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Abstract 

Some of the traditional methods for boundary value ODEs, such as standard multiple 

shooting, finite difference and collocation methods, lend themselves well to parallelization in the 

independent variable: the first stage of the construction of a solution approximation is per­

formed independently on each subinterval of a mesh. However, the underlying possibly fast 

bidirectional propagation of information by fundamental modes brings about stability difficulties 

when information from the different subintervals is combined to form a global solution. Addi­

tional difficulties occur when a very stiff problem is to be efficiently and stably solved on a 

parallel architecture. 

In this paper parallel shooting and difference methods are examined, a parallel algorithm 

for the stable solution of the resulting algebraic system is proposed and evaluated, and a parallel 

algorithm for stiff boundary value problems is proposed. 

This research was supported in part by NSERC Canada Grant A4306. 
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1. Introduction 

Recent advances in parallel computer architecture are allowing larger and larger scientific 

computations to be performed at a more and more affordable expense. One major condition for 

an efficient use of a parallel architecture is, however, the utilization of an appropriate algorithm, 

capable of taking advantage of such an architecture. A large volume of recent numerical litera­

ture has been devoted to the task of finding new parallel algorithms for various problems. Here 

we concentrate on such algorithms for solving a system of n ordinary differential equations 

(ODEs) 

Y' = f( t,y), (1) 

subject to n independent boundary conditions , 

g(y( a),y( b )) = 0. (2) 

A special case of this boundary value problem (BVP) is an initial value problem (IVP), where 

y( a) is given, 

y(a) = o:. (3) 

The ease with which one can find highly parallelizable algorithms for a given problem, and 

the extent to which this can be done, depend on the type of problem at hand. In case of ODEs 

one often encounters a fast propagation of information across the interval of integration in a 

way often depending on the traversed domain. This tends to suggest the use of marching algo­

rithms which are sequential in nature. Questions of robustness, reliability and stability arise 

when one attempts to design a parallel algorithm for such a problem, as we shall see. 

The design of a parallel algorithm is also strongly affected by the type of parallel architec­

ture used. The most basic distinction among the variety of computing machines available is 
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between those with a shared memory, where usually the number of processors is not very large 

(up to 32, say) and distributed memory, message passing machines, where the number of proces­

sors can reach thousands, and communication time among processors becomes important. Here, 

we wish to avoid getting to the specifics of machine architecture for most of the time, and we 

therefore imagine, unless otherwise specified, an ideal parallel machine with as many processors 

as required but with a negligible communication cost (i.e. a PRAM model, see e.g. [17]). 

A general word of caution is regarding the reliability of proposed algorithms. In particular, 

questions of stability of a given algorithm often appear at a casual glance to be regarded as less 

central in recent literature. Of course, the property of stability of a given algorithm is as impor­

tant for parallel algorithms as for serial ones. In fact, with the more powerful parallel computers 

carelessness in this respect may easily lead one to a situation where more meaningless numbers 

are obtained faster. A case in point arises in §3. 

A sequential method for solving (1) subject to (2) or (3) usually proceeds by discretizing 

the ODE on a mesh in t. An algebraic relation is obtained, relating solution values at neighbor­

ing mesh points. Gear [8] has classified parallel algorithms for ODEs into two classes: i) "across 

the system", where each ODE or a group of ODEs is assigned to a different processor; for stiff 

IVPs and for BVPs this involves parallel techniques for solving large systems of algebraic equa­

tions, and ii) "across the method", where an algorithm is designed so that different parts of it 

can be executed on different processors in parallel. The basic advantage of an algorithm across 

the system would occur if an explicit difference scheme can be effectively used or if the system of 

ODEs has a special structure that can be utilized to advantage. For example, in circuit simula­

tion in VLSI one obtains a very large set of ODEs, yielding a large algebraic system of equations 

to be solved at each time step. This system is, however, sparse, since each electric device on a 

chip has a direct connection to only a few neighbors. The "across the method" approach, on 
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the other hand, is the more promising one when a robust, general purpose software is contem­

plated. We concentrate for the remainder of this paper on algorithms where work on a number 

of steps in t can be performed in parallel ( cf. (21)). 

Traditional numerical methods for BVPs in a way should lend themselves more easily than 

methods for IVPs to parallelization in t ("across the method"), because those for BVPs are glo­

bal: the solution is obtained "everywhere" simultaneously. This is in contrast to methods for 

NPs which are inherently local, in that the entire solution is known at the initial point and can 

be advanced locally; the latter is a sequential process by its nature. Of course IVPs, being a 

special case of BVPs, cannot be more difficult to solve numerically, regardless of machine archi­

tecture, but some of the more important advantages of IVP methods are among the method 

aspects which are most difficult to parallelize. 

In BVPs, some of the most well-known methods for linear problems are obviously parallel­

izable: In standard multiple shooting, finite difference, collocation and finite element methods, 

the first stage of the construction of a solution approximation is done independently on each 

subinterval of a mesh and so can be assigned to different processors for different subintervals. 

Only at a later stage, that involving matching the solution pieces through a system of algebraic 

equations, is the parallelization question nontrivial. Moreover, a global (damped) Newton 

method ( quasilinearization) yields at each iteration a linear BVP which can be solved by seg­

ments. Allowing more iterations in one segment than in another is possible, though perhaps not 

simple, but even without this the advantage of using parallel processors with a parallel shooting 

scheme, for instance, is clear. And yet, not everything is straightforward here either: The best 

shooting algorithms on a sequential machine are marching algorithms [4, Ch. 4), and problems 

arise also regarding the stability of prospective linear system solvers, as we further explore 

below. 
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A basic reason why a stable parallelization of BVP algorithms is not straightforward, par­

ticularly for stiff problems, is that even though the methods are global, the ODE still yields an 

underlying varying propagation of information, which may be fast for a stiff problem. Indeed, 

the situation is much more complicated here than for IVPs in this respect, because a well­

conditioned (stable) BVP may support both rapidly increasing and rapidly decreasing funda­

mental solution modes. A stable solution algorithm must decouple these modes to a sufficient 

extent in some way [23], [14], [22]. 

Algorithms which attempt to achieve this decoupling explicitly, e.g. reorthogonalization, 

stabilized march or the Riccati method (cf. [10], [5], [6], [19], [4, §§4.4-4.5]) appear to be 

inherently sequential in t. There, unlike in the parallel shooting algorithm described in §2 below, 

information from the previous shooting subinterval is used to start integration on the next one. 

On the other hand, the standard multiple shooting method is a parallel shooting scheme. This 

method is also equivalent in some sense to the radically different finite difference approach (see, 

e.g., (4, Thm 5.38]) for nonstiff problems. For stiff problems the standard multiple shooting 

method requires too many shooting points, and becomes highly inefficient. 

Other discretization methods exist which do not perform the decoupling of modes expli­

citly, but rather implicitly, for instance symmetric finite difference schemes. But this does not 

cause the issue to disappear: it resurfaces in the solution of the discretized ODEs. Questions of 

stability of various algorithms for solving linear algebraic equations arise, where a given algo­

rithm must appropriately decouple the increasing and the decreasing discrete modes. Since an 

appropriate decoupling appears to be a sequential process when the problem does not have con­

stant coefficients, the question of finding a parallel algorithm dealt with in §3 is in a way non­

trivial indeed. We propose and evaluate such an algorithm. 
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In §4 we consider stiff BVPs. The obvious candidate methods a.re based on symmetric 

difference and collocation schemes, and we demonstrate their potential. However, symmetric 

schemes also have well-known drawbacks, both theoretical and practical (the latter mainly when 

layers resolution is not desired). We are then led to consider pa.rallelizable methods which 

involve more work per mesh interval. The algebraic difference schemes approach of Schmidt 

[27] could be promising; a complete development and investigation of such schemes is at the 

time of this writing still underway for a sequential computer. Here we develop an algorithm 

based on the theoretical multiple shooting framework of (3]. 

2. Parallel shooting 

As mentioned before, we apply for a nonlinear BVP (1),(2) some variant of Newton's 

method. This leaves us to deal, at each iteration, with the solution of a linear ODE 

y, = A( t)y + q( t), a < t < b, (4) 

subject to linear boundary conditions 

Bc3(a) + B,,y(b) = {J. (5) 

We concentrate first on multiple shooting (18], [26]. 

To recall, the well-known "standard" multiple shooting method was first introduced as a 

means for reducing the instability of the single shooting method for solving BVPs. The single 

shooting method attempts to solve BVPs by solving corresponding IVPs and matching the 

boundary conditions, but it becomes unstable essentially when these IVPs are unstable (ill­

conditioned) even though the given BVP is well-conditioned. This instability of the single 

shooting method may grow exponentially with the size of the interval of integration, so in the 
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multiple shooting method this interval is partitioned into a set of smaller intervals, and on each 

subinterval an IVP solution scheme is carried out. 

However, the appeal of this approach here is its inherent parallelism. Here the integration 

on different shooting intervals is done independently, followed by an assembly of the solution 

pieces. An idea like this in the IVP context appears first in Nievergelt [24]. We partition the 

interval [a,b] as follows 

(6) 

Let Yi denote our approximation of y( ti), l~i~N+l. On each subinterval we now solve IVPs 

to approximate a fundamental solution Y(t;ti) and a particular solution v(t;ti) of (4) on it, 

which in turn allows us to express y( ti+i) in terms of y( ti), viz. 

(7) 

This exact relationship is approximated in the integration by a "one step" relation of the form 

(8) 

or more conveniently, 

(9) 

(a form which can be achieved in parallel for each i from (8)). Here ri := R:j1Si approximates 

at t=ti+l the fundamental solution Y( t;ti) satisfying Y( ti; ti)=!. The form (8) ( or (9)) is supple­

mented by the given boundary conditions 

A special case of this procedure is when (8) is just a usual one-step finite difference scheme, 

which corresponds to approximating the fundamental solution and particular solution on 

[ti,ti+1] by just one integration step. Using collocation or implicit Runge-Kutta scheme in this 
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way involves a more complex one integration step. More generally, it is important to realize 

that we have a two-level mesh. The coarse level is the mesh of shooting points (6). At the fine 

level mesh 

(11) 

we have in addition to the points t; the points used in discretizing the ODE on each subinterval 

[t;,tti-1]. For a simple collocation method the fine mesh includes all the collocation points (as 

well as the coarse mesh points (6)). Instead we may have a sequence of integration steps to 

cover [t;,t;+1] using say some Runge-Kutta scheme (corresponding to a composite quadrature 

rule). The point is that the fine level integrations, resulting in the construction of r; and r;, can 

be done in parallel for different i. The number N relates to the number of parallel processors 

available. If (8) stands for a simple (e.g. trapezoidal) one-step scheme then little has been 

gained as yet, because the fine mesh is equal to the coarse mesh. But if we couple a few simple 

steps in obtaining (8), with the result that the subinterval lengths t;+l-ti are not necessarily 

small for a high accuracy, then we have a higher degree of parallelism. 

To obtain one approximate solution for y(t) we write the N+l relations (8),(10) as one 

system of algebraic equations 

Ay'll' = g'II' (12a) 

for the vector of unknowns 

,_ ( T T T )T Y 'II' ·- Y1 ,Y2 , ... ,y N+l · (12b) 

The matrix of this system, A, is sparse. Let us denote by A;; the i,lh nxn block of A. Then 

there are nonzero blocks in A;;, Ai,i+l, i=l, ... ,N (these blocks are also nonsingular), AN+l ,l 
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A= (13) 

To recall (see, e.g., [4, §4.3]), if I\ of (8) approximates Y( t;+1;t;) sufficiently well for each i, 

then with 

K := max( max 11r;II ' 1) 
1::;i::;N' 

and,,., the stability constant of the BVP (4),(5) the condition number of A satisfies 

(14) 

Thus, if the shooting points are chosen so that K is of moderate size and the linear algebraic 

system (12) is solved, say by Gaussian elimination with full row-partial pivoting, then the 

obtained algorithm is stable. 

3. Solution of linear systems 

Let us consider the case for IVPs first. Here y1 is given and in A we put the boundary 

equations as the first rows. Given (8) or (9), the solution may be obtained by recursion (in the 

form of iteration) on i, starting with y 1. This recursion is stable under very mild conditions, 

namely, if for l~i~N, r; does not give rise to rapidly increasing (discrete) modes (see [4, Ch. 

6]). This is the case if the IVP is stable and r; is a reasonably good approximation to Y( t;+1;t;), 

all i, or if a damping difference scheme like a backward differentiation formula (BDF) is used. 

The algorithm requires 0( N) operations when done in series. (The time complexity is generally 
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proportional here also to n3 of course, but we concentrate on the dependence on N for a fixed 

n.) 

However, using an appropriate variant of the odd/even reduction algorithm (cf. [7],[9]) the 

solution of the linear system can be done in an O(logN) time complexity if O(N) processors are 

utilized. The algorithm is illustrated in Fig. 1, for the case N-1. The serial recursion described 

before involves Gaussian elimination of the blocks Ai+l,i using Aii· The algorithm consists of a 

sequence of steps each involving a series of block Gauss elimination operations with restricted 

partial pivoting. Each of these steps is done in parallel. Thus, assuming for convenience that 

N 2m-1 for some positive integer m, the first step consists of elimination of A2j,2j-1 using 

A21-1,2j-1, 
1 < . < N+l =2m-l. 

- J - 2 This introduces new nonzero blocks in A2j,2j-2• 

X X 
X X 0 X 

X X X X 
X X + 0 X 

-+ 
X X X X 

X X + 0 X 
X X X X 

X X + 0 X 

(a) (b) 

X X 
X X 
0 X X 
0 X X 

-+ 0 X X X 
X X 0 X 

+ 0 X 0 X 

+ 0 X 0 X 

(c) (d) 

Figure 1 - odd/even reduction for IVPs. 
In this example, N 2m-1 , m=3. The x 1s denote nonzero nx n blocks, 

0 denotes a currently eliminated block, and 
+ denotes a new nonzero block generated during the cur·rent step. 

Note that operation within each of the m block Gaussian 
elimination steps leading from (a) to (d) can be done simultaneously. 

In the next 
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next step, the blocks A4;-2,4i-2 are used to eliminate A4i-1,4;-2 and A4j, 4j-2, 1$j$2m-2, etc. 

After m such steps, each utilizing N /2 processors, we are left with a block diagonal matrix, and 

a final parallel step yields the solution y 11 .. 

This algorithm is "efficient" but not "optimal" [17] in that if performed serially it has a 

running time 0(NlogN), not the optimal 0(N). In fact, the number of processors can be cut 

down to 0( N /logN), still maintaining an 0(logN) parallel time. This is done using a standard 

trick to avoid computing unnecessary intermediate quantities. At first, we divide the system 

into 2m/m groups of m block rows each, m=log(N+l). Within each group, block elimination 

is performed serially, using 2m/m processors for the entire system. In the second stage consider 

only block rows i=km, k=l, ... ,2m/m, and solve for these y/s using the odd/even algorithm 

described above. The last step involves using the kth processor to solve for y i, km< i< ( k+ 1 )m, 

using Ykm as a starting value, for k = 1, ... ,2m / m. Each of these 3 steps can be performed in 

0(logN) time using ~N/logN processors. 

It is not difficult to see that the above described parallel and serial algorithms yield pre­

cisely the same results. Hence, this parallel algorithm is also stable under very mild conditions. 

This algorithm can be readily modified to yield a similar one for BVPs. The obtained algo­

rithm is depicted pictorially in Fig. 2. Each of the steps shown can again be performed in paral­

lel, yielding an 0( logN) time complexity if N processors are utilized. (The latter number can 

again be reduced to 0( N /logN).) 

Unfortunately, the BVP algorithm is not stable in general! It is easily seen that the 

prescribed elimination steps produce the single shooting matrix B0+BbI'NI'N-l · · · I'1 which 

could have extremely large elements even if the BVP is well-conditioned (i.e. even if K is of a 

moderate size, cf. [4, §4.3.4]). (Note that for a stable IVP, in contrast, this matrix is always 

nicely bounded.) This algorithm, in fact, produces the same output as the compactification 
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X X X X 

X 

X X 
XX 

X X 
X X 

+ 0 X 
XX 

+ox 

X X 
X X 
+ox 

(a) 

-+ 

X X 
X X 
X X 
X X 

X X 
X X 

X X 

X X 
X X 
+ 0 X 
+ 0 X 

X X 
X X 

(b) 

-+ 

+ 0 X 
+ 0 X 

X X 

( c) 

XX 
X X 
X X 
X X 

X X 
+ 0 X 

X 

-+ + Ox ~ X X 
+ 0 X X X 
+ 0 X X X 

-+ 

+ 0 X X X 
X X X 0 

(d) (e) 

Figure 2 - straightforward odd/even reduction is equivalent to the compactification algorithm. 
Here N 2m, m=3. Notation is as in Fig. 1. 

algorithm which has long been recognized to be possibly unstable (26], [11]. The algorithm does 

not achieve an appropriate decoupling of fast increasing and fast decreasing modes when such 

modes occur in a given problem; indeed, it ignores this question by not consulting the boundary 

conditions until the last step. For separated boundary conditions the left end boundary condi-
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tions "control" the decreasing modes while those at the right interval end "control" the increas­

ing modes. 

Note that the compactification algorithm performs Gaussian elimination with some partial 

pivoting. However, it does not include full across-blocks pivoting, thereby missing a crucial sta­

bilizing effect that the full row pivoting achieves (26]. 

In the following we will consider the case where the boundary conditions (5) are separated: 

It is then natural to move the last rows to be first in A, obtaining the structure 

A= (15) 

Almost all traditional algorithms proposed in the literature are for the case of separated boun­

dary conditions ( cf. (4, Ch. 7]). The quest is then to find a stable, efficient parallel algorithm for 

a discrete BVP (12) with (15) holding. The remarks above suggest, however, that this may not 

be an easy task: If work in parallel is to be performed on A then how are the boundary condi­

tions supposed to "control" the fast modes? 

Indeed, a number of algorithms recently proposed do not appear to be generally stable. A 

stable algorithm proposed by Lentini [20), where mode decoupling proceeds simultaneously from 

both interval ends towards the middle, offers only a limited parallelism. Another suggestion 

made is to proceed with the above described parallel compactification algorithm, monitoring sta-
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bility by an iterative refinement technique and switching to a stable alternative with time com­

plexity 0( N) when an instability is detected. This may prove to be a practical remedy until 

something better is found. In any case, a theoretical question remains open, namely to find a 

direct, stable parallel algorithm with complexity 0( logN). 

We now offer what is the closest that we know of to a positive answer to this question. 

The idea is simple: Consider the least squares solution of (12), obtaining the normal equations 

(16) 

Now if A has the form (15) then the matrix B := AT A is block tridiagonal. The formation of 

the blocks of B can be done in 0( n3) time using 0( N) processors in an obvious way. Also, 

since A is nonsingular, B is (symmetric) positive definite. For such matrices there are stable 

versions of odd/even reduction and odd/even elimination - see Heller [12], Johnsson [15] and 

Kapur & Browne [16], which perform in 0(logN) time using 0(N) processors in parallel. In 

Fig. 3 we depict an instance of one version of this algorithm. 



X X 
XX X 

X X X 
X X X 

XX X 
X X X 

- 14 -

X X X 
XX X 

(a) 

X X 
0 X O + 

X X X 
+oxo+ 

X X X 

X X X 
X X X 

X X X 
X X X 

X X X 
X X X 

X X 

+oxo+ 
X X X 
+oxo+ 

X X X 
+oxo+ 

(b) 

X X X 
+oxo+ 

X X X 
+ 0 X 0 

X X 

Figure 3 - odd/even reduction for a block tridiagonal system. 
Here N= 2m- 2, m= 4. Notation is as in Fig. 1. 
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X X 
X X 
X X X 
0 X 0 + 

X X X 
X X X 

X X X 
--+ + 0 X 0 + --+ 

X X X 
X X X 

X X X 

+ 0 X 0 
X X X 
X X 

X X 

( c) 

X X 
X X 
X X X 

X X 
X X X 
X X X 

X X X 
--+ 0 X 0 

X X X 
X X X 

X X X 
X X 

X X X 
X X 

X X 

(d) 

Figure 3 ( cont.) - odd/even reduction for a block tridiagonal system. 

Here N=2m-2, m=4. Notation is as in Fig. 1. 

In the first step, odd-numbered block rows above and below each even-numbered block row are 

used to eliminate odd-numbered blocks in it (see Fig. 3(b )). The subsystem formed by every 

second row block and every second column block is then again block tridiagonal, but of size 

~N/2, and a similar step is now applied to it, etc. Each of them steps (with N+l=2m-l for 
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convenience) can be performed in parallel. A somewhat unusual backward substitution phase 

follows (see Fig. 3(d)), starting from the middle block (block row 2m-l) and continuing with 

block rows 2m-2 and 3,2m-2 etc., using in total another m parallel steps to recover the solution. 

As for the IVP recursion, the number of processors can be cut down to ~N/logN, still 

maintaining an 0( logN) parallel running time. The way to achieve this is again to divide the 

block rows into groups of ~logN members each. Formation of B in O(logN) time is obvious. 

Elimination within each group is performed serially. Then the set of last block rows of each 

group is considered as one block tridiagonal system of size N /logN and the above odd/even 

reduction algorithm is applied. 

The odd/even reduction algorithm is stable because it is simply block Gaussian elimination 

applied to pTATAP for some permutation matrix P, and ATA is symmetric positive definite 

[12], [25]. 

Example 1 

The above described algorithms have been implemented on a SUN 3/50 (with the parallel­

ism simulated) using an f77 compiler with double precision (14 hexadecimal digits). The stan­

dard multiple shooting method was used, with an accurate IVP integrator (i.e. the fine mesh 

(11) was much more dense than the shooting mesh (6)). 

The example considered has the form ( 4),(5) with a=O, b=l, 

A _ ( -.Xco82wt 
- -w+>.sin2wt 

A fundamental solution is given by 

w+>.sin2wt) 
.Xcos2wt 



Y(t) = ( co.s wt 
-smwt 
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sin wt) 
cos wt 

from which we see that the parameter .X controls the growth and decay of modes, while the 

parameter w controls their rotation ( cf. [4, Example 4.13]). 

In Table 1 we list errors in maximum norm for the first component of y over the shooting 

points, comparing full row pivoting (MSH), the direct odd/even reduction algorithm equivalent 

to the compactification algorithm (MSC) and the least squares odd/even reduction algorithm 

(OER). Also listed are the number of uniformly spaced shooting points N and the estimated 

condition number of A (cond) . 

From these results it is clear that while the direct odd/even reduction algorithm (MSC) 

can easily become unstable (this happens when eA is large), the least squares odd/even reduc­

tion algorithm yields satisfactory results as long as cond(A)2 does not become too large. The 

stability of the algorithm does not appear to depend on w. For this example, with uniformly 

spaced shooting points, we can estimate cond(A) ~ NeNN, So the anticipated roundoff error 

magnification for MSH is ~ NeA/N, while that for OER is ~ N2e 2A/N. The numerical results 

bear this out. 

,\ w N cond MSH OER MSC 
1 1 7 0.2e+l 0.33e-10 0.33e-10 0.33e-10 
1 50 7 0.5e+l 0.31e-7 0.31e-7 0.31e-7 

50 1 7 0.6e+3 0.14e-6 0.15e-6 0.65e+3 
100 1 7 0.8e+6 0.43e-6 0.63e+2 0.16e+22 
100 1 15 0.4e+3 0.27e-7 0.27e-7 0.12e+26 
150 1 15 0.le+5 0.53e-7 0.29e-3 0.24e+45 
150 1 31 0.6e+2 0.34e-8 0.34e-8 0.40e+48 

Table 1. Comparison of linear solution algorithms using multiple shooting. 
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[I 

Other examples have been tried where the shooting points were spread nonuniformly, and 

where there were more than one fast increasing mode, with qualitatively similar results. 

The description of the least squares odd/even algorithm has been for separated BC only. 

However, Heller [13, p. 39] already notes that a similar principle can be applied for the non­

separated BC case, i.e. when A has the form (13) and correspondingly B has nonzero blocks in 

the lower left and upper right corners. 

The implementation of odd/even algorithms for block tridiagonal systems on specific paral­

lel architectures has been described by a number of authors. In particular, Kapur and Browne 

[16] discuss implementation on shared memory machines, proposing use of the odd/even elimina­

tion variant (see also [25]). Johnsson [15] discusses in detail implementation issues on distributed 

memory architectures. 

The proposed least squares odd/even reduction algorithm does have two disadvantages. 

Perhaps the more practical disadvantage is the increased amount of storage and also of sequen­

tial operations required. The increase factor is only about 2, though. The other disadvantage is 

that the condition number involved is that of A 2, not of A. If Kor "' are large in (14), there 

could occur a situation where, as in Table 1, a roundoff error magnification factor of KKN is 

tolerable, whereas one of (K,-;,N)2 is not. From a theoretical point of view, the desire to find a 

parallel 0( logN) algorithm for solving (12) which is as stable as Gaussian elimination with full 

row-partial pivoting is not completely satisfied. 

4. Solving stiff problems 
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If the BVP is very stiff, the standard multiple shooting method becomes inefficient. For 

instance, in Example 1 we must take N O(>,) as ,\-+oo in order to keep cond(A) from grow­

ing ( cf. (14)). Theoretical and practical considerations for the sequential case are given in [3], 

[2]. 

In [1], [2] it was shown that symmetric schemes based on collocation at Gaussian points 

perform very well in many practical situations on a sequential processor. Since these schemes 

can also be naturally parallelized, they are obvious strong contenders here as well. 

Example 2 

We have implemented the algorithms of §3 also with the midpoint scheme (i.e. one step of 

the midpoint scheme is performed between each two points ti and ti+l of (6)). For the problem 

considered in Example 1, boundary layers are generally possible when ,\ is large, and the mesh 

has to be made fine near the interval ends. Still, the mesh can be chosen coarse (independent of 

,\) away from the boundaries with N independent of ,\ (see, e.g., [4, §10.2]). Note that the 

bound (14) does not hold here for the condition number of A. 

Nonetheless, in all our computations, which included some very large values of ,\, no 

difference between the results produced by the MSH and the OER solvers was observed. 

[I 

It is well-known, however, that despite their practical success in many instances, theoreti­

cal and practical difficulties do exist when symmetric schemes are applied to very stiff problems 

(see, e.g. [4, §10.2]). Basically, a symmetric scheme approximates a fast decreasing or increasing 

mode by a slow decreasing or increasing one, respectively, and while this keeps the norm of the 

approximation to Y( ti+liti) bounded, the discrepancy may cause difficulties in certain cases. 
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We therefore utilize the theoretical multiple shooting framework discussed in [3): instead of 

the unstable IVPs solved in §2 to obtain (9) as an approximation of (7) for each i, consider 

stable local BVPs. On a subinterval [ti,ti+iJ, denote by cf>iCt) the fundamental solution of (4) 

and by vi( t) the particular solution satisfying 

Writing 

we get, similarly to (12), (13), 

for the vector of unknowns 

the right hand side vector 

and the matrix 

cf>1 ( ½) -cf>i ½) 

<ll2( t3) -<ll3( t3) 

A= 

ff? N-1( tN) -4) M tN) 

Bb<llN(b) 

(17a) 

(17b) 

(18) 

(19a) 

(19b) 

(19c) 

(19d) 

The question of how to choose the local BC Bi so that (19) is stable is answered theoreti­

cally in (3): Assuming that the original BVP (4),(5) is well-conditioned there is a dichotomy. 
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Writing without loss of generality 4>( t) = ( 4>1( t) I 4> 2( t)) for the fundamental solution of ( 4) 

satisfying 

(20) 

with 4>1 the n-p nondecreasing modes and 4> 2 the p nonincreasing modes, choose 

(21) 

where Qli and Q2i are matrices with p and n-p orthonormal columns respectively, satisfying 

(22) 

The idea is then to devise a practical method for a parallel solution of stiff BVPs by devis­

ing stable subproblems to be solved in parallel. The solution of the linear system (19) has been 

discussed in §3. It remains to discuss obtaining (19) for given local BC Bi, and then obtaining a 

practical approximation of (21),(22). 

Suppose first that we are given Bi for a fixed i. In (4),(17) we have n+l local BVPs, one 

for each column of 4> ,{ t) and one for vi( t). Apply some difference or other stable scheme to 

approximate these BVPs, using the same mesh, say 

We obtain a linear system of equations with a matrix Ai of the form (15) and n+l right hand 

sides. These right hand sides can be constructed and solved for in parallel. Note that in stan­

dard multiple shooting the elements of a matrix with a similar zero structure to Ai are also 

formed, but the decomposition in that case is simpler, as in §3, because that is a local IVP: 

B1i=J, B2i=0. Obviously, some efficiency is lost by solving local BVPs instead of local IVPs. 

However, much fewer shooting points are needed: For instance, O(>,) shooting points are needed 
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with the standard multiple shooting method for the problem of Example 1, while here the 

number of shooting points is independent of,\, 

Next consider obtaining local BC. To actually achieve (21),(22) we need a full decoupling 

of the ODE, i.e. a solution of the Lya.punov equation, or the kinematic eigenvalues. This is 

impractical as is, but in order to approximate it let us recall the transformation. Let 

i.e. 

w( t) = r-1( t)y( t) 

wr = Uw + T""1q 

U(t) = r-1 AT- T""1Tr 

(23a) 

(23b) 

(23c) 

with U upper triangular. The diagonal elements of U are kinematic eigenvalues, and we may 

assume that they are ordered by decreasing real parts. The number n-p of columns in ~ 1 is 

determined by the number of nonzero rows in Bb in case of separated BC. Otherwise it may be 

determined as a number such that the real pa.rt of the kinematic eigenvalues from n-p+ 1 on is 

not large positive. For (23) we can choose stable local BC by specifying the last p components 

of w at ti and the first n-p components of w at ti+l for each segment [ ti, ti+1]. 

Now, if T""1Tr is negligible compared to T""1AT, where Tis the orthogonal matrix 

obtained by the QR algorithm for A at each x, then the eigenvalues of A give adequate approxi­

mations to the kinematic ones. This occurs if the segmentation (6) is chosen as described in [3, 

§1] and the other assumptions there hold as well, namely, no rapid solution oscillations occur on 

"long" segments, and the points ti are placed outside layers, in smooth solution segments. 

Thus, assume that an appropriate segmentation (6) is formed. Applying the QR algorithm 

for A at ea.ch ti in parallel and calling the resulting orthogonal matrix Ti, we may assume that 

the eigenvalues are ordered as described above. Then set 

Q[; = last p rows of J71 
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Ql,i-1 = first n,-p rows of 771 

where p is determined independently of i. Finally, use ( 21 ). 

Note that if the transformations Ti are saved then the solution {Yi} may be formed in 

parallel after solving (19) as follows: writing 

we get 

(24) 

A practical investigation of this algorithm will be reported in a future work. 
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