
TOOLBOX-BASED ROUTINES FOR

MACINTOSH TIMING AND DISPLAY

R.A. Rensink

Technical Report 89-11

June 1989

TOOLBOX-BASED ROUTINES FOR

MACINTOSH TIMING AND DISPLAY 1

R.A. Rensink 2

Technical Report 89-11

June 1989

Department of Computer Science

The University of British Columbia

Vancouver, BC, Canada V6T 1 W5

Abstract

Pascal routines are described for performing and testing various timing and display op

erations on Macintosh computers. Millisecond timing of internal operations is described, as

is a method to time inputs more accurately than tick timing. Techniques are also presented

for placing arbitrary bit-image displays on the screen within one screen refresh. All routines

are based on Toolbox procedures applicable to the entire range of Macintosh computers.

1 Submitted for publication
2 This work has been supported in part by the UBC Center for Integrated Computer Systems Research.

The author would like to thank James T. Enns of UBC Psychology for his encouragement and help, without
which this paper would not have been written. Eric Ochs provided useful feedback on earlier drafts of this
paper, and Jack Moxness supplied code that helped clarify the functioning of slots. Many thanks also to Bob
Woodham of UBC Computer Science for his support.

Toolbox-Based Routines for
Macintosh Timing and Display

Macintosh computers allow a wide variety of fast and flexible graphics operations to be

carried out at relatively low cost. In addition, there exist easy-to-use graphics editors such as

FullPaint and PixelPaint that allow complex images to be-produced in very little time. Con

sequently, the Macintosh has been used extensively for applications involving sophisticated

visual displays.

However, there is a problem. The Toolbox instructions for high-level control of the Mac

do not allow many real- time operations to be easily programmed. Furthermore, much of

the documentation on the relevant Toolbox procedures is obscure in key places, and in some

cases, important points are completely missed. The programming of real-time operations

such as millisecond timing and fast display has therefore relied on a combination of special

assembly-language routines (e.g., Westall, Perkey, and Chute, 1986; Lane and Ashby, 1987)

and special high-levellanguages such as Rascal (Reed College, 1985). These approaches work,

but suffer from being special-purpose - they are generally designed for only one processor or

machine architecture, and are not always portable to other machines. Furthermore, a casual

user must spend considerable time and energy to learn to use them correctly.

This article takes a different approach to the problem, one more in spirit with the philos

ophy of the Toolbox. It describes how timing and display operations can be carried out and

tested using available Toolbox routines. Pascal routines are given that show how the Time

Manager can be used to carry out millisecond timing of internal operations, as well as timing

of input events with an accuracy apparently limited only by the system hardware. Procedures

are also presented for placing displays on the screen within one refresh cycle; for Mac Ils,

these can be extended to allow an indefinite number of images to be sequentially displayed

with each screen refresh. These techniques can be used as the basis of timing and display

routines that will operate on all current models of the Macintosh computer, and presumably,

all future models as well.

Not all timing and display applications can be foreseen in advance. Consequently, this

article is somewhat tutorial in nature. The code for each routine is presented along with the

description of its operation, so that the reader can develop a feeling of how to use Toolbox

1

routines for particular timing and display operations. To keep things simple, there is no

error checking and only rudimentary input/output. All routines described in this paper

have been extensively tested, and found to operate in a consistent fashion on all Macintosh

models currently supported by Apple, viz., the Mac Plus, SE, Mac II, and Mac Ux. Many

are applicable to the 128K and 512K models as well, and all have been found to operate

correctly on the enhanced version of the 512K. To test these routines on particular machines,

they need only be incorporated into the program TD_Tests, shown in Fig. 1. This program

forms a minimal stand-alone "shell" that allows these routines to be run and tested on all

machines and systems.

2

program TD_Tests;
uses { Units depend on development system -- these are for Lightspeed[TH] Pascal}

Hemtypes, Quickdrav, OSintf, Toolintf, Packintf, Videointf;
canst

HaxLong = 2147483647;
TickFactor = 16.626822; { ticks to msec}
loSlot = O; { value used when no slot active}

type
THTaakPtr = ATMTask;
VBLTaskPtr = AVBLTask;

var
Eventrecord; CurrEvent

ErrCode : integer; { code returned for i/o errors}

{
{

DelayStat boolean; { global flag for delay}
TimerTask, TriggerTask, DelayTask TMTask; { timing tasks}
TimerPtr, TriggerPtr, DelayPtr: TMTaskPtr; { ptrs to timing tasks}

HainPort, ImagePort : grafPtr; { graphics ports}
HainBuffer, ImageBuffer, BackBuffer: ptr; { ptrs to bit image buffers}
HonitorX, HonitorY: integer; { dimensions of screen}
CardWidth; { width of screen buffer (in bytes)}
CurrMacType integer; { machine model}
SmallScreen boolean; { video system}
CurrSlot : integer; { slot identifier (large-screen Macs only) }
SlotTask: SlotintQElem; { slot-interrupt task (large-screen Macs only)}
SlotPtr: SQElemPtr; { slot-task ptr (large-screen Macs only)}
VideoTask: VBLTask; { screen-counter task (large-screen Macs only)}
VideoPtr: VBLTaskPtr; { screen-counter ptr (large-screen Macs only)}
videoCount longint; { global counter for screen refreshes}

setup and shutdown routines defined here
timing and display routines defined here

}
}

begin { TD_Tests }

{ ... general initialization procedures placed here }

setUpTimers; {setup Time Manager tasks}
setUpBuffers; {setup buffers containing images}
setUpVCounter; {setup counter for screen refreshes}

triggerTest; { test trigger-based timing}
anchorTest; { test anchor-based hybrid timing}
delayTest; { test millisecond delay}
inputTest; { test timing of keyboard input}
screenTest; { test fast display of image onto screen}

shutDovnVCounter;
shutDownBuffers;
shutDownTimers;

end; { TD_Tests }

Figure 1: shell program for timing and display procedures

3

Millisecond Timing

With the introduction of the Time Manager in the Mac Plus, Toolbox procedures became

available to access the millisecond timer on the VIA chip. Previously, this was possible only

by special assembly-language programs; for the 128K and 512K Macs, this is still the only way

to carry out such timing. These programs are described in great detail elsewhere (see, e.g.,

Westall, Perkey, and Chute, 1986), and will not not be di~cussed here. Rather, consideration

will be limited to machines with a Time Manager on board, i.e., all Macs currently supported

by Apple, as well as the enhanced version of the 512K.

The general characteristics of the Time Manager itself will not be described in great detail

here, except where they bear directly on issues of setting up and using millisecond timing. For

other information about the Time Manager, see pages IV-299 - IV-301 of Inside Macintosh

(1986).

Basics

The operation of the Time Manager is based upon entries of type TMTask that are placed

in a special Time Manager queue. Each of these entries has a tmCount field containing the

time (in msec) until the associated task is executed. This number is regularly decremented

until it reaches zero, at which point the Time Manager executes the procedure pointed to by

the tmAddr field of the task. It has been noted by Kieley and Higgins (1988) that tmCount is

incorrectly specified as being of type integer. It is actually a longint, and so can be used

for durations as long as 231 - 1 = 2147483647 msec, or roughly 596 hrs.

Procedure setUpTimers in Fig. 2 shows how timing tasks can be set up. Here, TimerTask

and TriggerTask are associated with an asynchronous null operation, while DelayTask in

vokes an asynchronous procedure that sets the global variable DelayStat to false. (Note

that asynchronous tasks preserve the value of the A5 registers.) The pointers associated

with these tasks are installed in the queue, and the tmCount fields are set by the PrimeTime

procedure. Testing (based on the tests described below) has shown that installing non-zero

values of tmCount does not always cause activation of Time Manager updating. However, if

the task is re-installed after a delay of more than approximately 6 ticks, updating is carried

out correctly; for caution, a delay of about 10 ticks is used in TD-Tests. The only known

condition under which this will not work is when running System version 6.0.3, which, for un

known reasons, apparently does not correctly update the tmCount field. For version 6.0.2, as

4

well as several commonly-used earlier Systems, this method has yielded consistently correct

operation over hundreds of trials.

A routine for shutting down the timing tasks (shutDownTimers) is also given in Fig. 2.

This procedure must be called before exiting the program, or a system crash will occur.

Timing

Timing can be done by accessing the tmCount field of a TMTask. In TD_Tests, the global

variable TimerTask is used exclusively for this purpose. Procedure milliCount in Fig. 3

shows how this value may be correctly accessed. Since the value of the tmCount field is

always decremented by the Time Manager, subtraction of tmCount from MaxLong yields a

positive value that constantly increases. Set up in this way, milliCount is analogous to

tickCount.

The procedure triggerTest (Fig. 3) is designed to test the consistency of millisecond

timing with that based on ticks. Timing begins at the ·point where tickCount reaches the

first mark tVal1, and stops where it reaches the second mark tVal1 + duration. Running

triggerTest shows that a straightforward access of tmCount does not result in precise timing.

Apparently (at least on the systems tested) tmCount fields are only updated every 5 ticks.

Simple access of tmCount thus yields lower precision than tick timing! To solve this, problem,

milliCount uses PrimeTime to install TriggerTask with a zero argument. This acts as a

"trigger", forcing the Time Manager to update the tmCount fields of all tasks in the queue

to the nearest millisecond.

Testing based on triggerTest shows this method of timing to be accurate to within

one millisecond over intervals of about a second or so, depending on the particular machine.

Beyond this range, errors of several milliseconds can accumulate. However, it is possible to

avoid cumulative error via a hybrid timer that uses tick timing for coarse "large-scale" timing

together with simple millisecond timing for finer "small-scale" measurement.

The procedure anchorTest in Fig. 4 provides an example of how this can be done. Coarse

timing is done by taking the difference between "anchor points", which are tickCount values

near the actual starting and stopping times. The difference between the actual times and the

anchors is then measured by simple millisecond timing; the upper limit to these differences

must be less than a second or so, but otherwise there are no special constraints. The subrou

tine aTest in Fig. 4 shows how the anchor points may be set. The first (tStart) is one more

5

{A+} {asynchronous} procedure DummyProc; { dummy procedure for timers}
begin
end;
{A-}

{A+} {asynchronous} procedure DelayProc; { procedure for delay}
begin

DelayStat .- false; { remove delay condition}
end;
{A-}

procedure setUpTimers;
var

tVal : longint;
begin { setUpTimers}

TimerPtr := GTimerTask;
TriggerPtr := GTriggerTask;
DelayPtr := GDelayTask;
TimerTask.tmAddr := GDummyProc; { dummy task}
TriggerTask.tmAddr := GDummyProc; { dummy task}
DelayTask.tmAddr := GDelayProc; { change DelayStat when activated}

InsTime(QElemPtr(TimerPtr)); { install timing tasks into queue}
InsTime(QElemPtr(TriggerPtr));
InsTime(QElemPtr(DelayPtr));
PrimeTime(QElemPtr(TimerPtr), MaxLong); { set tmCount fields}
PrimeTime(QElemPtr(TriggerPtr), O);
PrimeTime(QElemPtr(DelayPtr), O);
tval := tickCount + 10;
repeat
until tickCount > tVal; { wait and reset TimerTask }
PrimeTime(QElemPtr(TimerPtr), MaxLong);

end; { setUpTimers }

procedure shutDownTimers;
begin { shutDownTimers };

RmvTime(QElemPtr(TimerPtr));
RmvTime(QElemPtr(TriggerPtr));
RmvTime(QElemPtr(DelayPtr));

end { shutDownTimers };

Figure 2: procedures for setting up and shutting down timing tasks

6

fwiction milliCount longint;
begin

PrimeTime(QElemPtr(TriggerPtr), O);
milliCount .- MaxLong - TimerTask.tmCount;

end;

procedure triggerTest;
procedure tTest (triggerStat

var
boolean; duration

tVal1, tVal2, mStart, mStop, mDiff : longint;
begin { tTest }

tVal1 := tickCount + 2;
tVal2 := tVal1 + duration;
repeat
until tickCount > tVal1; { wait for first mark}
if triggerStat then

integer);

mStart := milliCount { use trigger before access}
else

mStart .- MaxLong - TimerTask.tmCount; { use ·simple access}

repeat
until tickCou.nt > tVal2; { wait for second mark}
if triggerStat then

mStop := milliCount { use trigger before access}
else

mStop := MaxLong - TimerTask.tmCount; { use simple access}

mDiff := mStop - mStart;
if triggerStat then

writeln(duration,• ticks (using trigger) is •,mDiff,• msec')
else

writeln(duration,' ticks (without trigger) is ',mDiff,' msec•);
end; { tTest }

begin { triggerTest}
tTest(false,1); { test 1-tick duration without trigger}
tTest(true,1); { test 1-tick duration using trigger}

end; { triggerTest }

Figure 3: procedure for triggered millisecond timing

7

than the value of tickCount at the time the seconds counter (accessed by getDateTime)

reaches the first mark sVal1; the difference mStart2 - mStart1 consequently becomes the

duration from the start of timing to the anchor point. A similar rationale is used to deter

mine the point at which the seconds counter reaches the second mark sVal2. The difference

between the two mark points is then calculated by converting the difference bet.ween the

anchors to milliseconds and adding or subtracting the appropriate small-scale measurements.

Testing with anchorTest shows that hybrid timing of internal operations can be carried

out with millisecond accuracy over arbitrarily long stretches of time, regardless of the load

(internal or external) placed upon the system.

This approach can also be used to time inputs, as _shown in procedure inputTest in Fig.

5. The event queue is first cleared. The procedure then loops until an event is detected

by OSEventAvail; the loop is subsequently exited and the anchor point set to the value of

tickCount. The millisecond timer is then triggered, and the difference between it and the

time to the next tick is measured. Subtracting this interval from 17 msec (the time for a

tick) yields the time from the anchor point.

Such timing is obviously at least as accurate as that based upon ticks. Furthermore,

repeated testing of inputTest shows the millisecond difference between anchor and detected

response to be fairly evenly distributed between O - 16 msec. This is consistent with a very

fast and uniform response by OSEventAvail to input events; if the system response to inputs

has a standard deviation of a millisecond or so, such a distribution would be expected. Lane

and Ashby (1987) report that for models earlier than the SE, the time from key press to

system interrupt takes a constant 6 msec. For the SE and Mac II, ADB control of keyboard

input requires any keyboard event to be signalled within 260 µsec of its occurrence. Provided

that the keyboard is the active input device (i.e., the device that has last sent input to the

system), and that no service requests are pending from any other device, the keyboard will

be continuously polled - without using processor time - until a key is pressed (see pages 11-9

- 11-16 and 11-25 of Macintosh Family Hardware Reference, 1986). The documentation is

somewhat vague on this point, but the polling rate will be at least once every 11 msec, and

may possibly be much higher than that. Therefore, although proof cannot be given using the

routines described here, it is plausible that high accuracy timing of inputs can be achieved

by this method. An exact measurement of this accuracy must await experiments based on

external timers.

8

procedure anchorTest;
procedure aTest (anchorStat boolean; duration: integer);

var
tStart, tStop, sVal1, sVal2, sCount longint;
mStart1, mStart2, mStop1, mStop2 : longint;
mStartDiff, mStopDiff : longint;

begin { aTest }
if duration > 0 then begin

getDateTime(sCount);
sVal1 := sCount + 1;
sVal2 := sVal1 + duration;
repeat

getDateTime(sCount);
until sCount >= sVa11; { wait for first mark point}

tStart := tickCount + 1; { set 'start• anchor= following tick}
mStart1 := milliCount;
repeat
until tickCount >= tStart;
mStart2 := milliCount;
mStartDiff : = mStart2 - mStart 1;

repeat
getDateTime(sCount);

until sCount >= sVa12; { wait :for second mark point}
tStop := tickCount + 1; { set 1 stop 1 anchor= following tick}
mStop1 := milliCount;
repeat
until tickCount >= tStop; { wait :for anchor point}
mStop2 := milliCount;
mStopDi:ff := mStop2 - mStop1;

if anchorStat then begin
mDi:f:f := round((tStop - tStart) * TickFactor) + mStartDif:f - mStopDi:ff;
writeln(duration, 1 seconds (using anchors) is 1 ,mDi:f:f, 1 msec•);

end { i:f }
else begin

mDi:ff := mStop1 - mStart1;
writeln(duration, 1 seconds (without anchors) is 1 ,mDi:f:f, 1 msec 1

);

end; { else }
end; { if }

end; { a Test }

begin { anchorTest}
aTest(false,10); { test 10-second duration without anchors}
aTest(true,10); { test 10-second duration using anchors}

end; { anchorTest}

Figure 4: procedure for anchor-based millisecond timing

9

procedure inputTest;
var

ix : integer;

procedure iTest;
var

tStop, mStop1, mStop2 longint;
begin { iTest }

flushEvents(EveryEvent, O);
repeat
until OSEventAvail(KeyDownMask, CurrEvent); { wait for key press}

tStop := tickCount; { set 'stop' anchor= current tick}
mStop1 := milliCount;
repeat
until tickCount > tStop; { wait for nearest tick}
mStop2 := milliCount;

writeln('tickCount difference is ',tStop - CurrEvent.when,' ticks');
writeln('difference from anchor is ',17 - (mStop2 - mStop1),' msec');

end; { iTest }

begin { inputTest}
flushEvents(EveryEvent, O);
repeat
until OSEventAvail(KeyDownMask, CurrEvent); { make keyboard the active device}

for ix:= 1 to 10 do
iTest;

end; { inputTest}

Figure 5: procedure for testing timing of inputs

10

procedure mDelay (del: longint);
begin { mDelay }

if del > 0 then begin
PrimeTime(QElemPtr(DelayPtr), del);
DelayStat := true;
while DelayStat do { DelayStat set by DelayTask}

end; { if }
end; { mDelay }

procedure delayTest;
procedure dTest;

var
sVal1, sVal2, sCount longint;

begin { dTest }
getDateTime(sCount);
sVal1 := sCount + 1;
repeat

getDateTime(sCount);
until (sCount >= sVal1); { synchronize with seconds timer }
mDelay(del);
getDateTime(sVal2);

writeln(sVal2 - sVali, 1 -second change tor ',del, 1 delay');
end; { dTest }

begin { dTelaytTest}
dTest(999); { test mDelay tor 1-second delay}
dTest(1000);
dTest(1001);

end; { delayTest }

Figure 6: procedure for millisecond delay

Delays

One other useful real-time capability is the control_of delays to millisecond precision. The

routine mDelay in Fig. 6 shows how this can be done. Delay .is carried out via DelayTask,

which is devoted exclusively to this operation. This task calls the asynchronous procedure

DelayProc, which sets the global flag DelayStat to false.

When mDelay is called, it places DelayTask in the Time Manager queue, and loops until

DelayStat is set to false by DelayProc. Testing against the seconds timer (as done in

delayTest) shows that delays of up to a second or so can be carried out to millisecond

accuracy by this simple mechanism. Longer delays can be carried out using an anchor-based

mechanism similar to that used for timing.

11

Fast Display

For machines prior to the Mac II (viz., the 128K, 512K, Mac Plus, and SE), displays can

be changed at refresh rates by paging between the main and alternate video buffers. The

method for doing this is presented on page III-20 of Inside Macintosh (1985). This method

will not be further described here, except to point out that it is limited to two displays, and

cannot be applied to Mac II - type machines. This section describes how these limitations

can be overcome to allow sequential display of an indefinite number of bit images at refresh

rates on all machines with standard display monitors.

It should be emphasized that this section applie~ only to bit (or binary) images, and not

full-color displays. Also, the way that bit images are created and represented will not be

described in great detail. For more information about 'these images, see e.g., pages 1-142 -

1-145 of Inside Macintosh (1985), or pages 99 - 120 of Macintosh Revealed (Chernicoff, 1985).

Basics

Although there exist specific Toolbox procedures for the machine-independent display of

images, these generally require several ticks to transfer an image to the screen. One way of

overcoming this problem is to draw the image directly on the screen via Toolbox commands.

This will work for extremely simple images, but will still be susceptible to problems of screen

synchronization if flicker-free display is required. The more general approach described here

is to store images prior to display, either by using graphics commands on an off-screen port

or by directly loading preassembled images from some other source. These are then copied

directly to the screen buffer for display. If data can be transferred quickly enough, an image

of arbitrary complexity can be placed upon the screen within one refresh cycle.

Procedure setUpBuffers in Fig. 7 shows how image buffers (together with their associ

ated graphics ports) can be set up. The subroutine getParams first sets the values of all global

variables pertaining to the buffers, such as the horizontal and vertical dimensions. Memory

is allocated for the corresponding bit images, and the associated graphics ports are then set

up. The complementary procedure shutDownBuffers in Fig. 8 shows how the memory may

be released after use.

12

procedure setUpBuffers;
var

screenSize: longint;

procedure getParams;
var

environinfo : sysEnvRec;
begin { getParams}

ErrCode := sysEnvirons(1, environinfo); { get info on current machine}
CurrHacType := environinfo.machineType;
SmallScreen := CurrMacType < envMacII;
with MainPort· do begin

MonitorX := portrect.right; { horizontal screen dim}
MonitorY := portrect.bottom; { vertical screen dim}
CardWidth := portbits.rowbytes; { width of screen buffer (in bytes) }

end; { with }
end; { getParams }

procedure assignPort (var grport : grafPtr; grBuffer: ptr);
begin { assignPort}

grport := grafPtr(newptr(sizeof(grafport))); { allocate new port}
openPort(grport); { initialize port}
with grPort· .portbits do begin

baseaddr := grBuffer;
rowbytes := MonitorX div 8;
setRect(bounds, 0, 0, HonitorX, MonitorY);

end; { with - grPort}
grport·.baseaddr := grBuffer; { assign buffer to port}

end; { assignPort }

begin { setUpBuffers }
MainPort := grafPtr(newptr(sizeof(grafport))); {setup main (screen) port}
openPort(MainPort); { initialize port; screen becomes bit image for port}
MainBuffer := MainPort·.baseaddr; { address of screen buffer}

getParams; { read off global variables for screen}
screenSize := (MonitorX div 8) * longint(MonitorY); { size in bytes}
ErrCode := compactMem(screenSize); { create Image port t buffer}

ImageBuffer := newptr(screenSize);
assignPort(ImagePort, ImageBuffer);

{ ... image can be created here if required ... }

setport(MainPort);
end; { setUpBuffers }

Figure 7: procedure for setting up image buffers

13

procedure shutDownBu:tfers;
begin { shutDownBu:tfers}

disposPtr(BackBu:tfer);
disposPtr(ImageBuffer);
closePort(ImagePort);
disposPtr(ptr(ImagePort));
closePort(MainPort);
disposPtr(ptr(MainPort));

end; { shutDomBuffers}

Figure 8: procedure for shutting down image buffers

Owing to differences in video circuitry, it is useful to distinguish between two groups of

machines: "small-screen" Macs and "large-screen" Macs. The former group encompasses the

128K, 512K, Mac Plus, and SE models. These have in common (1) a fixed (standard) screen

342 pixels high and 512 pixels wide, (2) a screen refresh_.synchronized with the tick timer,

running at 60.15 Hz, and (3) an alternate video buffer that can be displayed by clearing bit

6 in VIA data register A.

"Large-screen" machines, which include the Mac II and Mac IIx, operate quite differ

ently. These machines have (1) video cards containing screen buffers designed for a variety

of screen sizes, (2) a screen refresh that depends on the particular monitor used, and (3) no

alternate screen buffer. Although many different types of monitor are possible, one of the

most commonly used is the "standard" Mac II monitor. This has a screen 480 pixels high

and 640 pixels wide, with a refresh rate of 67 Hz.

It should be noted that because of the two different kinds of video circuitry, the procedures

described below depend on the kind of machine running the program. However, the global

variable SmallScreen (determined in procedure getParams in Fig. 7) can be used to select

the appropriate procedures for the machine being used, as is shown in the simple routine

screenTest in Fig. 9. In this way, routines can achieve a fair degree of machine-independent

operation.

14

procedure screenTest;

{
{

procedure smScreenTest defined here
procedure lgScreenTest defined here

begin { screenTest}
if SmallScreen then

smScreenTest
else

lgScreenTest;
end; { screenTest }

}
.}

Figure 9: machine-independent procedure for testing fast transfer of images

Small-Screen Macs

The (main) screen buffer for small-screen Macs has a size of 342 rows x 512 columns;

images to be displayed must therefore be stored in bit images of size 21888 bytes. The images

themselves are created prior to display, either by carrying out a set of standard graphics

commands using the port associated with the image (cf. setUpBuffers in Fig. 7), or by

directly loading the images in from some other source. The number of images that can be

set up in this fashion is limited only by the available RAM.

A routine for displaying images within one screen refresh is given by procedure moveimage

in Fig. 10. This routine relies on a sequence of blockMove commands that transfer data

between the buffer and the screen within 18 - 24 msec, depending on the particular machine

used. Although data transfer using this method is not quite fast enough to move an image

within one screen refresh, careful synchronization with the beginning of a video scan (by the

use of mDelay) allows the location of the pixels being loaded into RAM to lag behind the

scanning beam during the first tick, and to lead it during the second tick. Consequently, the

image is displayed on the screen within one refresh cycle. Thus, provided that a pre-display

duration of one tick is reserved for each change of display, an indefinite number of images

can be transferred to the screen without flicker. It is important to realize that once an image

has been moved to the screen, it must remain there during the pre-display interval of the

succeeding image. Thus, images must remain on the screen for a minimum of two ticks.

Apart from this, however, there are no constraints on.the duration of a screen display.

An important note concerning moveimage is that a .sequence of blockMove commands

must be used, rather than just a single instruction. This is necessary because blockMove

15

procedure moveimage(fromPtr, toPtr: ptr); { small-screen data transfer}
const

DelayVal = 4; { delay for start of transfer}
SmallBlock = 1368; { 1/16 of screen (in bytes)}
LargeBlock = 6472; { 1/4 of screen (in bytes)}

var
ix: integer;

begin { moveimage}
mDelay(DelayVal);
for ix:= 1 to 4 do begin { transfer first quarter}

blockMove(fromPtr, toPtr, SmallBlock);
toPtr := ptr(longint(toPtr) + SmallBlock);
fromPtr := ptr(longint(fromPtr) + SmallBlock);

end; { for }

for ix := 1 to 2 do begin { transfer next two quarters}
blockMove(fromPtr, toPtr, LargeBlock);
toPtr := ptr(longint(toPtr) + LargeBlock);
fromPtr := ptr(longint(fromPtr) + LargeBlock);

end; { for }

for ix:= 1 to 4 do begin { transfer last quarter}
blockMove(fromPtr, toPtr, SmallBlock);
toPtr := ptr(longint(toPtr) + SmallBlock);
fromPtr := ptr(longint(fromPtr) + SmallBlock);

end; { for }
end; { move Image }

procedure smScreenTest;
var

mStart, mStop : longint;
tVal, tStart, tStop: longint;

begin { smScreenTest}
fromPtr := ImageBuffer; { prepare for transfer to screen}
toPtr := MainBuffer;
tVal := tickCount + 2;
tStart := tVal + 1; { image appears one tick after transfer starts}
repeat
until tickCount >= tVal; { synchronize with screen refresh}
mStart := milliCount;
moveimage(fromPtr, toPtr);
tStop .- tickCount;
mStop := milliCount;

writeln(•transfer to screen took ',mStop - mStart,• msec•);
writeln(' and •,tStop - tStart,' refresh cycles•);

end; { smScreenTest}

Figure 10: procedure for fast image transfer on small-screen Mac

16

transfers data in the reverse direction to that of the scanning beam, beginning at the end

of the buffer and ending at the start. If a single blockMove instruction is used to transfer

an entire image, this will completely disrupt the synchronization of data transfer with the

scanning beam, resulting in a noticeable distortion of briefly-displayed images.

Large-Screen Macs

The large variety of monitor configurations possible for large-screen machines introduces

a few more complications into video display. To begin with, large-screen machines use "slots"

to handle monitor operations, each slot being assigned to a particular monitor. Furthermore,

monitors may be driven by different video cards, each with its own particular characteristics.

These matters are discussed on pages V-426 - V-428 and V-566 - V-569 of Inside Macintosh

(1988), and will not be described in detail here. In the interests of simplicity, attention will be

restricted to single-slot systems. It is assumed that the slot number (which must be between

9 and 14) is known.

The basic ideas behind fast display on large-screen Macs are very similar to those used

for small-screen systems. Since tickCount cannot be used to synchronize data transfer with

screen scans, it is necessary to use a vertical-retrace task for this purpose. In a fashion

analogous to that used in the Time Manager queue, the vblCount field of a vertical-retrace

task is decremented at the beginning of each screen refresh cycle; when this value reaches zero,

the associated procedure is executed (see pages V-566 - V-569 of Inside Macintosh (1988) for

further details). Procedure setUpVCounter in Fig. ~1 shows how the vertical-retrace task

VideoTask is set up. The VideoProc procedure associated with this task increments the

global counter videoCount each time it is called. It also resets the vblCount field so that

VideoTask is called during each vertical blanking interval.

Once it has been set up, VideoTask is installed into the vertical-retrace queue associated

with the slot. The slot-interrupt task SlotTask is then placed into the slot-interrupt queue.

This task, set up just after VideoTask, is called at each slot interrupt, using doVBLTask to

carry out the tasks in the queue associated with the slot. Since an interrupt is generated at

the beginning of every vertical blanking interval, this ensures that VideoTask increments the

value of videoCount, so that it functions analogously to tickCount.

Exactly as in the case of the Time Manager queue, care must be taken to shut down the

vertical-retrace tasks before exiting the program. Procedure shutDownVCounter in Fig. 11

17

shows how this can be done.

The screen buffer for a large-screen Mac is located in the RAM of the video card being

used for display. The width of the screen buffer (in bytes) can be read off the rowbytes

field of the screen bitmap, as shown in getParams in Fig. 7. When a monitor of.width w is

used, the displayed image is held in the w leftmost columns of the buffer, the other columns

remaining unused. Buffers for bit images, of course, need only be large enough to hold the

images to be displayed.

Procedure lgScreenTest in Fig. 12 shows how a bit image can be transferred to a

"standard" monitor of size 480 X 640 pixels. Data transfer is based on the use of typecasting,

which allows rows of the image to be declared as arrays. By assigning these arrays to the

corresponding locations in the screen buffer, only the image bits are replaced, rather than

the entire contents of the buffer. In this way, large-screen machines can generally move an

image to the screen within one refresh cycle. For example, using procedure lgScreenTest

on a standard Mac II, it has been found that an image can be transferred to the screen in 14

msec, which is less than the 15 msec used for a screen refresh. Thus, an indefinite number of

bit images can be sequentially displayed on this screen at refresh rates.

Although this technique is rather specialized, it can be straightforwardly adapted for use

on other machines and other screen sizes. Furthermore, if the screen size is so large that

an image cannot be transferred sufficiently quickly, the synchronization technique for small

screen Macs can almost always be used to ensure single-refresh display of images. And finally,

if a general display system indifferent to monitor size is required, it is only necessary to create

image buffers the size of the screen buffer, and to transfer their contents with a variant of

the moveimage routine given in Fig 10.

Combining Timing and Display

The procedures described above can be straightforwardly combined and/or modified to

perform various interesting tasks. For example, it is possible to combine routines from

anchorTest and screenTest into a simple routine that measures the time from image pre

sentation to key press. The only complication is that the small-screen version must ensure

that the start anchor is one tick greater than the actual value of tickCount at the beginning

of data transfer, since the image does not begin to appear on the screen until the transfer is

halfway completed.

18

{A+} {asynchronous} procedure VideoProc; { increment video counter}
begin

videoCount := videoCount + 1; { increment global counter}
VideoTask.vblCount .- 1; { reset .vblCount field}

end;
{A-}

{A+} {asynchronous} procedure SlotProc;
begin

Errcode .- doVBLTask(CurrSlot); {carryout vertical-retrace task}
end;
{A-}

procedure setUpVCounter;
begin { setUpVCounter}

CurrSlot := loSlot; { dummy value}
if not SmallScreen then begin {setup active slot}

videoCount := O; { initialize global value}
VideoPtr := OVideoTask;
with VideoPtr· do begin { set up vertical-retrace task }

qType := Ord(vType);
vblAddr := OVideoProc;
vblCount := 1;
vblPhase := O;

end; { with }

SlotPtr := OSlotTask;
with SlotPtr· do begin { set up slot-interrupt task}

sqType := 6; { slot queue type}
sqPrio .- 266; { highest priority}
sqAddr := OSlotProc;
sqParm := O;

end; { with }

readln(CurrSlot); { must have value between 9 and 14}
ErrCode .- slotVInstall(QElemPtr(VideoPtr), CurrSlot);
ErrCode := Sintinstall(SlotPtr, CurrSlot);

end; { it }
end; { setUpVCounter}

procedure shutDownVCounter;
begin

if CurrSlot <> BoSlot then begin
ErrCode .- SintRemove(SlotPtr, CurrSlot);
ErrCode .- slotVRemove(QElemPtr(VideoPtr), CurrSlot);

end;
end;

Figure 11: procedures for setting up and shutting down video task

19

procedure lgScreenTest (duration: integer); { for monitor 480 high and 640 wide}
type

rowType = array[1 .. 20] of longint; { 20 longints = 640 pixels}
rowPtr = -rowType;

var
row, monitorWidth : integer;
vVal, vStart, vStop longint;
mStart, mStop: longint;
toBase, fromBase rowPtr;

begin { lgScreenTest}

fromBase := rowPtr(ImageBuffer); { prepare for transfer to screen}
toBase := rowPtr(MainBuffer);
monitorWidth := MonitorX div 8; { horizontal size of buffer in bytes}
vStart := videoCount + 1;
repeat
until (videoCount >= vStart); { synchronize with ·screen refresh}
mStart := milliCount;
for row:= 1 to MonitorY do begin

toBase- := fromBase-;
toBase := rowPtr(longint(toBase) + CardWidth); { video width= CardWidth * 8}
fromBase := rowPtr(longint(fromBase) + monitorWidth);

end; { for }
vStop .- videoCount;
mStop := milliCount;

writeln(•transfer to screen took •,mStop - mStart,' msec•);
writeln(• and •,vStop - vStart,' screen scan(s)•);

end; { lgScreenTest}

Figure 12: procedure for fast image transfer on large-screen Mac

20

Such a procedure suffers from one minor restriction, viz., if a key press occurs while data

is being moved, the response will not be noticed until after the data transfer is ended. This

might be a problem for processes such as animated display, where data transfer takes place

during a significant fraction of the time. However, transfer can be carried out in blocks that

each require less than a millisecond to move. Precise timing can then be carried out by

checking the status of OSEventAvail after each of these moves.

Finally, it should also be pointed out that the display routines can be readily modified to

allow the rows of an image to be transferred to the screen at any rate and in any order. Thus,

for example, if interlacing of the displayed rows is done carefully, an image can be transferred

over an extended period of time, leading to a smooth transition from the image previously

on the screen.

21

References

Apple Computer. (1985). Inside Macintosh, Volumes [-Ill. Menlo Park, CA: Addison
Wesley.

Apple Computer. (1986). Inside Macintosh, Volume IV. Menlo Park, CA: Addison Wesley.

Apple Computer. (1988). Inside Macintosh, Volume V. Menlo Park, CA: Addison Wesley.

Apple Computer. (1988). Macintosh Family Hardware Reference. Menlo Park, CA: Addison
Wesley.

Chernicoff, S. (1985). Macintosh Revealed, Volume 1 : Unlocking the Toolbox. Hasbrouck
Heights, NJ: Hayden.

Kieley, J.M., and Higgins, T.S. (1988). Precision Timing Options for the Apple Macintosh
Family of Computers, presented at the Eighteenth Annual Meeting of the Society for
Computers in Psychology. ·

Lane, D.M., and Ashby, B. (1987). PsychLib: A library of machine language routines
for controlling psychology experiments on the Apple Macintosh computer, Behavior
Research Methods, Instruments, & Computers, 19, 246-248

Reed College. (1985). Rase.al user manual: Macintosh ianguage for real time I/0 oriented
development. Portland, OR: Metaresearch.

Westall, R., Perkey, M.N ., and Chute, D.L. (1986). Accurate millisecond timing on Ap
ple's Macintosh using Drexel's Milli Timer, Behavior Research Methods, Instruments, &
Computers, 18, 307-311

22

l.

