Sciences and EnginuriDg Reaeai-ch Council of Canada
under Grant OGP0041639, and by the U.S. Nation.al Science Foundation under Grant CCR8'712121 during the
preliminary stage.

- 2 -

1. Introduction

In this paper, we develop a theory of algorithm design and analysis for

coarse- and mediwn-grain parallel computation on distributed-memory architec

tures. The main goal of developing this theory is to advocate a departure from

the current trend of tailoring parallel algorithms towards specific architectures, or

interconnection networks (the two terms will be synonymous in this paper when

no confusion arises). This conventional approach has several drawbacks: a) the

design and programming of parallel algorithms involve a great deal of machine

~etails; b) architecture-driven algorithms are not easily portable a.cross different

machines; and c) a common ground for analysis and comparison of algorithms is

lacking.

We feel that the success of parallel computing will not lie so much, at the

level of algorithm design, in utilizing every detail of a machine as in the ease of

algorithm development and analysis, and will lie as much in portability of algo

rithms as in their optimality.

As a step towards a more structured, hierarchical approach to parallel com

puting, we propose a framework for algorithm design and analysis which takes a

more architecture-independent view. We abstract out the notion of an algorithm

from its implementation on a machine, and separate the notion of optimality of

the former from that of the latter.

In our theory, the design, analysis and implementation of a parallel algo

rithm for a given application consists of three levels, each involving optimization.

The highest level is independent of any possible underlying interconnection net

work. An algorithm is designed using data-dependency analysis to achieve a type

of architecture-independent optimality with respect to both computation and

communication. It is also specified in an architecture-independent context, by a

partition of the computation tasks and a schedule of the computation tasks as

well as the communication-oriented tasks. The communication-oriented tasks are

organized around a set of generic primitives specified by their functionality. At

the next level, a collection of virtual architectures are chosen to implement the

algorithm on (more precisely, to implement the generic primitives on). They are

the ones that are tailored, to suit both the algorithm and the hardware architec

tures. More specifically, they are selected on the basis of their capability to sup

port the generic communication-oriented primitives of the algorithm as well as

- 3 -

their flexibility for emulation on different hardware networks. For special

purpose computing, the third level is the hardware realization of a properly

chosen virtual architecture for the algorithm. For general-purpose computing,

the third level is the implementation of this architecture-independent algorithm

on a spectrum of interconnection networks, by emulating a properly chosen vir

tual architecture on ea.ch hardware network. The two lower levels combine our

architecture-independent complexity analysis with tools from current areas of

research in parallel computation: parallel algorithms for specific architectures,

communication algorithms for specific architectures, and emulation between

architectures.

A high level algorithm designed this way is network-independent and can be

ported to various architectures. The question is whether the implementations of

this algorithm on different architectures will still be competitive with ones

tailored for specific networks. At the first sight, it would seem counter-intuitive

that one algorithm could run well on several different networks.

To show that the answer is however affirmative, we propose and substan

tiate the following thesis: architecture-independent optimality of an algorithm

can lead to portable optimality of the algorithm. Namely, a single algorithm,

when optimized architecture-independently, with the support of properly chosen

virtual architectures, can be implemented on a wide spectrum of architectures to

achieve optimality on each of them.

In addition, we will show that this approach allows the development of an

algorithm to be carried out in a more structured as well as network-independent

programming environment: when local computation is distinguished from

communication-oriented tasks organized around certain generic primitives, one

gains in modularity.

We will also show that this approach leads to a framework of optimal inter

connection network design for special-purpose computing -- design of sparse net

works that can do almost as well as any dense network including the complete

connection network, for their special purposes.

The theory will be illustrated throughout the paper with a model problem -

design of an algorithm for ordinary matrix multiplication (OMM). In subsequent

papers, it will be demonstrated that this approach can be successfully applied to

more complex applications such as dynamic programming and matrix

- 4 -

factorization, where more complicated resource-tradeoffs arise.

Our specific findings for OMM can be summarized as follows:

a) An algorithm consisting of a three-dimensional partitioning of computation

tasks and a schedule of one local computation stage and two communication

stages each using one communication-oriented primitive, is asymptotically

optimal in an architecture-independent sense, i.e., simultaneously achieving

optimal computation parallelism, minimizing the number of rounds of communi

cation, and minimizing data interdependency. The two primitives used are

limited-complete-broadcast and limited-histogramming (see Section 3 for their

description).

b) Three virtual architectures, the 3-D mesh, a variant of the 3-D mesh of trees,

and the 3-D mesh of hypercubes which is a hypercube itself, are selected to

implement this 3-d algorithm on. Each is proved to have certain optimality pro

perty.

c) For special-purpose network design, the 3-D mesh or the variant of the 3-D

mesh of trees can be realized as hardware networks to implement this 3-d algo

rithm on and yield performance almost as good as that of any network including

the complete-connection network.

d) For general-purpose computing, this 3-d algorithm can be implemented on the

1-D mesh, 2-D mesh, 3-D mesh and the hypercube networks to achieve portable

optimality, that is, to be asymptotically as good as any algorithm designed for

any of these networks. Here optimality is with respect to both computation and

communication. These optimal implementations are obtained through optimal

emulations of virtual architectures: the 3-D mesh virtual architecture on the 1-D

mesh, 2-D mesh and the 3-D mesh itself, and the (3-D mesh of) hypercube(s) vir

tual architecture on the hypercube itself.

Results concerning the generic communication-oriented primitives, the vir

tual architectures they are implemented on, and emulation of these virtual archi

tectures are of greater generality and can be used to support algorithms for other

applications.

Besides to the process of algorithm design, our theory has implications to

theoretical research in parallel computation. For instance, Theorem 3 (Section 6)

in particular establishes the communication optimality of the 3-d algorithm on

the hypercube for OMM. Most previous results concerning optimality of

- 5 -

communication on the hypercube have been for communication problems rather

than computational problems. Although our lower bonnds apply only to OMM

rather than the general problem of matrix multiplication, it is in the spirit of the

traditional theory of algorithms and complexity to investigate the complexity of

communication for computation. The proofs for the lower bounds also demon

strate the importance of an architecture-independent analysis. Another instance

is Theorem 4 (Section 6) which makes use of embeddings of the 3-D mesh in the

1-D and 2-D meshes. Motivated by the notion of portable optimality, it requires

the embedding of a denser graph in sparser ones. It also requires a tight estimate

on the optimal number of emulation steps which cannot be obtained by just

using the product of dilation and congestion as an upper bound as most previous

graph-embedding works have done.

The rest of the pa.per is organized as follows: Section 2 presents the model

of computation. Section 3 presents the general theory for the architecture

independent algorithm design and analysis. Section 4 concerns design of virtual

architectures. Section 5 discusses special-purpose computing. Section 6 discusses

general-purpose computing, i.e., implementation of one algorithm on several net

works to achieve portable optimality. Section 7 contains a summary and a brief

discussion of issues concerning a structured, hierarchical approach to parallel

computing.

2. Model of Computation

We study parallelization of a description of computation. This description of

computation can be in the form of a (sequential, PRAM (cf. Karp & Ramachan

dran (1988)), etc.) program, a computation dependency graph in which nodes

represent inputs, outputs and elementary operations while edges represent data

dependency, or a set of mathematical relations describing the computation. For

the case study in this paper, the computation dependency graph is acyclic and

depends only on the size of the input. The input size N is one of the two asymp

totic variables. We assume that the value of an input node, output node or com

putation node is an indivisible data item, or a word. A similar model was used in

Papadimitriou & Ullman (1984).

Since a description of computation usually only represents a class of compu

tational schemes to solve a computational problem, the lower bounds obtained do

- 6 -

not necessarily give the intrinsic complexity of solving a computational problem.

However, the notion of description of computation is at an appropriate level of

abstraction for studying algorithm design on realistic parallel architectures.

An interconnection network is represented by a connected undirected graph

m which nodes represent processors while edges represent processor links. The

size p of this graph is the second asymptotic variable. We impose the condition

that p - oo as N - oo, and that pis small compared to N. In addition, we make

the network regularity assumption that as p - oo the ratio of the maximal node

degree to the minimal node degree in the network graph is bounded above by a

constant.

As to the communication capability of a network, we assume that the links

have equal transfer rate, that all links to a processor can communicate simultane

ously, and that the links are bi-directional, i.e., data can travel in both directions

simultaneously. We also assume that the mechanism of communication is Jtore

and-Jorward, also known as packet-Jwitched. One can also consider other

mechanisms such as wormhole routing (Dally(1987)). Following Stout & Wager

(1987), we allow cost-free batching of several packets into one packet or splitting

of one packet into several packets at a processor. However, our results concern

ing algorithms on meshes do not require this assumption. One can also consider

models in which batching and splitting of packets a.re not allowed (e.g., Valiant

(1982), Borodin & Hopcroft (1985), and Bertsekas et. al. (1989)).

We view parallel computation on such a network of processors as consisting

of both local computation within processors and transfer of data between proces

sors. Therefore, the time of an algorithm is determined by both computation and

communication. In other words, the efficiency of an algorithm on the machine

depends on the degree of computation parallelism as well as the degree of com

munication parallelism.

For measures of time, we assume that an elementary operation takes unit

time ta , and that to send a packet of size m (m words) through a link takes time

mtb to transfer the data where tb is the unit transfer rate, and additional time t, to

start up and terminate communication. There are therefore three time measures

to characterize the performance of an algorithm on an architecture: parallel time

-- the number of parallel steps (ignoring communication) to execute all the ele

mentary operations, communication Jtart-up time -- the number of parallel

- 7 -

communication steps, or start-ups of the network (a start-up is the transfer of

one packet a.long a link), and communication bandwidth time -- the sum, over all

parallel communication steps, of the size of the largest packet transferred in that

step. The three units ta, t. and '• are treated as constants but are considered

incomparable. Thus, the three time measures will be estimated individually, even

though one of them may dominate asymptotically. This is because these units

are determined by different aspects of technology and their ratios vary on

different machines, and any one of them can be a significant performance factor

for machines of realistic sizes. A consequence of this incomparability assumption

is that we cannot consider the benefit of overlapping communication with compu

tation in the same processor. This is justified in an asymptotic analysis because

the extra saving in time in the best case of full overlapping would be no more
1 than a factor of 2 .

The notion of parallel time has long been a standard measure of parallelism.

Variants of the two measures of communication have recently been widely

adopted in the parallel computation community (see, e.g., Johnsson & Ho (1987),

Saad & Schultz (1986), and Stout & Wager (1987)). Some statistical data were

gathered to determine the units tb and t, for hypercube machines (e.g., Johnsson

& Ho (1987)).

The two measures of communication time, i.e., start-up time and bandwidth

time, are architecture-dependent. Without assuming an underlying interconnec

tion network, they cannot be used to measure the 'goodness' of an algorithm. To

be able to design and analyze algorithms architecture-independently, we intro

duce two related architecture-independent measures of communication:

(network-independent) communication latency of an algorithm -- the number of

parallel communication steps, under the assumption that the processors commun

icate with one another directly; and (network-independent) communication cost

of an algorithm -- the sum, over all parallel communication steps, of the maximal

number of words transferred by any one processor in that step, again under the

assumption of direction communication between processors.

These two new communication measures together with parallel time will be

used to guide the first level of design -- design of an architecture-independent

algorithm.

- 8 -

Note that without an assumption on distribution of input data or on parallel

time the communication cost can always be O -- just let a single processor do all

the computation. Also without an assumption on parallel time the communica

tion latency can always be 1 -- just let the processors exchange all input data first

and then compute independently but redundantly. For OMM, we impose the

assumption of even distribution of input data (see Theorem 1 for a precise state

ment of the assumption).

One can also view this network-independent algorithm design as design on a

complete-connection network with processor-bound bandwidth. Namely, the two

new parameters are the start-up time and the bandwidth time, respectively on a

complete-connection network, where the bandwidth time is modified as the sum,

over all parallel communication steps, of the maximal number of words

transferred by any one processor in that step. At this high level of algorithm

design, the assumption of direct processor communication avoids the complication

of handling message-forwarding while that of processor-bound bandwidth

discourages unrealistic use of the large fan-in and fan-out degrees.

We also adopt the following model of architectural cost. The architectural

cost of a network is measured by the number of links in the network. Many of

the networks we consider have only 0(p) links, i.e., are bounded-degree networks

under the network regularity assumption. For these networks the number of

links no longer distinguishes them. In this case we use the minimal bisection

width of the network graph to measure the architectural cost of a network. The

minimal bisection width of a graph is the minimal number of edges whose remo

val separates the graph into two graphs of equal size.

The number of links in a network has traditionally been a measure of cost

for multiprocessor design (see, e.g., Stone (1987)). The minimal bisection width

is an important factor that determines the area of a chip in VLSI layout (Thomp

son (1979)), and has also been used in different ways to study multiprocessor

organizations (e.g., Dally (1987)).

3. Architecture-Independent Algorithm Design

We illustrate the network-independent algorithm design and analysis with

the example of ordinary matrix multiplication C= AB, where A= (a.,)nxm

B = (bi;)nxn and C = (cij)nxn• A description of computation is as follows:

n

c, = ~ a~bl.i
1=1

- 9 -

i J = 1, 2, · · · , n.

Note that the input size is N = 2n2
, and there are a total of 2n3 elementary opera

tions (additions and multiplications), ignoring lower order terms.

To motivate our approach, we first look at the conventional approach.

For the moment suppose communication is negligible. Achieving optimal

parallel time in this idealized case is equivalent to obtaining optimal parallel

speed-up. The following simple algorithm achieves this: label the p processors P1

through P, and make processor Ph 1:::; I$ p, responsible for multiplication of the

Ith block of ..!: columns of B with the matrix A. Apparently, computations on
p

different processors a.re independent and can be done concurrently if the neces-

sary data are in place. This partitioning of computation tasks can thus be

scheduled to achieve an optimal parallel time of 2
n

3
•

p

Now take communication into account. Suppose the processors a.re con

nected linearly as a 1-D mesh P1 through P, and then P1• Here and throughout

the paper a 1-D mesh stands for a 1-D ring, i.e., the last processor on the mesh is

connected to the first, a 2-D mesh stands for a 2-D torus, and so on for the higher

dimensional meshes; the term ring is reserved for a 1-D ring in one of the dimen

sions of a 2-D, 3-D or higher dimensional mesh. On this 1-D mesh network we

can assign to P1 as input data, the Ith block of ..!: columns of B which is used by
p

this processor only, and the Ith block of ..!: rows of A which all processors need to
p

use. Before computation begins, elements of A can be spread a.round by having

every processor send a packet of its rows of A around the ring once (in the same

direction). The network starts up communication p times, each time sending a
2

packet of size ..!:_ along each link. This takes communication start-up time p and
p

communication bandwidth time n2• It can be easily shown that both times are

optimal on the 1-D mesh (Corollaries 1 & 2).

In this conventional approach, it is then natural to ask whether one can do

better with respect to communication on a more lavish network. Consider the

following algorithm: the p processors a.re labeled (/1,/2), 1 :::; /1,/2 :S vp; processor

(/11 /2) is responsible for multiplying the 11th block of J; rows of A with the '2th

block of J; columns of B. Initially, processor (11,'2) holds elements of A which lie

on the intersection of the /1th block of J; rows with the '2th block of J;
columns, and holds elements of B which lie on the intersection of the '2th block of

J; rows with the /1th block of J; columns. Again obviously the parallel time is

2n3
the optimal -. Now suppose the processors are connected as a 2-D mesh

p

according to the above labeling, i.e., two processors are neighbors if and only if

their labels differ in one component (modulo vp). For every 1-D ring in the x

dimension or the y-dimension of the 2-D mesh, the ../i processors on this ring have

to share a block of either J;- rows of A or J;- columns of B. Each block is

divided into ../i number of J;-x J;- submatrices distributed among the ..fi proces

sors on the ring, and can be sent around the ring just as with the 1-D mesh net

work. Note that no two such rings share a link, so communication on different

rings can be fully concurrent. The communication times on the 2-D mesh is thus
2

the same as on one such ring: ../i for start-up time and J;- for bandwidth time,

which are better than those for the previous algorithm on the 1-D mesh. Again

both communication times are optimal on the 2-D mesh (Corollaries 1 & 2).

So, in this approach one tailors the partitioning of computation tasks to

match as well as possible the interconnection network topology in order to optim

ize communication. In this context, the 1-dimensional partitioning of computa

tion tasks for OMM is often said to be natural for the 1-D mesh architecture

while the 2-dimensional partitioning is said to be natural for the 2-D mesh

(Johnsson & Ho (1987)).

It is now easier to see what we stated in the introduction about the draw

backs of this approach. Firstly, the algorithm designer has to be familiar with the

specifics of the underlying interconnection network and has to work in a program

ming environment involving these details. Secondly, since one designs a different

'natural' algorithm for a different architecture these algorithms are not easily

portable. Thirdly, although one can compare different architectures for parallel

izing the same description of computation, analysis and comparison of algorithms

are problematic due to lack of a common ground: different algorithms are

designed for, and their performance measured on different architectures.

- 11 -

We now proceed to introduce our architecture-independent approach.

First, we separate the notion of an algorithm from the underlying architec

ture. We call the following the 1-d algorithm. The computation tasks a.re parti

tioned according to the above-mentioned one-dimensional partitioning. The

schedule of the algorithm consists of two stages. In Stage 1, all input elements of

A residing in each processor is made known to every other processor (this is only

a functional description of the task, independent of what the network is and how

it is done on the network). In Stage 2, every processor executes its share of com

putation tasks concurrently. We use the term broadca.,t to denote the event of

making data in one processor known to every other processor, complete-broadcast

to denote broadcast from every processor simultaneously, and limited-complete

broadcast to denote complete-broadcast within a subset of processors. The 1-d

algorithm can then be written in the following pseudo-code using one communica

tion primitive:

Complete-Broadcast (of the blocks of rows of A to be sh area)

for all processors do (concurrently)

local computation

In the context of matrix computation Stage 2 can also be written in terms of

block matrix multiplication, which does not concern us here.

Similarly, the 2-d algorithm consists of the above-mentioned two-dimensional

partitioning and a schedule given by the following pseudo-code:

for all rows and columns of processors in the 2-dimensional labeling do (concurrently)

Limited-Complete-Broadcast (of the submatrices of A or B to be share a)

for all processors do (concurrently)

local computation

Note that the algorithms a.re now independent of the interconnection topol

ogy of the network. The time of an algorithm on whatever network will be the

parallel time plus the time to execute the communication primitives on the net

work. This is the basis for selecting virtual architectures for an algorithm in Sec

tion 4 and implementing one algorithm on different networks in Section 6.

- 12 -

Also note that even though the algorithm is given in a somewhat synchro

nous form its execution need not be. In fact the algorithm is independent of any

assumption on the model of communication except that of a distributed-memory.

We now evaluate the two architecture-independent algorithms using our

architecture-independent measures of communication. For the 1-d algorithm,

communication latency is 1 since only one step of communication suffices to exe

cute complete-broadcast when processors communicate directly; communication

cost is n2 since in this one step of communication the elements of A are exactly

what each processor needs to send or receive. Similarly, for the 2-d algorithm
2

communication latency is also 1 while communication cost is J;·
We can now say that the 2-d algorithm is better, in the sense that its com

munication cost is asymptotically lower. This is a fair comparison because there

is no bias introduced by the choice of an architecture.

From this architecture-independent perspective, the following question

naturally arises: How much can the communication cost and latency be reduced

for OMM? We call the smallest possible communication cost (latency) for a

description of computation its optimal communication cost {latency). Our hope,

as reflected by the thesis we propose, is that if the number of calls on the generic

communication primitives is optimized and the amount of data a processor needs

to communicate due to data dependency is optimized, then it can be translated

into good performance on various networks. Nothing like this has been proved

up to this point in the paper. This will eventually be substantiated in Section 6,

using developments in this and the next sections.

Theorem 1 Under the assumption that each of the p processors except pos-

~ ~ sibly o(p) of them holds 0(-), and no processor holds more than 0(-) of the
p p

input data exclusively, the optimal communication cost of ordinary matrix multi-
2

plication is 0(~13) and the optimal latency is 0(1). Furthermore, there exists an
p

algorithm which simultaneously achieves optimal parallel time, optimal communi-

cation cost and optimal latency.

n3
Proof The lower bound 0(-) for parallel time is obvious while the lower

p

bound for communication latency (i.e., it is not o) is a consequence of the nonzero

lower bound on communication cost. We sketch a proof for the lower bound on

- 13 -

communication cost. We also give a matching upper bound algorithm.

We construct the following directed acyclic graph (DAG) which models com

putation dependency for the n3 multiplications: there are 2n2 input nodes

representing the elements of A and B; there are n2 output nodes representing ele

ments of 0, there are n3 nodes in the graph that are neither input nodes nor out

put nodes, corresponding to the n3 multiplications au:bio, i, ;, k = 1, 2, · · · , n. Each

node au:bio has two input nodes au: and blfi as children and one output node c0 as a

parent.

Note that this representation ignores the additions. As a result, the output

nodes have fan-in n. To remedy this, we assume that a node with m children

(m > 2) is equivalent to any binary tree with m-1 nonleaf nodes (for addition) and

m leaves which are the original children of this node. This models the fact that

we can do additions in arbitrary orders.

To help visualize data dependency, we embed the DAG in the Euclidean

space ~ in the following way: for 1 $ i, ;, k ~ n, input node aik is identified with

the lattice point (i,O,k), input node b1o is identified with the lattice point (O,j,k),

output node cii is identified with the lattice point (i,j,O), and multiplication node

auhJ is identified with the lattice point (iJ,k), which by convention is also

identified with the 1 x 1 x 1 cube centered at the lattice point. All the multiplica

tion nodes thus form a three-dimensional lattice U of size nxnxn with the input

and output nodes lying on the three coordinate planes.

Now data dependency can be completely charaderized as follows: a node

(i,j,k) needs the value of (i,O,k) and the value of (O,j,k), and any two nodes (i,j,k1)

and (i,j,k2) where k1 'I= k2 both contribute to the value of (i,j,O). If a subset U1 of the

multiplication nodes (cubes) is assigned to a processor Pi, then the volume of this

set of cubes gives the number of multiplications the processor does. The minimal

amount of input data the processor needs is given by the sum of the areas of pro

jections of Vi onto the zz-coordinate plane and the yz-coordinate plane. This
2

minus O(..!!...) -- the amount of input data the processor holds initially -- gives the
p '

amount of input data it needs to receive from other processors. The minimal

amount of data the processor needs to communicate with others to output C is

given by projecting U1 and its complement u\u1 onto the xy-plane and measure

the area of their intersection. We thus arrive at the following lemma.

- 14 -

Lemma 1 Let U1 be the subset of cubes assigned to processor P1• The

optimal communication cost of OMM is

where P~ P"z and P. are the projection operators of R3 onto the three coordinate

planes, respectively.

The next lemma is a simple fact in elementary geometry. In the context of

1/0 complexity of OMM, a similar result was proved in Hong & Kung (1981). In

the discrete setting, namely that we count the number of lattice points on the

coordinate planes which are projected onto, rather than measuring the area,

results of this type can also be found in Chung, et. al. (1986).

Lemma 2

AREA{Pia(U1)} + AREA{P.JU,)} + AREA{PzJUi)} = 0((VOLUME{U,}) 213
)

3
Since there is at least one processor P1 that does ..!!,_ multiplications, for this

p
3

processor Volume (Ui) = O(..!!._), which means that the quantity in Lemma 2 is
p

n2
0(7is). We then use Lemma 2 to prove that the quantity in Lemma 1 is also

p

n2
0(7is). This estimate, given in the following lemma, is proved in the Appendix.

p

3
Lemma 3 For any processor P1 that executes 0(..!!,_) multiplications,

p

AREA{P'Jz(U,)} + AREA{P~ U,)} + AREA{P~ Ui)nP~ u\u,)}

Lemma 1 and Lemma 3 together yield our lower bound.

Lemma 1 shows why the two algorithms mentioned earlier are not optimal

w.r.t. communication cost. They correspond to assigning thin slices of the lat

tice points to processors and long square-cylinder subsets of the lattice points to

the processors, respectively. Neither type of subset has a small area-sum when

projected onto the three coordinate planes. To achieve optimality, a subset has

to be truly three-dimensional. Thus the lower bound analysis suggests the follow

ing partition of computation tasks: partition the nx nx n lattice into p subsets of
3

size ..!!._, organized three-dimensionally, i.e., into p1l3 xp1/3xp1/ 3 cubic blocks of lat
P

- 15 -

tice points each of dimensions -:f,.rx~x-:f,.r. The lower bound quantity in
p p p

3n2

Lemma 1 for each of these subsets is -wr· More specifically, processor (i,j,k),
p

1 :S i, j, k $ p113, is assigned multiplication tasks

41JLb,,,.: (t--l)n < ~ < in ~ < I-< jn (k-l)n < I,:< ~
.... It' p - p' p ,_ p' p - p

Each processor is also responsible for partial sums of the multiplications assigned

to it. The summing of the partial-sum values distributed among the processors

will be considered part of a communication-oriented primitive called limited

histogramming (see below).

The algorithm has three stages. Stage 1 is again a limited-complete

broadcast to distribute input data, concurrently among processors along each row

in the i- or j-direction in the 3-dimensional labeling. Here it is assumed that each

of the ~13 x ~13 submatrices of A (or B) whose elements are to be shared by an i-
P p

row (or j-row) of processors is further divided into p1
/
3 smaller blocks of equal size,

distributed among the row of p113 processors. This stage can be done in one com

munication step on a complete-connection network. Stage 2 is the concurrent

execution of the multiplications and partial sums within each processor. In Stage

3, the p1/ 3 processors along each row in the k-direction in the 3-dimensional label-
2

ing have to sum up the partial-sum values for each of the ~13 output elements
p

they cooperate to compute. Thus Stage 3 is a limited-histograming concurrently

among each such row of processors. Histograming of m numbers by q processors,

as defined in Stout & Wager (1987), is the communication-computation task to

produce m numbers each of which is summed up from a value in every processor,

with the output evenly distributed among the q processors. We used limited

histogramming to denote histogramming among a subset of processors. Stage 3

can also be done in one communication step on the complete-connection network

-- a permutation of data among each such row of processors -- plus fully con

current local computation. In each of these two steps of communication the
2

number of words any processor transfers is 0(~13). Thus the algorithm has
p

optimal parallel time, optimal communication latency and optimal communica-

tion cost. q.e.d.

- 16 -

The following is a pseudo-code for the 3-d algorithm:

for each i-row and j-row of processors do (concurrently)

Limited-Complete-Broadcast (of the blocks of elements of A or B to be aharea)

for all processora do (concurrently)

local computation

for each k-row of processors do (concurrently)

Limited-Histogramming (of the partial-sum values)

The 3-dimensional partitioning is also discussed in Johnsson & Ho (1987).

When p is a power of 8, it turns out to be just the recursive (divide-and-conquer)

block matrix multiplication partitioning.

We point out that when the number of processors p is not very large the

advantage of the 3-d algorithm over the 2-d algorithm in terms of communication

cost is not necessarily significant in practice.

Other works on axchitecture-independent analysis include Papadimitriou &

Ullman (1984). The analysis in George, et. al. (1987) was also quite

architecture-independent although it was intended for the hypercube. In general,

architecture-independent analysis has not received enough attention among the

paxallel computation community.

4. Virtual Architecture Design

In this section we illustrate how to select a collection of virtual axchitectures

to serve as the interface between an algorithm and the hardwaxe networks it will

be implemented on. There are two main criteria in choosing the virtual architec

tures: a) they are good for supporting the generic communication primitives of

the algorithm; b) they have a low architectural cost in the case of special-purpose

network design, or they have low architectural cost as well as the flexibility to be

emulated efficiently on different hardware networks in the case of general-purpose

algorithm design.

Since the information fl.ow of the 3-d algorithm is three-dimensional, we

naturally set our sight on several 3-D networks. They a.re the 3-D mesh, the 3-D

mesh of trees, the 3-D mesh of hypercubes, and the 3-D mesh of cliques. The 3-D

mesh of cliques (complete subgraphs) is obtained by replacing every 1-D ring in

- 17 -

each of the three dimensions of the 3-D mesh with a clique. Similarly, the 3-D

mesh of trees is obtained by replacing every ring in each of the three dimensions

with a balanced binary tree. Note that this mesh of trees is different from the

standard one (Ulhnan (1984)) where a tree is built with the nodes of an original

1-D ring being the leaf nodes of the tree. The 3-D mesh of hypercubes is obtained

by replacing every ring in each of the three dimensions of the mesh with a hyper

cube. This last turns out to be just the same network as the hypercube (Proposi

tion 4).

A network is called an ideal architecture for a description of computation

w.r.t. bandwidth time (start-up time, or both) if

i) there is an algorithm that can be implemented on it to achieve optimal parallel

time and a bandwidth time (start-up time, or both) asymptotically at least as

small as the optimal communication cost (optimal communication latency, or

both); and

ii) no network of asymptotically lower architectural cost can achieve i).

We refer to an architecture simply as an ideal architecture if it is ideal w.r.t.

both communication time measures.

Note that the start-up time of any algorithm on any network cannot be

lower than the optimal communication latency, but the bandwidth time of an

algorithm may be lower than the optimal communication cost on a network of

unbounded node-degrees without the assumption of processor-bound bandwidth.

Proposition 1 The 3-D mesh is ideal for OMM w.r.t. bandwidth time.

Proof The same technique used for implementing the 1-d and 2-d algorithms

on the 1-D and 2-D meshes, which we discussed in Section 3, is now used to

implement the limited-complete-broadcast primitive of the 3-d algorithm on the

3-D mesh, concurrent among every 1-D ring in the ~ and j-dimensions. This
n2

achieves start-up time O(p1/3) and bandwidth time 0(
213

). The following tech-
P

nique is used to implement the limited-histogramming primitive among every 1-D
n2

ring in the ~dimension: every processor in such a ring organizes the 0(
213

)
p

partial-sum values it holds after local computation stage into p1
/
3 packets of size

2

O(~), each destined for a different processor on the ring (including one for itself);
p

to start the procedure, every processor sends to its neighbor in the forward

- 18 -

direction of the ring the packet destined for its neighbor in the backward direc

tion of the ring; afterwards, at each step every processor on the ring receives a

packet from the neighbor behind, adds the values to those in its own packet with

the same destination, and forwards it to the neighbor in front; the process ends

after each processor receives the packet destined for it and adds the values to its
2

own. This again takes start-up time O(p113) and bandwidth time 0(~
13

). So, con-
P

dition i) for an ideal architecture is satisfied w.r.t. bandwidth time. For condi-

tion ii), note that the network has the smallest possible number of links 8(p) so

the minimal bisection width is the measure of architectural cost here. To show

that no network of smaller minimal bisection width can achieve i) , we use the

following argument due to Thompson (1979). It is shown in Fisher (1987) for

general matrix multiplication, and can be easily seen in our proof of Theorem 1

for ordinary matrix multiplication, that between any two halves of a network

each of which holds 8(n2) input data exclusively, the number of words that have

to be communicated between them is 8(n2). For a network with minimal bisec-
2

tion width w(p), at least one of the links has to transfer 0(w(p)) words. Therefore,

2
to have a bandwidth time of 0(~13) requires a network to have a minimal bisec

P
tion width of O(p213

) which is the minimal bisection width of the 3-D mesh. q.e.d.

Note that no batching or splitting of messages is used in the above and ear

lier implementations of the 1-d, 2-d and 3-d algorithms on the 1-D, 2-D and 3-D

meshes, respectively.

As a consequence of Thompson's argument used in the proof we also have

the following.

Corollary 1 For k = 1, 2 or 3, The bandwidth time of the k-d algorithm

implemented on the k-D mesh without the use of batching or splitting of mes

sages is optimal for the network.

Note that the start-up time O(p113) of the 3-d algorithm on the 3-D mesh is

however far larger that the optimal communication latency 8(1) of OMM.

Proposition 2 The graph of any network that can support our 3-d algo

rithm to achieve start-up time 2 contains the 3-D mesh of cliques as a subgraph.

More generally, an ideal architecture for OMM must have O(n1+') links for a posi

tive constant t:.

- 19 -

Proof Apparently, the 3-D mesh of cliques achieves the desired start-up time

because every subset of processors among which limited-complete-broadcast or

limited-histogramming has to be executed is connected as a clique. To achieve a

start-up time of 2 for the 3-d algorithm requires each of the two communication

primitives be executed in one communication step. Each of these primitives

defines communication-oriented tasks among subsets of processors which have the

property that the outputs in every processor depend on the inputs held by every

processor involved in the same task. To execute such a task in one communica

tion step requires a complete connection among the processors involved.

For the second statement of the proposition, generalization of an argument

for general matrix multiplication due to Gentleman (1978) shows that at least

one piece of information concerning one of the input elements has to traverse a

path of at least ! of the length of the diameter of the network graph (intermedi

ate processing may happen along the way). Thus the start-up time on the net

work is at least ! of the diameter of the graph. To achieve a constant start-up

time means that the diameter of the graph must be constant. The well-known

Moore bound (cf. Chung (1987)) states that for a graph to achieve a diameter D

its maximal degree K must satisfy K = '1(p11~. Thus the maximal degree of the

network graph is at least '1(p11~. By our network regularity assumption, every

node has at least this degree and the number of links in the network is O(p1+1/~.

q.e.d.

As a consequence of the generalization of Gentleman's argument used in the

proof we have the following.

Corollary 2 For k = 1, 2, or 3, the start-up time of the k-d algorithm

implemented on the k-D mesh without the use of batching or splitting of mes

sages is optimal for the network.

Bounded-degree networks have only 0(p) links, and the hypercube bas only

0(p logp) links. A large hardware network with more than O(p polylog(p)) (polylog(p)

stands for any polynomial of logp) links is considered unrealistic given the state

of-the-art of technology. Even as a virtual architecture a network with so many

links is not convenient to emulate on a sparse network. Proposition 2 therefore

shows that the notion of ideal architecture can be too stringent because of the

requirement i). The requirement ii) can also be too stringent. For example, for

- 20 -

OMM with respect to bandwidth time it rules out any network of unbounded

degrees and thus of higher architectural cost, on which one may achieve a

bandwidth time asymptotically lower than the optimal communication cost by

utilizing the large number of links per node. These considerations therefore

motivate the following weaker notion.

A network is called a natural architecture for a description of computation

w.r.t. bandwidth time (start-up time, or both) if

i') there is an algorithm that can be implemented on it to achieve optimal paral

l_el time and bandwidth time (start-up time, or both) to

within a polylog(p) factor of the optimal communication latency (optimal commun

ication cost, or both); and

ii') any network with lower architectural cost cannot achieve as low a start-up

time (bandwidth time, or both) as this network can.

Again it is simply called a natural architecture if it is natural w.r.t. both

communication times.

We point out that this particular definition of natural architecture is some

what model-sensitive in the sense that if cost-free batching and splitting of mes

sages are not permitted in the model of communication then the requirement i')

may still be too stringent.

Theorem 2 The 3-D mesh of trees and the 3-D mesh of hypercubes are

both natural architectures for OMM.

Proof We first verify conditions i') and ii') for the 3-D mesh of trees. For

this network we first show that a simple implementation of the 3-d algorithm

satisfies i') but not ii'), and then briefly describe an improved implementation

that satisfies both i') and ii'). Consider the following simple implementation. To

implement the limited-complete-broadcast primitive, simply let the packets to be

shared by the p113 procE:ssors in a balanced binary tree be sent from the leaf nodes

up, batched up along the way to reach the root node, and then sent down as a

single packet to every processor. Bandwidth time is 0(n
2
l~~P) with the sending-

P

down dominating. For the limited-histogramming primitive, summing-up from

the leaf nodes of a balanced binary tree to the root node does not require batch

ing, and to have an even distribution of output data if needed requires packets to

be sent from the root down and split into halves at each of the logp1
/
3 steps. Here

- 21 -

bandwidth time is again 0(n2l.~fsP) with the summing-up dominating. Start-up
p

time for the two stages is O(logp1/3). The extra parallel time for additions during

summing-up is 0(n21.~~P). Under our assumption p $ 2n2 this is a lower order term
p

compared with the optimal parallel time 2
n

3
• So, condition i') is satisfied. Now

p

consider condition ii'). The network has O(p) links and the same minimal bisec

tion width as the 3-D mesh. Yet the bandwidth time for our simple implementa

tion is a factor of logp larger than that on the 3-D mesh which is optimal given

the minimal bisection width (Proposition 1). This is due to the fact that at any

one communication step only links at one level of a tree are busy. To remove

this logp factor, i.e., to obtain an implementation which satisfies i') as well as ii'),
we introduce pipelining at all levels of a tree to modify the above simple imple

mentation. The main idea is to let packets at all levels of a tree start simultane

ously moving up to the root and then down to the leaves, and let batching, split

ting and summing-up be done at different levels of the tree at the same time. We

omit the details here. With this modification, the parallel time and start-up time
2

are unchanged while the bandwidth time can be reduced to the optimal 0(~13). p

For the 3-D mesh of hypercubes, condition i') is easily seen to be satisfied

since the network graph contains the 3-D mesh of trees as a subgraph. Consider

condition ii'). Implementation of the 3-d algorithm on the 3-D mesh of hyper

cubes will be deferred to Theorem 3 in Section 6. There it will be shown that the

bandwidth time of the 3-d algorithm on the 3-D mesh of hypercubes is
n2

0(2131). Now take any network that can do as well as the 3-D mesh of hyper-
P ogp

cubes and we show that it must have O(plogp) links, the number that the 3-D

mesh of hypercubes has. Since optimal parallel time has to be achieved by condi
s

tion i), no processor can execute more than O(~) multiplications. This means
p

3

there are 0(p) processors each of which executes 0(~) multiplications. By
p

n2
Lemma 3, every of these processors must communicate O(~) words. To achieve

p

the same bandwidth time as on the 3-D mesh of hypercubes every of these pro-

cessors must have O(logp) links, a total of O(plogp) links for the network. q.e.d.

- 22 -

As a consequence of the proof we also have the following.

Corollary 3 The 3-D mesh of trees is an ideal architecture for OMM w.r.t.

bandwidth time.

These three networks, the 3-D mesh, the 3-D mesh of trees and the 3-D

mesh of hypercubes form our collection of virtual architectures for the 3-d algo

rithm. Again, to achieve modularity at this level implementations of limited

complete-broadcast and limited-histogramming can be organized a.round

message-passing primitives between neighbors in a virtual architecture. We do

not attempt to give the pseudo-codes here.

5. Special-Purpose Computing: Network Design

Consider the following situation: We a.re given a large number of processors

to be used for parallelization of a description of computation which has a very

large number of computation tasks; we want to design both an algorithm and a

network topology to connect the processors together in such a way that high per

formance can be achieved with low network cost.

Assumption: The total bandwidth of a processor -- the number of words that

can be transferred per time unit by the processor -- is bounded above by a con

stant. In other words, a processor can have a small number of large links or a

large number of small links, but the total number of words that can be pumped

into or out of the processor per time unit is fixed.

This is a reasonable assumption since the total energy a given chip can pro

duce per time unit is bounded. Note that under this assumption, the bandwidth

time of any algorithm on any network cannot be lower than the optimal com

munication cost of a description of computation since nnbounded fan-in or fan

out at a processor does not reduce bandwidth time. Because of this, if the pro

cessor a.re connected into a dense network and yet many of the links are not used

for the particular application, then a good portion of the network bandwidth is

wasted. In such a case, it will be better-off to connect the processors into a

sparser network with larger links. This is the motivation for the following notion.

A network is called an optimal architecture for a description of computation

w.r.t. bandwidth time (start-up time, or both) if

i) there is an algorithm that can be implemented on this architecture to achieve

optimal parallel time and a bandwidth time (start-up time, or both)

- 23 -

asymptotically as low as can be achieved on any networkj and

ii) no network of lower architectural cost can achieve i).

With the above asswnption, the notion of ideal architecture translates

immediately into that of optimal architecture.

Proposition 3 Under the above assumption, an ideal architecture for a

description of computation w.r.t. bandwidth time (start-up time, or both) is an

optimal architecture w.r.t. bandwidth time (start-up time, or both).

Corollary 4 the 3-D mesh and the 3-D mesh of trees are optimal architec

tures w.r.t. bandwidth time for OMM.

Conclusions with practical implications can now be drawn from the above.

For example, if the start-up time unit t, is not too large compared with the
2

bandwidth time unit t6, and p << n2
, then ~/s t6 >> p1l3t,, which means that the 3-D

p

mesh is very close to optimal with respect to total communication. In this case,

a 3-D mesh is an economical way to organize the processors to achieve good per

formance. For the 3-D mesh of trees, this is true even when t, is larger or when

p ~ n2; however, one must bear in mind that efficient mechanism for packet

batching and splitting is necessary to achieve this.

6. General-Purpose Computing: Emulation of Virtual Architectures

In contrast to the situation in Section 5 we are now given not just a nwnber

of processors but a network of processors with a fixed topology. Now processor

bound bandwidth is not assumed. The links are already there, and so it makes

sense to try to utilize as many of them as possible. In this case, unbounded fan

in or fan-out may reduce the bandwidth time to lower than the optimal commun

ication cost of a description of computation.

We already designed a network-independent algorithm in Section 3, and

selected a collection of virtual architectures in Section 4. We now want to imple

ment the algorithm on this given architecture by picking a suitable virtual archi

tecture from the collection and finding a good emulation of it on the network.

Now we need to utilize properties of the network.

In this section we consider four networks: 1-D mesh, 2-D mesh, 3-D mesh,

and the hypercube. More specifically, we show that the 3-d algorithm for OMM

can be implemented on the 1-D mesh, the 2-D mesh, and the hypercube to

- 24 -

achieve simultaneously optimal parallel time, optimal start-up time and optimal

bandwidth time on each of them. Note that optimality of the 3-d algorithm on

the 3-D mesh was already established in Section 4 (Corollaries 1 & 2).

We present the implementation and analysis first for the hypercube and then

for the meshes.

We first review the standard reflected Grey code representation of the hyper

cube: the p (p a power of two) hypercube nodes are represented by the set of all

binary strings of length logp; there is a link between two nodes if and only if their

strings differ in exactly one bit. When p = 23
d for some positive integer d, we can

decompose the binary string into three segments of equal length. Then the same

Grey code defines a sub-hypercube whenever values of two of the three sub

strings are fixed. This gives a 3-D mesh of hypercube. Note that in this coding

all the links of the hypercube are also links of the 3-D mesh of hypercubes. We

thus have the following.

Proposition 4 The 3-D mesh of hypercubes is a hypercube.

The following theorem in particular establishes the communication optimal

ity of a computational algorithm for a description of computation on the hyper

cube. Previous results concerning communication on the hypercube have mostly

been about communication problems or graph-embedding problems, not computa

tional problems. Although our theorem is only for a description of computation

rather than a computational problem, we hope that it is a step closer to the spirit

of the traditional theory of algorithms and complexity. From the proof of the

theorem one can see the importance of the role an architecture-independent

analysis plays in establishing a result of this type.

Theorem 3 Let p = 23d, d > O. The 3-d algorithm can be implemented on

the hypercube to achieve optimal parallel time 2n
3

, optimal start-up time 8(logp),
p

2
and optimal bandwidth time 8(21;).

p logp

Proof The particular implementation that achieves optimality is obtained by

picking the 3-D mesh of hypercubes as the virtual architecture and emulating it

on the hypercube. Note that this virtual architecture happens to be the same as

the hypercube so no work is needed for emulation. Recall that in the proof of

Theorem 2 we deferred to present the implementation of the 3-d algorithm on the

3-D mesh of hypercubes. So, the following implementation and proof of

- 25 -

optimality should actually be viewed as for the 3-D mesh of hypercubes.

Optimality on the hypercube then follows since the two networks are identical.

We prove the lower bounds first. By Theorem 1, at least one processor has
2

to transfer 0(~/s) words for its share of computation regardless of the network
p

topology. These data have to be transferred through at most logp incident links.
2

Thus the lower bound 0(21:) holds for bandwidth time. The lower bound
p logp

O(logp) on start-up time follows from a generalization of the argument in Gentle-

man (1978) mentioned in the proof of Proposition 2 and the fact that the diame

ter of the hypercube is logp.

We now establish the upper bounds. Think of the network as the 3-D mesh

of hypercubes. Stage 1 of the 3-d algorithm, limited complete broadcast, can now

be carried out by concurrently calling the hypercube complete broadcast pro

cedure due to Stout & Wager (1987) in every subcube connecting an ~row or j

row of p113 processors. This ta.lees start-up time O(logp113) = O(logp) and bandwidth
1/3

time 0(mp
113

) where mis the size of a packet (see Stout & Wager (1987), where
logp

all packest are assumed to be of the same size m and m is large). Since the size of
2

a packet is 6(~) (for convenience we assume the o(p) processors that may not
p

hold this amount of data send out packets padded to ma.lee up the proper size),
2

the bandwidth time is 0(2/;).
p logp

Stage 3 of the 3-d algorithm, the limited-histogramming stage, can be carried

out concurrently in every subcube connecting a k-row of p1l3 processors by calling

the histogramming procedure due to Stout & Wager (1987), which yields the

same upper bounds. However, arithmetic computation (additions during

summing-up) was assumed to be of no cost in their paper. A careful examination

of their procedure shows that the arithmetic computation is indeed fully parallel.

q.e.d.

In the next two implementations of the 3-d algorithm on the 1-D mesh and

2-D mesh, we use the 3-D mesh as the virtual architecture.

Theorem 4 The 3-d algorithm can be implemented on the 1-D mesh and

the 2-D mesh, respectively without the use of batching or splitting of messages,

to yield simultaneous optimal parallel time, optimal start-up time and optimal

- 26 -

bandwidth time on these networks.

Theorem 4 is a consequence of the next lemma which is more general and is

proved in the Appendix. Consider the following situation: There a.re a number of

tokens distributed among the p processors in a network. A .,tep of token move

ment is a transformation of the initial configuration of the tokens to another

configuration by moving some of these tokens from the processors they reside in

to the neighboring processors, with the restriction that no more than one token is

allowed to cross a link in each direction.

The lemma concerns the number of steps of token movement necessary on

one mesh to emulate an a.rbitra.ry step of token movement on another mesh.

Most previous results on emulation between interconnection networks have used

the product of dilation and congestion (cf. Bhatt, et. al. (1986)) as an upper

bound for the number of emulation steps. For the meshes we consider, it can be

shown that no embedding ca.n produce such a.n upper bound good enough for our

purpose. We thus have to go down to a finer level of analysis of the embeddings

in the proof of the lemma in the Appendix. This shows the limitation of only

considering dilation and congestion in studying emulation between interconnec

tion networks.

Lemma 4 Let m > q be positive integers, a.nd logp be divisible by the least

common multiple of m and q. The m-D mesh can be embedded in the q-D mesh

in such a way that one step of token movement on the former can be emulated

by a.n optimal e(p{1/t-l/m)) steps of token movement on the latter.

Proof of Theorem 4 Our implementation of the 3-d algorithm on the 3-D

mesh takes start-up time O(p113), i.e., O(p113) steps of packet movements, and
2 2

bandwidth time 0(~13) because the size of each packet is O(!:...) (Proposition 1).
p p

By Lemma 4, these same packet movements can be done in O(p) steps on the 1-D

mesh and 0(vp) steps on the 2-D mesh. Therefore the algorithm achieves a

start-up time of O(p) a.nd a bandwidth time of O(n2) on the 1-D mesh, and it
2

achieves a start-up time of 0(vp) and a bandwidth time of 0(.j;) on the 2-D

mesh. All are optimal for the respective networks (Corollary 1 & 2). It is not

hard to see that such a.n emulation does not decrease the computation parallelism

either in the local computation stage or during the limited-histogramming stage

when communication and computation are interleaved. No batching or splitting

- 27 -

of messages is needed since neither is used in the emulation or in the earlier

implementation of the the 3-d algorithm on the 3-D mesh. q.e.d.

The emulations in this section provides the basis for implementing message

passing primitives between neighbors of a virtual architecture in terms of

message-passing primitives on the physical architectures. Again, we will not give

the pseudo-codes here.

7. Towards Structured Parallel Computing

In this section we summarize our ideas and discuss briefly issues concerning

a structured, hierarchical approach to parallel computing.

In this paper, we propose a framework of hierarchical design and analysis for

parallel algorithms on distributed-memory architectures. In our theory, there are

three levels of design (and analysis): architecture-independent algorithm design,

virtual architecture design, and design of emulations of virtual architectures on

hardware architectures.

At the level of architecture-independent algorithm design, we adopt an

environment which allows processors to communicate directly and use parallel

(computation) time, the number of communication rounds and data interdepen

dency as the complexity measures. We also require, in an algorithm, separation

of local computation tasks from communication-oriented tasks and organization

of the latter a.round a set of generic primitives.

It might be feared that allowing direct communication between processors

may lead to an algorithm whose implementation on a hardware architecture

would suffer from excessive traffic. We have shown that this does not have to be

the case. Firstly, minimization of data dependency forces computation tasks to

be partitioned in a way to preserve locality. Secondly, instead of emulating the

unrestricted environment of direct processor communication on a hardware archi

tecture, we use an intermediate level of design to select a collection of virtual

architectures to implement the algorithm on. Each of these virtual architectures

is tailored to meet the communication need of the algorithm in a minimal way,

and the whole collection offers flexibility to match a wide spectrum of potential

hardware architectures.

- 28 -

At the third level of design, for each hardware architecture among a wide

spectrwn, we properly choose a virtual architecture from the collection and emu

late it optimally on the hardware architecture.

A complete analysis shows that for the case study of ordinary matrix multi

plication, the above methodology leads to a network-independent algorithm

which can be implemented on a wide spectrum of architectures to achieve

optimality on each of them, thus achieving portable optimality. The technical

results for the two lower levels of design a.re of greater generality and can be used

for designing algorithms for other applications.

From a theoretical standpoint, our framework offers a common ground for

network-independent analysis and comparison of parallel algorithms. From a

practical standpoint, it has the advantage that the high level algorithm can be

developed in an environment that does not involve details of any possible under

lying architecture and is portable across different architectures. Moreover, when

a set of generic communication-oriented primitives is identified to support a wide

class of applications, it will provide incentive for establishing software support to

handle the two lower levels of design, making them transparent to the algorithm

designer.

The search for scientific methodologies to achieve both uniformity and

efficiency for computing is a major theme of computer science. Its success has

been demonstrated, from structured programming in the 1960's, to the multi

layer network architectures for data communications in the 1980's. The most

relevant comparison here is perhaps the design of (sequential) algorithms and

data structures. The separation of the notion of an algorithm from specific

machines and programming languages, and the introduction of the notion of

abstract data structure as a layer between the algorithm and the machine, have

proven to be instrumental to the design of efficient algorithms that were able to

utilize the vast computing power offered by the modern (serial) computers to

tackle complex problems (Ta.rjan (1987)). In a sense, this is a motivation for our

approach. If one views the virtual architectures in our theory as global (parallel)

data structures (as opposed to local data structures within a processor) then the

generic communication-oriented primitives around which an algorithm is organ

ized are just data structure manipulation primitives. What we advocate for

parallel computing on distributed-memory architectures is the separation of the

- 29 -

notion of a parallel algorithm from the underlying architectures and the use of

parallel data structures as an interface between an algorithm and the underlying

architectures. It is conceivable that this methodology may lead to powerful

parallel data structures that support other environments for algorithm design

than what we study in this paper.

Due to its tremendous complexity, parallel computing has not become a

practical means of computing despite the availability of parallel machines and the

amount of research efforts directed to the area. We hope that a more structured

~pproach to algorithm design will be a step in the right direction towards ma.king

parallel computing a practical reality.

8. Appendix

ns
Lemma 3 For any one processor P1 for which VOLUME{ U1} = 0(-),

p

2

AREA{PvJUi)} + AREA{Pa{Uj)} + AREA{P.,JUi)nP.tJU\Ui)} = 0(~73) (A.l)
p

n3
Proof Let P1 be any processor for which VOLUME(Uj) = 0(-). H

p

we are done. So suppose

Then

n2
AREA{P.,J U,)} = 0(213)

p

by Lemma 2. This implies that

AREA{P.,J Ui)nP.,J u\Uj)} }

for otherwise (A.3) and

AREA{P.,J U,)nP.,J u\u,)} }

imply

(A.2)

(A.3)

- 30 -

AREA{P11z(Ui)} + AREA{P.n{Ui)} = 0(n (~) =

contradicting (A.2). Thus Lemma 3 holds. q.e.d.

n2
O(-:r7s)

p

Lemma 4 Let m > q be positive integers, and logp be divisible by the least

common multiple of m and q. The nrD mesh can be embedded in the q-D mesh

in such a way that one step of token movement on the former can be emulated

by an optimal 8(p<1l~1/m)) steps of token movement on the latter.

Proof Here we only give the proof for the cases m = 3, q = 1 and m = 3, q = 2

which are needed for proving Theorem 4. The general proof is just a generaliza

tion of the proof for these cases and will only be hinted at at the end.

The embedding of a mesh in another can be determined by specifying how

every 1-D ring in each of the dimensions of the guest mesh is embedded. For this

purpose, we first review the standard binary representation of natural numbers.

A set of positive integers {O, 1, 2, · · · , L-1} can be represented by the set of all

binary strings of length logL in which O is represented by (0, 0, · · · , 0) and the

representation of k is obtained by taking the binary string which represents k-1

and flipping the least-significant (rightmost) 0-bit to 1 and all bits to its right

from 1 to 0. When these integers are used to label consecutive processors on a

ring of size L, we say that this flipping of bits in the binary string represents a

forward legal move -- crossing of a link in the forward direction of the ring. Simi

larly, taking the binary string and flipping the rightmost 1-bit to O and all bits to

its right from O to 1 represents a backward legal move -- crossing of a link in the

backward direction of the ring.

A) Emulation of 3-D mesh token movement on 1-D mesh:

Let logp = 3d, where d is a positive integer. The 1-D mesh of size p will be

coded as above by the set of binary strings of length logp: { (c3c1, c811-1, · · · , c1) }.

The 3-D mesh of size p will be co:ied by the same set of binary strings

{ (zd, • • · , z1, Yd, • • · , 111, xc1, • • · , x1) }. Here each of the three substrings of length d

codes rings in each of the three dimensions of the 3-D mesh, also using the binary

representation of natural numbers. The nodes of the 3-D mesh will be mapped to

the nodes of the 1-D mesh under the identity mapping between the two identical

sets of binary strings. For embedding of the edges, we specify for each legal move

on the 3-D mesh the series of legal moves on the 1-D mesh which emulate it.

Without loss of generality we shall consider only forward legal moves on the 3-D

- 31 -

mesh. We shall see that the maximal length of any such emulating series is p2l3
•

We then show that all series emulating legal moves along a single direction of the

3-D mesh can be executed fully concurrently, and so the emulation of one step of

token movement on the 3-D mesh can be done in less than 6p2/3 steps on the 1-D

mesh.

First consider any forward legal move on the 3-D mesh along the z-.direction.

Suppose the move is

and (v 16 • • • , v 1) i= (1, · · · , 1). Then the flipping of bits which represent the for

ward legal move on the 3-D mesh also represents a forward legal move in the 1-D

mesh. Now suppose (v"' • • · , x11) = (1, · · · , 1). Then the flipping of bits which

represents the forward legal move on the 3-D mesh no longer represents a legal

move on the 1-D mesh because for such a move to be legal on the latter would

require also flipping some of the more significant bits beyond the range x"' · · · , x1•

However, we can still emulate this move by a series of p1/3 backward legal moves

on the 1-D mesh, equivalent to moving backwards along the ring in the x

direction on the 3-D mesh:

Next consider any forward legal move on the 3-D mesh along the y-direction.

Suppose the move is

and (111"' • · • , 711 1) i= (1, · · · , 1). Then the forward legal move on the 3-D mesh is no

longer legal on the 1-D mesh because for such a mov~. to be legal on the latter

would require also the sub-string (xt"' · · ·, x11) be equal to (1, · · ·, 1) and be flipped

to (0, · · · , 0). However, we can emulate it by a series of p1l3 forward legal moves

on the 1-D mesh, flipping through all possible values of the sub-string (z"' · · · , x1)

: first move forward all the way from (zt 16 • • • , ZI 1, 711"' • • • , 1/11, TJ 16 • • • , xi 1) to

(zt"' · · ·, z1 1, 711"' • • ·, 1h, 1, · · ·, 1); then make the legal move

- 32 -

and finally move forward all the way from (z1c1, • • ·, z1 1, Y""' · · ·, yn1, o, · · · , O) to

(z1"' • · ·, z11, Y""' · · ·, yll1, zJ"' • · ·, zl1). Now suppose (Y'ti · · ·, y11) = (1, · · ·, 1). We

emulate this forward legal move by moving backward on the 1-D mesh all the

way from (zld, ••• 'Zl1, 1, ... '1, zic1, ••• 'Xii) to (zld, ••• 'Zl1, 0, ... '0, Xld, • • • 'z/1),

This requires :flipping through almost all possible values of the sub-string

(Ya, · · · , y1, zc1, · · · , z1), a total of p213-p113 backward moves.

In exactly the same way as in the case of a forward legal move along the y

direction when (y, ti • • • , 1"1) 'I= (1, · · · , 1), any forward legal move along the :

direction:

including when (z1 di • • • , z,1) = (1, · · · ,1), can be emulated by a series of p2l3 for

ward legal moves on the 1-D mesh by flipping through all possible values of the

sub-string (Yci, • • • , y1, z0, • · · , z1).

In the standard terminology of graph embedding (see, e.g., Bhatt, et. al.

(1986)), what we have shown is that the dilation of the embedding -- the longest

1-D mesh path a 3-D mesh edge is embedded in -- is p2l3
• One can show that the

congestion of the embedding -- the maximal number of 3-D mesh edges any 1-D

mesh edge supports -- is also p2l3
• Most previous studies use the product of the

two parameters as an upper bound for the number of emulation steps. However,

this would not be good enough for our purpose. In fact, it can be shown that no

embedding can offer such a product good enough for our purpose. Therefore, we

have to go down to a finer level of analysis to show that congestion does not play

a crucial role in delaying token movement in this embedding. The key lies in the

observation that a legal move on the 3-D mesh is emulated by a series of forward

legal moves only or backward moves only on the 1-D mesh, i.e., a series of emu

lating moves do not reverse direction. For an arbitrary step of token movement

on the 3-D mesh consider all tokens which are to be moved in a single direction.

When emulated on the 1-D mesh each will start at a different node and they will

flow orderly along either forward or backward direction of the 1-D mesh for no

longer than p2l3 steps, never running into or overtaking one another. Emulation

of a step of token movement on the 3-D mesh can therefore be done in 6p2l3 steps

of token movement on the 1-D mesh, by emulating the six directions of the 3-D

mesh one by one. The bound is only 2p2l3+2p1l3+2 when one keeps track of the

details.

- 33 -

B) Emulation of 3-D mesh token movement on the 2-D mesh:

Let p = 26
d for some positive integer d. The 2-D mesh of size p is coded, in

the standard binary representation of natural numbers, by the set of binary

strings of length logp: { (6316 • • • , 611 a3di • • ·, a1) }, where the two substrings code

rings in the a- and b-dimensions of the 2-D mesh, respectively. The 3-D mesh of

the same size is coded in the same binary representation of natural numbers by

the same set of binary strings { (Y216 • • • , y11 z216 • • • , zat1, x216 • • • , x11 z"' · · · , z1) },

where the two substrings (x2"' • • • , x1), (y216 • • • , y1) code rings in the x- and y

dimensions of the 3-D mesh, respectively, and (z2t1, • • • , z1), the concatenation of

(z2c1, • • • , zat1) with (z16 • • • , z1), codes rings in the z-dimension of the 3-D mesh.

Again the nodes of the 3-D mesh are mapped to the nodes of the 2-D mesh under

the identity mapping. We specify embedding of the edges by describing for each

legal move on the 3-D mesh the emulating series of legal moves on the 2-D mesh.

Again without loss of generality only emulation of forward legal moves will be

given. We will show that the maximal length of any series emulating a move

along the x- or y-direction is p1l6, and the maximal length of any series emulating

a move along the z-direction is 2p1l6• We will also show that all series emulating

legal moves (both backward and forward) along x- and y-directions of the 3-D

mesh can be executed fully concurrently, and all those emulating legal moves

(both backward and forward) along the z-direction can be executed fully con

currently. This leads to emulation of one step of token movement on the 3-D

mesh by 3p1l6 steps on the 1-D mesh.

First consider forward legal moves along x- and y-directions. This is analo

gous to emulating legal moves along the z-direction of the 3-D mesh on the 1-D

mesh. A ring in the x-dimension of the 3-D mesh is embedded in a single ring in

the a-dimension of the 2-D mesh and is coded by the 2d most significant bits of

the sub-string (aac1, · • • , a1). Any forward legal move along the x-direction on the

3-D mesh can thus be emulated by a series of p1l6 forward legal moves in the a

direction of the 2-D mesh by flipping through all possible values of the sub-string

(ad>· · · , a1). Therefore, each ring in the x-dimension of the 3-D mesh is evenly

stretched along the forward direction to fit into a ring in the a-dimension of the

2-D mesh, and each ring in the a-dimension of the 2-D mesh supports p1l6 rings in

the x-dimension of the 3-D mesh. By the same argument as in emulating the 3-D

mesh on the 1-D mesh, all series emulating legal moves along the x-direction can

- 34 -

be executed fully concurrently. Thus one step of token movement consisting of

moves (forward and backward) along the irdirection can be emulated in p116 steps

on the 2-D mesh. By symmetry, one step of token movement consisting of moves

(forward and backward) along the ,-direction of the 3-D mesh can be emulated

by p116 steps of moves along the lrdirection on the 2-D mesh. Since 1-D rings in

different dimensions of the 2-D mesh are edge-disjoint, these two p116 steps of

moves can be executed at the same time.

Now consider forward legal moves in the ~direction of the 3-D mesh.

First consider the case where the move consists of flipping bits only among

zc1, • • • , z1• Since these bits are the same as the d least significant bits ad, · · · , a1

that code rings in the a-dimension of the 2-D mesh, the move is still a forward

legal move along the 1rdirection of the 2-D mesh. Apparently, two different such

moves on the 3-D mesh remain different moves on the 2-D mesh. A step of token

movement on the 3-D mesh consisting of only such moves can thus be made in

one step on the 2-D mesh.

Now consider the case where the move requires flipping also bits among

z2c1, • • • , z~1- These bits are the same as the least significant bits b11, • • • , b1 that

code rings in the b-dimension of the 2-D mesh. In this case (zc1, · · • , z1) must be

(1, · · · , 1) and be flipped to (O, · · · , 0). Let the move be

First suppose (zt 2 11, • • • , ztdt1) I= (1, · · · ,1). Then the move can be emulated on the

2-D mesh by one forward legal move along the lrdirection plus a series of p116-l

backward legal moves along the a-direction: first make one move along the b

direction to (yt 2c1, · • • , y11,1112d, • • • , zlldt1, xl2"' • • ·, xt1, 1, · · · , 1), and then move back

wards along the a-direction all the way from

to

Note that two different such moves on the 3-D mesh are emulated by two

different series of moves on the 2-D mesh which do not share edges, so a step of

token movement on the 3-D mesh consisting of such moves only can be emulated

- 35 -

in p1l6 steps on the 2-D mesh. Now suppose (z1211 · · · , ztcJ+-1) = (1, · · · ,1). Then the

move

- (v211 · · · , v1,o, · · · , o, z1211, · · · , z11, o, · · · , o)

can be emulated by a series of p116-1 backward moves along the b-direction plus a

series of p116-1 backward moves along the a-direction. First move backwards

along the b-direction all the way to (yt211 · · · , r,t1,0, • • · , 0, zt211 · · · , zt1, 1, · · · , 1),

and then move backwards along the a-direction all the way to

(Y'211 · · · , v110, · · · , 0, zt2"' · · · , zt1, 0, · · · , 0). Again two different such moves do
not contend for edges when emulated and a step of token movement consisting of

only such moves on the 3-D mesh can be done in 2p1l6 steps on the 2-D mesh. By

careful examination we can fully overlap execution of all emulating series in all

these cases for forward legal moves along the .z<-direction of the 3-D mesh. We

observe that only the first two emulating steps on the 2-D mesh involve forward

legal moves. So, by symmetry, backward legal moves along the z-direction of the

3-d mesh can be emulated essentially concurrently. A step of token movement

consisting of moves along the z-direction of the 3-D mesh can therefore be emu

lated by 2p1l6 steps of token movement on the 2-D mesh.

The total number of steps of token movement on the 2-D mesh to emulate

one step of token movement on the 3-D mesh is therefore 3p1l6•

Proof for the general case of embedding the m-D mesh in the q-D mesh is

just a generalization of the above proof. A binary string of length logp is divided

into q consecutive sub-strings of length logp in coding the q-D mesh while these
q

sub-strings are further divided into segments to code the m-D mesh as in A) or in

B). We omit the details.

Optimality of the bounds O(p{1/q-l/m)) follows from the fact that the minimal
.!!tl .tl

bisection widths of the m-D and q-D meshes are 0(p m) and 0(p 9), respectively,

and that their ratio 0(p11t--1/m_) is a lower bound on the worst-case number of m-D

mesh edges a q-D mesh edge has to support in any embedding. q.e.d.

- 36 -

Acknowledgements I would like to thank David Kirkpatrick for valuable dis

cussions on relevant theoretical issues as well as on a draft of this paper. I would

like to thank Maria Klawe and Nick Pippenger for valuable comments and for

criticism on a draft of this paper. I would also like to thank Alan Wagner for

very helpful suggestions and for pointers to the literature. Discussions with Uri

Ascher, Zhaojun Bai, Geng Lin, Jim Little and Jim Varah were also very helpful.

I appreciate the valuable comments from Lenore Blum, William Kahan, Richard

Karp, Beresford Parlett, and Steve Smale during the preliminary stage of this

research at the University of California, Berkeley.

References

Bertsekas, D. P., Ozveren, C., Stamoulis, G. D., Tseng, P, and Tsitsiklis, J. N.

(1989), Optimal communication algorithms for hypercubes. LIDS-P-184 7,

Laboratory for Information and Decision Systems, M.I. T.

Bhatt, S., Chung, F., Leighton, T., and Rosenberg, A. (1986), Optimal simulation

of tree machines. Proc. ~7-th IEEE Annual Symp. on FoundationJ of Com

puter Science, 274-282.

Borodin, A, and Hopcroft, J. E. (1985), Routing, merging, and sorting on parallel

models of computation. J. Computer and System Sciences, 30, 130-145.

Chung, F. R. K. (1987), Diameters of graphs: old problems and new results.

Proc. 18-th Southeastern Conference on Combinatoric-', Graph Theory, and

Computing, Congres8us Numerantium, Vol. 60, 295-317.

Chung, F. R. K., Graham, R. L., Frankl, P., and Shearer J. B. (1986), Some

intersection theorems for ordered sets and graphs. J. Combinatorial Theory,

Series A 43, 23-37.

Dally, W. J. (1987), Wire-efficient VLSI multiprocessor communication networks.

Proc. 1987 Stanford Conference on Advanced Research in VLSI, MIT Press,

Cambridge, Massachusetts, 391-415.

Fisher, D. C. (1987), Communication complexity of matrix multiplication. pre

print.

Gentleman, W. M. (1978), Some complexity results for matrix computations. J.

ACM, Vol. 25, No. 1, 112-115.

- 37 -

George, J. A., Liu, W-H, and Ng, E. G-Y (1987), Communication results for

parallel sparse Cholesky factorization on a hypercube. Technical Report

CS-87-03, York University.

Hong, J-W. and Kung, H. T. (1981), I/0 complexity: the red-blue pebble game.

Proc. 19-th ACM Annual Symp. on Theory of Computing, 326-333.

Johnsson, S. L. and Ho, C-T {1987), Matrix multiplication on Boolean cubes

using generic communication primitives. YALEU /DCS/TR-530, Depart

ment of Computer Science, Yale University.

Karp, R. M., and Ramachandra.n, V. {1988), A survey of parallel algorithms for

shared-memory machines. Report No. UCB/CSD 88/408, Computer Science

Division, University of California, Berkeley.

Papadimitriou, C. H., and Ullman, J. D. (1984), A communication-time tradeoff.

Proc. IEEE 25-th Annual Symp. on Foundations of Computer Science, 84-88.

Saad, Y. and Schultz, M. H. (1986), Data communication in parallel architec

tures. YALEU /DCS/RR-461, Department of Computer Science, Yale

University.

Stone, H. S. (1987), High-Performance Computer Architecture. Addison-Wesley,

Reading, Massachusetts.

Stout, Q. F. and Wager, B. (1987), Intensive hypercube communication I: prear

ranged communication in link-bound machines. CRL-TR-9-87, Computing

Research Laboratory, University of Michigan.

Tarjan, R. E. (1987), Algorithm Design. CA CM, Vol. 30, No. 3, 205-212.

Thompson, C. D. (1979), Area-time complexity for VLSI. Proc. ACM 11-th

Annual Symp. on Theory of Computing, 81-88.

Ullman, J. D. (1984), Computational Aspects of VLSI. Computer Science Press,

Rockville, Maryland.

Valiant, L. G. (1982), A scheme for fast parallel communication. SIAM J. Com

puting, Vol. 11, No. 2, 350-361.

