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Abstract 

We formulate Dempster Shafer Theory in terms of Propositional Logic, using the 
implicit notion of provability underlying Dempster Shafer Theory. D(:.mpster Shafer 
theory ca.n be modeled in terms of propositional logic by the tuple (E, u), where Eis a 
set of propositional clauses a.nd {! is an assignment of measure to ea.ch clause Ei E .E. 
We show that the disjunction of minimal support clauses for a clause .Ei with respect to 
a set .E of propositional clauses, {(.Ei, .E), is a symbolic representation of the Dempster 
Shafer Belief function for .Ei. The combination of Belief functions using Dempster's Rule 
of Combination corresponds to a combination of the corresponding support clauses. The 
disjointness of the Boolean formulae representing DS Belief functions is shown to be 
necessary. Methods of computing disjoint formulae using Network Reliability techniques 
a.re discussed. 

In addition, we explore the computational complexity of deriving Dempster Shafer 
Belief functions, including that of the logic-based methods which are the focus of this 
paper. Because of intractability even for moderately-sized problem instances, we propose 
the use of efficient approximation methods for such computations. Finally, we examine 
implementations of Dempster Shafer theory, based on domain restrictions of DS theory, 
hypertree embeddings, and the ATMS. 

Keywords: Dempster Shafer Theory, Uncertainty, Logic, Theorem Proving, Assumption­
based Truth Maintenance System, Reasoning System. 
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1 INTRODUCTION 

It has been claimed that uncertainty calculi lack the semantics of logic a.nd that logic lacks the 
notions of uncertainty essential to modeling human reasoning, such that both a.re inadequate 
for ma.ny AI problems. Several attempts have been made to develop new uncertainty calculi, 
new logics, or to integrate formal logic with a.n uncertainty calculus to create a.n adequate 
knowledge representation language. In this paper we show the relationships between a par­
ticular uncertainty calculus, Dempster Shafer Theory, a.nd propositional logic, in a.n effort to 
assess the adequacy of Dempster Shafer theory as a knowledge representation tool. 

It has been proposed that Dempster Shafer Theory rivals Probability Theory in expressive 
power a.nd effectiveness as a calculus for reasoning under uncertainty. Probability theory is the 
best understood uncertainty calculus, both in terms of its philosophical justifications ([Cox, 
1946], [Savage, 1954]), a.nd its applicability to AI [Pearl, 1988]. Hence it is the standard 
by which other uncertainty calculi are judged. There has recently been much study of DS 
Theory, in terms of its adequacy as an uncertainty calculus ([Pearl, 1988], [Prade, 1985]), a.nd 
its theoretical underpinnings (especially its relation to probability theory ([Pearl, 1988], [Fagin 
and Halpern, 1989], [Ruspini, 1987], [Grosof, 1986])). 

This paper makes two theoretical contributions a.nd one implementational contribution. 
The first theoretical contribution is an explicit definition of DS Theory in terms of Proposi­
tional Logic, using the implicit notion of provability underlying D8 Theory. d'Ambrosio [1987], 
Laskey and Lehner [1988), Prova.n ([1988a], [1989)) a.nd Pearl [1988) have recently shown how 
Belief ca.n be defined in terms of provability relations. We formalize a.nd extend those notions. 

DS theory was introduced by Dempster [1968] based on statistical notions, but more re­
cently has been described in set theoretic terms [Shafer, 1976]. Shafer [1976] defined a belief 
measure (Bel) based on the notion of the representation of a set of focal propositions 0 in 
terms of its subsets. Given an assignment of mass to each of a mutually exclusive set of fo­
cal propositions 0 = {(Ji, ... , Bn}, measures of uncertainty, called Bel(B), can be assigned to 
subsets 9 E 28 • · 

In this paper we describe a logical interpretation of DS theory. We show that DS theory 
ca.n be characterized in terms of Boolean operations, on top of which a set of constraints 
(specifically an uncertainty measure) is assigned. The constraints on the propositions are 
fundamentally Boolean, a.nd the uncertainty measure is secondary. In conducting this analysis, 
we assume a [O, 1] measure assignment Ui to each element :Ei of a set E of propositional clauses. 
This is similar to Kong [1986], who viewed each clause as a "joint variable", thus converting 
a set of clauses into belief network notation. 

In addition, we clarify the understanding of Dempster's combination rule by showing its 
relationship to combining proofs in some minimal fashion. We show that the support set for 
a clause :Ei with respect to the set I: of propositional clauses, e(:E,, I:), when represented in 
terms of symbols for the e, 's is a symbolic representation of the Dempster Shafer Belief ftmc­
tion for I:,. We show that the pooling of information, which in DS Theory is represented as 
Bel(B) = EBi Beli, corresponds to support set combination in our logical formulation. In ad­
dition, explicitly computing the numerical value for Bel(:Ei) from its Boolean formula e(:Ei, I:), 
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requires disjointness of the Boolean formula. We show that computing disjoint Boolean for­
mulae is equivalent to evaluating the network reliability of a network defined by E or by 
e(Ei, E). 

· Thia analysis thus describes both how Dempster Sha.fer (DS) Theory can be assigned a 
logical semantics and propositional logic can be extended with an uncertainty calculus. This 
provides insight into how DS uncertainty measures can be assigned to reasoning systems based 
on logic, such as PROLOG rule-based systems, or truth maintenance systems ([Doyle, 1979], 
[de Kleer, 1986]). · · 

In the process of analyzing the relationship between DS theory and propositional logic, 
we cla.rffy the differences between DS theory and probability theory. We show, with respect 
to probability theory, that DS theory is a complementary (and different) means of assigning 
uncertainty measures to propositions. It can be defined with respect to notions of logical 
provability, which probability theory cannot. This underlying notion of provability limits DS 
theory to situations where a notion of provability is appropriate.1 

The second theoretical contribution consists of an exploration of the computational com­
plexity of deriving DS Belief functions. We state the complexity of the problem underlying 
Dempster's Rule of Combination, as well as the complexity of the logic-based algorithms pro­
posed in this paper. Because of intractability, even for moderately-sized problem instances, we 
propose the use of approximation algorithms. We discuss incorporating some of the techniques 
for computing the reliability of networks, given the isomorphism between DS Belief function 
computation and network reliability computation. 

The third contribution is an examination of the issues related to implementing DS the­
ory. We briefly examine implementations of DS Theory, including: (1) those based on the 
traditional subset-relationship approach, (2) those based on hypertree embeddings, and (3) 
those based on our logical formulation (specifically an implementation within an Assumption.­
based Truth Maintenance System (ATMS) [de Kleer, 1986]). Because of the computational 
intractability of these implementations, we describe implementations of restrictions of DS 
Theory, and we propose efficient DS Belief functions approximation methods. 

The remainder of the paper is organised as follows. Section 2 briefly defines several im­
portant concepts in DS Theory, including Belief and Plausibility functions and Belief function 
updating. Section 3 introduces our logical notation. Section 4 defines DS Theory in terms of 
this notation. Section 5 defines the computational complexity of deriving DS Belief functions. 
In addition to showing the complexity of Dempster's rule for evidence pooling, we state results 
for computing' the logical functions which correspond to the DS Theory functions. Section 6 
examines several implementations of DS Theory, based on domain restrictions of DS theory, 
hypert-ree embeddings, and the ATMS. Section 7 discusses .related work. Finally, Section 8 
summarizes our conclusions. 

1The three prisoners' dilemma., discussed in [Pearl, 1988], is one example for which DS theory is not 
applicable. · 
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2 DEMPSTER SHAFER THEORY REVIEW 

Many good descriptions of Dempster Sha.fer theory exist, e.g. [Dempster, 1968], [Shafer; 
1976], and secondary sources [Prade, 1985], [Pearl, 1988], [Smets, 1988]. We state a few ha.sic 
relationships, and refer the reader to the references. 

. In DS theory, a measure is assigned to elements as well a.s subsets of a set of focal proposi­
tions 0 = {81, •••,Om}. The set of focal propositions, ca.lled the frame of discernment, consists 
of a. set of exhaustive and mutually exclusive propositions. The assignment of measure to ea.ch 
element of the frame of discernment is ca.lled a ha.sic probability assignment (bpa). A mass 
function e assigns weights to supersets of this frame of discernment, e : 28 -+ [0, 1], subject 
to the following properties: 

1. e(O) E (0, 1] for every 8 E 0, 

2. e(0) = 0, and 

3. Esee e(O) = 1. 

There are several evidence summarizing measures in DS theory which can be. derived from 
this mass function, which include Belief, Plausibility and Comrrionality.2 

Belief is the degree of b.elief in proposition subsets from which 8 can be proven, or the subsets 
which necessarily support 8: 

Bel(8) = I: e(c,o), (1) 
,p~8 

Plausibility is the belief in subsets that do not disprove (J, or the subsets which possibly support 
8: 

Pls(8) = 1- L e(c,o) = 1- Bel(~8). (2) 

Commonality is the degree of belief which can move freely to all the elements of (), or the 
evidence focused on the supersets of 8: · 

(3) 

Information from multiple sources of evidence over a common set 0 of focal propositions 
can be pooled using Dempster's Rule of Combination. Thus, for two focal propositions such 
that 01 n 82 = 8, and two bpa.'s, e1 and e2, the combined weight assigned to() is given by 

~ e1(01)e2(02) 
. e(O) = s1nB2=B . • 

1 - I: u1(81)e2(02) 
(4) 

B1n82=0 

2These measures can also be characterized without reference to e, See, for example, Theorem 2.1 on p. 39 
of [Shafer, 1976). 
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The denominator of equation 4 ensures that the weight assigned tQ the empty set is 0. Multipli­
cation of e1 ( 01) and e2 ( 02) is possible because by assuming the independence of the measures. 
Equation 4 is also denoted by the combination e1 EB e2 , and can be generalized to pooling 
evidence for an arbitrary number of bpa's, i.e. e = EB~1 l'i, as given by 

E e1(01)e2(02) ... Um(Om) 

e(O) = n.s;=B . 
1 - E e1(81)e2(82) ... l'm(Bm) 

ns;=0 

(5) 

Note that equation 5 combination is possible only for non-contradictory evidence. Hummel 
and Landy [1988] show that the problems entailed in pooling contradictory evidence can be 
avoided by introducing an additional bpa eo such that e0 (0) = 0 for () ,:/= 0, and eo(0) = 1. 
Updating is possible for all bpa's with the following definition: 

th EB £>2 = l'o if E e1(0,)e2(0i) = 1. 
B;n9;=0 

In a similar manner, Dempster's Rule of Combination defines an updated Belief function 
for a proposition 8 provable in terms of 01 , • • • Om as: 

(6) 

We denote the combination as 

Be/(0) = (EI, Bel,)(0). 
i 

Thia equation assumes independence of focal propositions.3 Viewed in set-theoretic terms, 
this au.ms the mass functions of all sets in which (} is provable. In discuss the semantics of 
Derp.pster's rule, the denominator of Equation 6 can be ignored, as it is a normalizing term 
which ensures that the total probability weight will have measure 1. We discuss the use of 
this normalization term further in Section 4.2. 

A Belief function is called Bayesian if each focal element in 0 is a singleton.4 For this 
restriction, Bel(8) + Bel(O) = 1 \/0 E 0, and hence Pls(0) = 1 - Bel(O) = Bel(O). In 
this case a Belief function is an additive measure, and the combination1rule (Dempster's rule, 
equation 4) is equivalent to Bayes' rule with conditional independence of propositions. 

In analysing DS theory, representing a DS theory problem in hypergra.ph notation will 
prove useful. A hypergraph 1-l(V, £) consists of a set V of vertices, and a set£ of hyperedges, 

3 All a.pproa.ches e.g. Ba.yes nets, etc. must make independence assumptions of one sort or another for 
computational tractability. 

4See [Shafer, 1976], p.44 ff. for a full description of Bayesian Belief functions. 
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Table 1: Basic probability assignments to a set of focal propositions 

I Focal Proposition I Measure assignment I 
Xt, X2, X3 e1 
X3, X4, X5 e2 

Xt,Xli e3 
X5,X5 e4 
X3,X5 U5 

5 

Figure 1: The hypergraph corresponding to a set of basic probability assignments 
{e1, e2, ea, e4, es}, 

Proposition i 
Xi 

each of which is a set of vertices. The set V of vertices corresponds in DS theory to the 
set of atomic propositions; each hyperedge £i corresponds to the constraint defined by bpa 
Ui, such that the vertices in £1 correspond to the propositions assigned measure by ei. Each 
hyperedge emphasizes the notion of a bpa baing a constraint over a set of propositions. The 
hypergraph notation also helps show the relationship between DS theory and network relia­
bility; the importance of this relationship will be made clear in Section 4.4. As an example 
of a. hypergraph, Figure 1 shows the hypergraph representing the set of atomic propositions 
{x1, x2, xa, X4, x1,, x5}, and ha.sic probability assignment as given in Table 1. The measure 
assigned to each hyperedge in £ in shown in the figure enclosed in a box. 

We now define what is to be computed using DS theory. Given an assignment of [0,1] 
weights to a set 0 of focal propositions, the mass assigned to some proposition 6 ~ 28 (or set 
of propositions), and/or the Belief assigned to some proposition 6 ~ 28 (or set of propositions), 
is required. 

More formally, we define three combination functions: a Belief computation over a single 
, 
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bpa e, D Sb( 0, {!, 0), and Mass function and Belief function combinations over multiple bpa's 
e, namely DSM(0,g,0) and DSB(0,e,0) respectively. 

1. DS Belief ASSIGNMENT [DSb(0, t!, O)] 

INPUTi A focal proposition set 0, a weight assignment fl over 0. 

PROBLEM: Compute the Belief assigned to some set 8 E 28 , i.e. Bel(O) = EBi Beli(O). 

2. DS WEIGHT ASSIGNMENT [DSM(0, e, O)] 

INPUTi A focal proposition set 0, a set of weight assignments e over 0. 

PROBLEM: Compute the weight assigned to some set 8 E 28 , i.e. fl(O) = EBil!i(O). 

3. DS BELIEF ASSIGNMENT [DSB(0, ff,0)] 
INPUT: A focal proposition set 0, a set of weight assignments e over 0. 

PROBLEM: Compute the Belief assigned to some set 0 E 28 , i.e. Bel(8) = EBi Bel,(0). 

Similar definitions for combination of Plausibility and Commonality functions can be made. 

3 PROPOSITIONAL LOGIC REVIEW 
We use a propositional language containing a finite set of propositional symbols and the 
connectives V, 'A. and ., defining the connective => in terms of V and -, in the usua.l way. A 
propositional literal is a propositional symbol or its negation. x = { x1, Ti, ... , Xn} is a set of 
propositional literals. A clause is a finite disjunction of propositional literals, with no repeated 
literals. E = {E1 , .•. , E1} is a set of input clauses. Upper-case, subscripted E's represent clauses 
and lower-case subscripted E's represent literals. 

For a clause of the form x1 V x 2 V x3 ... V Xm-i V r,;;, V x', m ~ 0, x' is called the consequent 
a.nd x1 , ... , Xm the antecedents.5 A literal is justified if it appears as a consequent in a clause. 
A Horn clause is a clause with at most one unnegated literal. For example, a Horn-clause Ei 
ca.n be written as x1 V xi V X3 V ... V Xk V x, k ~ 0. 

We call 13 a Boolean algebra over x. Bis closed under-,, V a.nd A., with=> defined in terms 
of V and -, in the usual manner. Wi is possible world i, a.nd is the conjunction of a the set of 
n literals x1 A. x 2 A. • • • A Xn such that each variable occurs once, either negated or un-negated. 
W is the set of possible worlds. 

Given this propositional framework, we define two clauses which are derivable from E, a 
prime implicate and a minimal support clause. The latter type of clause provides the notion 
of provability necessary for characterizing DS theory in logical terms. 

A Conjunctive Normal Form (CNF) formula is a formula consisting of the conjunct of 
disjunctive clauses, e.g. x6 A(x1 V x2 ) A.(xa V x2 V x4). A Disjunctive Normal Form (DNF) 

5We often represent a. clause not as a disjunction of literals (e.g. TiV z2) but as an implication (z1 ~ z2). 
This is done to unambiguously identify the antecedents and consequent. 
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formula is a formula consisting of the disjunct of conjunctive clauses, e.g. x6 V(x1 A x2) V(Ys A 
~A~). 

A prime implicate6 of a set E of clauses is a clause 1r ( often called 1r(E) to denote the set 
E of clauses for which this is a prime implicate) such that 

• E F 1r, and 

• For no proper subset ,r,.of ,r does E F 1r'. 

We denote the set of prime implicates with respect to E by II. . 
e is a support clause for X with respect to E (often called e(x, E)) iff 

• E ~e, 
•. Xue does not contain a complementary pair of literals (i.e. both x; and T;'), and 

e· is a minimal support for X with respect to E iff no proper subset of e is a support for X 

with respect to E. 
Given a set E of clauses, the set of minimal support for E ca.n be computed from II(E), 

but not vice versa (cf. Theorem 2 of (Reiter and de Kleer, 1987].). Ice vther words, II(E) = 
e(Ei, E) V Ei, Hence, the set II(E) must first be computed, ands• computed from II(E). In 
the case where E is a set of Horn clauses, a prime implicate 7rk(E) corresponds to the union 
of a clause and its support clause under the following conditions: 1rk = Ei U e, if Ei is a unit 
literal or Ei ~ Il (d. [Reiter a.nd de Kleer, 1987]). 

The set of support for a literal is the disjunction of the support clauses for that literal, 
i.e. e(x, E) = Vi ei(x, E). We ·denote the set of supports with respect to E by S. The set of 
minimal support for a clause is·the disjunction of the minimal support clauses for that clause. 

Minimal support clauses provide a means of characterizing simplest explanations ( or proofs) 
(consistent with E) for a clause. By definition, e(E;, E) is the smallest clause such that 
E F -.e(E;, E) => E;, A simplest explanation is a conjunction of literals for which no proper 
sub-conjunct is an explanation. Thus, if e(x, E) = X} V ~ V Xi, this means that X1 /\ X2 /\ X3 

is a minimal explanation or proof for x. This is formalized in Lemma 1 below. 
To model DS theory within this propositional logic framework, a restriction of the notion 

·of minimal support is required. Mark a subset A = { A1 , • • • , A,}, .A C x, of the literals, 
such that all literals not in .A a.re derivable from those in A. These marked literals a.re called 
assumptions. This is accomplished by ensuring that 

1. All assumptions occur as antecedents only; and 

6The dual to prime implicate (in Boolean algebra) is called a prime implicant. Ir. awitching theory prim~ 
implicants are used, as the expressions are expressed in DNF, whereas the expression is expressed here in CNF. 
We use the prime implicate terminology to avoid confusion between the dual representations. 
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2. All non-assumptions are justified by (a) an assumption, or· (b) a set of antecedents 
consisting of a. mixture of assumptions ;a.nd non-assumption literals. 

Using this notion of assumption, it is possible to show the following: 

Lemma 1 Under conditions 1 and 2 above, all minimal support sets consist of assumptions 
only. 

This restricted support set is called a label. More formally, a label for x, .C(x, :E), is given 
by 

.C(x, :E) = { /\ A; I ( V A;) is a minimal support clause for x with respect to :E}. (7) 
A;E.A A;E.A 

Note that a label is a. restriction of a minimal support clause to a minimal support clause 
consisting only of marked literals. ff the clauaes are propositional Horn, we can represent the 
label in terms of prime implicates [Reiter and de Kleer, 1987]: 

.C(x, :E) = { /\ A; I ( V 'iI; V x) is a. prime implicate of :E}. 
A;E.A A;E.A 

The minimal label set of a clause is a disjunction of the clause's labels.1 
A minimal label set can be viewed as a DNF version of a minimal support set. For Horn 

clauses, the marked literals always appear negated in clauses (i.e. appear un-negated on the 
LHS of an implication). Hence they are negated in support clauses (CNF), and will appear 
un-negated in labels. 

We conclude this section with a set of definitions which will be used in the description 
of network reliability algorithms. We call the conjunction of the Ei's a Boolean expression8 

F, i.e. F = A,=t, ... ,l E,. We note that there may be many other expressions F' which also 
compute such a Boolean expression F, where an expression F' computes F if F'(x) = F(x) 
for all instantiations of x. For example, an expression composed of the set of prime implicates 
derived from the set :E of clauses in F, Fn, also computes F. We define the cost of Fas the 
number of clauses in F. An irredundant expression9 Fis an expression such that F computes 
F and no expression computing F has cost smaller than F. 

Example 1: 
We represent each clause as a disjunction of the literals enclosed in square brackets. 

{[x1, X2, X12], (x3, X4, X5, Xis], (x5, X14), [x6, X7 1 Xs, X14), 
(x7, xs, 'xu, x15], (x9, 'x10, X15], (x'12, X16], (x13, x16], [x14, xu], [xis, x17], 
lz16, X11, X19), [x11, X1sl, [x2, X1s], [x'1s, X19], [x1, X17]} 

(8) 

7.A.seumptious are assigned to every literal so tha.t Belief measures ca.n be computed for every cla.use . 
Th.is ca.n easily be rela.xed, but Lemma 1 will no longer hold, i.e. some minimal support sets will consist of 
assumptions and literaJs. For such support sets, measures may not be computed. 

8Thls is standard conjunctive normal form (CNF), the dual representation of traditional disjunctive normal 
form (DNF) Boolean expressions. 

11Sorietimes referred to as a minimal expression. 
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II(X) {[xi, xis], [xi, x19], [xi, x11], [x2, xis], [x2, x11, x13], [x2, x11, x'12], [x2, x16, x17], 
(xis, x5], [x11, x'5], [xis, x'9, x'10], [x11, x'e, X10], [xis, x1, x's, x'u], [xi 1, x1, x"s, xu], [xis, xis], 
(xu, x17], [xis, x6, x'1, xs], [x11, x6, x'1, xs], [xis, xu], [x'u, x11], [x11, xis], [xis, x11, x'i3], 
[xis, x11, x'i2], [xis, x'i6, x11], [x19, x'2], {xie, x's], [xie, x'e, x'io], [x10, x1, x's, xu], 
[xie, 'xis], [xie, x6, 'x1, xs], [xie, x'14], [xie, x'17], [xis, Xie], [xis, x'ie, x'i3), [xis, x'ie, x'12], 
[xis, Xie, Xie], [x17, Xie, Xi3), [x11, X19, x'i2], [x'1e, X17, Xie], [xi6, X3, X4, x's], [x'i3, Xi6], 
[xi6, xi, x2], [x12, Xis], [xe, x'10, xis], [x1, x's, x'u, xis], [xs, x'1, xa, xu], [xs, Xi4], 
[xi, X2, Xi2], [x'3, X4, x's, X13]} 

The minimal support set for given clauses is as follows: 

Yi] [xi1], [xis), [xie , [x2, x16], [x2, xii] 
'xe,x'io] [xu], (xis], [xis , [xis] 
x's,x'n) [x1, xu), [x1, Xis], [x1, .x19] 
x's,x'1 ] [.xs, x11], [xs, X1sJ, lxs, X1s], lxs, X14] 
[x1, xs] [xs, xi4], [x6, x11], [x6, xis], [xs, xie] 
X.-:s, X4) [xs, xd) [xs, Xis] 

Example 2: 
Consider the following example in which assumptions are assigned to each clause. 

E {[Ai, x1], [A2, x4], [xi, 'ii;, x2], [x2,ir;, x3], 
[xi, As, x4], [x4, Te, xs], [x2, X4, Ar, xs]} 

The minimal label sets assigned to the literals are: 

I LITERAL I LABEL SET 

Xi {Ai} 
X2 {A1,A3} 
X3 {A1,~,A.} 
X4 { {A2}, {Ai, As}} 
Xs { {A2, As}, {Ai, As, As}, 

{Ai, A2, ~' A1 }, {A1, ~, As, A1}} 

4 A LOGIC-BASED FORMULATION OF DEMPSTER 
SHAFER THEORY 

In this section we show the logical analogs of various DS theory functions. We first define the 
correspondence of set-theoretic and logic-theoretic notions in order to understand the rela­
tionship between the traditional set-theoretic description of DS theory and the logi-theoretic 
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description; we also discuss the role of the normalization function in DS theory. We then 
discuss the two distinct Boolean operations which are necessa.ry to compute the DS Belief 
function for a proposition x within a logical setting: (1) computing the label set for x .C(x, E); 
a.nd (2) computing a disjoint Boolean expression from .C(x, I:). 

4.1 Logic and Set Theoretic Definitions 
Given the definitions of what DS theory computes in Section 2, we now show their logical 
interpretation. We first need to describe the correspondence between set theory and logic. Such 
a. correspondence has been known for a long time, and in particular, the logical relationships 
of the set theoretic operations underlying different uncertainty formalisIDB has been carefully 
studied. For example, Carnap [1962] and de Finetti ([1974], p. 37 ff.) have analysed the logical 
foundations of probability theory. Similarly, Sha.fer [1976] implicitly defined a correspondence 
between set-theoretic notions relevant to subsets of 0 and logical notions. More precisely, as 
described by Sha.fer ((1976], p. 37), we formulate the following definition. 

Definition 1 If 81 and 02 are two subsets of E> and l:1 and E2 are the logical propositions 
corresponding to 01 and 0~ respectively, then the set theoretic notions hold if and only if the 
corresponding logic theoretic notions hold, as shown in Table 2. 

Table 2: Correspondence of set theoretic and logic theoretic notions 

I SET THEORETIC I LOGIC THEORETIC I 
81 n 82 E1 /\ E2 
01 u 02 E1 V E2 
81 C 82 E1 => E2 
81 = 02 E1 = -iE2 

In Table 2 01 = 02 means that 01 is the set-theoretic complement of 02 • 

4.2 The Question of Normalization 

The denominator of the RHS of Dempster's Rule of Combination ( cf. Equations 4 and 6) is a 
normalization function. We ignore this normalization function in the following logical analysis 
of Dempster Shafer Theory for two reasons. First, the normalization function has been shown 
to be irrelevant [Hummel and Landy, 1988). Hummel and Landy describe a. state of belief in 
DS theory, as defined by a bpa {!, in terms of (M, EB), where M is a. mon.oid and EB is the 
(normalized) combination operation. They show that an unnormalized space of belief states 
(M', EB') can be homomorphically mapped onto (M, EB), and is less cumbersome and more 
easily understood. All operations can be done in (M', EB')-space without loss of generality, 
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and can be mapped into the original (M, EB)-space if necessary. For the purposes of this 
pa.per, ignoring the normalization function simplifies the discussion and does not involve any 
loss of generality, as the normalization function can be modeled in logical terms by a simple 
extension of our analysis. 

Second, the normalization function is controversial because there are some situations in 
which it.gives counter-intuitive results. One case is the Three Prisoner's paradox, as discussed 
at length by Pearl [1988]. A second case arises when pooling near-contradictory evidence. 
Zadeh [1984] demonstrates the counter-intuitive results which can be obtained in such cases. 
We briefly discuss the reasons for these counter-intuitive results in Section 8. 

Using the normalization function can be thought of as adopting a closed word assumption,10 

in which the frame of discernment 0 is exhaustive, including all possible propositions, and 
excluding no propositions relevant to 0. Shafer [1976], among others, adopts the closed world 
assumption. The converse of a closed world assumption, an open world assumption, ignores 
the normalization function by assuming that 0 is not exhaustive. Smets [1988] and Hurmnel 
and Landy [1988] advocate an. open world assumption. 

The choice of a closed or open world assumption affects the measures assigned following 
Belief updates. A closed world assumption ensures that, following evidential updates, the total 
mass assigned to the consistent propositions has measure 1. This is guaranteed by the use 
of a normalisation function. An open world assumption, in contrast, entails assignment of a 
mca.~mre of less than 1 to the consistent propositions, because of the assignment of increasing 
mass to the empty set 0 as more contradictions are discovered. Consequently, the Belief ( and 
Plausibility, Commonality, etc.) measures decrease. Implementations based on an open world 
assumption are subject to roundoff error as Belief assignments approach zero. However, they 
avoid the counter-intuitive results introduced by the normalization function when pooling 
near-contradictory evidence.11 

4.3 Logical Correspondence of Dempster Shafer Theory 

In this section we make the logical correspondence of DS theory explicit, and use it to compare 
and contrast the manipulation of DS Belief functions with certain logic-theoretic manipula­
tions. We note that certain aspects of DS theory which do not occur in logic require extensions 
to traditional logic. These include 

• Two arbitrary propositions (e.g. (hand 6;) in DS theory can be defined (external to the 
logic) as being contradictory.12 This is equivalent to two arbitrary logical clauses (e.g. 
I:i and I:;) being contradictory. 

• DS theory can be used to pool multiple bodies of evidence. Since Dempster's rule is 
commutative, this pooling can be done dynamically, and in any order. Logical resolu-

10The closed world assumption has been formalized logically by Reiter [1980). 
11However, they do not avoid the problems encountered with paradoxes like the Prisoners' dilemma. The 

implies that there are cases in which DS theory is inappropriate. 
12More precisely, they ca.n be defined to be mutually exclusive. 
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tion is typically considered not to be a dynamic process, in that the set of clauses to 
be resolved typically does not change dynamically. In other words, logic traditionally 
assumes a fixed set of clauses. We show the changes necessary to update a database 
consisting of propositional logic clauses.13 

We now show the correspondence of set theoretic notions and propositional clauses, of 
symbolic Belief functions and minimal support clauses, and of the Belief function combination 
rule EB and minimal support clause combination. 

We start out by defining a set of DS Theory focal propositions 0 = { 81, ... , On} and cor­
responding logical clauses E = {E1, . •• , En}. Thus, within the Boolean algebra 8, a subset 
1) CB of mutually exclusive and exhaustive propositions are defined as the frame of discern­
ment. To ea.ch focal proposition there is a measure assigned, which produces a set of n bpa's 
{e1 , e2 , ... , en}. In the logical framework, assumption Ai is the symbolic representation for 
fli, and A = {A1, ... , An} is the symbolic representation of the n bpa's {e1, e2, ... , Bn}. The 
logic-based version of measure assignment to e : 28 -+ (0, 1] is e : 2.,( -+ (0, 1]. Thus, we 
might have the clauses and associated bpa's: 

Xi V xi V Ai V X5 e1(A1) = 0.6 
x2 v x4 v JI; v x6 e2(A2) = o.s 

e1(Ai) = 0.4 

ei"iG) = 0.2. 

Given this framework, we first define how to evaluate the mass assigned to a support clause: 

Definition 2 The measure assigned to a minimal support clause, e(~ru E), is given by 

e(e(Ek, E)) = II e(A;). (9) 
A,ee(E~.E) 

For example, for a support clause {(x7, E) = °A;V ~' we have e(e(x1, E)) - e(A2) · e(A,a). 
We now show that the support clause for a literal is equivalent to a symbolic representation 

of the mass assigned to that literal. 

Lemma 2 The belief assigned to a proposition() (which has corresponding logical clause Ek) 
can be computed from the minimal support clause for E1c; i.e. 

We note that all logic-theoretic correspondences to e(O) and Bel(O) are Boolean expressions 
which, in general, a.re not necessarily disjoint. A DNF Boolean formula is disjoint if ea.ch pair 
of conjunctive clauses is disjoint. A pair of conjunctive clauses are disjoint if, for each variable 
common to the clauses, say :t;, one clause contains the variable and the other contains the 
negated variable x;. 

13We will use the fact that since Fis also computed by Fn, one only needs to maintain Fn, and can update 
Il and "ignore" F. 
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Definition 3 Given a CNF Boolean expression F consisting of a set of disjuncts F1 , ••. , F9 , a 
disjoint CNF Boolean expression F' = disj(F)) computed from an expression F consists 
of a set of disjoint disjuncts F{, ... , F{ such that disj(F) computes F. 

An analogous definition exists for DNF expressions. 
A disjoint expression for proposition x is necessary to evaluate the correct mass or Belief 

assigned to x. H it is not disjoint, the Boolean expression must be expanded until it is. 
Shafer [1982] noted this assumption of conditional independence in the combination of "coded 
messages" (from which Belief functions are constructed). 

The label sets assigned to clauses are in DNF form ( cf. equation 7). The measure assigned 
to the expression for a label set can be evaluated a.s follows. 

Definition 4 The measure assigned to a DNF formula 

F=V/\Ai 
F;EF A;EF; 

is given by 
u(F) = V 

F1i'Ediaj(F) A;EF~ 

A well-known example of the a.eed for disjointness to add uncertainty measures for unions 
of events is the probabilistic restriction (Bayesian Belief functions). In this case, it is well 
known that 

and that 

Prob{A U B} = Prob{A} + Prob{B} - Prob{A}Prob{B}, 

Prob{A U B} = Prob{A} + Prob{B} 

only if An B = 0, i.e. A and Bare disjoint. 

(10) 

(11) 

The expansion of a Boolean expression to its disjoint form corresponds to a Network Relia­
bility computation, and is described in Section 4.4.2. Hence the right-hand-side of equation 10 
is the disjoint expansion of the left-hand-side; if A and B are not disjoint, substituting proba­
bilities into the expression on-the right-hand-side of equation 11 will give the incorrect answer. 

In DS Theory, Belief function combination is done according to Dempter's Rule of Combi­
nation (equation 6), and is summarised as Bel(O) = EBi Beli(O). The numerator of Dempster's 
Rule can be thought of as summing the disjoint proof paths in the proof for B~ Pearl [1988] 
uses the analogue of a random switch, which assigns mass for a. fraction O :5 p < 1 of the 
time and no mass for the fraction (1 - p) of the time. The fraction of time the switch is 
active gives the probability that a proof pa.th remains uninterrupted. For a literal with many 
proof paths, the probability assigned to the literal is the sum of the proof path probabilities. 
However, in order to sum the individual proof path probabilities to find the probability that a 
literal is provable, pairwise independence of the paths is necessary. Figure 2 shows a random 
switch model for a proof graph.14 In the figure Prob( x6 ) can be computed by summing its two 

14This example is taken from [Pearl, 1988]. 
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Figure 2: Random switch model of a proof graph corresponding to the given logical clauses 

~s 

© Random switch which is operative with probability Ui 

proof paths, giving the probability (U1U2 + UaU4). If u(xs) is defined for the literals {x3 , x 5}, 

then the proof paths for x6 are no longer disjoint, as there is a shared sub-path. Hence, the 
measure assigned to x6 is not given by the proof path-set U6 = U1U2 + U1Ur,U4 + UaU4, but 
by the disjoint version of the proof path-set. The derivation of this disjoint form is given in 
Appendix A. . 

We now show that in addition to computing mutually independent activity times for proof 
paths, mass function or Belief function combination can also be explained in terms of support 
clause computation. 

Lemma 3 Dempster's role for Belief combination, i.e. 

(12) 

corresponds to computing Bel(E;), the measure assigned to a disjoint form of e(lJ;, lJ), where 
E; is the clause corresponding to (). 

Note that in the more general case in which arbitrary ()i and 6; may provide conflicting 
information, DS Theory cannot assign weight to a. "contra.diction", and so a.ll information 
pooling must be done over non-conflicting subsets. In a strict logic-based formulation, the fact 
that Xi and x; are contradictory must be explicitly encoded as a clause so that their .conjunction 
cannot be created in any support clause. Hence the following clause can be created: -,( Xk A x1) 

which is equivalent to (xk V x,). In the formulation involving assumptions, contradictory 
propositions ()i and e; can be modeled by the corresponding assumptions Ai and A; being 
contradictory, i.e. A. A A; =} T, where T denotes a contradiction. For conflicting information, 
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Dempster's Rule of Conditioning can be used to condition on the non-contradictory evidence. 
Dempster's Rule of Conditioning is as follows: 

Lemma 4 Suppose Bel' is given by 

Bel'(61 ) = { 
0
1 if 62 C 61 

if 82 ¢.. 81 

and B eh is another belief function over 0. //Bel and Bel' are two combinable Belief functions, 
let Bel(•IB2) denote Bel(J,Bel'. Then 

for all (Ji C 0. 

Bel(01J02) = Bel(01 U B;') - Bel(i;) 
1 - Be/(02) 

(13) 

Hence if 02 is a contradictory proposition, then conditioning on 02 is done. No normalization 
is necessary for an open world assumption. Note that equation 13 is a special case of equation 6 
with Bel'(62)=1, i.e. under Bel' 02 is known to be true. 

The a.ssumption of a closed world requires a simple extension of the preceding discussion, 
a. renormaliRa.tion of the Belief functions based on the weight assigned to the null set~ (i.e. to 
·contra.dictions). In this closed world case it is assumed that no weight is assigned to unknown 
propositions. Hence, whenever contradictory propositions are assigned mass, this mass must 
be assigned to 0, and all Belief assignments renormalised to ensure that the total mass has 
measure 1. 

Given these Boolean expressions, they must now be made disjoint. We discuss this process 
in the next section. Once a disjoint Boolean expression has been obtained, the Belief measure 
·can be obtained by substituting in the measures for the basic probability assignments. 

4.4 Computing Disjoint Boolean Expressions 

The process of making Boolean expressions disjoint can be better understood in graph theo­
retic terms. Note that this graph theoretic notation is a restriction of the hypergraph notation 
( cf. §2) to hyperedges with two vertices. We describe the necessary notation in the following 
section. We also use this notation to describe the isomorphism between ensuring the disjoint­
ness of expressions for DS Belief functions and for network reliability measures, and more 
generally the isomorphism between Belief function updating and the computation of network 
reliability measures. · 

4.4.1 Graph Theoretic Notation 

To exploit the DS theory/ graph theory isomorphism, we use the following well-known corre­
spondence: 
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Figure 3: Graphs corresponding to circuit diagnosis formulae 

DNF expression = 
~) V ("JJ"ii;) V (}J'i; A 'JJ';i;) V (N;;; A HM

1
). 

CNF expression = 
(Ni; V "JJ'i:i; V 7ili.i;) /\ ('JJ';; V 7J'i; V "JJ'i:i; V N~1 ). 

CNF version of paph 
-shows minimal paths 

(a) 

s 

. . 
DNF version of graph 
-shows min cut sets 

Lemma 5 Any Boolean expression F has an associated graph 9(V, E) consisting of vertices 
V and edges E. 

There a.re ·several methods of constructing g from F. For example, we may assume a 
Boolean literal x, to correspond to an edge E,, and a logical connective (V,A) to correspond 
to a vertex that joins two or more edges between the corresponding components as follows: 
an A connecting two literals ( or clauses) corresponds to an edge connecting two vertices ( or 
vertex sets) in aeries, and an V connecting two literals ( or clauses) corresponds to an edge 
connecting two vertices ( or vertex sets) in parallel. The direction of the edges corresponds to 
the direction of implication for the clauses. : 

. A path consists of a connected sequence of distinct edges. We call P a path between vertices 
s and t in the event that all edges in the pa.th a.re functioning. A minimal path is a path the 
deletion of any edge of which renders the path disconnected. A subgraph Q'(V', E') of Q(V, E) 
is a graph such that V' ~ V and E' ~ E. A connected graph has a.t lea.st one pa.th between 
every pair of vertices . A cutset of a graph Q is a subgraph of Q the removal of any edge (or 
vertex) of which renders g disconnected. 

There a.re two additional well-known corre~pondences between a graph Q and the corre­
sponding set of clauses E. '.J'he first is for a.n expression F expresses in CNF. 

Lemma 6 The set of prime implicates II(E) for a CNF Boolean ezpression F defines a set 
of paths through the corTesponding graph g . 

. If Fis expressed in DNF, then we obtain: 

.-Lemma 7 The set of pri~e implicates II(E) for a DNF Boolean ezpression F defines the cut 
sets of the corTt:sponding graph g. 

Example:· . 
The graph corresponding to the irredundant CNF expression for the circuit diagnosis ex­

ample described in Section 6.2 is shown in Figure 3(a). The CNF expression is 
. ' - . 
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(Ni; V -,:r,;; V lJ'ii;) I\ (lli; V 7Ti; V -,:r,;; V N M3 ). (14) 

The DNF version of equation 14 is obtained by standard CNF to DNF conversion techniques .. 
We emphasize that these graphs a.re interconvertible. By finding the edge cuts containing 
the minimum number of edges for the graph shown in Figure 3(a), we can obtain a minimal 
cut representation shown in Figure 3(b ). Note the graph theoretic relationships between 
the diagnostic riotions15 of minimal conflict sets (minimal cut sets) and minimal candidates 
(minimal paths). 

4.4.2 Network Reliability Computation 

Network Reliability describes a set of techniques for analysing computer and communication 
networks. The network reliability problem computes the probability that the network ( or a 
portion of the network) is functioning. The input to a network reliability algorithm is (1) a 
Boolean expression F (which describes a network in which each literal represents a network 
component) and (2) a [0,1] assignment of weights to Boolean variables, which corresponds to 
the probability that the component x is functioning. 

Network reliability is a restriction of DS theory to Bayesian Belief functions. In logical 
terms, each clause consists of two literals, and hence a network reliability problem is an instance 
of 2SAT, the SATISFIABILITY problem with two literals per dause. 

If we frame this problem in graph theoretic terms, the weighted Boolean expression corre­
sponds to a weighted graph. For a general DS theory problem, we have a weighted hypergraph. 
Hence, the network reliability problem in graph theoretic terms corresponds to computing the 
probability that a set of vertices can communicate with one another (i.e. the probability that 
a path (or set of paths) exists between the specified vertices). The set of support for a propo­
sition x corresponds to the set of paths in the graph to x (for F expressed in DNF), or the 
cutsets which disconnect x from the graph (for F expressed in CNF). Hence it is obvious that 
network reliability measures and Bayesian Belief functions compute exactly the same thing: 
both compute the probability that a (proof) path to a proposition exists in a graph .. 

A disjoint Boolean expression disj(F) and the equivalent DS Belief function (or system 
reliability) formula are termwise identical; the operations necessary to convert disj(F) to a 
DS Belief function formula a.re given in Table 3. 

We note ~his correspondence between computing DS Belief functions and computing net­
work reliability measures because the latter problem has been carefully studied for many years, 
and we will use results derived in the network reliability literature in Section 5. 

Several methods have been developed for computing network reliability. The computational • 
approaches fall into three categories: · 

1. Path/cutset enumeration methods; 

2. Pivotal factoring/ decomposition methods; and 

111See section 6.2 for a short description of diagnostic reasoning. 
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Table 3: Correspondence of Boolean and Network Reliability Forms for disjoint Boolean for­
mulae 

I Boolean Form I Network Reliability Form I 
x, (1 - e(x,)) 
Xi e(x,) 
A arithmetic product 
V arithmetic sum 

3. Topological decomposition methods. 

Each approach simply ensures pairwise disjointness of the network reliability expression. 
For example, the path/cutset enumeration approach ensures that, in an expression consisting 
of all pathsets/cutsets in a graph, no pair of paths/cutsets has an overlap. An overlap of 
two paths means that there is a shared sub-path, rendering the two paths non-disjoint. We 
note that network reliability can be computed directly from the graph Q or from the paths or 
cutsets of Q. We discuss each of these techniques in Appendix A. 

4.5 Belief Function Algorithm 

We now describe a Belief function algorithm in terms of the logical operations we have defined. 
The input is the tuple (E, A,{!), and a clause Ek for which we wa.nt to compute a Belief function. 
In implementing Dempster's rule within a logical perspective, it is important (1) to ensure 
null intersection with contradictory propositions, as Dempster's rule sums over only consistent 
propositions, and (2) to ensure disjoint Boolean expressions. The algorithm for implementing 
Dempster's rule is as follows: 

1. Compute the label for Ek, .C(Ek, E). This is done by (1) computing the set II(E) of 
prime implicates, (2) from Il(E) determining the set of support for Ek, and, if necessary, 
(3) converting the set of support to a label set. We refer to the label set as a disjunction 
of labels .C,(Ek, E), i.e . .C(Ek, E) = Vi .C,(Ek, E), where each .C, = I\; A;. 

2. Account for contradictions, which we call~- A contradiction consists of a conjunction of 
two or more sets of propositions, where~ is the set of contradictions. The contradiction­
free Boolean expression required is .C(Ek, E) n (-,~) 

3. Compute a disjoint Boolean expression, i.e. disj(.C(Ek, E) n (-i~)). 

4. Compute the Belief assignment, using Definition 4: 

Bel(Ek) - e(disj(.C(Ek, E) n (-i~))) 
V . /\ e(A;) 

Z1ediaj(.C(I:1,,I:)n{-.~)) A;ez, 
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5. Substitute mass functions for the Ai 's to calculate the Belief function for :E1; using 
Table 3. 

H normalization is required, then the normalization, as given by equation 6, where the 
normalized Belief expression is K-1 Bel(E1;), a.nd K is given by 

K - l - I: Bel1(01)Bel2(02) · · · Belm(0m) 
n8;=0 

- 1 - Bel { cI>} 
- 1 - V /\ e( A;) 

Z1Ediaj(~) A,ez, 

This operation ca.n be considered to be computing Belief by conditioning on the absence 
of contradictions, using Dempster's Rule of Conditioning: 

B l(E l~cI>) = Bel(E1; u cI>) - Bel( cI>) 
e k l-Bel(cI>) 

We note that normalisation is not necessary for a.n open world assumption. 
An example of the operation of this algorithm, as implemented within an ATMS, is pre­

sented in Section 6.2. 

5 COMPUTATIONAL COMPLEXITY 

5.1 Definition of Problems 
We now define the complexity of (1) the overall problem of computing Belief functions, a.rid 
(2) that of the subproblems of the DS Belief function algorithm presented in the previous 
section. Because computational complexity is not the main focus of this paper, we will cite 
results obtained elsewhere. Instead we focus on discussing the implications of these results. A 
full treatment of these complexity issues can be found in [Prova.n, 1990b] a.nd [Provan, 1988b]. 

The complexity of updating using Dempster's rule, e.g. computing exact DS Belief func­
tions for multiple bpa's, has not been closely studied beyond noting that such a computation is 
exponential in the size of the frame of discernment 0.16 The number of subsets of 0 increases 
exponentially with I 0 I, and the normalizing function can sum over all of these subsets, so 
computing a single normalization function ca.n be computationally expensive. 

In the following discussion of complexity results, we assume familiarity with the concepts 
of P, NP and NP-completeness. 

Given a single bpa, computing the Belief (Plausibility, etc.) assigned to a proposition, 
the problem DSb(0, e, 0), is linear in the size of the frame of discernment, i.e. 0(101).17 

16Barnett [Barnett, 1981] stated that the complexity of the problem grows exponentially in the number of 
evidential sources, but never proved this complexity result, a point he noted in a footnote in [Barnett, 1981]. 

17 Actually, it is linear in the number of measures assigned by the bpa. 
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This is because disjointness is assured by every pair of measurea in the bpa. being mutually 
exclusive and independent. For multiple bpa's, thla disjointness is not certain. The number 
of subsets which must be counted to pool evidence is also greater tha.n in the case of a single 
bpa.. Using these intuitions, Theorem 1 shows the combination of evidence using Dempster's 
rule (equation 6) to be the computationally expensive aspect of DS theory.18 

Theorem 1 It is a #P-completeproblem to compute the DS WEIGHT ASSIGNMENT[DSM(E>, e,O)] 
and DS BELIEF ASSIGNMENT [DSB(0, e,0)] Junctions. 

Because Dempster's rule is a #P-complete function, it is unlikely that a polynomial-time 
algorithms exists for this function.19 Hence, it is unlikely that the logic-based algorithm just 
presented is polynomial-time. However, it might be that, given the labels for the propositions, 
the Belief computations are simple. This turns out not to be the case. We formalize this as 
follows. 

The Belief function algorithm can be divided into two main steps: (1) computing the label 
set, and (2) computing the Belief assigned to a proposition, which necessitates computing 
the disjoint Boolean expression from the label for the proposition. The corresponding sub­
problems are defined as follows: 

DSBc, (Dempster Shafer Belief Label Computation) 

Given a. set E of clauses, determine the set of labels £ for the data.base literals. 

DSBp (Dempster Shafer Belief .Disjointness computation) 

Given (.C, 1), compute the disjoint Belief assigned to a literal x or clause :Ek. 

We now define the complexity of these two problems. Lemma 8 provides upper and lower 
bounds for almost all Boolean expresaions20 [Provan, 1988b]. 

Lemma 8 (DSBc,) Generating the label set for a set x of literals with respect to a set :E of 
clauses is of complexity exponential in the number n of literals for almost all propositional 
expressions F. 

18The proof for this theorem is given in [Provan, 1990b]. Orponen [Orponen, 1989] has independently proven 
this result. • 

1glntuitively, the class #P contains a set of enumeratjon problems. For example, the enumeration problem 
88Socia.ted with SATISFIABILITY is to compute the number of satisfying assignments. A #P-complete 
function / is one which belongs to the class #P [Valiant, 1979], a.nd every other function in #P ca.n be 
computed by a deterministic polynomial time Turing machine using / as an oracle. The class #P is at least as 
intractable as the class NP, and contains several enumeration problems the decision versions of which are NP­
complete, such as SATISFIABILITY, CLIQUE, and HAMILTONIAN CffiCUIT [Valiant, 1979). Completeness 
of a problem 'P for the complexity class #P indicates that P is more intractable than an NP-complete problem, 
since #P contains harder problems tha.n NP. 

20 A property is said to hold for almost all the functions of the algebra of logic if the proportion of functions 
of n variables which do not satisfy this property (among all the functions of n variables) tends to zero when 
n-+ oo. See {Zhuravlev, 1982) for details. 
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This lemma states that almost all expressions have the same order of growth as for the 
most complex expression, i.e. that almost all Boolean expressions must have a label set whose 
size is exponential in the number of literals. Hence, for almost all problems, determining a 
0(2n) label set will take 0(2n) time, and storing such ala.be! set will take 0(2n) space. 

DSBD a.re of worst-case complexity exponential in the number of vertices (i.e. of underlying 
literals in the corresponding Boolean expression) or paths (i.e. of prime implicates 1r ,21 in the 
corresponding Boolean expression) [Provan and Ball, 1984]. Furthermore, in practice the 
largest networks which can be solved in a reasonable amount of time contain on the order of 
50 vertices ([Ball, 1986],[Provan, 1986]). This can be st.ated a.s follows: · 

Lemma 9 (DSBD) Generating a disjoint expression from the label set .C(I:) computed from 
the original expression F = A I:i is of complexity exponential in the number n of literals or 
m of labels. 

In terms of computing DS Belief functions, this means tha.t even given the label set of 
support associated with a set of database literals, computing the DS Belief for these literals 
is unlikely to be of complexity polynomial in the number of literals unless P =NP. 

5.2 Discussion 

We have shown in Section 5 that the problem of computing DS Belief fti.nctions ( assuming that 
Belief combination is required) to be intractable. In addition, the logic-based method proposed 
in this paper consists of two intractable steps, label generation and disjoint expression compu­
tation. For cases in which the support sets are used for purposes othei: than the calculation of 
DS Belief functions, e.g. using the support sets to facilitate diagnostic reasoning [de Kleer and 
Williams, 1987] this is a reasonable approach. However, if Belief function computation from a 
database of logical clauses is the primary objective, then the use of some Network Reliability 
algorithm is more efficient, because computing the label set£ for a database22 and computing 
Belief functions from .C is less efficient than computing the Belief functions directly. The list 
of negative complexity results (from the point of view of the existence of polynomial-time 
algorithms) concurs with reports of practical experience ([Ball·, 1986], [Prova.n, 1986]). 

Hence it appears that it is unlikely that there exist polynomial-time algorithms, or that 
la.rge network reliability problems can be exactly solved efficiently. This implies that computing 
Belief functions for even moderately-sized frames of discernment cannot be done efficiently. 
This necessitates the examination of tractable restrictions of Dempster Shafer theory. 

5.3 Tractable Transformations 

There have been two approaches to transforming DS Theory to improve computational tractabil­
ity. The first restricts the domain over which computation takes place, and the second is based 

21 A prime implicate 1r for a. propositional Horn expression ca.n be defined as the disjunction of a. literal z 
a.nd the label for z, i.e. 1r = z V .C(~). 

22This computation, a.s shown by Lemma 8, is exponential in the size of the data.base. 
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on hypertree embeddings. Barnett [1981) has restricted the domain of computation to focal 
propositions and their negations, instead of the entire power set of 0. This ensures a linear 
algorithm in the number n of focal propositions. The disadvantage is the loss of expressiveness. 

The second type of transformation, the embedding of an instance of a DS Theory problem 
within a hypertree, has been studied by many researchers, including Shenoy and Sha.fer (1988] 
a.nd Shenoy, Sha.fer and and Mellouli (1986]. This hypertree restriction enables propagation of. 
Belief functions based on local computations, similar to the local computations for propaga,­
tion within Bayesian networks [Pearl, 1986) and Influence Dia.grams ((Howard a.nd Matheson, 
1981], [Shachter, 1986]). 

This hypertree model is important because computations within a hypertree are efficient, 
as opposed to similar computations being intractable within a general hypergraph. Thus, if 
a general DS theory problem can be embedded in a hypergraph, the problem becomes easy. 
However, even though finding any hypertree embedding is easy, such an operation can increase 
the size of the hypergraph by an exponential factor. Finding a good hypertree embedding is 
NP-hard, and has been studied by several researchers, including [Arnborg et al., 1987], [Tarjan 
and Yannaka.kis, 1984], and [Zhang, 1988]. Both types of transformations are studied in more 
detail in [Provan, 1990b]. 

5.4 Approximation :rvfethods for Full Dempster Shafer Theory 

Several approximation methods have been studied within the network reliability literature. 
Their goal is to avoid the intractability associated with computing exact reliability formulae 
(or exact DS Belief functions). In cases for which bounded approximations are sufficient, 
polynomial-time or linear-t.ime algorithms can be used for Belief function computation. ADS 
Belief function is itself an uncertainty measure, and for many applications an increase in the 
"level" of uncertainty may not affect the outcome. For example, if all that is required is a 
rank-ordering of sets of propositions, an approximation which preserves relative rank will be 
sufficient. 

Describing the ma.ny approximation methods is beyond the scope of this paper. We outline 
a. few methods, a.nd refer the reader to [Provan, 1990b] for more _detail. We cite results for 
network reliability, but the methods hold for DS Belief computations as well. 

A variety of approximation methods (for which no theoretical analysis exists) have been 
proposed within the network reliability literature. These methods ca.n be described, on the 
whole, as "quick and dirty", as they are based on heuristic rather than theoretical arguments. 
We present four examples of such methods. · 

Provan [1986] outlines criteria for good approximation methods for reliability computa.­
tions, and also demonstrates how these criteria can be applied to specific classes of network 
reliability problems. However, it has been shown [Prova.n and Ball, 1983} that it is unlikely 
that polynomial-time deterministic approximation algo·rithms exist. It is possible that ran­
domized approximation methods can be developed, based on the method proposed by Jerrum 
and Sinclair [1988]. 
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6 IMPLEMENTATIONS OF DEMPSTER SHAFER 
THEORY 

Implementations exist both of full and of restricted cases of DS Theory. However, because 
of the computational complexity associated with computing Belief functions, many of these 
implementations a.re restrictions of DS theory. We focus primarily on a description of the 
implementation of DS Theory based on logic, as the relation between logic and DS Theory is 
the primary objective of this paper. To date, the logic-oriented implementations of full DS 
theory are all based on the Assumption-based TMS (ATMS) of de Kleer [1986]. 

6.1 Logic-Based Implementations of Restrictions of Dempster Shafer 
Theory 

Barnett [1981] has implemented an algorithm in PROLOG called Support Logic Programming 
(SLP) which restricts the domain of computation to Belief functions just for the focal propo­
sitions and their negations. This implementation is linear in 101, but significantly restricts the 
domain of inference. 

d'.Ambrosio [1987] has also implemented a restricted form of DS theory based on the 
Evidential Support Logic Program.ming of Baldwin [1985]. d' Ambrosio attaches Dempster 
Shafer uncertainty bounds, i.e. [Bel, Pls], to ATMS labels. This approach evaluates the 
DS Belief (and Plausibility) functions after the ATMS has symbolically determined the set 
of support for all database literals. Like SLP, this implementation is restricted to assigning 
Belief only to focal literals and their negations. 

6.2 ATMS-based Implementations of Dempster Shafer Theory 

ATMS-based Implementations of full Dempster Shafer Theory have been done independently 
by Provan ([1988a], [1989]) and Laskey and Lehner [1988]. In addition, Pea.rl [1988], although 
he has not implemented a system; describes the semantic correspondence between the ATMS 
and DS theory in a. manner almost identical to the ones presented by Provan and by Laskey 
and Lehner. 

In describing these implementations, we need to introduce some ATMS terminology. The 
ATMS is a database management system which computes for a set E of propositional clauses a 
set of support ( called a. label) for each database literal in terms of assumptions, a distinguished 
subset of the data.base literals. The assumptions, which we denote by .A = {A1 , •.• , A1}, 

are the primitive data representation of the ATMS. The labels for literals thus summarise 
"proofs" in terms of a Boolean formula consisting of assumptions only. Hence an ATMS 
label is a restriction of the support set (defined earlier) to assumptions. The ATMS-based 
implementations assign mass only to assumptions. Addition3.lly, for most problems the ATMS 
is restricted to Horn clauses, as it slows considerably with non-Horn clauses. 
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The ATMS records contradictions in terms of a conjunction of assumptions called a nogood. 
By ensuring null intersections of all labels with the set of nogoods, the ATMS maintains a 
consistent assignment of labels to database literals. The ATMS can incrementally update the 
data.base labeling due to the introduction of new clauses. This is accomplished by storing the 
entire label set to avoid recomputing it every time it is needed. 

A typical problem for which an ATMS is used is in the diagnosis of malfunctioning circuits, 
such a.s that done by GDE [de Kleer and Williams, 1987). The circuit analyzed in [de Kleer 
and Williams, 1987] con.sists of multipliers M1 , M 2 and M 3 and adders A1 and A2, as shown 
in Figure 4. Assumptions can be: {1) ea.ch component is working, where NA; signifies that 

Figure 4: Circuit with faulty components 
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adder ~ is functioning normally, and NM, signifies th.at multiplier Mi is functioning normally; 
or {2) input data, e.g. A = 3, B = 2, etc. In the course of diagnosis, an assumption like 
N Mi, i.e. "M2 is working", may be proved incorrect. For the circuit in Figure 4, the output 
at F is 10 .instead of 12, implying that at least one combination of Mi, M2, M3, A1 and A2 

is faulty. In GDE, the ATMS identifies hypothesized sets of circuit components whose faulty 
behavior could cause _discrepancies between predicted and observed circuit measurements. 
Ta.king observations at points like X, Y or Z narrows the set of diagnoses consistent with the 
observations and guides future decisions about where to ma.lee further readings. A solution 
consists of a minim:u set of faulty multipliers and adders which explains all the observations. 

Given the set of input clauses and assumptions, the ATMS computes what de Kleer and 
Williams call minimal conflict sets, which are the labels for circuit malfunctions. For the 
example just described, the two conflict sets are represented logically a.s -,(N,..1 /\ N Mi I\ N M2 ) 

and -,(N,..1 ANA.,, ANM1 ANM3 ). Hence, the malfunctioning of the circuit shown in Figure 4 
can be explained by the simultaneous malfunctioning of A1 , M1 a.nd M2, or that of Ai, A2 , 

M1 and Ms . . 
It is immediately obvious that the ATMS ca.n be used to compute the symbolic represen­

tation of Belief functions as described earlier. We given a brief description of the algorithm, 
and refer the reader to the relevant papers {Provan {1988a] a.nd Laskey and Lehner [1988]). 
One drawback of the ATMS is that it computes support sets for literals only. Hence, Belief 
measures ca.n be computed only for propositions which are literals. 
· ATMS-based Belief Computati«:>n Algorithm 
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Consider the process of computing Bel(x) for some literal x. The necessary steps are: 

1. Compute a. DNF Boolean expression from the label set for x: if the label set consists of 
l separate labels, .C(x, E) = {£1(x), ... ,£,(x)}, this is given by 

.C(x, E) = V /\ A;. 
-'i e.c A, e.c; 

2. Account for nogoods: a. contra.diction-free Boolean expression required is: .C(x, E)n(-.~ ). 

3. Compute a disjoint Boolean expression disj(.C(x,E) n (-.1)). 

4. Substitute mass functions for the Ai's to calculate Bel(x). 

Example 1: 
Recall the example (without nogoods) from page 3. The set of clauses, represented both 

as implications and in traditional clausal form, is 

A1 => X1 

A2 =? X4 

X1 I\ A3 => X2 

X2 I\ ~ => X3 

:,l;l /\ A5 => X4 

X4 I\ A6 => X5 

X2 I\ X4 I\ A1 => X5 

AiV Xt 

°A;"V X4 

X1 VAsV X2 

:fiV~V X3 

rivii;v x4 
Z4 V °A; V X5 

X2 V X4 V 'if.; V X5 

The masses assigned to the assumptions are: 

I ASSUMPTION I MASS I 
A1 1.0 
A2 .8 
A3 .5 
~ .7 
A5 .8 
Ae .6 
A1 .9 
As .4 

The label sets the ATMS assigns to the literals a.re: 

I LITERAL I LABEL SET 

Xt {Ai} 
X2 {Ai, As} 
X3 {A1,As, Aa} 
X4 { {A2}, {A11 As}} 
X5 { {A2, Ae}, {Ai, As, Ae}, 

{A1, A2, A3, A1 }, {A1, A3, As, A1}} 



6 IMPLEMENTATIONS OF DEMPSTER SHAFER THE.ORY 26 

The computation of the Belief expressions for ( and hence Belief assigned to) these labels 
is trivial except for the expressions for x5 , which we now show: 

Bel(x6) - e( { {A2, Ae}, {A1, As, Ae}{A1, A2, A1, As}, {A1, Aa, As, Aa}}) 
- e((A2 A A.e) V (A1 /\ As I\ Aa) V (A1 A A2A A1 I\ A3) V (A1 A A3 /\ As I\ Ae)) 
- e(A2)e(Aa) + e(A1)e(As)e(Aa) - e(A1)u(A2)e(A6)u(Ae)+ 

e(A1)e(A2)e(A3)e(A1) + e(A1)e(A5)g(A3)e(A1) - e(A1)u(A2)e(A3)g(As)e(A1 )­
e(A1)e(A2)e(As)e(Aa)u(A1) - e(A1)u(A3)e(As)e(Ae)e(A1 )+ 
u(A1)e(A2)e(Aa)e(As)e(Aa)u(A1) 

- 0.746. 

The Belief assigned to the literals is: 

I LITERAL I BELIEF I 
X:z .5 
X3 .35 
X4 .96 
X5 .75 

As mentioned earlier, the ATMS can dynamically update the label sets assigned to literals 
following the introduction of new clauses. This means that the Belief assignments to literals 
can also be dynamically updated. 

In a logical framework, the label set for a set x of literals can be incrementally updated by 
support clause updating. For example, if the database is updated by a clause x5 /\ X1 => x8 

such that x5 and x7 have already been assigned label sets and xs has not, then the label set 
for x 8 can be computed from the label sets for x5 and x 7 as follows. If x6 and x 7 have label 
sets {{ x1 , X2}, { x2 , x3 }} and {{ x1}, { x4 , x6 }} respectively, then Xs is assigned the label set 
{ {x1, x2}, {x2, Xs, :z:4, :z:6}} by taking a combination of the label sets for xs and x1. Support 
clause updating is equivalent to pooling evidence for the antecedents of determine the Belief 
assigned to the consequent. 

Example 2: 
Consider the introduction of a new clause x2 A As => xi, such that e(A8 ) = 0.4. Suppose 

we are given the information that x4 and x6 are contradictory, so that a nogood 4> is formed: 

- .C(x4 ) A .C(xe) 
{ {A2}, {A1, A5}} /\ {A1, ~l As} 
{ {A1, A2, A3, As}, {A1, ~, As, As}} 

The new assignment of Belief to literals is: 
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I LITERAL I BELIEF I 
ct> .192 
X2 .5 
X3 .41 
X4 .96 
X5 .57 

6.3 Hypertree Implementations 

There are several implementations of DS Theory based on hypertree _embedding. These include 
DELIEF [Zarley et al., 1988] and AUDITOR'S ASSISTANT [Shafer et al., 1988]. These 
systems rely (for efficiency purposes and to ensure correctness) on determining a hypergraph 
embedding that can be arranged as a Markov tree. Belief functions are combined locally and 
then propagated through the Markov tree. These computations are similar to those taking 
place in implementations of Influence Diagrams (e.g. [Shachter, 1986]). 

Other implementations of DS Theory are based on tree structure restrictions. Hierarchical 
evidence is one example of such a tree structure. Using this model, Gordon and Shortliffe 
[1985] propose an algorithm which computes approximate Belief functions, and Shafer and 
Logan [1987] implement a system which derive exact Belief functions. Hierarchical evidence 
enables a. partitioning of 0, and a great resulting efficiency ovar the unrestricted domain of 
size 101. We note that _the Sha.fer and Logan algorithm is O(nf), where n = 101 and J 
is the branching factor for the tree structure. This contrasts with the #P-completeness of 
Dempster's Rule. · 

7 RELATED WORK 
DS theory is an active research area, as the following related literature shows. The work de­
scribed in this pa.per is built on the work of several people, including d' Ambrosio [1987], Laskey 
and Lehner [1988] and Pearl [1988]. This paper formalizes the work of d'Ambrosio [1987] and 
Laskey and Lehner [1988]. They discussed the logical interpretation of,DS theory with respect 
to the ATMS, whereas we describe it with respect to with respect to a. more general frame­
work, that of propositional logic. Thus this formalization can be used in any implementation 
based on propositional logic. Tn addition, neither d' Ambrosio nor Laskey and Lehner explic­
itly mentioned methods for computing the disjoint Boolean expressions necessary to compute 
Belief functions. · 

This paper extends several notions presented in Pearl [1988]. The notion of a Belief function 
summing proof paths has been formalized as the summing of minimal support sets. Pearl 
suggested the use of series-parallel reductions23 to ensure disjointness. We explore many other 
Network Reliability algorithms, and summarize the complexity results for the problem of 
producing disjoint Boolean expressions. 

23See the Inclusion/Exclusion methods presented in Appendix A. 
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Orponen [1989] has independently derived the #P-completeness of Dempster's rule. He 
uses a reduction from SATISFIABILITY, whereas we use a reduction from CONNECTED­
NESS RELIABILITY. 

Fa.gin a.nd Halpern [1989] describe a general framework for the work presented here. Their 
work focuses on deriving a probabilistic interpretation for DS theory; here we focus on the 
propositional logic formulation. More specifically, Fagin and Halpern show DS Belief and . 
Plausibility measures to correspond in a precise way to probabilistic inner and outer measures 
respectively. Given a probability measure µ, they consider a sample space 8 24 with non­
measurable events, from which a probability space (S, X, µ) fa constructed .. They show that 
a probability structure defined on (S,x,µ) is eqwvalent to a DS structure (and vice versa), 
provided that the domains considered are logical formulae rather than sets. In addition, they 
formally analyse the relationship between Nilsson's probabilistic logic and DS theory. Defining 
a Nilsson stru~ture as a structure based on a set of weighted logical clauses, they show that 
every Nilsson structure is a DS structure, although the converse does not hold. 

Ruspini [1987] has analysed DS theory in a manner which has many similarities to the 
analysis presented here. Ruspini frames DS theory within an epistemic modal logic which is 
equivalent to S5. He begins from a Carnapian analysis of the logical foundations of probability 
theory [Carnap, 1962]. Ruspini defines a possible world Wi as a mapping of a subset of atoms25 

At= {p, q, r, ... } to {t, /}. Wis the universe of possible worlds. A frame of discernment is the 
set of logical clauses built from At using {V, A,-,}, Ruspini distinguishes objective propositions 
(e.g. p, q) from epistemic ones (e.g. Kp, Kq). The epistemic propositions Kp, Kq) represent 
knowledge about their objective counterparts (p, q). For some subset W' C W of possible 
worlds, Ruspini makes the following definitions: 

epistemic set: e(p) - {W' C Wl(Kq is true) iff (p ===> q)}, and 

support set: k(p) - {W' C Wl(Kp is true)}, such that 

k(p) - LJ e(q). 
q:>p 

It is easily observed that the support_ set k(p) corresponds to the minimal support set 
e(p, E) when e(p, ~) is restricted to singletons. 

Ruspini then builds a er-algebra. such that measures are assigned to some set of subsets, 
rather than to every subset of the universe. He defines ma.as and support functions as follows, 
defining P( q) to be the probability of q: 

mass function: m(p) - P{e(p)}, and 

support function: S(p) - P{k(p)} such that 

S(p) - L m(q). 
q~p 

24This sample space is a. classical probabilistic sample space, in which x is a. u-a.lgebra of subsets of S; cf. 
[Fagin a.nd Halpern, 1989] or [de Finetti, 1974}. 

25The a.toms a.re propositional symbols in our terminology. 
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S(p) corresponds precisely to a DS Belief function, provided that the mass function assigns 
a. bpa only to singletons. S(p) sums the mass assigned to the minimal support sets of p, with 
the support sets restricted to singletons. 

Ruspini' also describes the combination of knowledge in his formalism. H Kp is true iff 
(1 )K1p1 and K2P2 are true, and (2) p1 A. P2 =;- p, then we have: 

epistemic set combination: e(p) U [e1(P1) n e2(P2)], and 
P1AJ)2::}p 

mass function combination: m(p) - K, L P{[e1(P1) n e2(P2)]}, where 
P1Af"J::}p 

,c is a normalization constant such that E m(p) = 1. This is a generalization of Dempster's 
rule, and requires an assumption of the independence of the epistemic algebras K1 and K2 . 

It is obvious that the mass function combination corresponds to the logical version of 
Dempster's rule presented here, with the summation being over the minimal support sets, i.e. 
over -,e(E1e, E) =;- E1r. 

We have shown that propositional logic is sufficient to formalize DS theory, and does so in a 
manner analogous to, and we argue more straightforwardly, than the modal logic proposed by 
Ruspini. In addition, we have shown how evidence combination can be described in terms of 
the well-known notion of the generation of prime implicates II(E), and from II(E) evaluating 
the minimal support sets. 

8 DISCUSSION 

We have described the relation between DS Theory and propositional logic. We have shown 
how the support clause e(E,, E) gives a notion of a symbolic explanation for E,. In the 
same way, a symbolic representation for a DS Belief function provides a notion of a symbolic 
explanation, and the numeric value of the Belief can be viewed as a numeric summary of 
that explanation, or as the numerical assignment of the believability of the explanation. In 
addition, just as a logical model describes which propositions are true in a given world, the 
DS Belief assigned to a conjunction of focal propositions described the degree to which that 
set of propositions is true. Thus, to the extent to which logic and DS Theory overlap, DS 
Theory can acquire a logical semantics. 

What does this analysis tell us about DS theory, and about the relations between DS 
theory and propositional logic? 

1. Dempster's rule has been shown to be summing provability relations. It is primar­
ily concerned with provability relations, and secondarily with manipulating uncertainty 
measures associated with those relations. Belief measures show the measure assigned 
to the necessity of a proof, and Plausibility measures show the measure assigned to the 
possibility of a proof. 
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This importance of provability accounts for what Pearl [1988] calla a "semantic cla.sh" 
with probability theory. DS theory is a theory of uncertainty management complemen­
tary to probability theory, and it can be developed wholly independently of probability 
theory. In fact, the precise relation to probability theory has been shown [Fagin and 
Halpern, 1989]: Belief a.nd Plausibility measures correspond to probabilistic inner and 
outer measures respectively. 

However, even though there is a direct probabilistic interpretation of DS Belief and 
Plausibility measures, there is no direct probabilistic interpretation of Dempster's rule. 
We argue that this combination rule is the main divergence of DS theory from probability 
theory. It a.I.so provides intuition regarding when DS theory is appropriate and when it is 
not. 26 Ignoring normalization, Dempster's rule for Belief updating sums a set of mutually 
independent proofs for a proposition. This is quite different from the probabilistic notion 
in Bayes' rule of re-evaluating a measure based on new information. In fact, we have 
shown that Dempster's rule can be represented entirely in terms of well-known logical 
operations. 

Hummel and Landy [1988) have described the relationships between DS theory and 
probability theory in terms of the statistics of the opinions of experts. A Belief value 
can be interpreted as the percentage of the set of experts who provide a Boolean vote 
for a particular opinion. From this perspective, Dempster's combination rule "contains 
nothing more than Bayes' formula applied to Boolean assertions, . . . (and) tracks multiple 
opinions as opposed to a single probabilistic assessment." Thus Dempster's rule updates 
product sets of opinions instead of single opinions. 

This interpretation of Dempster's rule is an alternative way of providing intuition into the 
differences between Dempster's rule and Bayes' rule. The common intuition in both the 
Hummel and Landy and our interpretation is that Detnpster's rule is essentially operating 
using Boolean operations. Hummel and Landy refer to thls rule in terms of Bayesian 
updating on Boolean opinions, such that the Boolean operations are fundamental. 

2. DS theory, viewed in logical terms, generalises the logical notion of contradiction. Two 
arbitrary clauses can be defined (external to the logic) as being contradictory. This 
generalization is also present in truth maintenance [Doyle, 1979). 

3. We have shown the close relationship between DS theory and Network Reliability. In 
Network Reliability, an event is defined as an ~signm.ent of functionality (i.e. function­
ing or non-functioning) to .a set of components. Network Reliability is concerned with 
enumerating the existence in networks of events which define communication paths, a.nd 
summing the probabilities of such disjoint events. A DS Belief measure enumerates 
the ways in which a proposition is provable (which can be represented as a proof path 

26It is possible to create a. different DS update rule, one which is tailored to specific situations, and which 
has a probabilistic interpretation. [Fagin and Halpern, 1989) speculate on this point as well. 
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through a. graph), and sums the disjoint provability measures (i.e. paths). In fa.ct, 
network reliability is DS theory restricted to Bayesian Belief functions. 

4. This resea.rch provides insight into the relationship between DS theory and Nilsson's 
Probabilistic Logic. Leaving aside semantical notions, on one level the two theories are 
the same, as they assign a. measure to a. set of clauses, and then assign measures from 
this initial assignment based on the provability relations of the clauses. Both assign 
bounds to these provability measures. 

One major difference is in the approach to assigning bounds to the provability notions. 
Probabilistic logic uses a geometric approach based on linear programming. This method 
maps extreme vectors in the space of possible worlds P into extreme vectors in the space 
II of probabilities of the sets of possible worlds. Using the fact that II must lie within 
the convex hull of the extreme vectors of II, a. consistent region for IT can be defined. 

If Probabilistic Logic can be described as a model theoretic approach in which the ex­
treme vectors of II define a. consistent convex hull, DS theory can be described as a 
proof theoretic approach in which the set of minimal proofs for a clause E; are collected, 
and from the measure assigned to E, a measure is assigned to the existence of a proof 
for E;. Bel(E;) can thus be seen as the Prob {3 a proof for proposition E;}. If we 
4escribe both Probabilistic Logic and DS theory as consisting of a set of logical and 
consistent constraints, we can say that: in Probabilistic Logic II (the proba.bilfatic con­
straint) defines the consistent convex hull from which consistent worlds (i.e. the logical 
constraints) can be evaluated; in DS theory the logical constraints define a set of proofs 
from which the probabilistic constraints can be evaluated. Pea.rl [1988] describes this as 
follows: "Probabilistic logic ... (is) a set of hard (logical) restrictions imposed on a set of 
soft (probabilistic) models, while the DS theory ... (is) a. set of soft restrictions imposed 
on a set of hard models." 

This paper suggests several methods of implementing algorithms to compute DS Belief 
functions. For computing approximate DS Belief functions, randomized approximation algo­
rithms are the most promising. For computing exact DS Belief functions, many implementa­
tions based on logical operations have been suggested. However, we argue that implementa­
tions based on hypertree embeddings and on certain Network Reliability approaches such as 
SDP will· be more efficient than implementations which compute minimal support sets. Gen­
era.ting minimal support sets and then creating disjoint Boolean expressions from which to 
compute Belief functions does not exploit the structure of the problem. Hypertree embedding 
and certain network reliability approaches do exploit problem structure, and a.re inherently 
more efficient. However, when minimal support sets are required for other problem-solving 
purposes, then the support set-based computations are recommended. And, even though the 
support set-based implementations a.re inefficient, they do demonstrate the logical underpin­
nings of DS theory, and enable uncertainty reasoning to be applied in a formal manner to 
propositional rule networks. 
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Our future research includes further exploration of the differences among DS theory and 
other uncertainty reasoning formalisms, identification of appropriate applications of DS Theory . . 

and Probabilistic Logic implementations, and development of more efficient approximation 
algorithms for such computations. . 
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A N~TWORK RELIABILITY TECHNIQUES 
In this appendix we briefly review the major techniques for solving network reliability prob.,. 
lems: Patheet/Cutset Enumeration and Pivotal Decomposition/Factoring. 

A.1 Pathset/Cutset Enumeration 
The path/cutset enumeration methods begin with the (minimal) set of paths/cutsets, and 
expand them so that they a.re disjoint. Two widely-used expansion methods UBed are: 

1. Inclusion/ exclusion 

2. Suma of Disjoint products 

We note that the input to algorithms based on these methods, minimal paths/cutsets, 
corresponds to the set of prime implicates/implicants. . . 

The reliability of an (s, t) path P(s, t) is given hy 

a 

R(s, t) = g( LJ 'P1c). 
k=l 

Pi is the event that all elements on the ith minimal path-set are functioning. Enumerating 
the minimal cutsets of a graph is equivalent to enumerating the minimal paths, by Menger's 
Theorem (see [Berge, 1973)). We note that for any graph Q(V, E), there are 2IEI-IVl+2 possible 
paths between any nonadjacent pair of nodes. 

The cutset-based reliability of an ( s, t) path P ( s, t) is given by 

N 

P(s, t) = 1 - P(LJ c;,t), (15) 
i=l 

where C! t is the event that all edges fail in the i-th prime cutset and N is the total 
number of p;ime cutsets with respect to nodes s and t. As in the computation of P(s, t) by 
path enumeration, each cutset must be disjoint. For a graph Q(V, E), the order of the number 
of cutsets is 21v1-2 , as compared to 2IEI- IVl+2 paths. For graphs with average degree 2:-: 4, 
IE I> 2 I VI and 2IEI-IVl+2 > 21Vl- 2, i.e. there are more paths than cutsets. Hence, for such 

· graphs enumerating the cutsets is more more efficient. 
Inclusion/exclusion (IE) Methods are based on the following simple expansion of 

parallel and series links: 

• parallel links are computed using 

• and series links using 
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Given a path set ('P1, ... , 'P.), the reliability is given by 

• • 
R(Q) L f!(A) - LL f!('Pi'P;) + (16) 

"' + (-l)•-le('P1'P2•••'P.). 

An example of this enumeration technique is [Kim et al., 1972). As shown by equation 16, 
the terms alternate in sign, with the terms with - signs being the double-counted terms. 

Example: 
We give an example of this method by computing the measure assiged to X6 from the 

problem given on page 4.3. The non-disjoint measure a.ssigned to x6 is . 

{!6 = {!1{!2 + {!3(!4 + {!1()5()4. 

Using the IE method, we will recursively create a disjoint expression by making the first two 
paths disjoint, to create expression R2, and then ma.king the entire expression disjoint by 
making R2 and the third path disjoint.-

Set R1 - e1e2-
Then R2 = R1 + l>3l>4 - f!if!2f!3f!4. 

R3 = R2 + e1f!4f!5 - e1e2f!4f!s - f!1f!3f!4f!5 + f!1f!2f!3f!4f!5. 

Hence, we obtain the disjoint measure assigned to x6 as 

{!a = {hf!2 + {!3{!4 - + {!1{!4{!5 - {!1{!2{!3{!4 - f!1{!2g4{!5 - ~1U3{!4{!5 + f!1U,Ua(}4(!5. 

The Sum of Disjoint Products (SDP) method is based on the expanding all parallel 
paths using the following formula: · 

e('P1 v 'P2) = e('P1) + e('P1 A 'P2), (17) 
Thus, for a system with s paths, we obtain 

R = f!('P1) + e('P1'P2) + ... + e(P1'P2 · · ·'P,-1'P,). (18) 
This methods generates s terms for s path sets, ·but takes exponentiar time to generate 

each term in the worst case. We note that an SDP reliability formula contains fewer terms 
than the equivalent IE formula for all but the smallest systems, and for large systems is a 
factor of 10 smaller. _ 

This technique was first explored by Fratta and Montanari [19731, and then improved upon 
by Grnarov et. al [1979] and Abraham [1979]. The Abraham method has since been improved 
by Locks [1987] and by Beichelt and Spross [1987]. 

A.2 Pivotal Decomposition/Factoring 

This method can be used for any graph (formula), and is especially useful for graphs (formulae) 
which can not be reduced to a set of series /parallel (disjoint) paths, such as that representing 
the bridge network shown in Figure 5. This theorem "factors out" edges in a graph by 
conditioning on such edges. Thus, you can condition on some edge e; such that 

P(s, t) = P;{P(s, t)}Pj=l + (1 - pj){P(s, t)}p;=O, (19) 

where P; is the failure probability of edge j, and {P(s, t)}Pj=l is the (s, t) reliability assuming 
edge j fails. -
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Figure 5: Bridge network: Example of a non-disjoint formula 
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B.1 Logical Equivalence of DS Theory Proofs 
Lemma 1 All minimal support sets consist of assumptions only. 
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Proof: Assume that some minimal support e(x, E) contains a non-assumption literal x•, 
i.e. e(x, E) = V-A. V x•. By the definition of support set, if x• occurs in e(x, E), either x• is 
not justified or e{x, I:) is 'not minimal. If x· were justified, its antecedents would be in e(x, El 
instead of x•. But a.lf non-assumption literals are justified and e ( x, E) is minimal. Hence X 

can.not occur in e(x, E). ■ . 

Lemma 2 The belief assigned to a proposition (J (which has corresponding logical clause I:1r) 
can be computed from the support clause for I:1r; i.e. 

Bel(fJ) = u(e(x, E)) 

Proof: The Belief assigned to (J adds the measure of the subsets from which it is provable. 
The minimal support for E1; provides the minimal conjunction of assumptions from which it 
is pr~vable, which is identical to the definition of Belief. ■ . 

~ _emma 3 Dempster's role for Belief combination, i.e . 

·(20) 

corresponds to computing the measure assigned to Ej (the clause corresponding to 6, such that 
-.- . Bel(E;) is the measure assigned to a disjoint form of e(E;, E). 

• -~1{ •. t , • •• 

· t.'"'•--:· 
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Proof: Ea.ch summand of the numerator of equation 20, ni0, = 0, corresponds exactly 
to AiAi * Ej, or -,e_~(E3, E) * Ei, where ek is the kth minimal support clause for E;. The 
summation is thus over the minimal support sets of E;. This summa.tion is given by 

v elc(E;, E). 
(11:E((E;,E) 

The Belief assigned to this summation is given by 

Bel(E;) Bel( V elc(E;, E)) 
e.ee(E;,E) 

V /\ A.. 
e~(E;,E)Edi•;(e(E;,E)) A;E('(E;,E) 

The denominator for equation 20 can be computed in an analogous manner. ■ 


