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CANADA 

We determine the "expected capacity" of a class of sparse concentrators called "modu­
lar concentrators". In these concentrators, each input is connected to exactly two outputs, 
each output is connected to exactly three inputs, and the "girth" ( the length of the shortest 
cycle in the connexion graph) is large. We consider two definitions of expected capacity. 
For the first (which is due to Masson and Morris), we assume that a batch of customers ar­
rives at a random set of inputs and that a maximum matching of these customers to servers 
at the outputs is found. The number of unsatisfied requests is negligible if customers ar­
rive at fewer than one-half of the inputs, and it grows quite gracefully even beyond this 
threshold. We also consider the situation in which customers arrive sequentially, and the 
decision as to how to serve each is made randomly, without knowledge of future arrivals. 
In this case, the number of W1satisfied requests is larger, but still quite modest. 
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1. Batch Arrivals 

For the purposes of this paper, a concentrator is a bipartite graph G = (A, B, E), 

comprising a set A of inputs, a set B of outputs and a set E ~ Ax B of edges. The intended 

interpretation is that the inputs correspond to "customers", the outputs correspond to 

"servers" and the edges correspond to "channels" or "switches", each capable of providing 

direct access by a given customer to a given server. 

We shall consider two modes of operation for a concentrator. In the first mode, the 

operation of the concentrator takes place in "cycles", each of which has two "phases". 

During the first phase, a subset X ~ A of the inputs, called the requesting inputs, is 

chosen. This represents the arrival of a "batch" of customers. During the second phase, 

a maximwn matching M ~ En (X x B) between the requesting inputs and the outputs 

is chosen. This represents the action of a controller granting access to servers to as many 

customers as possible. The cardinality #X is called the offered traffic; #M is called the 

carried traffic; and #X - #M is called the lost traffic. 

The actual capacity of a concentrator is the largest k such that the carried traffic is 

k for all X ~ A such that #X = k. The expected capacity of a concentrator ( which is a 

function of the offered traffic k) is the is the expected carried traffic when the requesting 

inputs are chosen at random, with all sets X ~ A such that #X = k being equally likely. 

These definitions of actual and expected capacity were given by Masson and Morris 

[MM], who investigated their values for "binomial" concentrators. In this paper we shall 

study their values for a new class of concentrators which we call "modular" concentrators. 

The asymptotic behaviour of the expected capacity for modular concentrators can be 

estimated quite sharply, and it appears quite attractive in view of the sparsity of these 

concentrators. In particular, the lost traffic is negligible when the offered traffic is less than 

one-half the nwnber of inputs, and it grows quite gracefully even beyond this threshold. 

In the second mode, customers arrive sequentially, and the decision as to how to serve 

each is made randomly, without knowledge of or dependence upon future arrivals. We 

shall define this mode of operation in more detail in Section 7. 

2. Modular Concentrators 

We shall deal with a class of concentrators for which each input meets exactly two 

edges and each output meets exactly three edges. For such a concentrator there is a natural 

number n such that #A= 3n, #B = 2n and #E = 6n. These concentrators will be called 

(3 : 2)-concentrators. 
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We begin with the observation that the actual capacity of a (3 : 2)-concentrator is 

always rather small. By the cyclomatic number of a graph with v vertices and w edges, 

we shall mean the number w - v + I. H the cyclomatic number of a graph is at most one, 

then it contains at most one simple cycle, and thus it has at most two independent paths 

between any two vertices. 

Theorem 2.1: The actual capacity of a (3: 2)-concentrator is O(logn). 

Proof: Given the (3 : 2)-concentrator G = (A, B, E), construct the graph G• = (B, E*) 

with vertices B corresponding to the outputs of G and edges E* = { { b, b'} : { a, b}, { a, b'} E 

E for some a E A} corresponding to pairs of outputs that are connected to a common 

input. Let b be any vertex of G*. Since each vertex meets exactly three edges in G*, there 

are exactly 3 · 2k-l paths of k steps starting from b. Thus, if k = flog2(2n + 1)1, there 

will be three distinct paths starting from band ending at a common vertex c. The union 

U of these three paths has at most 3( k + I) - 4 = 3k - 1 vertices, since the beginning 

and ending vertices are common. But since there are three independent paths from b to 

c in U, the cyclomatic number of U must be at least two, and thus U must contain more 

edges than vertices. It follows that there is a set of at most 3k - 1 inputs in G that are 

connected only to a smaller number of outputs; thus the actual capacity of G is at most 

3k - 2 = O(logn). 6. 

We shall now turn our attention to a class of (3 : 2)-concentrators for which the 

expected capacity is much larger than the actual capacity. The girth of a graph is the 

length of the shortest simple cycle in the graph. We shall construct (3 : 2)-concentrators 

with girth S1(logn). Our construction follows ideas of Margulis (Ml] and Imrich [I]. 

Let P SL(2, Z) denote the group of two-by-two integer matrices (: : ) with determinant 

one ( ad - be = 1 ), where two matrices are considered the same if their corresponding 

entries are negatives of each other. This group is generated by the matrices S = (_~\ ~) 
and R = (.2\ D- We have S 2 = R3 = -I, where I is the identity matrix. Furthermore, 

these are the only relations satisfied by S and R. Thus, PSL(2, Z) is the free product of 

Z/(2) (generated by S) and Z/(3) (generated by R). 

Let q ~ 5 be a prime, and let PSL(2, Z/(q)) be the quotient group of PSL(2, Z) in 

which two matrices are considered the same if their corresponding entries differ by multiples 

of q. There are (q - l)q(q + 1)/2 elements in PSL(2, Z/(q)). The natural homomorphism 

1r from PSL(2, Z) to PSL(2, Z/(q)) reduces entries modulo q. 

A word in Sand R that is reduced with respect to S2 = I and R3 = I must consist 

of occurrences of S alternating with occurrences of R or R2 = R-1 . H such a word is in 
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the kernel of 7r, it must have norm at least q - 1. (By the norm of a matrix (: ! ) , we 

mean the maximum length of the vector (: ! ) (:), as the vector (:) varies over the circle 

x2 + y 2 = 1. In particular, the norm of a matrix is at least the maximum of the absolute 

values of its entries.) It follows that a reduced word in the kernel of 1r must contain at 

least log,a(q -1) occurrences of Rand R-1, where /3 = (1 + -/5)/2, since the norm of Sis 

1, the norms of Rand R-1 are /3, and the norm is submultiplicative. 

For each prime q 2:: 5, let Gq denote the (3 : 2)-concentrator whose edges correspond 

to the elements of PSL(2, Z/(q)), whose inputs correspond to pairs of elements that differ 

by a factor of S, and whose outputs correspond to triples of elements that differ by factors 

of R±1 . Such a concentrator will be called a modular concentrator. Clearly, n = (q -

l)q(q + 1)/12. By the argument of the preceding paragraph, any simple cycle in Gq must 

have length at least 2log,a(q-1) = n(logn). Thus we have proved the following lemma. 

Lemma 2.2: The girth of a modular concentrator is n(log n ). 

The first construction of a (3 : 2)-concentrator with girth n(log n) is due to Gallager 

([G], Appendix C), in the form of the parity-check matrix of a low-density parity-check 

code with rate 1/3 over GF(2). (Gallager's construction can be carried out in "polyno­

mial time", but it is not as explicit as the one given above, which can be carried out in 

"logarithmic space".) We observe that there are more sophisticated constructions that 

give (3: 2)-concentrators with even larger girth than Gq (roughly (8/3)log2 n rather than 

(2/3)log,an); see Biggs and Hoare [BH], Weiss [W], Margulis [M2] and Chiu [C]. We also 

observe that we shall not need the full strength of Lemma 2.2. If g denotes the girth, it is 

sufficient that g ---+ oo as n ---+ oo. 

3. Hypergeometric and Binomial Capacities 

The expected capacity has been defined hypergeometrically, that is, by taking all sets 

X of inputs with #X = k to be equally likely. We begin by showing that it is possible to 

deal instead with a set X of inputs that is defined binomially, that is, in which each input 

appears independently with probability p = k/2n. 

Let H(3n, k) denote the expected cardinality of a maximum matching when each set 

of inputs X with #X = k is equally likely. Let J (3n, p) denote the expected cardinality 

of a maximum matching when X contains each input independently with probability p. 

Lemma 9.1: For O < p < 1, 0 < c < min{p, 1 - p} and 3np an integer, we have 

J(3n,p - c) - c-2 ~ H(3n, 3np) ~ J(3n,p + c) + c-2 • 
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Proof: Let X' be a set in which each input appears independently with probability p + e: . 

We have Ex(#X') = 3n(p + e:) and Var(#X') :5 3n. Thus, by Chebyshev's inequality, we 

have Pr( #X' < 3np) :5 1/3ne:2
• ff #X' 2:: 3np, then we may delete #X' - 3np inputs 

from X' to obtain a set X with exactly 3np inputs, in such a way that every set of 3np 

inputs is equally likely. The expected cardinality of a maximum matching for X' is thus at 

least H(3n,3np) in this case. We thus have J(3n,p+e:) 2:: (1-1/3ne:2)H(3n,3np). Since 

H(3n, 3np) :5 3n, we obtain the right-hand assertion of the lemma. A similar argument 

yields the left-hand assertion . .6. 

In the following sections we shall prove the following. 

Theorem 9.2: For O < p < l, we have 

J(3n,p) = 3n h(p) + O(n/(logn)112
), 

where 

{

P, 
h~)= . 

p - (2p - 1)3 /3p3
' 

if O < p ::5 1 /2; 

if 1/2 < p < 1. 

Since h(p) is continuous in p, we may apply Lemma 3.1 with e ~ 0 as n ~ oo to 

obtain the following. 

Corollary 9.9: For rational O < p < 1 and n such that 3np is integral, we have 

H(3n,3np) = 3nh(p) + O(n/(logn)112
). 

4. Reduction to Small Components 

We seek to determine the expected number of pairs in a maximum matching when 

each input is independently requesting with probability p. Let F(p) be the subgraph of 

G obtained by deleting each input that is not requesting and each edge meeting such an 

input. Let F*(p) be the corresponding subgraph of G*, in which each edge is retained 

independently with probability p. 

Lemma 4 .1: In an acyclic connected component of F* (p), all but exactly one of the outputs 

appear in a maximum matching. In a cyclic connected component of F•(p), all of the 

outputs appear in a maximum matching. 

Proof: H F*(p) contains a vertex that meets exactly one edge, we may pair the input 

corresponding to the edge with the output corresponding to the vertex, then find a max­

imum matching in the graph that remains after this edge and vertex are deleted. This 
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transformation does not change the cyclomatic number of any component. Since an acyclic 

component that contains an edge must contain a vertex that meets exactly one edge, re­

peated application of this transformation to an acyclic component must eventually yield 

an isolated vertex. Thls proves the first assertion. Repeated application to a cyclic com­

ponent must eventually yield a graph K* in which every vertex meets at least two edges. 

In the corresponding bipartite graph K, every input is connected to exactly two outputs, 

and every output is connected to at least two inputs, so the marriage theorem ensures the 

existence of a matchlng including all of the outputs. This proves the second assertion. b. 

Let Z(p) denote the expected number of acyclic component in F*(p). Lemma 4.1 

implies that 

J(3n,p) = 2n - Z(p). (4.1) 

Let g denote the girth of G, and let Y(p) denote the expected number of components 

of F*(p) that contain at most g/8 edges. A component with at most g/8 edges must 

be acyclic, so Y(p) ~ Z(p). On the other hand, there are at most 6n/(g/8) = 48n/g 
components with more than g/8 edges, so Z(p) ~ Y(p) + 48n/g. Since g = f!(logn), we 

have 

Z(p) = Y(p) + O(n/logn). (4.2) 

Let V(p) denote the expected number of vertices in F*(p) in components with at most 

g/8 edges, and let W(p) denote the expected number of edges in such components. Since 

these components are all acyclic, we have 

Y(p) = V(p) - W(p). (4.3) 

Equations (4.1), (4.2) and (4.3) together give the formula 

J(3n,p) = 2n - V(p) + W(p) + O(n/logn) (4.4) 

for the expected capacity in terms of the expected numbers of vertices and edges in small 

components of F*(p). In the next section we shall determine the asymptotic behaviour of 

these expected numbers. 

5. Analysis of Small Components 

Let I be an infinite tree in whlch each vertex meets exactly three edges. Let I(p) be 

a random subgraph of I in which each edge is independently retained with probability p. 

Let vk(P) be the probability that a vertex of I belongs to a component of I(p) with at 
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most k edges. Let Wk(P) be the conditional probability that an edge e of I belongs to a 

component of I(p) with at most k edges, given that e is retained in I(p ). It is clear that 

and W(p) = 3npw9;s(P), (5.1) 

since a neighbourhood of radius g/8 about any vertex or edge in G* is isomorphic to 

a corresponding neighbourhood in I, and all quantities in (5.1) are defined in terms of 

random variables that are independent of events outside of these neighbourhoods. 

Let v(p) denote the probability that a vertex in I belongs to a finite component of 

I(p ), and let w(p) denote the conditional probability that an edge e of I belongs to a finite 

component of I(p ), given that e is retained in I(p ). The theory of branching processes 

gives the following lemma. 

Lemma 5.1: We have 

and 

w(p) = 
{ 

1, 

(1- p)4/p4, 

if O < p ~ 1/2; 

if 1/2 < p < l; 

if O < p ~ 1/2; 

if 1/2 < p < l. 

Proof: Consider a branching process in which the first generation contains a single individ­

ual, and each individual in the i-th generation independently contributes to the ( i + 1 )-st 

generation a number of offspring that is binomially distributed with generating function 

(1 - p + px)2 • According to Harris ([H], Chapter I, Theorem 6.1), the probability of ex­

tinction ( that is, the probability that the family generated in this way is finite) is the root 

q(p) of equation x = (l - p + px)2 , given by 

if O < p ~ 1/2; 

if 1/2 < p < l. 

The probability that a vertex in I(p) belongs to a finite component is simply the prob­

ability of extinction when the first generation contains a number of individuals distributed 

with generating function (1 - p + px )3
, the generating function for the number of edges 

incident with the given vertex in l(p). This extinction probability is (l-p+pq(p)) 3 
(which 

is as given in the statement of the lemma). 
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Similarly, the conditional probability that an edge e in I belongs to a finite component 

of I(p ), given that e is retained in I(p ), is ( 1-p+pq(p)) 4 
( which is as given in the statement 

of the lemma), since (1- p + px )4 is the conditional generating function for the number of 

edges incident withe in I(p), given that e is retained in I(p). 6. 

Lemma 5.2: We have 

vk(P) = v(p) + 0( k-1
/

2
) 

and 

Proof: Clearly, Vk(P)::; v(p). Furthermore, v(p) - vk(P) is simply the probability that, in 

the branching process described in the proof of Lemma 5.1 (with the generating function 

of the initial distribution being (1- p + px )3
), extinction occurs after the size of the family 

exceeds k. According to Harris ([H), Chapter I, Theorem 13.1), the conditional probability 

that the size of the family is j, given that extinction occurs, is O(j-312 ). (The decay is 

actually much faster than this unless p = 1/2.) Thus the probability that extinction occurs 

after the size exceeds k is I:j>k ou-312) = O(k-112 ). The proof for Wk(P) and w(p) is 

analogous. 6. 

Applying Lemmas 2.2 and 5.2 to equation (5.1) yields 

V(p) = 2n v(p) + O(n/(logn)112
) 

and 

W(p) = 3npw(p) + O(n/(logn)112
). 

Substitution of these formulre and Lemma 5.1 into equation (4.4) completes the proof of 

Theorem 3.2. 

6. Extensions for Batch Arrivals 

The concentrators that we have considered are one-stage networks; that is, each edge 

directly connects an input to an output. It is easy to see, however, that the analysis we 

have given has immediate application to some multi-stage networks. 

Consider for example the "two-stage ( 9 : 4 )-concentrators" constructed in the following 

way. Let q ~ 5 and q' ~ 5 be primes (equal or distinct), and set n = (q - l)q(q + 1)/12 

and n' = (q' - l)q'(q' + 1)/12. Take 3n' disjoint copies of Gq and 2n disjoint copies of Gq,, 

and link each output of each copy of G q to an input of a copy of G q', with exactly one link 

between each copy of G q and each copy of G q'. If the inputs of the resulting network are 
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independently requesting, and if appropriate random choices of the maximum matchings 

in the copies of Gq are made, then the inputs of each copy of Gq, will be independently 

requesting, and the analysis given above can be applied to each stage in turn. (The traffics 

offered to the various copies of Gq, will be dependent, but this does not affect the expected 

capacity.) The expected capacity will again be piecewise rational, now with breakpoints 

at p = 1/3 (the onset of loss in the second stage) and p = 1/2. The extension to three or 

more stages should be clear. 

It is possible to extend the analysis we have given, with hardly any changes in the 

arguments, to "(a : 2)-concentrators with large girth" (for integer a > 2). (The con­

struction of such concentrators can be accomplished by the methods of the papers cited 

in Section 2.) It may also be possible to extend Theorem 3.2 ( though not Theorem 2.1) 

to "(a : b)-concentrators with large girth" (for integers a > b > 1). There seems to be 

nothing as simple as Lemma 4.1 in this case, but the success of Karp and Sipser [KS] in 

treating the problem of maximum matchings in sparse random graphs gives hope. For 

b = 2 one proves ( and for b > 2 it is natural to conjecture) that v(p) is replaced by q(p )a 
and w(p) is replaced by q(p )<a-l)b, where q(p) is now the appropriate root of the equation 

X = (1 - p + pxb-1 )°-1. 

7. Sequential Arrivals with Random Hunting 

We shall now turn to a second mode of operation for concentrators. Consider a 

concentrator G = ( A, B, E). Associate with each input a E A an arrival time Ta, uniformly 

distributed in the interval (0, 1), and independent of all other arrival times. The intended 

interpretation is that the customer corresponding to input a arrives at time Ta. 

Next associate with each input a E A a hunting order f3a, uniformly distributed over 

the total orders among the outputs connected to a, independent of the hunting orders of 

other inputs and independent of the arrival times of all inputs. The intended interpretation 

is that when the customer arrives at input a (at time Ta), it examines the outputs connected 

to a in the order prescribed by f3a until it finds one that has not been engaged previously 

(that is, at a time less than Ta), Hit finds such an output, the output is engaged at time 

Ta, Hit finds no such output, no action is taken, and the customer remains unserved. 

Some comments about this mode of operation are in order. First, the assumption of 

uniformly distributed arrival times will facilitate calculations, but other independent and 

identically distributed arrival times would also result in all possible orders of arrival being 

equally likely, and in the number of arrivals before time t being binomially distributed. 
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(The choice of the arrival-time distribution may be regarded as a choice of the parametri­

sation of time. An exponential distribution, corresponding to Poisson arrivals, seems the 

most natural physically.) Second, results concerning the expected number of customers 

served for this "binomial" arrival process can easily be translated (by the argument given 

in Section 3) into results for the "hypergeometric" arrival process, in which some number 

k of customers arrive at distinct inputs, with all possible sets of k inputs, as well as all 

possible orders of arrival, being equally likely. 

8. Sequential Arrivals for Trees 

We shall begin our analysis by looking at some concentrators that are trees. Let Co 

denote the concentrator with a single input that is connected to two outputs, one of which 

is called the root and the other of which is called the leaf. For some k ~ 1, suppose that 

Ck-I has been defined. Let Ck denote the concentrator obtained by identifying the leaf 

of a copy of Co with the roots of two copies of Ck-I to form an internal output (neither a 

root nor a leaf); the root of the copy of Co becomes the root of Ck, and the leaves of the 

copies of Ck-I (of which there are 2k) become the leaves of Ck. 

For k ~ 0 and O ~ t ~ 1, let Qk(t) denote the probability that the root of Ck 1s 

engaged at time t. 

Lemma 8.1: We have 

Q0(t) = t/2 

and 

(8.1) 

Proof: For the root of Co to be engaged at time t, the customer must arrive by time t, 
which happens with probability t, and must choose the root before the leaf in the hunting 

order, which happens independently with probability 1/2. This proves the first assertion. 

For the root of Ck to be engaged at time t, the customer must again arrive by time t. H 

the customer arrives at times, then it will engage the root unless it chooses the leaf of Co 

before the root in the hrmting order, and the leaf of Co is not engaged by time s. This 

leaf will be engaged by times if and only if the root of one of the copies of Ck-I would be 

engaged by times (with the same arrival times and hunting orders in the copies). These 

events depend on arrival times and hunting orders for disjoint sets of inputs, so they are 

independent. This proves the second assertion. 6 
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We shall now show that the transformation Qk-l 1--+ Qk has a fixed point; that is, a 

solution Q of the integral equation 

(8.2) 

To do this, we differentiate (8.2) with respect to t to obtain the differential equation 

Q' ( t) = 1 - i ( 1 - Q( t) )2, (8.3) 

with the initial condition Q(O) = O. Since (8.3) does not involve t explicitly, it can be 

solved by quadratures: 

1
Q(t) dx 

1 = t, 
0 1 - 2(1 - x)2 

(8.4) 

where the lower limit of integration has been chosen to satisfy the initial condition. The 

substitution y = <10) reduces the integral to 

J2 f 11
,/2 dy = }2tanh-1 2._ - J2tanh-1 l - Q(t). 

lc1-Q(t))10 1 - Y2 v'2 v'2 

Thus 

Q(t) = l - J2 tanh (1n(l + J2) - ~) , 

since tanh-1 '72 = ln(l + \/'2). 
Lemma 8.2 We have Qk(t)-+ Q(t) uniformly int as k -+ oo. 

Proof: Set ~k(t) = Qk(t) - Q(t). Since O ~ Qo(t), Q(t) ~ 1, we have l~o(t)I < 1. 

Furthermore, (8.1) and (8.2) imply 

Since O ~ Qk-1(s), Q(s) ~ 1, we have 12 - Qk-1(s) - Q(s)I ~ 2, so that 

l~k(t)I ~ 1t l~k-1(s)lds. 

Thus, by induction on k we obtain 

This completes the proof. 6 
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For k ~ 0, let Dk denote the concentrator obtained by identifying the roots of three 

copies of Ck to form the root of Dk; the leaves of the copies of Ck ( of which there are 3 • 2k) 
are the leaves of Dk . Letting Rk(t) denote the probability that the root of Dk is engaged 

at time t, we clearly have Rk ( t) = 1 - ( 1 - Q k ( t) )3. Finally, put ting R( t) = 1- ( 1-Q( t) )3, 
we see that Rk(t) --+ R(t) uniformly in t as k --+ oo. Thus we have proved the following 

proposition. 

Proposition 8.9: As k--+ oo, the probability Rk(t) that the root of Dk is engaged at time 

t tends to 

R(t) = 1 - ( v'2 tanh ( in(l+ -12) - ~) y, 
uniformly in t. 

9. Sequential Arrivals for Modular Concentrators 

Consider now the concentrator Gq, and arbitrarily designate one output of this con­

centrator as the "root". Let Nk denote the subgraph of Gq induced by the inputs of Gq 
at distance at most 2k + 1 from the root and the outputs of G q at distance at most 2k + 2 

from the root. Call the outputs at distance 2k + 2 from the root the "leaves" of Nk. Set 

k = l(g - 6)/4J, where g is the girth of Gq, Since g = O(log q) (by Part I, Lemma 2.2), 

we have k --+ oo as q --+ oo. Furthermore, since 4k + 4 is less than the girth of Gq, Nk is a 

tree isomorphic to Dk, with root corresponding to root and leaves corresponding to leaves. 

Let Sq(t) denote the probability that the root of Gq is engaged at time t. 

Lemma 9.1 We have Sq(t) ~ Rk(t) uniformly int as q--+ oo, and hence k--+ oo. 

Proof: Suppose that we wish to determine whether the root of G q is engaged at some 

time t. This is determined by the arrival times and hunting orders of the inputs in N 1 , 

unless some input at distance three from the root has an earlier arrival time than the 

intermediate vertex at distance one; that is, unless there is a path of decreasing arrival 

times from the root to some leaf of N 2 • Even if there is such a path, the engagement of 

the root is determined by the arrival times and hunting orders of the inputs in N2 , unless 

there is a path of decreasing arrival times from the root to a leaf in N3 • In general, the 

engagement of the root is determined by the arrival times and hunting orders of the inputs 

in Nk, unless there is a path of decreasing arrival times from the root to a leaf in Nk, 

Let Xk denote the event "there is a path of decreasing arrival times from the root 

to a leaf in Nk". We have Pr(Xk) ::; 3 · 2k /k!, since there are 3 · 2k paths from the 

root to a leaf in Nk, and the probability that the arrival times along some such path are 
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decreasing is 1/k! (since all k! orders of arrival are equally likely). Furthermore, unless Xk 

occurs, the root is engaged in Gq when and only when it is engaged in Nk, Thus we have 

ISq(t) - Rk(t)I ~ 3 · 2k /k!. ~ 

Combining this with Proposition 8.3, we have proved the following theorem. 

Theorem 9.1: As q--+ oo, the probability Sq(t) that an output in Gq is engaged at time t 

tends to 

R(t) = 1- ( v'2tanh ( In(l+ v'2) - ~) )', 

uniformly int. In particular, the probability that an output is never engaged tends to 

( v'2tanh (1n(l+ v'2) - ~) r = 0.0145 .... 

10. Extensions for Sequential Arrivals 

The extensions we have described for batch arrivals all apply to sequential arrivals as 

well. In particular, for "( a : b )-concentrators with large girth", we obtain integral equations 

that can still be solved by quadratures, though not in general in terms of elementary 

functions. It is easy, however, to carry out the quadratures numerically, and to obtain the 

fraction of unused servers as a function of time. 

When the concentration ratio a/bis an integer, a new possibility arises that does not 

occur for (3 : 2)-concentrators. In this case, it is possible to assign fixed hunting orders 

to the inputs in such a way that each output is the first choice for a/b inputs, the second 

choice for another a/b, and so forth. For such an assignment, there can be no unused servers 

after all customers have arrived. The analysis of this mode of operation leads to differential 

equations ( or systems of differential equations) that cannot be solved by quadratures. It is 

easy, however, to integrate them numerically, and to obtain the fractions of requests that 

are served by their first choice, their second choice, and so forth. 
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