
RANDOMIZED DISTRIBUTED COMPUTING

ON RINGS

by

Lisa Higham

Technical Report 89-5

Abstract

The communication complexity of fundamental problems in distributed computing on
an asynchronous ring are examined from both the algorithmic and lower bound perspec­
tive. A detailed study is made of the effect on complexity of a number of assumptions
about the algorithms. Randomization is shown to influence both the computability and
complexity of several problems. Communication complexity is also shown to exhibit vary­
ing degrees of sensitivity to additional parameters including admissibility of error, kind of
error, knowledge of ring size, termination requirements, and the existence of identifiers.

A unified collection of formal models of distributed computation on asynchronous rings
is developed which captures the essential characteristics of a spectrum of distributed algo­
rithms - those that are error free (deterministic, Las Vegas, and nondeterministic), and
those that err with small probability (Monte Carlo and nondeterministic/probabilistic).
The nondeterministic and nondeterministic/probabilistic models are introduced as natural
generalizations of the Las Vegas and Monte Carlo models respectively, and prove useful in
deriving lower bounds. The unification helps to clarify the essential differences between
the progressively more general notions of a distributed algorithm. In addition, the models
reveal the sensitivity of various problems to the parameters listed above.

Complexity bounds derived using these models typically vary depending on the type
of algorithm being investigated. The lower bounds are complemented by algorithms with
matching complexity while frequently the lower bounds hold on even more powerful models
than those required by the algorithms.

Among the algorithms and lower bounds presented are two specific results ,vhich stand
out because of their relative significance.

1. If g is any nonconstant cyclic function of n variables, then any nondeterministic
algorithm for computing g on an anonymous ring of size n has complexity n(n J log n)
bits of communication; and, there is a is nonconstant cyclic boolean function f, such
that J can be computed by a Las Vegas algorithm in 0(nJ log n) expected bits of
communication on a ring of size n.

2. The expected complexity of computing AND (and a number of other natural func­
tions) on a ring of fixed size n in the Monte Carlo model is 0(n min{log n, loglog(l/£)})
messages and bits where € is the allowable probability of error.

ii

Contents

Abstract

Acknowledgements

1 Introduction

2 A Simple Las Vegas Leader Election Algorithm

2.1 Leader Election, Attrition and Solitude Verification .

2.2 The Attrition Procedure

2.3 T·he Solitude Detection Algorithm

2.4 Interleaving Attrition and Solitude Detection

2.5 Tuning the Leader Election Parameters ..

3 Applications of Las Vegas Leader Election

3.1 Function Evaluation

3.2 Ring Orientation ..

3.3 Leader Election in Oriented Complete Graphs .

3.4 Leader Election in Oriented Sparse Graphs . .

4 A General Model for Asynchronous Computations on Rings

4.1 Processes for Rings

4.2 Algorithms

4.3 Relationships Between Classes of Algorithms

4.4 Extensions to Non-message-driven Algorithms .

5 Minimum Nonconstant Function Evaluation

Ill

ii

V

1

11

13

15

17

19

24

26

26

28

30

37

39

41

45

54

58

63

5.1 Tools for Proving Lower B<:mnds

5.2 Bit Complexity of Function Evaluation - Lower Bound

5.3 A Function that Achieves Minimum Bit Complexity

5.4 Extensions to Monte Carlo Function Evaluation? ..

6 Evaluation of Specific Functions I: Unknown Ring Size

6.1 Upper Bounds

6.2 Lower Bounds for AND

6.3 Extensions to PARITY .

6.4 Summary

7 Evaluation of Specific Functions II: Known Ring Size

7.1 Best Case Attrition

7 .2 Lower Bounds for €-attrition .

7.3 Monte Carlo Complexity of Natural Functions.

8 Conclusions

8.1 Summary of Contributions .

8.2 Further Research

References

iv

64

66

70

75

77

78

82

88

89

91

93

95

103

108

108

117

120

Acknowledgements

It has been my very good fortune to have studied under the supervision of David
Kirkpatrick. I am deeply indebted to him for the example he has set as a supervisor, a
scientist and a human being. I cherish the opportunity I have had to work with him and
his example is one I shall always strive to emulate.

Andrew Adler has participated in all aspects of my research to a far greater extent than
the normal involvement of a committee member. I particularly appreciate his repeated
guidance through techniques of probability theory, insisting that I "get it right". Sam
Chanson and Alan Wagner, the remaining members of my committee, contributed valuable
suggestions and brought fresh alternative perspectives to my work.

Karl Abrahamson has been more than a very active collaborator over the past four
years. Rather, he has played a role akin to that of an unofficial second supervisor. I am
grateful to him for his invaluable insights, as well as for his guidance and encouragement.

My appreciation also goes to my external examiner, Nancy Lynch, for her thorough
reading of a draft of this dissertation. Her perceptive comments led to several improvements
in the final version.

In spite of my endless demands on his ear, Alan Covington has responded with an
untiring willingness to listen and with critical and helpful suggestions. This is in addition
to a bottomless well of support, patience, and love for which I am very thankful.

I suspect that one rarely has such a richly rewarding experience as i have enjoyed as
a graduate student. This happy circumstance is due not only to those mentioned above
but also to the community of fellow graduate students and department members. To all
of the large support group of friends both inside and outside the department of Computer
Science at The University of British Columbia go my heartfelt thanks.

V

Chapter 1

Introduction

A loosely connected network of small processors is a common alternative to a large central­

ized resource. The processors in such a network cooperate to solve a problem by exchanging

messages. Typically, each processor executes a set oflocal instructions which cycle through

the steps: i) possibly send a message, ii) wait until a message is received, and iii) do some

local processing. The system is programmed by specifying a sequence of these steps for

each processor.

The network may consist of many types of processors and the communication links

may be implemented using various technologies. Such a system may well be unreliable, but

reliable message transfer is typically provided by a protocol that retransmits lost messages

after a suitable time period has elapsed. Reliability is thus achieved at the expense of

a processor's ability to accurately predict when a message will arrive. The speed with

which a message is transmitted and processed is dependent upon the specific processors

and transmission lines involved and on the protocol providing reliability. Under these

conditions, a processor could not with certainty distinguish a late message from the absence

of a message. A conservative approach would then require that algorithms do not assume

anything about message delays. There is neither a global clock nor shared memory to

force the processors to compute in lock-step, so, apart from the exchange of messages,

each processor proceeds independently. To the extent that synchronization is necessary,

1

Chapter 1: Introduction 2

it must be achieved by the exchange of messages. Typically, the information required to

solve a problem is distributed throughout the network, and processors must combine local

computation with the acquisition of additional information until the desired solution is

achieved. Communication costs tend to dominate local processing costs. For example,

in a long-haul network, each packet of communication may be assessed an actual charge.

Furthermore, the time required to package and deliver a message is frequently significantly

longer than the time required for local computation. Therefore, a principal motive is to

design programs that minimize communication. The total number of messages or bits used

by a program serves as a first approximation to its cost.

A system with these characteristics is called an asynchronous distributed system. The

absence of, or lack of reliance upon, a global clock or any time out mechanism accounts

for the "asynchronous" label. It is assumed that messages are subject to unbounded

delay, but that those sent over the same communication link are eventually delivered and

always in the order in which they were sent. (A large body of research, but not this

dissertation, addresses the topic of error-tolerant distributed computing which drops the

assumption of reliable message delivery.) It is usual to model a distributed system as a

graph with processors represented by vertices and the communication channels represented

by edges. An algorithm for a distributed system is usually thought of as a program, one

copy of which resides at each processor. The algorithm is executed when each processor

simultaneously runs the program. In order to model more general kinds of algorithms,

this description is relaxed, in this dissertation, by permitting processors to run different

programs. An algorithm for a distributed system is therefore modelled as a strategy for

assigning programs to processors.

A simple complexity measure reflects the assumption that communication costs signif­

icantly dominate local processing costs. The complexity of a computation is defined to be

the total amount of communication (either messages or bits) that transpires during the

computation. No charge is attributed to local computation.

The function evaluation problem assumes that each processor has an initial input and

is required to determine the value of some function of the collection of inputs. Function

Chapter 1: Introduction 3

evaluation is used to model information sharing by processors.

The distributed environment differs significantly from both the classical single processor

environment modelled by a random-access machine (RAM) and from the tightly coupled

parallel machine environment modelled by a parallel random-access machine {PRAM). The

computation of a deterministic algorithm running on a sequential or parallel machine is

completely determined by the input. In contrast, on an asynchronous distributed network,

an algorithm with a fixed input may give rise to a number of different computations de­

pending on message delays. In the PRAM model processors are automatically synchronized

by a global clock; in the RAM model there is no synchronization to be done. In the asyn­

chronous distributed model, however, synchronization of processors must be maintained

explicitly by the algorithm. In both the RAM and PRAM models, processors have access

to all information because there is one global memory, whereas, information sharing is ne­

cessitated in the distributed model because there are only local memories. Because of these

properties, even simple problems present surprisingly subtle difficulties in the distributed

environment. For example, deadlock (termination of the computation without arriving

at a solution) or livelock (continued computation without progress toward a solution) are

possible consequences of failure to ensure processor coordination. Also, the outcome of a

computation on an asynchronous network is required to be independent of the pattern of

delays during the computation. Hence, the design of correct distributed algorithms and

proofs of their correctness can be involved tasks.

In addition to new issues of correctness arising from the pitfalls of asynchrony and

concurrency, there are new complexity concerns. Algorithms are measured against the

criterion of communication efficiency. Since communication behaves differently than the

more familiar resources of time and space, transfer of techniques from the more traditional

domains to distributed computing systems is not automatic.

Current distributed systems do not always function as specified. This is evidence that

there is a lack of expertise in designing and analysing distributive programs. A standard

tactic when studying a complicated problem is to restrict the problem domain by making

simplifying assumptions. An asynchronous ring is one of the simplest of network topolo-

Chapter 1: Introduction 4

gies. This topology eliminates some of the complicating factors encountered in arbitrary

networks. On a unidirectional ring, a processor receives communication on only one chan­

nel, and thus a scheduler cannot manipulate the order of arriving messages. Even in the

bidirectional case the possible computation sequences are under some control. Nonetheless,

features uncovered in the ring environment can be expected to show up in more general

topologies. Rings also exist as subgraphs of more elaborate distributed networks. Hence,

algorithms designed for rings have applications in networks with richer topologies. Conse­

quently, rings serve as a suitable testbed in which to sharpen our intuitions, develop basic

tools, and gain insight into factors that influence the complexity of communication.

The assumption of distinct identifiers is the usual default within the domain of deter­

ministic algorithms because identifiers are typically (though by no means always) required

to solve problems deterministically. In contrast, the focus here is on anonymous networks:

that is, networks where distinct node identifiers cannot be guaranteed (or where they are

disregarded for the sake of generality). Randomization is employed to skirt the limitations

of determinism on an anonymous ring. With the help of randomization all recursive func­

tions can be computed on an anonymous ring of known size. Furthermore, even when a

deterministic solution exists, randomization frequently provides a more efficient one.

Even within the restricted anonymous ring configuration, there are a number of addi­

tional parameters that can be seen to influence the inherent complexity of fundamental

problems. Close study of specific problems serves to highlight a number of these issues. By

designing distributed algorithms, it becomes apparent that small changes in the require­

ments of an algorithm seem to have a significant influence on its communication complexity.

Lower bounds confirm that the perceived sensitivity to additional features of the model is

real.

One such parameter is the type of program that is being run by the processors of

the network. The programs may or may not incorporate randomization. If randomiza­

tion is employed, the resulting algorithm may be required to eventually terminate and

to be correct upon termination. Alternatively, the less stringent requirement, that with

high probability the algorithm terminates correctly, may be imposed. For some problems,

Chapter 1: Introduction 5

the inherent complexity decreases W'ith each generalization from one of these models to a

more powerful one. Randomization, however, is not a panacea. There are other problems

whose communication complexity is not affected by more than a constant factor even when

randomized solutions that err with small probability are permitted.

Algorithms required to work for all possible topologies can be expected to have a higher

complexity than ones designed for a fixed topology. It is perhaps less obvious that even

after restricting the network to an asynchronous unidirectional ring of indistinguishable

processors, the complexity of a given problem is not necessarily determined. Algorithms

that are designed for a fixed size ring might have a lower complexity than any algorithm

that must work for a larger class of rings. The degree of this sensitivity to knowledge of

the ring size is problem specific.

A third factor influencing complexity is the type of termination required of an al­

gorithm. Usually it is assumed that a processor ceases computation after arriving at a

conclusion. This means that subsequent messages cannot influence this conclusion. This

is called distributive termination. A weaker notion of termination permits processors to

reach tentative conclusions which may be revoked upon receipt of further communication.

Hence, the conclusions are only final when all message traffic has ceased, a situation which

may not be detectable. This type of termination is called nondistributive termination. For

some problems, the lower bounds under the assumption of nondistributive termination can

be achieved by distributively terminating algorithms. The complexity of other problems is

influenced by the type of termination required.

No doubt additional features of a. model might also be considered. However, these

three parameters - algorithm type, knowledge of ring size, and type of termination - are

sufficient to illustrate the rich spectrum of issues that influence communication complexity.

For each of these parameters, there are problems whose complexities are sensitive to the

specific assumptions and other problems whose complexities are not.

Many fundamental problems on rings with various additional assumptions have been

widely studied in the absence of randomization. However, it has become increasingly

Chapter 1: Introduction 6

apparent that randomization can be a powerful tool particularly when used as an aid

to breaking symmetry. So it is natural to explore the effect of randomization on the

complexity of algorithms for an asynchronous distributed environment. A central thesis of

this dissertation is that randomization can contribute to the design of simple and efficient

distributed algorithms. In defence of this claim, it will be demonstrated that on a ring:

1. Randomized algorithms solve some problems in distributed computing that cannot

be solved by deterministic algorithms.

2. Some problems in distributed computing that have deterministic solutions, have ran­

domized solutions which significantly reduce the communication complexity over the

best possible deterministic solutions.

3. Randomization is frequently natural and easy to employ, resulting in algorithms that

are conceptually straightforward and are easily proved correct.

In addition, randomization admits the possibility of probabilistic solutions to distributed

problems. On occasion it may be advantageous to tolerate a small probability of error

in a solution in exchange for increased efficiency. In other situations there may be no

algorithm that solves a specific problem with certainty, however randomized algorithms

exist that "almost certainly" provide a correct solution. Such an algorithm necessarily

employs randomization, for any reasonable definition of "almost certainly".

There are two standard terms for describing these two uses of randomization (11]. A

Las Vegas algorithm is required to terminate with probability one and to be correct when

termination does occur. A Monte Carlo algorithm must have probability at least 1 - € of

terminating correctly, where f is a parameter of the algorithm.

Certain properties shared by several distributed computing algorithms point to explana­

tions for the effectiveness of randomization. It has been pointed out that the asynchronous

nature of distributed computation contributes to the difficulty of designing correct algo­

rithms. So it may seem paradoxical that the computations with highest communication

complexity often arise during executions that happen to proceed synchronously. The syn-

Chapter 1: Introduction 7

chronous execution preserves processor symmetry. But very few exchanged coin tosses can

be expected to break symmetry. Hence, randomization quickly overcomes the problems cre­

ated by local symmetry. Deterministic distributed computing solutions frequently include

the exchange of processor identifiers. Typically, only locally distinct rather than globally

distinct identifiers are required for part of an algorithm. A constant number of random bits

at each processor can be expected to distinguish processors locally. So it might be possible

to replace exchanges of long identifiers with exchanges of short sequences of random bits,

thus achieving an effective algorithm with lower bit complexity. If the resulting algorithm

makes no use of the processor identifiers, then as a bonus, the new algorithm can be applied

to rings that cannot guarantee distinct processors.

A related observation deserves mention here. Sometimes a simple deterministic solution

to a distributed computing problem performs well on average. However, for a small propor­

tion of the possible assignments of identifiers to processors, this natural solution has a high

communication complexity. Eliminating poor worst case performance while maintaining a

deterministic solution could require a significant increase in the intricacy of the code. An

obvious alternative is to employ randomization while keeping the structure of the original

simple algorithm. The association between particular inputs and expensive computations

is broken by randomization. For any particular input, the worst case scenario occurs with

only very low probability. Consequently, the resulting randomized algorithm maintains

a low expected complexity. Algorithms that use randomization to achieve this averaging

effect for all identifiers or inputs have been called Sherwood algorithms [11).

Once it is determined that randomization can be helpful, it is natural to ask "How

much does randomization help?". This opens the question of lower bounds for randomized

asynchronous computation. Lower bounds for randomized algorithms are typically more

difficult to establish than the corresponding deterministic ones, even in the sequential

setting. In the distributed setting, the combined factors of asynchrony and randomization

pose substantial barriers to general lower bound techniques.

On a unidirectional ring, one of the barriers due to asynchrony can be circumvented.

In a general asynchronous network the scheduler has some control of the ordering of mes-

Chapter 1: Introduction 8

sages arriving at a processor over different links. This power is lost in a unidirectional ring

because messages are received on only one link. By generalizing from randomized to non­

deterministic algorithms, the barrier due to randomization can be finessed at times. (The

automata theoretic notion of nondeterminism is intended throughout this dissertation. An

algorithm provides a nondeterministic solution to a problem if - loosel)'. - it never results

in a wrong answer to the problem. The complexity of such an algorithm on a fixed input

is the minimum complexity over all correct computations for that input.) Nondeterminism

can be considered to model the best case execution of a randomized algorithm. These best

case lower bounds then apply to the less powerful randomized model.

Recently, Duris and Galil [14) introduced some new techniques for proving average case

lower bounds for deterministic algorithms for rings. These can be adapted to apply to the

expected case of randomized algorithms. The techniques provide an alternative for proving

lower bounds for randomized solutions when nondeterministic lower bounds are too weak.

Two recurrent themes serve to unify the material in subsequent chapters. One is the

effect of randomization on the design of algorithms for asynchronous distributed systems.

Another is the surprising influence that the secondary model characteristic, knowledge

of ring size, has on the complexity of some fundamental problems. An overview of the

remaining chapters follows.

If one processor in a network is distinguished as a leader, then that processor can

coordinate further computation. For this reason, leader election has long been recognized

as a fundamental problem in distributed computing. The bulk of research into this problem

has addressed deterministic solutions to leader election. Las Vegas leader election, however,

offers significant advantages over deterministic election. Chapter 2 describes one such

algorithm for leader election on a ring. The solution has evolved from an earlier Las Vegas

solution (see [2) and [1]). The variant in chapter 2 is conceptually simpler and has an easier

proof of correctness than its predecessor, while maintaining the same expected complexity.

Chapter 3 contains confirmation of the fundamental nature of leader election. Deter­

ministic solutions for other basic problems such as .ring orientation and election on networks

Chapter 1: Introduction 9

related to rings have received attention [9,10,19,27]. These problems are re-examined in

chapter 3 with the intent of determining the contribution of randomization. Las Vegas

solutions are constructed from the leader election algorithm of chapter 2. These solutions

inherit the advantages that Las Vegas leader election has over deterministic leader elec­

tion. In particular, the bit complexities of the resulting algorithms are lower than those

of the corresponding deterministic solutions and the requirement for distinct identifiers is

eliminated.

A precise model of computation is needed in order to study lower bounds for algorithms

on rings. Because either messages or bits is the resource of interest, such a model should

highlight the communication performed by the algorithm while making local processing

transparent. A class of models meeting this criterion is presented in chapter 4. All the

models are similar, but are tuned to reflect the various kinds of algorithms - deterministic,

Las Vegas, Monte Carlo and nondeterministic. (Although nondeterministic algorithms are

not an option for realistic solutions, the nondeterministic model is useful because lower

bounds in this model imply lower bounds for the best case execution of Las Vegas algo­

rithms.) Additional properties such as knowledge of ring size, type of termination and

existence of identifiers are all captured by the models in a natural way. As will be seen, the

collection of models proves to be effective for investigating the impact of these parameters

on communication complexity.

The model for nondeterministic algorithms can be exploited to prove lower bounds on

the bit complexity of various problems on rings. A general lower bound occurs in chapter

5. It is shown that if f is any cyclic nonconstant function, then any nondeterministic

algorithm that evaluates f on a ring of size n requires at least 11(nJlog n) bits. The same

chapter demonstrates that the lower bound is the best possible for this generality. A cyclic

nonconstant function is described that can be evaluated in O(nJlog n) expected bits.

This is to be contrasted with the deterministic case where the corresponding complexities

are known to be !l(nlog n) and O(nlog n) bits respectively [21]. Again, randomization is

seen to reduce communication complexity.

The general lower bound of chapter 5 is not tight for algorithms that evaluate natural

Chapter 1: Introduction 10

functions such as AND. The complexity of algorithms for AND that are required to work

on all rings within a range of sizes is determined in chapter 6. The model developed in

chapter 4 is used to show that even the best case of any Las Vegas algorithm for AND does

not improve upon the expected complexity of the specified Las Vegas algorithm.

The lower bound in chapter 6 does not extend to algorithms that need only work

on fixed size rings. This problem is addressed in chapter 7. Again the nondeterministic

model can be employed; this time it is shown that, with exact knowledge of ring size, the

nondeterministic complexity of AND drops. All lower bounds for Las Vegas algorithms

quoted so far use techniques that apply to the best case as well as to the expected case

complexity. Modifications of techniques introduced by Duris and Galil [14] are capable of

distinguishing between the complexity of best case and expected case computation. They

are employed to show that the expected complexity of AND does not decrease with exact

knowledge of ring size. The techniques have the added advantage of easily extending from

Las Vegas to Monte Carlo algorithms. So the results are presented in this more general

setting.

Chapter 8 summarizes the various tools and techniques used throughout the dissertation

as well as to restate and interpret the results. As might be expected, many additional

enticing problems were uncovered in the process of this research. Chapter 8 outlines some

of these open problems together with the partial results of an initial investigation.

Chapter 2

A Simple Las Vegas Leader

Election Algorithm

Leader election causes a unique processor, from among a specified subset of the proces­

sors, to enter a distinguished final state. This problem is one of several problems which

are fundamental in that their solutions form the building blocks of many more involved

distributed computations. The complexity, measured by the number of communication

messages, of leader election on distributed rings with various combinations of properties

has been well studied, as described below.

On an asynchronous unidirectional ring of n processors with distinct identifiers, a leader

can be elected by a deterministic algorithm, which operates using pairwise comparisons of

processor identifiers, using O(nlogn) messages each of O(m) bits [13,25), where mis the

number of bits in the largest processor identifier. If the universe of identifiers is unbounded,

any deterministic leader election algorithm for an asynchronous ring that does not employ

knowledge of ring size, must exchange n(n log n) messages (of arbitrary length) in the worst

case [12,24] or average case [24], even if bidirectional communication is possible.

If processors are not endowed with distinct identifiers then, as was first observed by

Angluin [8], deterministic algorithms are unable to elect leaders, even if n is known to all

processors. ltai and Rodeh [17] propose the use of randomized algorithms to skirt this

11

Chapter 2: Simple Las Vegas Leader Election 12

limitation. They present a randomized algorithm that elects a leader in an asynchronous

ring of known size n using 0(n log n) expected messages of 0(log n) bits each. The lower

bound results of [23] show that even if processors have distinct identifiers drawn from some

sufficiently large universe, the expected number of messages (of arbitrary length) commu­

nicated by a randomized leader election algorithm is n(n log n) as long as the algorithm is

required to work for a large range ofring sizes. With respect to bit complexity, however, the

algorithms cited above for asynchronous rings are not optimal. A randomized algorithm to

elect a leader on a unidirectional asynchronous ring with complexity matching the message

complexity of the algorithm in [17], appears in [2]. In this algorithm, ring size need only be

known to within a factor of two and the low message complexity is achieved using constant

length messages. A matching lower bound of n(n log n) bits is also contained in [2] proving

that no significant bit complexity improvement is possible in this model. The proof of this

lower bound requires some flexibility in ring size. In particular, it does not apply when the

ring size is known exactly.

These results can be contrasted with the results achieved when communication is guar­

anteed to proceed synchronously. If interprocessor communication is synchronous and

identifiers are drawn from some known countable universe, then 0(n) messages suffice to

elect a leader in the worst case (15]. But this reduced complexity can be achieved only at

the expense of time. Even if the ring size n is known to all processors, deterministic algo­

rithms that are restricted to operate either by comparisons of processor identifiers or within

a bounded number of rounds, must transmit f2(nlog n) messages in the worst case [15].

However, 0(n) expected messages suffice for randomized leader election on a synchronous

anonymous ring [17], provided the ring size n is known to all processors.

An alternative algorithm for randomized leader election on an anonymous ring with

message and bit complexity matching that of [2] is described in this chapter. The algorithm

has evolved from this earlier leader election algorithm, and is most naturally described in

an analogous manner. For this reason, much of what follows parallels the development in

[2].

Chapter 2: Simple Las Vegas Leader Election 13

2.1 Leader Election, Attrition and Solitude Verification

Leader election requires that a single processor be chosen from among some nonempty

subset of processors called candidates. Initially each candidate is a contender. A leader

election algorithm must i) eliminate all but one contender by converting some of the con­

tenders to noncontenders, and ii) confirm that only one contender remains. This suggests

the separation of leader election into two subtasks called attrition and solitude verification

respectively (cf.[2]). More formally, a procedure solves the attrition problem if, when initi­

ated by every candidate, it never makes all candidates noncontenders, and with probability

1 it takes all but exactly one of these candidates into a permanent state of noncontention.

Typically an attrition procedure does not terminate but rather enters an infinite loop in

which the remaining contender continues to send messages to itself. An algorithm solves

the solitude verification problem if, when initiated by a set of processors, it terminates

with probability 1 and upon termination an initiator is in state "yes" if and only if there

is exactly one initiator. An algorithm for the related problem, solitude detection, must

terminate with probability 1, and upon termination, if there is exactly one initiator then

the initiator is in state "yes", and if there is more than one initiator then all initiators

are in state "no". If P is a predicate on algorithms for rings, then the term eventually

Pis used to abbreviate the phrase terminates with probability 1 and upon termination P.

Under this convention, an algorithm solves solitude verification if, when initiated by a set

of processors, eventually an initiator is in state "yes" if and only if there is exactly one

initiator. Similarly, if an algorithm solves solitude detection then, eventually, if there is

exactly one initiator then the initiator is in state "yes", and if there is more than one

initiator then all initiators are in state "no".

The relationship between leader election and the two subtasks, attrition and solitude

verification, was pointed out and exploited by Itai and Rodeh [17]. By tightly interleaving

the solutions to the two subproblems, the algorithm in [2] achieves a lower expected bit

complexity than that of the algorithm in [17]. The variant of the algorithm in [2] that is

described below employs a different interleaving strategy which can be implemented with

Chapter 2: Simple Las Vegas Leader Election 14

a simpler attrition procedure. As a result, the proof of correctness is simplified.

Attrition and solitude verification are interleaved to solve leader election by annotat­

ing each attrition message with one solitude verification message. Whenever a contender

enters a state of noncontention, it forwards a solitude verification restart message to alert

remaining contenders that they were not previously alone. When attrition has reduced

the set of contenders to one, solitude verification will proceed uninterrupted, verifying that

only one contender, the leader, remains.

The efficiency of the leader election algorithm depends not only on the efficiency of the

attrition and solitude verification procedures from which it is constructed, but also on the

cost of interleaving. If solitude verification is conservative in the sense that every message

is bounded in length by some fixed constant number of bits, then annotated attrition

messages are at worst a constant factor longer than unannotated messages. So the cost of

premature attempts to verify solitude is dominated by the cost of attrition. Similarly, if

attrition messages have constant length, then the cost of the attrition messages that are

sent after attrition has reduced the number of contenders to one, is at most a constant

factor more than the cost of the solitude verification algorithm. The only remaining cost

attributable to interleaving involves the transmission of restart messages. As will be seen,

this cost is subsumed by the cost of attrition.

The next three sections (2.2 through 2.4) demonstrate how to achieve each of the three

tasks: attrition, solitude verification and interleaving on an asynchronous unidirectional

ring. Processors are message-driven. First some subset of processors each initiate one

message. Computation proceeds by each processor repeatedly executing the steps: (1)

block until some message is received, (2) do the specified local processing, and (3) send the

message (possibly null) determined by the local processing. The goal is a Las Vegas leader

election algorithm, and therefore the solution is required to terminate with probability 1

and upon termination to be correct. Though efficient leader election can be achieved by

interleaving conservative solitude verification with efficient attrition, section 2.3 actually

describes a conservative solitude detection algorithm.

Chapter 2: Simple Las Vegas Leader Election 15

2.2 The Attrition Procedure

The attrition procedure is initiated by all candidates (the initial contenders) for leader­

ship. The number of candidates is denoted by c. The procedure uses random numbers

to eliminate some contenders while ensuring that it is not possible for all contenders to

be eliminated. Contenders create messages which are propagated to the next contender.

A noncontender never converts to a contender, but behaves entirely passively - simply

forwarding any messages received.

The procedure has an implicit round structure and uses a parameter k which determines

message length. In each round, each contender independently generates an integer chosen

randomly from the uniform distribution on the interval [O, 2k - 1], sends the outcome to its

contending successor and waits to receive the random number generated by its contending

predecessor. The processor becomes a noncontender for the remainder of attrition if and

only if it sent a number smaller than the one it received. Those processors remaining in

contention proceed with the next round.

Correctness: Let 71' 1 , .. ,,1rm, m ~ 1, be the contenders at the beginning of an arbi­

trary round, j, and Si be the random number sent by 7ri in round j. Suppose sk =

max{s1 , .• ,,sm}• The corresponding processor 11'k must remain a contender for round

j + 1. Therefore, not all processors can become noncontenders. On the other hand, the

probability that a given contender sends a message that is smaller than the one it receives

is a function of k that is clearly at least 1/4 as long as there is more than one contender.

Hence, with probability 1, the number of contenders decreases to one.

Complexity: When only one contender remains, it continually receives the same random

number as it last sent. This infinite loop is broken only by the intervention of solitude ver­

ification. Therefore, the complexity of concern for the analysis of attrition is the expected

number of bits expended until the number of contenders is reduced to 1. Let 71' 1 , •.. , 71' m

be the contenders at the beginning of an arbitrary round j of attrition. Define the random

Chapter 2: Simple Las Vegas Leader Election

variables Y;, 1 ::; i ::; m, for this round by:

{

1 if 7ri is a contender at the beginn ing of round j + 1
Y.·-

1 - 0 if 1ri is a noncon tender at the beginning of round j + 1

16

Given that there are at least 2 contenders in round j, the k-bit random number generated

by contender 11'i in round j is independent of the random number produced by its nearest

preceding contender. Therefore, E(Y;lm ~ 2) = (2k + l)/(2k+l). Let random variable X;

be the number of contenders at the beginning of round j. Then X1 = c. So, if m ~ 2:

And E(X3+1IX; = 1) = 1. Therefore:

m>l

m

L E(Y;)
i=l

m 2k + 1
I: 2k+1
i=l

2k + 1
m • 2k+1

L E(X;+1IXj = m) · Pr(Xj = m) + Pr(Xj = 1)
m~2

Thus, after r = log 2k+1 c = (1- log(l + 2-k))-1 loge rounds of attrition, E(Xr), when
2k+1

c candidates initiate attrition, is a small constant (at most 5)1 . The expected number

of rounds required to reduce from 5 contenders to one is a constant and each round of

attrition requires exactly nk bits. Therefore:

1 Logarithms denoted by "log" , without explicit bases, are assumed to be base 2.

Chapter 2: Simple Las Vegas Leader Election 17

Lemma 2.1 The expected number of bits communicated by the attrition procedure when

there are c candidates, up to the point where there is only one remaining contender, is at

most (1- log(l + 2-k))-1 knlogc + O(n), where k is the number of bits in each message.

For some applications, it will be convenient to use the attrition procedure with pa­

rameter k set to 1. To highlight the simplicity of this version, called simple attrition, the

single bit random numbers are referred to as random coin tosses which generate elements

of {h,t}.

Corollary 2.2 The expected number of bits communicated by the simple attrition procedure

with c candidates up to the point where there is only one remaining contender is at most

nlog1c+O(n) < 2.4lnlogc+O(n).
3

The expected message complexity of the attrition procedure is at most

(1- log(l + 2-k))-1 nlogc + O(n). Notice that this can be brought arbitrarily close

to n log c + 0(n) by increasing k, the length of the attrition messages. Since

(1 - log(l + 2-k))-1 < 1 + 2 log(l + rk) = 1 + (2/ ln 2) ln(l + 2-k) < 1 + (2/ ln 2)2-k, the

complexity of the attrition procedure described here is less than (1 + 2-k+2)n log c + 0(n)

expected messages2 •

2.3 The Solitude Detection Algorithm

In the absence of any information about the ring, even solitude verification is impossible

(cf. [8,2]). Therefore, solitude verification algorithms must use specific ring information to

verify that there is a sole contender. On an anonymous ring of known size, solitude can be

verified by confirming that the gap between a contender and its nearest preceding contender

is equal to the ring size. Though it is sufficient to combine solitude verification and attrition

to achieve leader election, the following describes a solitude detection algorithm.

Suppose that each processor knows the size n of the ring. A nonconservative algorithm

for determining solitude has each contender initiate a counter which is incremented and

~ Logarithms denoted by "In" stand for the natural logarithm, base e.

Chapter 2: Simple Las Vegas Leader Election 18

forwarded by each noncontender until it reaches an initiator, 1rx, By comparing the received

counter with n, 1r x knows whether or not it is alone. This algorithm can be transformed

into a conservative solitude detection algorithm without any increase in bit communication

complexity.

Each processor 1rx, whether contending or noncontending, maintains a counter cx, ini­

tialized to 0. Let dx > 0 denote the distance from 1rx to its nearest preceding contender.

The algorithm maintains the invariant:

if 7r x has received j bi ts then Cx = dx mod 2i.

Then if 1rx reaches a state where Cx = n, there must be n - 1 noncontenders preceding

1rx, so 1rx can conclude that it is the sole contender. It remains to describe a strategy for

maintaining the invariant.

Contenders first send 0. Thereafter, all processors alternately receive and send bits.

If 1rx is a noncontender, then 1rx is required to send the /h low order bit of dx as its /h

message. Contenders continue to send 0. Suppose a processor, 1ry, has the lowest order

j - 1 bits of dy in Cy, A simple inductive argument shows that when 7ry receives its /h

message (by assumption the /h bit of dy - 1), it can compute the first j bits of dy and

thus can update the value of Cy to satisfy Cy = dy mod 2i.

In the previous algorithm it was assumed that n is known exactly. Suppose instead

that each processor knows an integer N, such that N $ n $ 2N - 1. Then there can be

at most one gap of length N or more between neighbouring contenders. Thus, any gap of

less than N confirms nonsolitude. Any processor detecting a gap of m ~ N can determine

solitude by initiating a single round to check if the next gap is also m. (For the purposes

of leader election, it is sufficient for any contender that detects a gap of N or more to

declare itself the leader, since it has confidence that no other processor can do the same.)

The modified algorithm is a correct solitude detection algorithm when ring size is known

to within a factor of less than two.

Chapter 2: Simple Las Vegas Leader Election 19

Lemma 2.3 If each processor knows a value N such that the ring size n satisfies N ::;

n :s; 2N - 1, then conservative and deterministic solitude detection can be achieved using

at most 0(n log n) bits.

2.4 Interleaving Attrition and Solitude Detection

2.4.1 A simple leader election algorithm

A leader can be elected on a ring of size n E [N, 2N - 1] with just a coarse interleaving

of the attrition procedure and a trivial solitude detection algorithm. First, attrition is run

until, with overwhelming probability, there is one remaining contender. This is followed

by a single round of solitude detection where each remaining contender sends a counter to

measure the gap between itself and its nearest preceding contender. In the rare event that

nonsolitude is confirmed, these two steps are repeated by the remaining contenders until

solitude is verified. The algorithm is stated for contenders; noncontenders ·participate by

forwarding attrition messages and incrementing and forwarding gap-counting messages.

Algorithm SIMPLE-LE:
1. WHILE contender AND NOT leader DO

2. r rounds of simple attrition;
3. IF contender THEN

4. send(< 0 >);
5. receive(<counter>);
6. IF counter ~ N THEN leader -true.

SIMPLE-LE will eventually elect a leader for any value of r greater than or equal to

1. Suppose that C is an upper bound on the number of candidates for leadership. Each

execution of lines 3 through 6 uses n log n bits. If, in line 2, r is set to a log C for some

a 2: 1, then the expected number oftimes through the WHILE loop will be constant. Thus,

the detection portion will contribute an expected complexity of 0(n log n) bits. For this

value of r, the attrition portion contributes 0(n log C) bits to the expected complexity

of this algorithm. The upper bound on the number of candidates is used to ensure that

premature checking for solitude is unlikely. Algorithm AND2 on page 79 in chapter 6 uses

Chapter 2: Simple Las Vegas Leader Election 20

a similar strategy to compute AND on a ring. The analysis of SIMPLE-LE is a simplified

version of the analysis of AND2 and is therefore omitted.

If the value of r used in line 2 is much larger than a constant times the logarithm of the

actual number of candidates, then the attrition step of this simple algorithm is inefficient.

If it is too small, then inefficiency (in terms of bit complexity) results from premature

solitude checking. For SIMPLE-LE to be efficient, some sufficiently accurate estimate on

the number of candidates is required. Also, this algorithm cannot be adapted to one that

provides an efficient solution to leader election when there are distinct identifiers but no

knowledge of ring size nor of the number of candidates. These shortcomings are overcome

by a tighter interleaving of attrition and solitude detection messages. The remainder of

this section describes this more elaborate algorithm.

2.4.2 Informal description of interleaving

Section 2.3 describes a conservative solitude detection algorithm for a static situation. It

assumes that there are fixed contenders and noncontenders on the ring, and describes an

algorithm such that each processor, 1r x, can determine the bits of its distance, dx, to its

nearest contending predecessor. However, when interleaved with attrition, the situation is

not static since contenders turn to noncontenders as the attrition progresses. SIMPLE-LE

avoids the resulting complication because it collects complete gap information each time

solitude is checked. In contrast, if each round of attrition is interleaved with one round of

conservative solitude detection, then gaps between contenders are likely to combine into

longer gaps before complete gap information is collected. Therefore, it becomes necessary

to signal when a processor's accumulated gap information is no longer relevant. This is

done with a restart flag set by noncontenders that were contenders in the previous round.

In each round, a message with 3 fields (k attrition bits, a solitude detection bit, and

a restart flag initialized to false) is sent by each contender and propagated to the next

contender. If a message arrives at a noncontender, 7rp, that was a contender in the previous

round (a new noncontender), then all processors following 1f'p, up to and including the next

Chapter 2: Simple Las Vegas Leader Election 21

contender, have gap information that is no longer correct. Noncontender Trp signals this

situation to these successors by setting the restart flag in the message. Processors that

receive a message with the restart flag set, reinitialize their solitude detection variables.

Note that the first new noncontender following a contender retains correct gap information,

since the gap preceding this new noncontender remains unchanged. In previous rounds, this

new noncontender accumulated some bits (at least one) of this unchanged gap. Therefore,

it can send the first bit of that gap as the required bit in the solitude detection field of

its message. The bit position of the outgoing solitude detection bit will lag behind the bit

position of the incoming solitude detection bit for the new noncontender until it receives a

message with the restart flag set.

2.4.3 The leader election algorithm

The leader election algorithm presented in this subsection is designed for asynchronous

anonymous ri_ngs of size n E [N, 2N - 1]. Recall that processor Tri maintains the following

two local variables which are described in section 2.3. The gap from processor 1r; to its

contending processor is denoted di,

ji: count of the number of messages received containing correct gap information.

Ci: gap counter containing the value di mod 2i;.

For noncontenders, the outgoing bit position for solitude detection may be less than the

incoming bit position. Therefore, an additional variable, Oi, representing the position of

the outgoing solitude detection bit, is introduced. For clarity, the following functions and

procedures which carry out conservative solitude detection as described in section 2.3 are

assumed as subroutines.

leader: a boolean function that returns true if and only if the local variable Ci has a value

in [N, 2N - 1].

gapupdate(x): Increments the position counters ji and Oi, Then uses bit x to update the

gap information in the counter Ci in order to maintain the invariant Ci = di mod 2i;.

Chapter 2: Simple Las Vegas Leader Election 22

initializesv: sets gap variables to their initial values in preparation for processing the first

bit of gap information. (ji -o, Oi -o and Ci -o.)

nextsvbit(b): produces the bth bit of the number di given that Ci = di mod 2j; and Ji ~ b.

random(x): puts a random number of fixed length k into variable x .

Algorithm LE:
initializesv; contender -true;
WHILE contender AND NOT leader DO

send(<random(mynumber). o. false>);
receive(<prednumber. svbit. restart>);
IF restart THEN initializesv;
gapupdate(svbit);
IF mynumber < prednumber THEN

o -o;
contender +-false;

WHILE NOT contender DO

receive (<prednumber. svbit, restart>) ;
IF restart THEN initializesv;
gapupdate (svbit) ;
IF o = 1 TH EN restart +-true;
send(<prednumber, nextsvbit(o), restart>).

Correctness: The correctness of attrition and solitude detection have been established in

lemmas 2.1 and 2.3. With probability 1, attrition reduces the set of contenders to one,

and solitude detection confirms that one contender is left . It only remains to prove that

interleaving, using restart flags, correctly maintains gap information. Define round number

r of processor 11'i to be the interval in the execution of 11'i after it has received r messages

and before it has received r + 1 messages. Let variable v[denote the value at the end of

round r of processor 1ri's local copy of variable v. Let ,f, ... , ,~r be the processors that

are contenders at the beginning of round r. Let d[be the distance from 7l"i to the nearest

predecessor in { 'Yf, .. , , "Y~r},

Claim 2.4 For every round number, r, and for every 1 ~ i ~ n, c[= df mod 2if.

Proof: Clearly the claim holds at the end of round 1, given the correctness of solitude

detection. Consider a message from contender -yf_ 1 to contender -yf in round rover gap d1

Chapter 2: Simple Las Vegas Leader Election 23

and assume that all accumulated gap information is accurate at the end of round r - 1.

If no processor between , 1_1 and , 1 is a new noncontender, then the gap di is unchanged

from c.(-1 for any processor 1ri between , 1_1 and , 1. The correctness of solitude detection

ensures that 7ri will accumulate one more bit of information about d[as required. Suppose

that some processors p1 , .•• , Pp between , 1_1 and , 1 are new noncontenders. They each

have o = 0 and contender=false at the beginning ofround r. Since gapupdate increments

o, each of p1 , ••• , Pp sets the restart flag. The restart flag is first set by p1 , so all processors

from , 1_1 to p1 retain their gap information and acquire one more significant bit. Hence,

the claim holds up to and including processor p1 . Processor P1 has at least the first two

bits of its preceding gap in its local copy of variable c. Therefore, it sends the correct first

bit to its successor. All remaining processors 71" x up to and including , 1 receive a message

with the restart flag set and a correct first bit of the new gap, d;. Thus, the claim holds

for these processors as well. •
Complexity: By the complexity of attrition, LE expends an expected 0(nk log c) bits

up until one contender remains. At this point, each message sent by the sole remaining

contender drives one bit of gap information back to it. After flog Nl + 1 more rounds, its

solitude will be confirmed. Therefore, by choosing k a constant:

Theorem 2.5 Algorithm LE elects a leader on a ring ofn processors where n E [N, 2N -1]

using O (n log n) expected bits.

LE elects a leader under the weakest possible condition on an anonymous ring since

solitude cannot even be verified if ring size is not constrained as theorem 2.5 requires.

2.4.4 Election on rings with identifiers

If processors have distinct identifiers, then solitude can be verified using this information

rather than knowledge of the ring size. Algorithm LE can easily be adapted to this sit­

uation. The result is a leader election algorithm for rings with distinct identifiers and

unknown ring size.

Chapter 2: Simple Las Vegas Leader Election 24

The algorithm for conservative solitude detection on ring with distinct identifiers is the

natural one. Suppose that each processor, 11'"x, has an identifier, Ix, that is terminated

by an end-of-identifier marker. Processor Trx uses an internal string variable, Jx, which

is initialized to the empty string. Each contender alternately sends the Ph bit of its own

identifier and receives the ph bit of its nearest preceding contender, which it appends to Jx.

Thus, Trx builds up in Jx the identifier of its nearest preceding contender. If Ix contains m

bits, then after receipt of at most m bits, Trx can declare, by comparing Jx and Ix, whether

or not it is alone. Because no identifier is a prefix of any other identifier, 11'" x can never

falsely claim solitude.

Lemma 2.6 If processors have distinct m bit identifiers, then conservative and determin­

istic solitude detection can be achieved with distributive termination using at most 0(mn)

bits.

Interleaving of this solitude detection with attrition to achieve leader election is similar

to algorithm LE. Rather than sending O for the solitude detection bit, each contender

sends successive bits of its identifier in each round until all its identifier bits have been

sent. In subsequent rounds, each contender uses an end-of-identifier marker in the solitude

detection field until it either becomes a noncontender or is elected leader.

Theorem 2. 7 Algorithm LE can be adapted to elect a leader on a ring of size n where

processors have distinct identifiers of length at most m bits using 0(nm) expected bits.

2.5 Tuning the Leader Election Parameters

The worst case scenario, that all n processors are candidates for leadership, is assumed in

this section. If the attrition used in LE is simple attrition, then the number of messages

used for attrition alone is expected to be more than n log413 n > 2.4n log n. This exceeds

the complexity of the leader election algorithm in [13] for rings with distinct identifiers.

The algorithm in [13] has message complexity less than 1.356nlog n+0(n) and remains the

deterministic leader election algorithm with the best known message complexity. But by

,
I

Chapter 2: Simple Las Vegas Leader Election 25

sending longer attrition messages, the base of the logarithm in the complexity expression

for attrition can be brought within £ of 2. Similarly, the n log n messages sent by solitude

detection after there remains only one contender, can be reduced by a factor of l :S: log n

by sending l detection bits with each attrition message. By tuning these parameters, the

expected message complexity of leader election can be reduced to within a factor of (1 + t:)
of n log n for t: > 0. For example, choosing parameter k = 4, and thus choosing indepen­

dent random integers from the uniform distribution on the interval [O, 15], the expected

message complexity of attrition drops to less than 1.096n log n. By choosing l = 4, the soli­

tude detection adds only (n log n) / 4 messages for a total of less than 1.346n log n expected

messages. These settings result in a Las Vegas leader election algorithm that has lower

expected message complexity than the lowest complexity known for a deterministic algo­

rithm, while retaining both constant length messages (only 9 bits) and simplicity. Clearly,

the same packaging idea can be employed whether solitude is detected using identifiers or

ring size information.

Reducing the expected message complexity is not a beneficial strategy for minimizing

the expected bit complexity because this reduction is done at the expense of longer mes­

sages. The optimal parameter setting for minimizing bit complexity of the leader election

algorithm occurs when messages are short. If k bits are used in an attrition field, and l bits

are used in the solitude detection field, then the annotated messages of LE are k + l + 1

bits each. First logk, n rounds of attrition are expected until one contender remains, where

k' = 2k+1 /(2k + 1). This is followed by f10,n l rounds to confirm solitude. Therefore, the

expected total number of bits is n(k+l+ l)(logk, n+ f10,n l). This is minimized at k = 2 and

l = 2 resulting in an expected complexity for LE of fewer than 8.88n log n bits and fewer

than 1.98n log n messages. Of course the bit complexity can be reduced slightly further by

running pure attrition for several rounds before interleaving with solitude detection, since

it is known that at least log n rounds will be required anyway.

Chapter 3

Applications of Las Vegas Leader

Election

As demonstrated in [17) and [2] and again in the previous chapter, leader election on an

anonymous ring is made possible by randomization, although deterministic election in the

same model is impossible. When a leader is determined, the initial symmetry of an anony­

mous ring is broken. The elected leader is able to coordinate further computation. As

a consequence, some problems that have no deterministic algorithmic solutions, can be

solved easily by employing randomized leader election. For some other problems, the effi­

cient randomized leader election algorithm implies an improvement in the communication

complexity over that achievable by deterministic algorithms. This chapter illustrates these

phenomena with various examples.

3.1 Function Evaluation

In a distributed setting, function evaluation refers to the problem of computing the value

of a fixed function of n variables where initially each processor in the network has as input,

the value of one of the variables. Evaluation of ,common functions on rings is examined

in some detail in chapters 6 and 7. The problem of determining the minimum possible

26

Chapter 3: Applications of Las Vegas Leader Election 27

complexity of evaluating any nontrivial function on a ring is also addressed separately (see

chapter 5). This section is only intended to point out that all functions on rings can by

inexpensively evaluated by preprocessing with leader election .

Functions are usually thought to have a fixed number of arguments, and hence translate

in the distributed setting to rings of fixed size. However, some common functions such as

SUM and AND are easily generalized to functions over a domain of strings and hence can be

interpreted as having an arbitrary number of inputs. Evaluating any meaningful function,

even in this general setting, can be reduced to leader election in 0(n) messages. Once

a leader is elected, the leader simply circulates a message which collects all the necessary

information to compute the given function . When the message returns, the leader computes

the function value locally and announces the result. Thus, there exists an algorithm for

evaluating any function in any situation where a leader can be elected.

For example, SUM can be evaluated by a randomized algorithm on any ring that has

size known to within a factor of two. O(nlogn) expected messages and bits are used

for election and O(n) messages to compute the sum yielding an expected complexity of

O(nlogn) messages and O(nlogn + nlogS) bits, where Sis the sum. In contrast, SUM

cannot be evaluated deterministically on any anonymous ring unless the ring size is known

exactly. If size can vary by even one processor (say, size is either n or n + 1) then a

deterministic algorithm running on a ring with inputs all equal to one, could not distinguish

between a sum of n and n + 1 [10).

When the function being evaluated is the characteristic function of a regular set, this

reduction to leader election is particularly efficient. Even without knowledge of ring size,

for any regular set L, the function that recognizes L can be computed with 0(n) bits of

communication on a ring with a leader, as is shown in [20) .

As an illustration, consider AND on rings with size bounded within a factor of two. On

input all ones, AND has complexity S1(n2) messages in the deterministic model even when

ring size is known exactly [10). Again, by employing leader election in the way described

above, this can be reduced to 0(n log n) expected bits when randomization is allowed, even

Chapter 3: Applications of Las Vegas Leader Election 28

if ring size is known only to within a factor of two.

3.2 Ring Orientation

Attiya, Snir and Warmuth in [10] first introduced the problem of determining a consistent

orientation on an anonymous bidirectional ring when processors have only local labels

on their incident edges. Let 71'1, ••• , 11'n be a ring of identical processors, such that each

processor 11'i has two communication channels, ai and bi, each connected to one of its

neighbours. The ring orientation problem is defined as follows. Each processor 11'i must

distinguish one channel in { ai, bi} such that all the processors, together with the collection

of these distinguished channels, form a unidirectional ring.

Attiya et al show that n(n2) messages are required in the worst case for any deter­

ministic ring orientation algorithm even when ring size is known exactly. They further

show that there is no deterministic ring orientation algorithm for rings of known and even

size. A deterministic orientation algorithm for rings of known and odd size is provided by

Syrotiuk and Pachlin [29] with average complexity O(n312) messages, assuming that all

initial configurations of local orientations are equally likely. With the help ofrandomization

both the complexity barrier and the impossibility barrier disappear. By using randomized

leader election for a unidirectional ring, any anonymous ring of size n, where n is known

to within a factor of two, can be oriented in O(nlog n) expected bits.

Theorem 3.1 Ring orientation reduces to leader election in 0(n) expected bits.

Proof: Let LE be any algorithm for a unidirectional ring that chooses a unique leader from

any nonempty set of candidates. Consider the following algorithm, which employs LE as a

subroutine. In addition to the messages used by LE, the algorithm uses two message types

- leader messages of the form < I, finished> (l indicates that this is a leader message, and

finished is a boolean flag), and orientation messages. Each processor maintains a local

two-leaders flag initialized to false.

Chapter 3: Applications of Las Vegas Leader Election 29

Algorithm ORIENTATION:

1. Each processor, 1r, is initially a candidate and initiates LE by sending its first message

of LE on its a link.

2. Upon receipt of an LE message on link b, 1r proceeds exactly as in algorithm LE and

sends its response {if there is one) on its a link.

3. Upon receipt of an LE message on link a, 1r executes the leader election code for a

noncontender and forwards its response on its blink.

4. When a processor is elected, it sends a leader message on its a link with the finished

flag set to true.

5. A leader message is forwarded around the ring until it is received on link b by a

processor that sent a leader message. (This recipient is necessarily the originator of

the message.) However, any processor receiving a leader message on its a link, sets

the finished :flag to false and sets its local two-leaders flag to true before forwarding

the leader message on its b link.

6. When a leader message returns to its originator (necessarily on ab link), this processor

examines the finished flag. If finished = true then this leader propagates a final

orientation message on its a link. If finished = false, then this leader delays until its

local two-leaders flag is true.

7. When two-leaders is true, both leaders exchange independent random coin tosses

until they send and receive opposite tosses. The leader sending heads and receiving

tails propagates an orientation message on its a link.

8. The orientation message is forwarded until it returns to the originator of the message.

Each recipient sets its incoming link to be the one on which the orientation message

is received.

Correctness : Let A {respectively, B) be the subset of processors initially consistent with

a clockwise {respectively, counterclockwise) orientation. Steps 1 through 3 perform leader

Chapter 3: Applications of Las Vegas Leader Election 30

election simultaneously on sets A and B. Since the messages of each election propagate in

opposing directions, any interleaving of these two elections cannot disturb their progress.

Because at most one of sets A and B is empty, eventually either one or two leaders are

elected. Step 6 ensures that an elected leader learns which is the situation for the current

computation. If either A or B is empty, step 6 ensures that the sole leader's orientation is

adopted by all processors. If neither A nor B is empty, then the delay in step 6 ensures

that set A and set B have both selected a leader before the algorithm proceeds. It is then

straightforward to check that the number of leaders is reduced from two to one (step 7)

and that the ring is oriented consistently with this remaining leader (step 8).

Complexity: One orientation message and at most two leader messages, all of constant

length, are propagated once each around the ring accounting for O(n) bits. It is expected

that a constant number of exchanges of coin tosses are required to select one leader from

two, accounting for an additional O(n) expected bits. All other messages are messages of

~ ■

Corollary 3.2 An unoriented ring of size n E [N,2N - 1] can be oriented in O(nlogn)

expected bits using a Las Vegas algorithm.

Although the algorithm is described for the situation when all processors start simulta­

neously, it is easily converted to one tolerating arbitrary wake-up. Processors that have not

initiated the algorithm when a first message arrives simply adopt the role of a noncontender

for leadership.

The orientation algorithm demonstrates that lack of orientation in a bidirectional ring

does not significantly complicate the problem of leader election - a leader can still be

elected in O (n log n) expected bits.

3.3 Leader Election in Oriented Complete Graphs

The problem of deterministically electing a leader in a complete network of distinct pro­

cessors has complexity 0(n log n) messages. This result appears in [18] and an alternative

Chapter 3: Applications of Las Vegas Leader Election 31

upper bound in (7]. With an additional condition however, the lower bound can be vi­

olated. Loui, Matsushita and West (19] and Sack, Santoro and Urrutia [27] studied a

version of election on a complete network in which edge labels reflect distance information.

Consider a complete network, in which each processor labels its incident edges with the

numbers 1 through n - 1. Let /(1r, k) denote the processor connected to 1r via 1r 's link

numbered k. The labelling is consistent if and only if J(f(rr,k),l) = J(rr,(k + l) mod n)

for every processor 1r and for every O $ k,l $ n - 1. The model assumed in [19,27] is

an asynchronous, bidirectional complete network of processors with unique identifiers and

consistently labelled incident links. The "sense of direction" constraint in [19] is equivalent

to the consistent labelling property. Given this model, [19] presents a leader election al­

gorithm with communication complexity only O(n) messages. The messages used in their

solution contain both identifiers and link numbers and thus may have order log n bits each.

Call a network oriented if all edges that are present in the network satisfy the consistent

labelling constraint. Using randomization, leader election can be solved in _O(n) expected

bits on an oriented complete asynchronous network, even if processors lack unique identi­

fiers. The randomized algorithm is similar to the leader election algorithm for unidirectional

rings of chapter 2, but after each round of attrition, the ring is updated so that subsequent

messages need not pass through passive processors. Rather, each contender communicates

directly with its nearest contending neighbours. Eventually only one contender remains,

and the ring is updated to just a self-loop at that survivor. Thus, this processor's solitude

is confirmed automatically. No explicit solitude verification is required. Conceptually, each

phase of the algorithm has two parts:

1. a round of simple attrition on the current ring - contenders send and receive a single

coin flip, and

2. ring revision to bypass the processors just eliminated in the attrition round.

A more detailed description follows. The algorithm is executed by each processor. The

instruction send(< m >: l) sends message < m > on the link with local label l. The

instruction receive(< m >) is a blocking receive; the processor waits until a message

Chapter 3: Applications of Las Vegas Leader Election 32

arrives on some channel. There are two different types of messages - attrition messages

containing a random coin toss and a link number, and gap messages containing a link

number or "O". Contenders process these messages alternately: if a message of one type

arrives while a processor is waiting for the other, it saves this message and continues to

wait. It is a consequence of the algorithm that a processor never has more than one message

in a "holding" buffer. The function random(x) is assumed to return an unbiased random

coin toss and to store the result in variable x.

Algorithm A:
sendlink +-1:
REPEAT:

1. send(<random(sflip). sendlink> : sendlink);
2. receive(<rflip, receivelink>);
3. IF NOT (sflip = t AND rflip = h) THEN

4. send(<0> : N -receivelink);
5. receive(<newgap>):
6. sendlink +- (sendlink + newgap) mod n

UNTIL (sflip = t AND rflip = h) OR sendlink = 0
7. IF sendlink = 0 THEN

8. announce ''elected''
ELSE

9.
10.

receive(<0>);
send(<sendlink> N-receivelink).

Correctness : Let Ti be the total number of times that processor 7ri enters the repeat loop

of algorithm A. Define round j for 7ri , j ~ Ti to be the jlh pass of 7ri through the loop.

Say that 7ri is active for round j whenever j ~ Ti and that 7rj is active for Ti rounds. If

7ri satisfies the condition "(sflip = t AND rflip = h)" at the end of round Ti, then say that

7ri went passive in round Ti, Let 1r{, ... , 1r~ denote the substring of 1r1, ... , 7rn consisting ,
of those processors that are active in round j. Then clearly rr}, ... , rr~

1
= 1r1 , ... , rr n and

j+l j+l . ·1 . b . f j j rr1 , ••• , 1rn,+i 1s a not necessan y contiguous su strmg o 1r1 , .•. , rrn,-

The following claim means that processors interpret the implicit round structure con­

sistently. It can be established by induction on the round number and by tracing the effect

of the communication on each active processor.

Claim 3.3 The coin flip sent by rr{ in its jlh round is received by rr{+l in its jlh round.

Chapter 3: Applications of Las Vegas Leader Election 33

The claim implies that rounds can be considered in isolation. Let x{ denote the value of

variable x at the beginning of the /h round of processor 7rj . The first two lines following

REPEAT constitute the simple attrition procedure of chapter 2. Therefore, given that

sendlink{ is the number of the link connecting 1r{ to 1r{+l, eventually there will remain one

active processor. In round 1, all active processors communicate along the links of a ring

with sendlink t =1 for all i. Suppose that 1r{ goes passive in round j. Simple attrition

guarantees that two adjacent active processors cannot become passive in the same round.

Therefore, 7rf _1 and 1rf+1 must be active processors in round j + 1. Lines 9 and 6 ensure

that sendlinkL1 is updated to connect 1rL1 to 1r{+1. Alternatively, if 1rf remains active for

round j + 1, then it sends a O (line 4) to 1r{_1 so that again 1r{_1 connects to its successor

via link number sendlink1_ 1 • Finally, when one active processor remains, its sendlink value

must be O ensuring correct termination.

Complexity: On first inspection of the algorithm, it may appear that messages are generally

O(log n) bits long since link numbers are sent as part of the message. However, large link

numbers are only sent toward the end of the algorithm, when fewer processors are active.

This is enough to save a factor of log n bits from the naive complexity analysis.

Specifically, in round 1, sendlink 1 = 1 for all i and it can at most double in each round.

Therefore:

Claim 3.4 At the beginning of round j sendlinkf :S 2i-l for every active processor 1rf .

Let Xj be the number of active processors in round j. From the analysis of the attrition

procedure in chapter 2, E(Xj) = max{(3/4)i- 1n, 1}. Each active processor in round j sends

at most 1 + 2log(2J) < 2(j + 1) bits. Therefore, the expected bit complexity is bounded

above by:

E(L X; • 2(j + 1)) = L (E(Xi) • 2(j + 1)) = L (3/4)i-1n • 2(j + 1)) = O(n).
j j j

The preceding discussion is summarized by:

Theorem 3.5 A leader can be elected in an anonymous, asynchronous, oriented complete

network with n processors in O(n) expected bits using a Las Vegas algorithm.

Chapter 3: Applications of Las Vegas Leader Election 34

Algorithm A does not require that a processor know which link carried an arriving

message. The consistency of the labelling allows processors to compute this number from

the link number used by the sender and included in the sender's message. If the model

provided this information to the processors, it would be unnecessary to send link numbers

with the coin tosses at line 1. The bit complexity would then drop by a constant factor

but remain O(n).

In a possible modification to the model, processors execute a selective blocking receive

- that is, receive(k) causes a processor to wait for a message on link k. Any message

arriving on link l -::j, k is queued. Such a message is processed only when the processor

executes receive(/). Algorithm A can be adapted to apply to the selective blocking model.

After each round of attrition, each processor must be informed of the link to its predecessor

as well as to its successor so that it can selectively block on the correct link.

Claim 3.3, used in the proof of correctness of algorithm A, is perhaps somewhat subtle.

One might be tempted to write the following "cleaner" algorithm:

Algorithm B:
sendlink -1;
REPEAT:

send(<random(sflip) ,sendlink> ; sendlink);
receive(<rflip,receivelink>);
IF (sflip .. t AND rflip = h) THEN

send(<sendlink> ; N -receivelink).
ELSE

send(<0> ; N-receivelink);
receive(<newgap>);
sendlink -(sendlink + newgap) modn

UNTIL (s-flip = t AND rfl.ip = h) OR sendlink = 0

IF sendlink = 0 THEN announce '' elected 1 1
•

Algorithms A and B differ in the behaviour of a processor that moves from active to passive.

Suppose 7ra,7rb and 7rc are three consecutive active processors and that 7rb goes passive. (1rb

sent t to 1rc and received h from 7ra,) In algorithm B, a.s soon as 7rb learns that it is no longer

a contender, it sends to 7ra its distance to 7rc, But 7rb has no evidence that 7rc received the

t. When 7ra receives the distance to 7rc, it can update its own sendlink and proceed to the

Chapter 3: Applications of Las Vegas Leader Election 35

next round. A malicious scheduler could delay the t coin flip travelling from 1rb to ?re and

deliver the coin flip of the following round from 1ra to ?re first, since they arrive on different

links. In such a scenario, the rounds of communication are not preserved and deadlock can

result. Algorithm A avoids this pitfall by causing 1rb to withhold the message containing

link update information from 7ra until it has confirmation that ?re has received its coin flip.

Algorithm B is intended to illustrate difficulties that might arise due to asynchrony.

They were overcome by replacing the algorithm with algorithm A which enforces an order­

ing on the message delivery. What results is a simulation of a synchronous situation in an

asynchronous model.

The analysis of the algorithm for leader election in an oriented complete network of

processors with unique identifiers in [19], contains another example of how asynchrony can

misguide our intuitions. The authors claim that no generality is lost by assuming that the

algorithm proceeds in phases. Their subsequent phase by phase analysis yields a complexity

of at most 3.62n messages. However, some generality is indeed lost with this assumption.

By scheduling messages so that phase boundaries are not respected, a scenario requiring

4n messages is easily constructed.

Their algorithm follows. Again, send(< m >: /) sends message < m > on the link with

local label l. Every processor has a unique identifier id.

Algorithm LMW:
d -n-1;
REPEAT

send(<n-d, id> : n-d);
receive (< d, newid>)

UNTIL newid ~ id;
IF newid = id THEN

Announce ''elected''
ELSE

receive (< e, newid>) ;
send(<n-d+e, newid> : n-d).

Arrange a consistent labelling so that by following link # 1 at each processor, the

identifiers occur in increasing order, say 1 through n, until completing the cycle. Imagine

Chapter 3: Applications of Las Vegas Leader Election 36

that the scheduler first delivers only the initial messages from processor n to 1 and from

1 to 2, delaying all others. It then delivers processor 2's identifier to processor 1 which

forwards it to processor n. Processor 1 has been eliminated. After four messages have been

used, the network has returned to a configuration comparable to the initial one. There

are now n - 1 active processors (processors 2 through n) and the same scheduling can

be repeated with 2 replacing 1. Continuing in this way, processor n is elected after 4n

messages.

Admittedly this is a minor error. The algorithm is correct and the complexity claim is

within a small constant factor of the correct worst case complexity. However, the algorithm

and its erroneous analysis serve to illustrate a recurrent difficulty with deterministic algo­

rithms for asynchronous distributed systems. Consider a natural deterministic algorithm D

which proceeds as does algorithm A with identifiers replacing coin tosses. For most iden­

tifier sequences, the computation would require only O(n) messages. However, without

information about the distribution of the sequences of identifiers, this does not translate

into an O(n) expected complexity. In general it is unreasonable to make-any assumptions

about the identifier sequences because they are beyond the control of the algorithm. A

more elaborate algorithm is proposed in place of this natural one to circumvent the expen­

sive worst case identifier sequences. Frequently the replacement is a complicated algorithm

which is more difficult to prove correct or to analyse. (In this example, the elaboration of

the natural algorithm resulted in the loss of the implicit phase structure.)

In contrast, the randomized algorithm maintains the original simplicity. It simply

replaces identifiers with random coin tosses. In general, assumptions concerning the dis­

tribution of identifiers are not warranted; it is perfectly reasonable, however, to make the

assumption of uniformity over sequences of random coin tosses since this assumption is

supported by probability theory. A uniform distribution is precisely the extra condition

required to guarantee the expected efficiency of the algorithm. Because the computation

is constrained to execute in implicit rounds, a malicious scheduler is rendered impotent.

An expected complexity of O(n) bits results from taking the average over uniform random

sequences of coin tosses and the worst case over everything else, as required for a legitimate

Chapter 3: Applications of Las Vegas Leader Election 37

analysis of random computation. The fact that this is achieved with constant, rather than

order log n, length messages is an additional bonus of randomization.

3.4 Leader Election in Oriented Sparse Graphs

In (28], Santoro discusses the impact of topological information on message complexity.

Results for oriented rings and oriented complete graphs are cited as evidence that additional

topological information can affect the inherent message complexity of a problem. The

oriented ring and the oriented complete network can be viewed as the two extremes of a

class of graphs with edges labelled in a globally consistent way. In the oriented ring there

is a globally consistent sense of left and right. In the oriented complete network this sense

of direction is extended; local link number l connects a processor directly to the processor

at distance l via the ring links. Attiya, Santoro and Zaks (9] observed that this transition

from an oriented ring to an oriented complete graph restilts in a drop of mess:i,ge complexity

from 0(n log n) to 0(n). They also show that the O(n) complexity can in fact be achieved

in a oriented graph that is much sparser than the complete graph. Let 1t be a network

consisting of a ring 71'1 , .. ,,11'n augmented with the chords (11'i,11'i+j) and (11'i,11'i+n-j) for

2 ~ j ~ t - 1 at each node 11'i. Then a leader for 1t can be elected in 27 log n + 3n messages.

Thus, there is an oriented graph consisting of a ring augmented with log n chords at each

node, such that a leader can be elected in O(n) messages [9].

The randomized algorithm, A on page 32, for leader election on an oriented complete

graph can also be adapted to a much sparser graph without significantly increasing the

expected bit complexity. Let O be a network of n processors 71'1 , ••• , rr n such that 'Tri is

connected to rri+2" via a link with label k, k = 0, ... , llog nJ. 0 is an oriented graph with

degree llog nJ + 1. For any d, a message can be sent between 'Tri and rri+d using at most

flog dl hops. By including a more elaborate send and receive structure which allows for

forwarding, algorithm A can be converted to an algorithm which only uses the edges of

Q. The messages need only be augmented with one additional field, remaining distance,

leaving the other fields of the original message unchanged. Consider the send instruction in

Chapter 3: Applications of Las Vegas Leader Election 38

line 1 of algorithm A. A message is sent directly from its source, say 1r s, to its destination,

say 7rd, on link number sendlink. To send it to 7rd using edges of 9, it is sent instead

on link labelled a where 2a :5 sendlink < 2a+1, and the remaining distance field is set to

sendlink-2a. Any processor (necessarily a passive one) receiving a message with remaining

distance not equal to 0, knows that the message is not destined for it. Suppose remaining

distance = d, where 2b :5 d < 2b+1 . The forwarding processor changes the remaining

distance field to d - 2b and forwards the message on its link labelled b. A similar strategy

can be used to send the messages of lines 4 and 9 which travelin the opposite direction. The

required forwarding direction can be resolved by adopting the convention that remaining

distance is positive for messages sent in line 1 and negative for those in lines 4 and 9.

Complexity: In round j, successive active processors 1ri and rr1 satisfy Ii - LI :5 23- 1 ,

Therefore, the remaining distance field can always be encoded in j bits. So a total of fewer

that 4(j + 1) bits are sent by each active processor in round j. Each message requires at

most flog 231 = j hops to reach its destination.

If Xi is the number of active processors in round j, the expected bit complexity is

bounded above by:

Theorem 3.6 There is a oriented graph with n processors and n ~og n l links on which a

leader can be elected in 0(n) expected bits by a Las Vegas algorithm.

Chapter 4

A General Model for

Asynchronous Computations on

Rings

Recall that an asynchronous distributed network is modelled as a graph with nodes repre­

senting processors and edges representing communication links. As described in chapter 1,

within this general model a number of additional assumptions about the network and its

algorithms could be adopted. These include specification of the topology of the network,

the presence or absence of identifiers, the kind of algorithm being modelled, the class of

networks for which the algorithm is required to work, and input values and termination re­

quirements of the algorithm. These various assumptions can be accommodated by a general

framework which encompasses most asynchronous distributed computation. This chapter

outlines this framework for general graphs and fills in the details for a restricted case. The

result is a formal model of computation on an anonymous unidirectional asynchronous ring.

A distributed algorithm is modelled as an assignment of processes to the nodes of a

graph. Specific characteristics of the network are captured in two ways: by specifying

a collection of processes available for assignment and by varying the way in which the

assignment is made. Besides providing a unified view of different distributed computing

39

Chapter 4: A General Model 40

models, this approach provides a natural and useful description of a distributed system,

which facilitates the study of lower bounds. One goal of this research is to demonstrate

that seemingly small changes in the details of a model for distributed computation on rings

can have significant impact on the resulting communication complexity. For this reason it

is necessary to have a precise model of computation that captures these details.

The overall strategy is to develop a model in two stages. First, the activity of a

single node is modelled as a process. Since the objective is to investigate communication

complexity, a process is modelled so as to highlight communication events while masking

all internal processing. Information about the topology of the network and the kind of

termination required of an algorithm influences the model at this level. Depending on

the kind of algorithm to be modelled, either a process's communication is completely

determined by its history or its communication is determined by its history and the outcome

of random experiments.

The second stage is to model the way in which processes are assigned to nodes. Proper­

ties of a no·de such as its input value, identifier, and degree are used to restrict the collection

of processes that are available to the node. For each node, a process is selected from the

collection that is available to it. The way the selection is made is determined by the kind

of algorithm being modelled.

By "kind of algorithm" is meant, in part, whether the algorithm is permitted to in­

corporate random or nondeterministic choices. In the traditional domain of sequential

processing, deterministic, randomized and nondeterministic computation form a sequence

of models of computation with increasing power. A similar collection of models for dis­

tributed computing can be considered. Loosely, the usual automata-theoretic notions of

determinism, randomization and nondeterminism apply. It is required of a nondeterminis­

tic algorithm only that "nothing bad happens" (that is no wrong answers are produced),

whereas, of a randomized algorithm, it is required that with high probability (Monte Carlo)

or with certainty (Las Vegas) "eventually something good happens" (that is, right answers

are produced) and a deterministic algorithm must have something good happen always.

For a fixed input and scheduler, complexity of a nondeterministic algorithm is measured as

I

Chapter 4: A General Model 41

the best case and complexity of a ra:ndomized algorithm is measured as the expected case

over computations producing correct answers. For a deterministic algorithm, complexity

under a fixed input and scheduler is 1measured as the cost of the only computation that

can ensue.

The processes described in this chapter are intended to reflect computation on a unidi­

rectional ring, and hence are restricted to processes with one input communication channel

and one output communication channel. Once a process is defined, the notion of a sequence

of processes, and the computation arising from a ring of processes, follows naturally.

It is intended to study the relative power of deterministic and randomized algorithms

that evaluate functions on an asynchronous ring. Therefore, the definitions for the correct­

ness and complexity of function evaluation are adjusted to reflect the distinctions between

deterministic algorithms versus those that incorporate randomization, and algorithms that

are correct with certainty versus those that are correct with high probability. Two further

classes of algorithms are also defined that generalize from purely probabilistic models to

nondeterministic ones.

4.1 Processes for Rings

A message is an element of M = {O, it• □. The symbol D is called the end-of-message

marker. A history is a sequence in {O, 1, □}•. Then any history has a unique parse into a

sequence of messages. If h is a history, then jhj denotes the number of messages in h, and

11h11 denotes the length of the binary encoding of h using some fixed encoding scheme to

encode each symbol in { O, 1, □ }.

In a sequential processing environment, the computation of a deterministic algorithm

is completely determined by its input. This property is lost only by introducing a more

powerful algorithm - one that incorporates random or nondeterministic choices. In con­

trast, the behaviour, even on a unidirectional ring, of a non-message-driven deterministic

algorithm may be determined in pa.rt by the scheduler. Various computations may arise

from a fixed algorithm running on a fixed input, depending on the scheduling of message

Chapter 4: A General Model 42

delivery. For example, a processor may have a construct to check its input queue and follow

different execution paths depending on whether or not there is a message present. Note,

however, that this source of undetermined behaviour is distinct from the nondeterminis­

tic behaviour due to arbitrary choices made by the processor itself. The first source of

variation in potential computation can arise even though the behaviour of each processor

is entirely deterministic. That is, the processor's actions are completely determined by

all the information available to it. The second source of undetermined behaviour arises

only by introducing a more powerful notion of a process - one that can make random or

nondeterministic choices. The following definition of a deterministic process is intended

to capture the different possible behaviours of a process on a unidirectional ring that are

due to the local impact of a scheduler while at the same time reflecting the fact that the

process behaves completely deterministically.

A deterministic process, 1r, is a (possibly infinite) tree that models all the possible

behaviours of the process. Levels of the tree alternate between send-nodes and receive­

nodes with a send-node as the root. A receive-node, p, represents the stat~ of 1r immediately

after receiving, but not processing, a message. For every possible message, r, that might be

received in state p, there is a unique directed edge labelled by r from p to a send-node, say er.

The node er represents the state of 1r after processing message r in state p. In general 1r may

send any number of messages before receiving its next message, depending on the action

induced by the scheduler. Edges leaving er represent all possible behaviours of 1r before

1r receives its next message. For each possible sequence of messages, t = s1, s2, ••. , sk,

that may be sent by 1r starting from state er before receiving another message, there is a

unique directed edge labelled by t from er to a new receive-node. Since the behaviour of

a deterministic process may be determined by local information such as the state of the

message queue, a process may send an unbounded number of messages before receiving

another message. Hence, the branching factor of a send-node may be infinite.

For the remainder of this section it will be assumed that communication on an asyn­

chronous unidirectional ring is message-driven with at most one message sent in response

to the receipt of a message. The model as developed will then only reflect message-driven

Chapter 4: A General Model 43

algorithms. The relationships between general algorithms and those that are constrained to

be message-driven are examined in section 4.4. As a consequence of that section, it will be

possible to draw conclusions about lower bounds for general nondeterministic algorithms,

from lower bounds for the restricted class of message-driven nondeterministic algorithms.

If a process is message-driven, then all state changes and output messages, except the

initial transitions of initiators, are triggered by the arrival of a message. A message-driven

deterministic process is a deterministic process such that all send-nodes of the process have

branching factor 1, and the label on each edge from a send-node to a receive-node is a

sequence of messages of length O or 1. The null message (or absence of a message) is

denoted by A. It should not be confused with O which is the message containing only an

end-of-message marker.

Process 1r is an initiator if the root of 1r (a send-node) has an emanating edge labelled

by a message, and a non-initiator if it is labelled by A.

Let 1r1 , ••• , 1r n be a ring of message-driven deterministic processes. The' notation 1r1,n

abbreviates 1r1 , ••• , 1r n. There is a unique cyclic sequence of histories, C = h1, • • • , hn,

called a computation associated with 1r1,n in the following natural way. Each history hi is

composed of a (not necessarily finite) sequence of messages mi,1 • • • mi,r;. If 'Tri is an initiator,

then mi,l is the message labelling the edge leaving the root of 'Tri. The computation is then

determined inductively by applying the transitions defined by 1r1 through 7rn and letting

successive non-null output messages of 'Tri be successive input messages of 7ri+l· 1

A random process is defined by generalizing the definition of a deterministic process.

In the interval between receiving two messages, a random process may make any number of

random experiments. A sequence of experiments, however, may be simulated by one large

experiment that produces a potentially infinite number of outcomes. Therefore, the model

assumes, without loss of generality, that a random process makes one random experiment in

any interval between receiving two messages. A random process, 1r, is a (possibly infinite)

tree with three types of nodes. Levels of the tree cycle between send-nodes, receive-nodes

1 It is assumed throughout that indices are reduced modulo n, and that indices n and O are used

interchangeably.

Chapter 4: A General Model 44

and choice-nodes with a choice-node as the root. The send-nodes and receive-nodes are

defined similarly to these nodes in the model of a deterministic process. A receive-node,

p, represents the state of 1r immediately after receiving, but not processing, a message.

For every possible message, r, that might be received in state p, there is a unique directed

edge labelled by r from p to a choice-node, say X· The node x represents the state of

71' after processing message r in state p. For every possible outcome, o, of the random

experiment done by 71' in state X, there is one edge, labelled by the probability of o, from x
to a send-node, say <J'. The node <J' represents the state of 71' after an outcome of o for the

random experiment of node X· Edges leaving <J' represent all possible next behaviours of 1r

from state <J', before 1r receives its next message. For each possible sequence of messages,

t = s1, s2, ... , Sk, that may be sent by rr starting from state u before receiving another

message, there is a unique directed edge labelled by t from <J' to a new receive-node.

Th~ definition of a message-driven random process involves a similar restriction to that

used to define a message-driven deterministic processes. A message-driven random process

is a process such that all send-nodes of the process have branching factor 1, and the label

on each edge from a send-node to a receive-node is a sequence of messages of length O or 1.

A message-driven random process 71" is an initiator if there exists an edge with a nonzero

probability label from the root (a choice-node) to a send-node, <J', such that the edge

emanating from <J' is labelled by a (non-null) message. Otherwise rr is a non-initiator.

A ring, 1r1,n = rr1, ... , 11"n, of independent message-driven random processes gives rise

to a probability space, C, of computations associated with 11'!,n• The probability, Pr(C), of

a computation, CE C, is the sum over all ways that rr1,n can produce C of the product of

the probabilities of the outcomes of the independent random experiments that were made

for the duration of the computation.

The bit complexity of a computation C = h1, · • • ,hn, denoted IICII, is I:f:1 llhill• The

message complexity of a computation C = h1 , .. • ,hn, denoted ICI, is I:f:1 lhil• The bit

(message) complexity of a ring, rr1,n, of deterministic processes is the bit (message) com­

plexity of the computation associated with rri,n• The expected bit complexity (respectively,

Chapter 4: A General Model 45

expected message complexity) of the space of computations associated with a ring, 1r1,n, of

message-driven random processes is Lcec Pr(C) · IICII (respectively, Lcec Pr(C) · ICI),

A distinguished subset M0 s; M of messages are called accepting messages, and a

subset Mr s; M - Ma are called rejecting messages. A history is an accepting history

(respectively, rejecting history) if and only if its last message is an accepting message

(respectively, rejecting message). A computation h1, .. •, hn of 1r1, ... , 1rn is accepting if

every hi is an accepting history, and is rejecting if every hi is a rejecting history. An

accepting or rejecting message (respectively, history or computation) is a decisive message

(respectively, history or computation).

Recall that for distributed termination, processes must reach irreversible conclusions.

This is modelled by insisting that processes never output another message after sending

a decisive message. Nondistributive termination permits a process to reach a tentative

decision which it may revoke upon receipt of another message. This weaker form of termi­

nation is captured by permitting processes to follow decisive messages with messages that

are not decisive or that carry the opposite decision. The final decision of the process is only

determined after all message traffic has ceased - a situation that may not be detectable.

The stronger notion of distributive termination is the main concern in the context

of function evaluation on a ring. To achieve interesting (super-linear) lower bounds for

general nonconstant function evaluation, distributive termination must be required since,

for example, nondistributive termination permits a trivial deterministic algorithm for AND

which uses only O(n) bits (see chapter 6, page 78).

4.2 Algorithms

Each processor in a distributed network may possess characteristics that help distinguish it

from other processors in the network. Such characteristics include the processor's identifier,

its degree in the network, and its input. Typically, the computation of each processor

during the execution of an algorithm, is determined in part by any of these distinguishing

characteristics that exist. The model captures this situation by using the characteristics

Chapter 4: A General Model 46

of a node to constrain the collection of processes that can be assigned to the node. Define

the label of a node to be an encoding of all the relevant information that helps identify

the node. Let labels be taken from a set D. It is usual to imagine that the node label

completely determines the process that is assigned to the node. In this case an algorithm

is a mapping from labels to processes. This notion can be naturally generalized to allow

a mapping from labels to probability spaces of processes. The process assigned to a node

is randomly selected from the space of processes available to the label of that node. A

further generalization allows a mapping from labels to nonempty sets of processes. In this

most general model, the process assigned to a node is arbitrarily selected from the set of

processes available to the label of that node. Thus, the assignment of processes to labels

can be deterministic, random, or nondeterministic. In each case the processes themselves

may be deterministic or random. The relationship between these six possible combinations

is examined in what follows.

4.2.1 Types of algorithms - general concepts

Section 4.1 defined processes for unidirectional rings only. In order to describe the general

concepts for a collection of models for asynchronous distributed algorithms, free from the

details specific to unidirectional rings, suppose there has been developed some appropriate

definitions of processes for nodes in an arbitrary network. Let A be the set of all such

processes whose next behaviour is entirely determined by the current history of the process,

and 8 be the set of all processes whose next behaviour is determined by the history of the

process and the outcome of a random experiment made by the process. The ideas developed

in this subsection are converted to precise definitions in subsection 4.2.2 for the restricted

case of computations on unidirectional rings.

If a network is executing a deterministic algorithm, the start state of each processor of

the network is completely determined by its input together with any other distinguishing

characteristics of the processor. Furthermore, the next state and output message of each

processor is completely determined by its current input message and its history so far. A

deterministic assignment of deterministic processes to labels captures this situation. Hence,

Chapter 4: A General Model 47

a deterministic (distributed) algorithm, a, is a mapping from D into A.

In the natural description of a randomized algorithm, the start state of each node is still

completely determined by its input together with any other distinguishing characteristics of

the node, but random choices occur throughout the run of the algorithm. This corresponds

to a deterministic assignment of random processes to labels; that is, a mapping from D

into B.

A random process, however, can be decomposed into a (possibly infinite) collection

of deterministic processes each one arising from a particular outcome of a sequence of

random experiments. So a random process can be viewed as a probability measure on a set

of deterministic processes. (This perspective corresponds to the simulation of the choices

made by a random process during the course of the algorithm's computation as a single

random choice by each processor at the beginning of the computation. Essentially, the

processor pre-selects all the outcomes of its random experiments.) Thus, in an alternative

description of a randomized algorithm, the start state of each node is determined by its

input, any other distinguishing characteristics of the node, and the result of a random

experiment, and thereafter, the processor proceeds deterministically. This corresponds to a

random assignment of deterministic processes to labels. Hence, a randomized (distributed}

algorithm, a, is defined as a mapping from D to the set of probability measures on A.

The process assigned to a node with label i is chosen from the space a(i) according to

the dictates of the probability distribution. Note that a random assignment of random

processes to labels adds no additional power over the randomized algorithms just described.

A still more powerful model of distributed algorithms results if the random assignment

of processes to nodes is replaced by an arbitrary one. A nondeterministic (distributed)

algorithm, a, is a mapping from D to nonempty subsets of A. The set a(i) is the collection

of processes available to nodes with label i. A nondeterministic/probabilistic (distributed)

algorithm is a mapping from D to nonempty subsets of B. As will be seen, nondeterminis­

tic/probabilistic algorithms are more general than purely nondeterministic ones because it

is possible to define a high probability of correctness in the nondeterministic/probabilistic

model while this is not possible in the nondeterministic model.

Chapter 4: A General Model 48

In an asynchronous network, it is reasonable to assume that nodes have no control over

input values or the scheduling of message delivery. These assumptions are reflected in the

definitions of correctness and complexity, which are, in general, based on the worst case

behaviour of algorithms over inputs and schedules. Hence, a deterministic algorithm is

required to be correct for all inputs and schedules, and its complexity is the worst case

over all inputs assuming an adversarial scheduler.

ff the algorithm is randomized, then both correctness and complexity of the com­

putation may depend on the outcome of random experiments. There are two types of

randomized distributed algorithms. A Las Vegas algorithm is a randomized algorithm that

terminates with probability 1 and upon termination is always correct. A more lenient

notion of correctness permits erroneous results to occur with low probability. A Monte

Carlo algorithm is a randomized algorithm that terminates with the correct result with

probability at least 1- c, where € is a parameter of the algorithm with value O ~ € < 1. The

correctness criterion must hold for all inputs and schedules, and the complexity is defined

as the worst case over inputs and schedules, and the expected case over the probability

space of correct computations.

A nondeterministic algorithm also incorporates choices and different computations may

ensue from a fixed input. Like conventional nondeterministic algorithms, the correctness

criterion is weakened to a requirement to avoid giving wrong answers. A computation is

correct if all processors terminate with the correct answer. It is erroneous if any proces­

sor terminates with the wrong answer. Notice that a computation can fail to be correct

without being erroneous; for example, a computation could dead.lock, or fail to terminate,

or terminate with some or all processors in an undecided state. It is required of non­

deterministic algorithms that none of the computations are erroneous. Like conventional

nondeterministic algorithms, a nondeterministic distributed algorithm is understood to be

efficient for a fixed input if there is some computation that yields the correct answer for

that input and that has low complexity. Therefore, lower bounds on complexity in the

nondeterministic model address the complexity of the best case over all choices and reflect

the cost of certifying a correct answer. The complexity of a nondeterministic algorithm is

Chapter 4: A General Model 49

defined to be the worst case over inputs.

A nondeterministic/probabilistic algorithm incorporates both nondeterministic and

random choices. Both correctness and complexity may depend on the outcome of these

choices. It is required that for all possible nondeterministic choices, the resulting random

computation yields an erroneous answer with probability less than € where € is a param­

eter of the algorithm. A nondeterministic/probabilistic algorithm is efficient for a fixed

input if there are some nondeterministic choices for that input such that the ensuing ran­

dom computation is correct with probability 1 - E and the correct computations that arise

from these choices have low expected complexity. The complexity of such an algorithm

is the worst case over inputs and schedules. If no possibility of error is to be tolerated,

there is no advantage to making random choices when nondeterministic ones are permit­

ted. In this case nondeterminism subsumes randomization. But it can be advantageous for

an algorithm that errs with low probability to incorporate randomization in addition to

nondeterminism, since no nondeterministic choices are permitted to lead to an erroneous

answer, while a few random choices may do so.

4.2.2 Types of algorithms - definitions for rings

A collection of precise models for message-driven algorithms for unidirectional rings are

constructed by refining the concepts of the previous section for this restricted case. The

definitions of correctness and complexity of function evaluation on rings are achieved by

specializing the ideas in subsection 4.2.1 and incorporating the definitions (section 4.1) of

a unidirectional message-driven process.

Correctness

Because nodes of anonymous rings all have the same degree and lack identifiers, the only

node information that can influence the assignment of processes to nodes is the input

value of the node. Let input values be taken from domain D. Let f be a cyclic function

from D" to { 0, 1}. Then / is the characteristic function of some language L ~ Dn. Let

Chapter 4: A General Model 50

I = i1 , , , , , in E Dn. If 1r1 ,n = 1r1 , ••• , 1r n is a ring of message-driven deterministic processes

and C is the computation associated with 1r1,n, then the correctness of 1r1,n for function J

on input I is captured by:

1. 1r1,n strongly evaluates J on input I if:

(a) IE L implies C is an accepting computation, and

(b) I¢ L implies C is a rejecting computation.

2. 1r1,n weakly evaluates J on input I if:

(a) I E L implies no history of C is a rejecting history, and

(b) I <I. L implies no history of C is an accepting history.

Similarly, if 1r1,n = 1r1 , •.• , 7!"n is a ring of message-driven random processes and C is a

random computation associated with 11'1,n, then the correctness of 1r1,n for function J on

input J is captured by:

1. 1r1,n strongly evaluates J on input I with confidence 1 - £ if:

(a) IE L implies Pr(C is an accepting computation)~ 1 - £, and

(b) I <I. L implies Pr(C is a rejecting computation)~ 1- c

2. 1r1,n weakly evaluates f on input I with confidence 1 - € if:

(a) IE L implies Pr(C does not contain a rejecting history)~ 1 - €, and

(b) I(/. L implies Pr(C does not contain an accepting history)~ 1 - €.

Correctness of an algorithm is now defined in terms of the correctness of the rings of

processes that can be generated by the algorithm. The strong versions of the preceding

definitions are used to define randomized and deterministic message-driven algorithms that

must return correct answers either with certainty or high probability. The weak versions

capture the less stringent requirement of not retu~ning an erroneous answer. In particular,

a deadlocking computation meets the requirements of weak evaluation. Weak evaluation

Chapter 4: A General Model 51

is used to define nondeterministic and nondeterministic/probabilistic message-driven algo­

rithms. Let A now denote the set of message-driven deterministic processes for unidirec­

tional rings, and B denote the set of message-driven random processes for unidirectional

rings. Recall that the different types of algorithms are interpreted as mappings on the

domain D oflabels, as follows:

A deterministic algorithm maps D to A.

A Las Vegas or Monte Carlo algorithm maps D to the set of probability mea,.

sures on A.

A nondeterministic algorithm maps D to the set of nonempty subsets of A.

A nondeterministic/probabilistic algorithm maps D to the set of nonempty

subsets of 13.

A deterministic algorithm o: computes J on input I = i1, •··,in if 11'1,n = 71'1, ••. , 71'n

strongly evaluates f on input I where 71'j = o:(ij),

A Las Vegas algorithm a computes f on input I= i1 , •••,in if, with probability 1, the

computation of 71'1,n = 71'1,-• .,71'n, where 71'j is a random element of o:(ij) for 1 ~ j ~ n,

terminates, and every such 71'1,n strongly evaluates f on input I given that its computation

terminates.

A nondeterministic algorithm o: computes f on input I= i1 , •••,in if, for every 1r1 ,n =

71'1, ••• , 71'n where 71'j E a(ij), 71'1,n weakly evaluates f on input I.

A Monte Carlo algorithm o: computes f on input I= i1 , •••,in with confidence 1 - €

if, with probability at least 1- € 1 1r1,n = 1r1, ••• , 11'n, where 71'j is a random element of o:(ij)

for 1 ~ j ~ n, strongly evaluates f on input I.

A nondeterministic/probabilistic algorithm o: computes f on input I with confidence

1- € if, for every 11'1,n = 1r1,, .. ,11'n where 11'j E a(ij), 71'1,n weakly evaluates f on input I

with confidence 1 - €.

(The Las Vegas and Monte Carlo models also have characterizations as mappings from

D to 13, which would give rise to alternative definitions of correctness. Recall that the

Chapter 4: A General Model 52

term eventually P is used to abbreviate the phrase "terminates with probability 1 and

upon termination P".

A Las Vegas algorithm o computes f on input I = i1, · · · , in if rr1 ,n = 11"1, ... , rr n, where

rr; = o(i;), eventually strongly evaluates f on input I.

A Monte Carlo algorithm o computes f on input I= i1 , •••,in with confidence 1- £ if,

rr1,n = rr1, ... , rr n, where rr; = o(i;), strongly evaluates f on input I with confidence 1 - £.

Though these definitions of correctness are equivalent to those given above, they are

not used here.)

An algorithm o computes f (with confidence 1- £) on rings of size n if it computes f

on input I (with confidence 1 - £) for every I E nn.

Functions are generally considered to have a fixed number of arguments. However, it

is sometimes meaningful to consider particular functions such as AND with an arbitrary

number of inputs. The definition of function evaluation is extended to include this situation,

when such. an extension to a variable number of inputs is warranted. Let [a, b] denote a

closed interval of positive integers and let 'R.[a,b) denote the class of all anonymous rings

of size n where n E [a, b]. An algorithm o computes f for rings in 'R.[a,b] (with confidence

1- f) if o computes f on rings of size n (with confidence 1- £) for every n E [a,b].

Complexity

The notion of complexity is adjusted depending on the type of algorithm that is being

considered. Complexity is interpreted to mean expected complexity over random choices

and best case complexity over nondeterministic choices. But in both cases, complexity

addresses the amount of communication used in computations that are correct in the strong

sense. Hence, though a nondeterministic algorithm may terminate without a decision or

may fail to terminate, its complexity is the best case over those computations that do

produce a correct answer. Similarly, though a Monte Carlo algorithm may err with low

probability, its complexity is the expected communication used in correct computations.

Note that a lower bound of B on the expectation over correct computations of a Monte

Chapter 4: A General Model 53

Carlo algorithm, o:, that errs with probability at most£, implies a lower bound of (1 - £)B

on the expectation over all computations of a. These notions of complexity are captured

by the following definitions.

The bit (respectively, message) complexity of a deterministic algorithm a on input I==

i1, •••,in is the bit (respectively, message) complexity of 1r1,n = 11'1, ... , 11'n where 11'j = o:(i;).

The expected bit (respectively, message) complexity of a randomized algorithm a (either

Las Vegas or Monte Carlo) on input I = i1, •••,in is the expectation, over the space of

sequences 1r1,n = 11'1, ••• , ,r n where ,r; is a random element of a(ij), of the bit (respectively,

message) complexity of 1r1,n, given that 1r1,n strongly evaluates J(I). (Note that sequences

rr1 ,n where 11"j E o:(i;), of a Las Vegas algorithm for function/, strongly evaluate f(I) with

probability 1).

The bit (respectively, message) complexity of a nondeterministic algorithm o: on input

I= i1, ··•,in is the minimum, over the set of sequences 1r1,n == 11'1, ••• , 11"n where 1rj E o:(ij)

and 1r1,n strongly evaluates /(I), of the bit (respectively, message) complexity of 1rt,n• If

no 71'1,n = 1r1, ••• , 1r n where 11"; E o:(ij) strongly evaluates f(I), then the complexity of o: on

input I is infinite.

The expected bit (respectively, message) complexity of a nondeterministic/probabilistic

algorithm a on input I = i1, •··,in is the minimum, over the set of sequences 1r1,n ==

1r1,•••,1rn where 11"j E o:(i;) and 71'1,n strongly evaluates /(I) with confidence 1- £, of

the expected bit (respectively, message) complexity of computations of rr1,n that strongly

evaluate f(I). If no 11'1,n = rr1, ... ,11'n where 11'j E a(ij) strongly evaluates /(I) with

confidence 1 - £, then the complexity of o: on input I is infinite.

The {expected} complexity of an algorithm o: on rings of size n is the maximum over all

inputs I== i1, •••,in E nn, of the (expected) complexity of a on input I.

Chapter 4: A General Model 54

4.3 Relationships Between Classes of Algorithms

Deterministic, Las Vegas, and nondeterministic classes of algorithms form an hierarchy of

increasingly more powerful models of computation, each derived from its predecessor by

generalizing the way in which a deterministic process is chosen for a label. A Las Vegas

algorithm makes a probability space of deterministic processes available to each label. If

the probability space for each label is restricted to exactly one deterministic process, which

is chosen with certainty, then the algorithm is deterministic. Thus:

Claim 4.1 Lower bounds on the complexity of Las Vegas algorithms for a given problem

P imply lower bounds on the complexity of any deterministic algorithm for P.

Nondeterministic algorithms result from removing the constraint of adhering to a prob­

ability distribution when assigning a process to a label, replacing it with an arbitrary

assignment from a set of processes. Nondeterministic complexity is defined as the mini­

mum while Las Vegas complexity is defined as the expected value over the set of possible

assignments that produce correct answers. Thus:

Claim 4.2 Lower bounds on the complexity of nondeterministic algorithms for a given

problem P imply lower bounds on the complexity of any Las Vegas algorithm for P.

Recall the alternative characterization of a Monte Carlo algorithm as a mapping from

the set of labels to the set of random processes. This characterization illuminates a re­

lationship between the Monte Carlo and the nondeterministic/probabilistic models that

can also be interpreted as a relaxation of constraints on the way in which processes are

assigned to labels. While a Monte Carlo algorithm assigns a fixed random process to a

label, a nondeterministic/probabilistic algorithm assigns a set of random processes to a

label. Therefore, Monte Carlo algorithms are a subset of nondeterministic/probabilistic

algorithms that assign a set of size one to each label. Consequently:

Claim 4.3 Lower bounds on the complexity of nondeterministic/probabilistic algorithms

for a given problem P imply lower bounds on the complexity of any Monte Carlo algorithm

Chapter 4: A General Model 55

for P.

In addition, algorithms that require correctness with certainty can be viewed as restricted

versions of the corresponding algorithms that permit error with probability at most €.

Setting f equal to zero in the definition of correctness for a Monte Carlo algorithm yields

a requirement that, with probability 1, random computations of the algorithm are correct

in the strong sense. The definition of correctness for Las Vegas algorithms is even slightly

stronger. Las Vegas algorithms must, with probability 1, be correct in the strong sense and

the only possible incorrect computations are infinite ones (which occur with probability 0).

The complexity of Monte Carlo and Las Vegas algorithms are defined in the same way -

as the expected complexity over the space of strongly correct computations. Thus:

Claim 4.4 Lower bounds for Las Vegas algorithms can be derived from lower bounds for

Monte Carlo algorithms by letting f tend to zero.

Similarly, the purely nondeterministic model can be viewed as an even more constrained

model than the nondeterministic/probabilistic model with f set to zero. Thus:

Claim 4.5 Lower bounds for nondeterministic algorithms can be derived from lower bounds

for nondeterministic/probabilistic algorithms by letting € tend to zero.

These relationships between models are exploited in the lower bounds that are presented

in chapters 5, 6 and 7. In some cases the nondeterministic model suffices to yield tight

lower bounds for Las Vegas algorithms. Frequently, proving lower bounds that incorporate

arbitrary distributions of random numbers is difficult. Since the nondeterministic model

dispenses with probability distributions, this difficulty is finessed and the proofs become

simpler.

In addition, the nondeterministic lower bounds make stronger statements than the

corresponding statements in a randomized model. There are a number of interpretations

of this nondeterminism in the distributed setting. First, nondeterministic lower bounds

apply to algorithms that on occasion may deadlock or fail to terminate. Second, they

Chapter 4: A General Model 56

imply best case lower bounds for Las Vegas algorithms, and hence imply that even the

most efficient execution of a Las Vegas algorithm has the claimed complexity. For example,

the nondeterministic function evaluation lower bound in chapter 5 says that if a decisive

computation (of any non-zero probability) exists for every input, then there is some input

for which every decisive computation (no matter how improbable) has at least the claimed

complexity.

The lower bound results herein are stated for anonymous rings; but, by a third inter­

pretation of nondeterminism, the nondeterministic lower bounds apply in a more general

setting. One might imagine an algorithm that works on all rings, and that is especially ef­

ficient on a ring with processors named in a particular way. Since nondeterministic choices

can be interpreted as choices of names for processors, the nondeterministic lower bounds

preclude such algorithms.

Finally, as will be seen in section 4.4, lower bounds for message-driven nondeterministic

algorithms extend to lower bounds for even the best possible scheduling of (non-message­

driven) nondeterministic algorithms.

There are some problems for which the nondeterministic model is too powerful to

admit tight lower bounds for randomized algorithms. In some cases, strong Las Vegas

lower bounds cannot be constructed from the tools for proving nondeterministic lower

bounds only because deadlock in permissible in the nondeterministic model but not in the

Las Vegas model. For such problems, constraining the nondeterministic model slightly by

admitting only nondeadlocking algorithms is sufficient to achieve the desired Las Vegas

lower bounds. The addition of this constraint to nondeterminism models the best case

execution of a Las Vegas algorithm. For other problems, this approach is not adequate.

Attrition (chapter 2, page 13) on rings of known size is one such problem. A randomized

procedure for attrition, which is very efficient in the best case, is described in chapter 7.

However, the expected complexity of attrition exceeds its best case complexity. A general

lower bound for the expected complexity of attrition that deadlocks with probability at

most€ is derived in chapter 7. The relationship between the Las Vegas and the Monte Carlo

models is then exploited to get a lower bound for nondeadlocking attrition as a corollary.

-I

Chapter 4: A General Model 57

The proofs that depend on the nondeterministic model all have some structural similar­

ity. The existence of some correct computation with low bit complexity is assumed. This

computation is then manipulated to form a new computation which leaves one or more

processors in an erroneous state. Since the new computation is a possible computation of

a ring in the class for which the algorithm is supposed to work, it is concluded that the

assumption of low complexity must be incorrect.

There is a collection of techniques for carrying out the manipulations of rings of pro­

cesses. Because few bits were expended during the computation, it follows that there are

repeated histories. Shrinking removes sections between repeated histories while ensuring

that the resulting sequence of histories remains a possible computation of the algorithm

on an appropriately smaller ring. Replication concatenates many copies of the new com­

putation producing a possible computation of the algorithm on an enlarged ring. When

necessary, splicing is used to construct a computation on a ring meeting an exact size

requirement. This technique inserts a new segment into a computation while ensuring that

at lea.st one history in the resulting computation remains unaffected by the insertion. Lem­

mas providing specific tools to shrink, replicate and splice are introduced in the following

chapters as needed.

The techniques used to derive nondeterministic lower bounds have been enriched to

work in the nondeterministic/probabilistic model (see [3,4]) but they will not be developed

in detail here. The tools for the nondeterministic/probabilistic model are considerably

more complex than the corresponding purely nondeterministic ones. In the nondetennin­

istic/probabilistic model, the initial assumption of low expected complexity applies to the

whole ring rather than to a specific computation. In addition, the initial correctness as­

sumption has an attached probability. Therefore, it is necessary to manipulate the whole

probability space of computations that may arise and to account for the associated prob­

abilities. Since each application of a ring manipulation reduces the probability of the

resulting set of computations, the proofs must be frugal in their use of shrinking, replicat­

ing and splicing. As a consequence, the machinery of these proofs is much more elaborate

than that required in the purely nondeterministic domain.

Chapter 4: A General Model 58

It is sometimes helpful in lower bound proofs to describe computations by focusing

on messages rather than on processors. In a message-driven computation, if a processor

responds to the receipt of a message by sending on a new one, then, potentially, the new

message contains information that was sent by the recipient's predecessor. This propaga­

tion of information from one processor to another is captured by the concept of message

envelopes. Each initiator creates an envelope, inserts its initial message into the envelope

and sends it to its successor. Upon receipt of an envelope a processor removes and processes

the contained message. It then either inserts a new message and forwards the envelope, or

it destroys the envelope. A computation terminates precisely when all message envelopes

have been destroyed. Suppose that the envelope created by 7ri is destroyed by processor

1r i. Then the trace of this envelope is the sequence of processors 1r i, ... , 71" i that had pos­

session of the envelope at some time during the computation (cf. [23]). The perspective of

envelope traces and envelope initiators and terminators aids in the description of some of

the manipulations of computations in the proofs of the following chapters and is therefore

frequently adopted.

4.4 Extensions to Non-message-driven Algorithms

Although the general definition of a process on page 42 incorporates non-message-driven

behaviour, the details of the development of the model for unidirectional rings depend upon

the restriction to message-driven processes defined on page 43. It is intended, however,

to use the models to prove lower bounds that are as general as possible for distributed

algorithms for rings. In particular, it is desirable that the statements of results are not

restricted to message-driven algorithms. In fact, lower bounds for the bit complexity of

message-driven nondeterministic algorithms for rings extend in a strong sense to lower

bounds for unconstrained nondeterministic algorithms for rings, as is now shown.

Any (non-message-driven) deterministic process can be viewed as a possibly infinite

collection of message-driven deterministic processes under a two step conversion. Recall

from the definitions of non-message-driven and message-driven deterministic processes that

Chapter 4: A General Model 59

the distinction is in the constraints imposed on the edges emanating from send-nodes. A

send-node of a non-message-driven process may have an unbounded branching factor, but

a send-node of a message-driven deterministic process has branching factor one.

Let <7 be a send-node of a deterministic process T with branching factor greater than

one. For every edge, t, directed out of <7 to a receive-node, say p, there is a process, Tt,

created from T by removing all subtrees of <7 except that rooted at p. Let r(<7) be the set

of all such processes Tt formed from T where t is an edge directed out of u. The processes

in the set r(u) each describe one possible behaviour of T from state u. Imagine that the

construction is now reiterated for every process T
1 E T(u) that has branching factor greater

than one at some send-node, u'. If this decomposition is continued until all send-nodes

have branching factor one, the result is a (possibly infinite) set, .C(r), of processes, all of

which have send-nodes with branching factor one. For each process i E .C(T), the edge in i

from any send-node, u, to its succeeding receive-node, p, represents a transition of T from

state u to state p that is possible under some action of the scheduler.

Consid'er a computation, C-r,S, of a ring of non-message-driven deterministic processes,

T = T1, •.. , Tn, under any scheduler, S. For each 1 ~ i ~ n, there is some element ii E .C(ri)

such that the computation, C-y, of i = i1, ... , in is the same as C-r,S• Now consider a

sequence i = i1, .. . , in where ii E .C(Ti). Because of the definition of asynchrony, any

possible action of a process from a state corresponding to a send-node can be forced by

some action of the scheduler. As a consequence, for every i = i1, ... ,in where ii E .C(ri),

there is a scheduler S' such that the computation C-r,S' of T = T 1 , ••• , T n is the same as the

computation of i·

The set .C(T) is not a set of message-driven processes because the edges emanating

from a send-node may be labelled with a sequence containing more than one message.

That is, more than one message may be sent in response to a message received. However,

a specification of a process that describes its behaviour in state p given a single input

message, is easily interpreted as a description of the behaviour of the process in state p given

a sequence of input messages. Informally, the process sends as output the concatenation of

the sequences of output messages it would send if it sequentially responded to each message

Chapter 4: A General Model 60

in the input sequence separately. Sequences of messages can then be viewed as individual

messages in a larger message space. This step is made formal by replacing each process

'Y E .C(T) with a message-driven one. First construct the directed acyclic graph d('Y) from

'Y using the following closure operation. For every directed path pin 'Y from a receive-node

p to a receive-node p', where p' is a descendant of p, add a new directed path of length two

consisting of an edge e1 from p to a new send-node, say u, and an edge e2 from u to p'.

Label edge e1 with the concatenation of the labels of all edges leaving receive-nodes along

path p. Label edge e2 with the concatenation of the labels of all edges leaving send-nodes

along path p. Next, transform the directed acyclic graph d('Y) into a tree md('Y) in the

standard way by progressing through d(-y) from the source (originally the root of -y), and

for each node II that has indegree deg larger than 1 replicate deg times, the node II together

with the subgraph rooted at 11. The labels on edges of tree md('Y) contain elements of M*

where M is the original message space of T. It is a routine matter to encode sequences

of messages as a single packet in a packet space consisting of elements of M* • ~, where

~ is an end-of-packet marker. Let md'('Y) be the process md('Y) with the edges relabelled

according to this encoding. Finally, let M(r) = {md'(1)J-y E .C(r)}. Then M(r) is a set

of message-driven processes and each element of M(r) reflects a possible execution of T.

The correspondence between an arbitrary deterministic process T and the set of message­

driven deterministic processes M (T) is used to extend lower bounds for message-driven

nondeterministic algorithms to lower bounds for non-message-driven nondeterministic al­

gorithms.

Lemma 4.6 There is a constant k such that for every non-message-driven nondeterminis­

tic algorithm /3 there is a message-driven nondeterministic algorithm a and for every com­

putation C13 of P1, ... , Pn under scheduler S where Pi E /3(i), there corresponds 71'1, ••• , 71' n

where 71'i E a(i) and the computation Ca of 71'1, ... , 11'n satisfies:

1. The final state of 11'i is the same as the final state of Pi under scheduler S.

2. The bit complexity of Ca is at most k times the bit complexity of C J3.

Chapter 4: A General Model 61

Proof: Suppose f3 is a (not neces~arily message-driven) nondeterministic algorithm for

problem P. Then /3 can be viewed as an assignment of sets of deterministic non-message­

driven processes to possible input values of processors. Define the message-driven non­

deterministic algorithm a by: for every processor input i, a(i) = UTe.B(i) M(r). By the

arguments above, the set of behaviours of a process r is the same as the set of behaviours

of processes in .C(r). Furthermore each process in .C(r) corresponds to one in M(r). As

a consequence, for any computation C,e of a sequence r1, ... , Tn where Ti E /3(i) there is

some 11'1 , ... , 11' n where 11' E a(i) and the computation Ca of 1r1, ... , 11' n is an encoding, in

the larger message space, of the computation C(3, In particular the computations leave cor­

responding processes in corresponding states, and the number of bits in each computation

is the same, up to the cost of the encoding of sequences of messages into single messages .

•
As an immediate consequence:

Theorem 4.7 A lower bound on the bit complexity of any message-driven nondetermin­

istic algorithm for problem P on a ring implies a lower bound of the same order on the bit

complexity of any non-message-driven nondeterministic algorithm for P on a ring even for

the best possible scheduler.

Proof: Let fl(/(n)) be a lower bound on the bit complexity of message-driven algorithms

for P. Suppose /3 is a (not necessarily message-driven) nondeterministic algorithm for

P. Define the message-driven nondeterministic algorithm a as in lemma 4.6. Since a is a

message-driven algorithm for P, for some input IE nn, every decisive computation of a on

I has bit complexity at le~t fl(f(n)). Since for each computation of /3, there corresponds a

computation of a with complexity within a constant factor of that of /3, every computation

of (3 on input I also has complexity !l(f(n)). ■

The preceding discussion extends lower bounds for nondeterministic message-driven

algorithms to lower bounds for nondeterministic non-message-driven algorithms. The same

arguments can be carried out for lower bounds on the best case execution of Las Vegas

algorithms.

Chapter 4: A General Model 62

Corollary 4.8 A lower bound on the best case bit complexity of any message-driven Las

Vegas algorithm for problem P on a ring implies a lower bound of the same order on the

best case bit complexity of any non-message-driven Las Vegas algorithm for P on a ring

even for the best possible scheduler.

Chapter 5

Minimum N onconstant Function

Evaluation

Suppose that an anonymous ring of n processors, 71" 1 , .•• , 71' n, each with ~ single input

value (say i1, •••,in respectively), must cooperate to compute /(i1, •••,in) for some fixed

n-variable function f. Since computation is on a ring of identical processors, the function

f is assumed to be cyclic, that is /(i1, ···,in)= /(ij, ··•,in, i1, • · ·, ij-1) for any 1 $ j $ n.

The general question of the minimum communication complexity required to compute any

nonconstant function f on an anonymous ring was first addressed by Moran and Warmuth

in [21). They focus on the complexity of nonconstant functions because any constant

function can be evaluated without any communication. They prove that:

1. There is a nonconstant cyclic boolean function f such that f can be computed by a

deterministic algorithm in 0(n log n) bits of communication on a ring of size n.

2. If g is any nonconstant cyclic function of n variables, then any deterministic algorithm

for computing g on an anonymous ring of size n has complexity n(nlogn) bits of

communication.

63

Chapter 5: Minimum Nonconstant Function Evaluation 64

For function evaluation by algorithms employing randomization, the lower bound does

not apply and the upper bound can be improved. Specifically, this chapter shows1 that:

1. There is a nonconstant cyclic boolean function /, such that / can be computed by

a Las Vegas algorithm in O(nv'fcign) expected bits of communication on a ring of

size n.

2. If g is any nonconstant cyclic function of n variables, then any nondeterministic

algorithm for computing g on an anonymous ring of size n has complexity n(nJlog n)

bits of communication.

Notice that the upper bound is achieved by a Las Vegas algorithm that evaluates a

fixed function /, whereas the lower bound is a nondeterministic one. Thus, although there

is a nontrivial function that can be evaluated using O(nv'fcign) bits on the average even

for the worst input, there is no nontrivial function that can be evaluated in less than this

complexity even given the best possible outcome of random experiments. Essentially, just

the verification of a guessed function value requires this minimum amount of communication

for some input.

5.1 Tools for Proving Lower Bounds

A number of lemmas follow immediately from the definitions of chapter 4. They allow us

to manipulate computations, building new ones from old ones.

Lemma 5.1 If hi,·••, hk is a history sequence with complexity less than b, and all hi are

distinct, then k < 1;;6.

Proof: At least (k log k)/2 bits are required to encode k distinct strings. Hence,

(klogk)/2 < b implying k < 1;;b· ■

1 The content of this chapter is a modified version of material in [6].

Chapter 5: Minimum Nonconstant Function Evaluation 65

Lemmas 5.2 and 5.3 provide, respectively, the shrinking and replicating tools that were

promised in chapter 4. Each tool transforms an initial ring of processes, 'Ti, into a new ring,

p, containing only processes that appeared in 71'. The proofs follow easily by considering

the propagation of message envelopes. The sequence of messages received by any fixed

process in p is identical to the sequence it received in 1r.

Lemma 5.2 If C = h1, • • •, hn is the computation of the ring 1r1, ••• , 71' n of determin­

istic processes with hi = h; for some i < j, and 1r1 is the only initiator, then C' =
h1, .. •,hi,h;+1,"•,hn is the computation of1r1,·",1ri,1r;+1,"•,11'n·

Note that it is essential that the single initiator remains in the ring, for lemma 5.2 to

hold, since otherwise the computation would not even begin. In contrast, the replication

of computations is entirely unconstrained; the behaviour of a process in a replicated ring

is indistinguishable from its behaviour in the original ring.

Let (x Y denote the concatenation of r copies of sequence x.

Lemma 6.3 If C = h1, .. ·, hn is the computation of the ring 1r1,n = 1r1, ... , ,r n of deter­

ministic processes then er = (h1, • • · , hn Y is the computation of (1r1,n)" = (1r1, • •• , ,r nY.

Using a more elaborate construction than that employed in lemma 5.3, a new ring

can be created by first replicating the sequence of processes in the original ring and then

splicing an additional sequence of processes into the replicated ring. Even in this more

general situation, the replication ensures that a prefix of a process's history in the original

ring matches a prefix of the process's history in the final ring. This is the content of the

following lemma. It is helpful to have a notation for the first r messages of h, provided

that h contains at least r messages. To this end, let hlr denote the sequence consisting of

the first x messages of history h where x = min { r, !hi}.

Lemma 5.4 Let h1, · · ·, hn be the computation of the ring 1r1,n = 71'1, .•. , 1r n of determin­

istic processes and let r be any sequence of processes. Let g1, ... , 9m be the computation of

p = (1r1,n)"r. Then for O::; j::; r - 1 and 1 ::; i::; n, 9in+di = hili•

Chapter 5: Minimum Nonconstant Function Evaluation 66

Proof: The lemma is trivially true if there are no initiators in 11"1,n since then jhil = 0 for

each i. So assume that 11"1,n contains at least one initiator. Let Pj,i denote the (j + 1)8t copy

of 11"i in p. The lemma is clearly true for j = 0. Suppose it holds for j < r - 1. Then each

process P;,i sends at least the first x messages in its history, hi, where x = min{j, jhil},

The initiators in the (j + 1)•t copy of 11'1,n each produce a messa~e before processing any

received messages. As a result, the computation of the (j + 2rd copy of 1r1,n in p agrees

with the original computation of 11"1,n for one more round of messages. Hence, process Pi+i,i

sends at least the first y messages of its history hi, where y = rnin{j + 1, lhil}, ■

5.2 Bit Complexity of Function Evaluation - Lower Bound

Let f be any nonconstant cyclic function of n variables, and let a be any nondeterministic

algorithm that computes f on a ring of size n. It is shown in this section that there exists

some input string I for which a requires n(nJ'Iogn) bits of communication to compute

f(I). Thus, the complexity of a is n(nJlog n) bits.

The proof proceeds in two steps. The first step is to show that the claimed complexity

applies whenever a is restricted to single initiator computations. The second step is a

reduction which proves that any algorithm for function evaluation can be converted to an

algorithm that works for any preassigned nonempty subset of initiators without entailing

any significant additional complexity.

Lemma 5 .5 Let f: nn-{ O, 1} be any nonconstant cyclic decision function of n variables.

Let a be any message-driven nondeterministic algorithm that computes f on a ring of size n.

Then there is some input IE nn for which a requires n(nJlog n) bits of communication

to evaluate f(I) whenever the number of initiators in the computation of a is 1.

Proof: The proof has two steps. First, a new computation of a is constructed from a

given one that has low complexity and a single initiator. Second, an input is found such

that if a has low complexity on that input, then the construction of step one would result

in an erroneous new computation.

)

Chapter 5: Minimum Nonconstant Function Evaluation 67

Let I = i1 , • • • , in E nn and let 9 = hi,· · · , hn be the computation of 71' = 71'1, ••• , 71' n

where 71'j E a(ij) and 71'1 , ... ,71'n has exactly one initiator. Without loss of generality,

assume the single initiator is 71'1 • Suppose the complexity of C is less than (n./Iog'n')/3.

Let r = 1h1 1, Because there is exactly one initiator and a is message-driven, each history

has either r or r - 1 messages. Each message requires at least one bit, therefore n(r -1) <
(n/logn)/3 implying r < /logn/2 for large enough n.

C is now collapsed by repeatedly applying lemmas 5.1 and 5.2 until all histories are dis­

tinct. Let C' = h131 , • • •, h/3, be the resulting subsequence of C. Then by lemma 5.2, C' is the

computation of rr' = '1rf31 , • • •, 71' fJ, with input I' = if31 , • • •, i/3,. By lemma 5.1, l < n/ ./Iog"n.

B 1 5 3 (c ')r · t t' f (')r _ 1 1 2 2 r r y emma . , 1s a compu a 10n o 1r - 71' 131 , • • • , 71' 13,, 1r fJ1 , • • • , 71' fJ,, · · • , 1r fJ1 , • • • , 1r fJ,

with input (I'Y of length rl < n/2.

Let i = 11, · · •, in-rl be any element of nn-rl and T = r1 • · · Tn-rl be any sequence

such that ri E a(1j), Consider the sequence (11''rr which has input (I'Y;, By lemma 5.4,

the first r - 1 messages received by 71';
1

in (rr'Y r match the first r - 1 messages received

by 71'1 in 1r. Hence, 71';
1

must have the first r messages of h1 as its first r ·output messages.

In particular, if h1 is decisive, h1 is the complete history of rr13i.

In summary, this construction of shrinking, replicating and splicing can be applied to

any 1r1 ,n and its input I whenever the computation, C, of 71'1,n is decisive and has complexity

less than n(Jlog n)/3 and 1r1,n has only a single initiator. The result is a new sequence

(I'Y of length rl < n/2 such that for any; of length n - rl > n/2, there is a computation

C" of a on input sequence (I'Y;, and there is a decisive history hi occurring in both C

and C".

This construction is now used to find an input I E nn for which the assumption that

there exists a single initiator decisive computation of a on input I with complexity less

than (nJlog n)/3, leads to a contradiction.

Let L C nn be the language recognized by f. Let d ED and without loss of generality,

assume ~ ~ L. (Otherwise consider the language L.) Let w = dkp be an element of L

such that k is maximum over all strings in L.

Chapter 5: Minimum Nonconstant Function Evaluation 68

Case 1: Suppose k ~ n/2. Then let I= w. Suppose there is a single initiator computation

C of a on I such that IIC\I < (n✓ logn)/3 and C strongly computes J(I). Since w E

L, C must be an accepting computation. Then, by applying the construction described

above, there is an sequence I" of length rl < n/2 and a computation C" of a on I"dn-rl

containing an accepting history. This is a contradiction because the input contains at lea.st

n - rl > n/2 ~ k consecutive d's and should therefore generate a rejecting computation.

Case 2: Suppose k > n/2. Then let I = ~. Suppose there is a single initiator computation

C of a on I such that IICII < (n,/logn)/3 and C strongly computes f(I). Since dn ¢ L,

C must be a rejecting computation. Then there is an sequence I" = d,.1 where rl < n/2

and a computation C" of a on I" dk-rl p = dk p = w containing a rejecting history. This is

a contradiction because w E L and should therefore generate an accepting computation. ■

The bit complexity of a nondeterministic algorithm on a fixed input is defined as the

best case over all possible assignments of processes that are consistent with the input and

that result is a correct computation. The previous lemma only addresses the bit complexity

of the best case on an input over those consistent assignments of processes that happen to

have one initiator. Given a function f, let Ij be the input that is found in the previous

lemma. It remains a possibility that the bit complexity of an algorithm a for f is less

than n(✓log n)/3 bits on input Ij for some other assignment of processes with a different

number of initiators. It will now be shown that such a situation cannot arise. That is,

there is no loss of generality in assuming a single initiator (or any convenient non-empty

set of initiators) when communication complexity is measured in bits.

Let a be a (not necessarily message-driven) nondeterministic algorithm that computes

some function / on anonymous rings of size n. For each possible input i and for each

process 1r E a(i) two new processes, D(1r) and N(1r), are constructed. D(1r) consists of 1r

augmented with two new states and edges. The root of D(1r) is a send-node, say <1, with

an edge labelled "wake-up" from <1 to a receive-node, say p. An edge labelled "wake-up" is

directed from p to the root of rr. N(1r) is also constructed by augmenting 1r with two new

states and edges. The root of N(1r) is a send-node, say a', with an edge labelled with the

Chapter 5: Minimum Nonconstant Function Evaluation 69

null message .X directed from a' to a receive-node, say p'. An edge labelled "wake-up" is

directed from p' to the root of 1r.

Define algorithm, &, by &(i) = U1rea(i) (D(1r) U N(1r)). Then it is straightforward to

confirm that & is a nondeterministic algorithm that also computes f. For any sequence

1r1,n = 1r1, ... ,1rn of processes in a, there corresponds 2n sequences of&. Each of these

sequences that has at least one initiator, has a computation consisting of a single round

of exchanged "wake-up" messages followed by the same computation as 1r1 , ... , 11'n, Thus,

each has bit complexity within O(n) of the bit complexity of 71'1 , •.. , 71'n• Furthermore, one

of the 2n computations corresponds to each possible way that initiating and non-initiating

status happens to be assigned to the processors on the ring.

Let P ~ { 1, ... , n} designate a set of initiators, and let I = i1 , • • • , in be an input

sequence. Let Cost(a:,I,P) denote the minimum, over all sequences 1r1,n = 1r1 , ... ,1rn such

that 'lrj E a(ij) and 'lri is an initiator if and only if i E P, of the complexity of 1r1,n, With

this notation, the conversion of a to & can be summarized as follows.

Lemma 5.6 A nondeterministic algorithm & can be constructed from any (not necessarily

message-driven) nondeterministic algorithm a that computes some function f on rings of

size n, such that: {1)There exist computations of & that compute f on rings of size n for

any set of initiators, and {2) For every input I, the maximum over non-empty sets P, of

Cost(&, I, P), is at most the complexity of a on I plus 0(n).

The combination of lemmas 5.5, 5.6 and 4.6 imply the following theorem.

Theorem 5.7 Let f be any nonconstant cyclic decision function of n variables. Then

the complexity of any nondeterministic algorithm that computes f on a ring of size n is

n(nJ log n) bits even assuming the best possible scheduler.

Proof: Let a be any nondeterministic algorithm that computes f on rings of size n. By

lemma 5.6, there is an algorithm a that computes f on rings of size n and, for every input

I, the maximum over any non-empty set P, of Cost(&, I, P), is at most the complexity of a

Chapter 5: Minimum Nonconstant Function Evaluation 70

on I plus 0(n). By lemma 4.6, & can by converted to a message-driven algorithm /3 with at

most a linear increase in bit complexity for every input. It follows that there is a message­

driven nondeterministic algorithm /3 that computes f on rings of size n and for every input

I, the maximum over non-empty sets P, of Cost(/3,I,P) is at most the complexity of o:

on I plus O(n). Thus, for every input I, if P = {1}, then Cost(/3,I,P) is at most the

complexity of a on I plus O(n). But /3 is a message-driven nondeterministic algorithm that

computes f on rings of size n and has a computation for any set of initiators. Therefore,

by lemma 5.5 there is an input lj such that if P = {1}, then Cost(/3,I, P) = n(nJlog n).

It follows that a has complexity fi(nJlog n) bits. ■

Suppose f is any nonconstant cyclic function with range S, and s1 E S is one possible

value of f. Then the function Ji defined by

fi(x) = { :
if /(x) = S1

otherwise

is a nonconstant cyclic decision function which can be computed at least as cheaply as /.

Therefore, the lower bound above actually applies to general, not just decision, functions

on a ring.

5.3 A Function that Achieves Minimum Bit Complexity

This section presents a nonconstant boolean function f, which can be computed by a Las

Vegas algorithm in O(nJlog n) expected bits on a ring of size n.

The algorithm for f relies on an algorithm for a simpler problem called solitude de­

tection. Let a nonempty set of processors in a distributed system be distinguished. The

problem of solitude detection is for every distinguished processor to determine whether

there is one or more than one distinguished processor. In an algorithm for solitude de­

tection, the initiators are precisely the distinguished processors. As will be seen, solitude

detection can be solved by a Las Vegas algorithm with expected complexity O(nJlog n)

bits when ring size n is fixed. (The more general Monte Carlo version of this algorithm

Chapter 5: Minimum Nonconstant Function Evaluation 71

appears in [4]. See [3,4,5) for details on the complexity of solitude detection for a ring when

various assumptions are made concerning the requirements of the solution.)

Solitude detection algorithm

Let m be the smallest integer such that m ~ Jlog n and m is relatively prime to n. It

follows from the prime number theorem that m = O(log n) [22). Messages have two fields;

message type and message value. For ease of description, five message types are used.

However, it is really only necessary to label alarms since other message types arrive in a

fixed order and can thus be distinguished implicitly. The function random(x) returns an

unbiased random coin toss (with outcome heads or tails) and stores the result in variable x.

Algorithm SD:

Initiators:
send(<coin-toss, random(my-toss)>);
round .-0; terminated .-false;
WHILE .NOT terminated DO

receive(<type, value>);
CASE type OF

coin-toss: IF value = my-toss THEN

IF round< loglogn THEN

send(< coin-toss, random(my-toss) >) ;
round +-round+l

ELSE

send(<mod-count, 1>);
round .-0

ELSE more-than-one.
mod-count: IF value = n mod m THEN

send(<gap-count, 1>)
ELSE more-than-one.

gap-count: IF value = '' long '' THEN

send(<okay, -->)

okay:

alann:

ELSE more-than-one.
IF round < Jlog n THEN

send(<okay, -->);
round +-round+l

ELSE alone .- terminated .-true.
more-than-one.

Chapter 5: Minimum Nonconstant Function Evaluation

PROCEDURE more-than-one:
send(<alarm, -->); alone +-false; terminated +-true.

Non-initiators:
REPEAT forever

receive(<type, value>):
CASE type OF

coin-toss:
okay:
alarm:
mod-count:
gap-count:

forward message.
forward message.
forward message.
send(<mod-count, (value+ 1) mod m>).
IF value < n/ ,/Togn THEN

send(<gap-count, value+ 1 >)
ELSE

send(<gap-count, ''long''>).

72

Theorem 5.8 Algorithm S1) solves the solitude detection problem on unidirectional rings

with expected communication complexity O(nJlog n) bits.

Proof: The correctness and complexity proofs are outlined here; the details appear in [4].

Correctness: When there is only one initiator ,then it is readily confirmed that no alarms

are generated and the algorithm terminates with alone assigned true for the sole initiator.

When there are k ~ 2 initiators, the "mod-count" messages ensure that an alarm is

generated unless k ~ m + 1. The "gap-count" messages then ensure that at least one alarm

is generated within every sequence of Jlog n ::; m initiators. Finally the "okay" messages

ensure that alarms are forwarded to any initiators that have not already sent one, thus

informing all initiators of nonsolitude.

Complexjty: When there is one initiator, the coin tosses never produce an alarm so they

account for O(nJlogn) bits. Counting modulo m requires O(nlogm) = O(nloglogn)

bits. A gap counter, originating at the initiator, is incremented by each non-initiator until

the counter reaches a value of n/ Jlog n. After that, the constant length message, "long",

is propagated around the ring. Therefore, a further O (-r.===r log n) = O(nJlog n) bits
V logn

are used by the gap counter. Finally, Jlog n okay messages of constant length propagate

around the ring accounting for O(nJlog n) bits. Thus, the complexity, when there is one

Chapter 6: Minimum Nonconstant Function Evaluation 73

initiator, is O(ny'Iog'n') bits.

When there are two or more initiators, the probability is (1 - loin) that a given initia­

tor will send an alarm before successfully sending and receiving log log n pairs of matching

coin tosses. Therefore, the total expected bit complexity of "mod-count", "gap-count",

and "okay" messages is O (1o~n(logm+logn+ Jlogn)) = O(n). The expected cost of

the coin tosses is O(n) bits since each initiator sends 0(1) expected bits before sending an

alarm. Alarms cost O(n) bits always. So the total cost is O(n) expected bits, when there

are two or more initiators. •
S1) distinguishes between one and more than one initiator. Since nothing is computed

if there are no initiators, S1) cannot be trivially converted to a boolean function over all

strings in {O, l}n. A boolean function is now constructed which, after a small amount

of communication (at most O(nloglogn) bits), always leaves at least one processor in a

distinguished state, and for some nonempty subset W of inputs, leaves exactly one processor

in a distinguished state. The distinguished processors can then determine whether there

is one or more than one distinguished processor by running S1). Hence, the processors

determine whether or not the input string is in W.

Let v(n) be the smallest positive nondivisor of n. Note that v(n) = O(logn). Let

t = [log v(n)l and T = 2t + 2. Assume T < v(n). (Otherwise 11(n) ~ 10 and a simpler

approach results in a function that reduces to solitude detection inn• v(n) = O(n) bits.)

Let r = n/T. Note that r is an integer.

A configuration of bits on a ring of size n is well-formed if it has the form (1 • 1 •

(0 • {O, l})t)". Note that a well-formed configuration has a unique parse into r blocks of

T bits of the form 1 • 1 • (0 • {0, 1} t A block 1 • 1 • 0 • ht-I • 0 • bt_ 2 • 0 ... 0 • b0 encodes

the integer whose binary representation is bt-lbt-2 ... bo. A well-formed configuration is

sequential if successive blocks (including block r followed by block 1) encode successive

integers mod 11(n). A well-formed configuration is almost sequential if all but one pair of

successive blocks encode a pair of successive integers mod 11(n). Since 11(n) does not divide

n, sequential configurations do not exist. However, almost sequential configurations are

Chapter 5: Minimum Nonconstant Function Evaluation

easily constructed.

Let f be the boolean function defined on strings w E {O, l}n by:

{

1 if w is almost sequential
f(w) =

0 otherwise

74

Theorem 5.9 Evaluation of f on a distributed ring reduces to solitude detection in

O(nlogv(n)) bits.

Proof: The following describes an algorithm which computes J assuming that there is a

subroutine that solves solitude detection.

1. Each processor starts by sending its own input bit and forwarding 2T - 2 more bits

to its successor.

2. Each processor determines whether its sequence of 2T known bits is consistent with

the configuration being well-formed. If this is so, it is locally well-formed. Each

processor whose 2T known bits have the form (1. 1 • (0 • {O, l}t)2, determines if the

configuration is locally sequential, that is, whether the consecutive blocks encode

successive integers mod 11(n).

3. A processor is distinguished if either 1) it has determined that the configuration is

not locally well-formed or 2) it has determined that the configuration is not locally

sequential.

4. Distinguished processors initiate the solitude detection algorithm.

5. Upon termination of solitude detection, distinguished processors forward "function

value is 1" to the next distinguished processor if solitude is confirmed and "function

value is O" otherwise.

It is easy to see that a configuration is well-formed if and only if it is everywhere locally

well-formed. If a configuration is not well formed, it must be not locally well-formed in

Chapter 5: Minimum Nonconstant Function Evaluation 75

more than one place. Therefore, there is one distinguished processor if and only if the

configuration is almost sequential, and there is always at least one distinguished processor.

The first step requires the transmission of n(2T-1) = O(n log v(n)) bits. The last step

requires 0(n) bits. Since the only other communication is due to the solitude detection

algorithm, the reduction requires O(n log v(n)) bits. ■

Corollary 5.10 The nonconstant cyclic boolean function f can be computed by a Las Vegas

algorithm in expected complexity 0(n log 11(n)) +O(nJ'Iogn) = O(nJlog n) bits on a ring

of size n.

5.4 Extensions to Monte Carlo Function Evaluation?

It is natural to ask if the two results presented in this chapter have analogues in models

that permit error with probability at most 1- f.. Only partial success in extending the non­

deterministic lower bound to the nondeterministic/probabilistic model has been achieved.

There is a natural extension of the function with an efficient Las Vegas solution to one with

an efficient Monte Carlo solution. For completeness, these results are reported here. The

relationships between these extensions and their counterparts in this chapter are briefly

described; however the extensions are quoted without proof.

Algorithm SD in section 5.3 can be generalized to a Monte Carlo algorithm that solves

solitude detection with confidence at lea.st (1 - E) and has complexity 0(n min(log 11(n) +

Jloglog(l / E), Jlog n, log log(l/E))) expected bits on rings of known size n (see [4]). The

function described in section 5.3 can be computed probabilistically using the same reduction

as presented in that section followed by a Monte Carlo version of solitude detection. The

complexity of evaluating this function with confidence 1 - f. is at most the complexity of

the reduction plus the complexity of Monte Carlo solitude detection. Since the reduction

requires O(nlogv(n)) bits, this total is O(nmin(logv(n)+ Jlog log(l/€.) , Jlogn)). As

will be seen in chapter 7, AND can be computed ~ith confidence 1- f. in O(n log log(l/ €.)).

Combining these upper bounds yields:

Chapter 5: Minimum Nonconstant Function Evaluation 76

Theorem 5.11 There is a nonconstant cyclic boolean function that can be computed by a

Monte Carlo algorithm in expected complexity O(nmin(log v(n) + Jloglog(l/t:) , Jlog n,

loglog(l/£))) bits on a ring of size n.

A more elaborate version of theorem 5. 7 provides a lower bound for function evaluation

with confidence 1-£ of n(nmin(Jloglog(l/£), y'Iagn)) expected bits. This proof applies

in the nondeterministic/probabilistic model and, as previously indicated, requires a much

more intricate set of tools than those used here for the purely nondeterministic model.

See [4] for a description of these tools. The same paper, (4], uses these tools to prove

a lower bound of n(n min(log v(n) + J loglog(l/£) , Jlog n, loglog(l/t:))) expected bits

for solitude detection on rings of known size n - a bound that is achieved by the Monte

Carlo algorithm for solitude detection. The proof of the solitude detection lower bound is

achieved by combining two separate lower bounds, one of which is n(n min(J log log(1 / €) ,

Jlogn)) expected bits. The proof of the claimed function evaluation lower bound uses

the same app-roach as the proof of the solitude detection lower bound in (4].

The upper and lower bounds match to within a constant factor only if log v(n) =

0(Jlog log(l / £)). The complexity of Monte Carlo function evaluation remains an open

question when this condition is not met.

Chapter 6

Evaluation of Specific Functions I:

Unknown Ring Size

The f2(n./Iogn) general lower bound for Las Vegas evaluation of nontrivial functions was

shown, in chapter 5, to be best possible by presenting a function that can be computed

in O(n./Iogn) expected bits. Similarly, in [21], a nontrivial function is constructed that

can be evaluated deterministically in 0(n log n) bits. However, both these examples of low

complexity functions are somewhat contrived. The inherent complexity of natural boolean

functions such as AND is not adequately addressed by these results.

Though functions are usually thought to have a fixed number of arguments, some

common ones such as AND, OR, SUM and PARITY are easily generalized to have an

arbitrary number of inputs. This chapter examines the inherent complexity of algorithms

that evaluate these common functions over a range of ring sizes. The case of fixed ring size

is the subject of chapter 7. For concreteness, the results are presented for algorithms that

compute AND.

. . { 1 if i1 = i2 = · • • in = 1
AND(i1, ... , in)=

0 otherwise

The results, with some exceptions and changes as noted in section 6.3, are easily seen to

generalize to include the functions listed above.

77

Chapter 6: Unknown Ring Size 78

6.1 Upper Bounds

Common functions can be easily computed by a deterministic algorithm in O(n2) bits, on

rings of size n, and this is known to be optimal [10]. For AND and OR, these results

generalize to 0(N 2) where N is an upper bound on ring size. For PARITY and SUM, no

generalization is possible even to intervals of size [N - 1, N].

A leader, however, can be elected on a ring of size n, where N $ n $ 2N - 1, in

O(nlog n) expected bits by a Las Vegas algorithm {chapter 2). As is described in chapter

3, any function that recognizes a regular set can be reduced to leader election in O(n) bits.

Therefore, AND, OR, and PARITY can be evaluated in O(nlog n) expected bits on any

ring of size n where n is known to within a factor of two, using randomization. The same

technique can be used to compute SUM, however the reduction may require 0(n log S)

bits, where S is the value of the SUM.

Even with no knowledge of the ring size, n, the following deterministic algorithm is

easily seen to evaluate AND in O(n) bits.

Algorithm ANDl:
value +-input;
IF value = 0 THEN

send(<O>); stop.
ELSE

receive(< msg >);
value +-0; send(< 0 >); stop.

Notice that when all message traffic has ceased, each processor has the correct value

for AND in its local variable value. When the input is 1 n, however, processors cannot

detect the end of the computation. Hence, this algorithm achieves only nondistributive

termination.

As mentioned, if only an upper bound, N, is known for the ring size, n, AND can

be evaluated with distributive termination by a deterministic algorithm. Each processor

sends its input value and messages are forwarded for N rounds. By this point, each

processor has seen all the input values on the ring and so can compute the AND of these

Chapter 6: Unknown Ring Size 79

values. By generalizing the straightforward n(n2) messages lower bound for AND on

rings of known size, n, in [10], it is easy to see that any deterministic algorithm for AND

requires n(N2) messages when N is an upper bound on ring size. Using attrition, a

Las Vegas algorithm for AND can be constructed that improves upon this deterministic

result. Recall that simple attrition (chapter 2) sets contenders to noncontenders by the

exchange of messages containing random coin tosses. The following algorithm is described

for contenders. Noncontenders participate by incrementing the count message received in

step 3 and forwarding it, by combining their input value with the and message when they

receive it, and by simply forwarding other messages.

Algorithm AND2(N):

1. Initially all processors are contenders.

2. Contenders run simple attrition for 3 log N rounds. Let 1r1, .•. , 1r m denote the re­

maining contenders.

3. Each contender ?ri initiates a gap counter gi which is incremented and forwarded until

it is received by the next contender.

4. Each contender forwards the value of its gap counter to its contending successor.

Contender 1ri has the values of the two gaps, gi-1 and gi-2, that precede it.

5. If gi-1 = gi-2 then 1ri sends a constant length and-message initialized to rri's input

value. The and-message accumulates the AND of the processors' input values as it is

circulated around the ring. If gi-l # gi_2 then 1ri initiates an alarm-message, waits

to receive any message, and returns to step 2.

6. Each contender alternately receives and sends and-messages until either:

(a) An alarm is received, or

(b) rJLl and-messages have been received.
9,-1

Chapter 6: Unknown Ring Size 80

7. If case 6b occurs, then the function value f(I) is set equal to the AND of all and­

messages received. Forward f(I) and stop. If case 6a occurs, then the alarm is

forwarded, the contender waits to receive any message and returns to step 2.

Theorem 6,1 Algorithm AND2 evaluates AND on all rings of size n ~ N in expected bit

complexity O(n log N + N).

Proof:

Correctness: AND2 terminates only when condition 6b is met, otherwise the processors

return to step 2. If, after some pass through step 2, there is one remaining contender, say 11'1 ,

then the value of the counter g1 after the subsequent execution of step 3, is equal to the ring

size. In step 4, this counter is forwarded from 11'1 to itself, and no alarms are generated.

Hence, the condition of 6b will be met after f N /n l more rounds. As demonstrated in

chapter 2, with probability 1 attrition will reduce the number of contenders to one. Thus,

if AND2 does not terminate early when there are two or more remaining contenders, the

attrition of step 2 guarantees that termination will occur with probability 1.

Suppose that at step 6, 11'i receives k = r 9~1 l and-messages. Then there were no

alarms in the previous k messages and hence the previous k gaps must all be equal to gi-1 •

Since no more than l.1!....J gaps of size 9i-1 can fit on the ring, 1t'i has collected the and-u,-1

messages from the entire ring. Therefore, upon termination, the contenders have correctly

computed the AND of the input values. This value is forwarded, ensuring correctness for

all processors.

Complexity: Let random variable Yn be the bit complexity of AND2 on a ring of size n.

Let a pass of AND2 be one execution of steps 2 through 6, and let random variable Zn be

the number of passes on a ring of size n. Define random variable Xi,n to be the number of

contenders remaining after i rounds of attrition in the execution of AND2, on a ring of size

n if at least i rounds occur in the execution of AND2, and define Xi,n to be 1 otherwise.

Because there are n contenders at the beginning of the algorithm, Xo,n = n.

Chapter 6: Unknown Ring Size 81

By the analysis of attrition in section 2.2,

E(Xi+i,n) = (3/4)E(Xi,n) + (1/4) Pr(Xi,n = 1).

Thus, for rings of size n > 2:

3
= -n

4

E(X2,n) = (~)
2
n+ ¼Pr(X1,n = 1)

= (¾)
3

n + ¼ [Pr(X2,n = 1) + ¾ Pr(X1,n = 1)]

Since n $ N, E(X3logN,n) :5 1 + N-0
·245 • For any random variable W, E(W) > Pr(W =

1) + 2(1 - Pr(W = 1)). Therefore, Pr(X31ogN = 1) > 1 - N-0·245 . From this it follows

that E(Zn) < l-N~o.m if n 2::. 2.

Suppose the first pass has t remaining contenders at the end of step 2. Then it is easily

confirmed that the complexity of steps 2 through 5 is 0(n log N) bits, while that of step 6

is O(n r rm l) = O(tN). Since subsequent passes have at most t contenders, the complexity

of m passes with t contenders after the first pass, is 0(m(n log N + tN)) bits. Suppose this

is at most k • m(nlog N + tN). (The constant k depends upon the encoding used in AND2

but k = 10 is easily seen to be sufficient.) Then:

00

E(Yn) = L E(YnlZn = m) Pr(Zn = m)
m=l

= f
1

[t.E(Y.IZn = m A X,1o,N,n = t)Pr(X,1o,N,n = t)l Pr(Zn = m)

< f
1
[t. km(n!ogN + tN) Pr(X;IogN,n = t)] Pr(Z. = m)

Chapter 6: Unknown Ring Size 82

= f
1

[t(kmnlogN)Pr(X3logN,n = t)] Pr(Zn = m)

+ f
1

[t(kmtN) Pr(X3logN,n = t)] Pr(Zn = m)

00

= I: (kmn log N) Pr(Zn = m)
m=l

+ ,E kmN [t.tPr(XalogN,n = t)] Pr(Zn = m)

00

= (knlogN)E(Zn) + kN E mE(X3logN,n) Pr(Zn = m)
m=l

= kE(Zn) [nlog N + N · E(X3nlogN,n)]

= O(nlogN + N)

■

Note that AND (and similarly OR) remain computable in a situation where leader

election is impossible. Such a general algorithm for rings of size n ::; N does not exist for

PARITY (and hence not for SUM) as will be seen in section 6.3.

6.2 Lower Bounds for AND

The previous section presented only a nondistributively terminating algorithm for AND

when there is no upper bound on ring size. The next theorem shows that this is the best

that can be expected. It is convenient for the lower bound results to interpret a boolean

function fas the characteristic function of a language L ~ Une[a,bj{0, l}n. Algorithms that

compute f are algorithms that recognize L.

Theorem 6.2 If a is a distributively terminating nondeterministic algorithm that com­

putes AND for arbitrarily large rings, then no computation of a strongly evaluates AND

on input 1 n, for any n.

Proof: Suppose, for some n, that C = h1, .. •, hn is the computation of 1r = 1r1, ... , 7rn

where 7r'i E a(l), n > N, and 7r strongly evaluates AND. Since the input is 1n, each hi

Chapter 6: Unknown Ring Size 83

must be an accepting history. Let lhil = k. Consider the computation 91, ... , 9m of the

ring p = (11f+1r where T E a(O). By lemma 5.4, the (k + l) th copy of 71'1 in p realizes a

history, 9kn+i, such that the first k messages in 9kn+l are the same as the first k messages

in h 1 • Since the computation terminates distributively, this copy of 71'1 accepts the input.

This is a contradiction since the input of the ring contains a 0. •
The rest of this section assumes that there is a bound, N, on ring size, since this is

necessary to achieve distributive termination. The goal is to show that there is no Las

Vegas algorithm for AND whose complexity, even in the best case, improves upon the

expected complexity of algorithm AND2.

In order to compute AND with distributive termination, the trace of at least one

message envelope must be at least equal to the ring size. Hence, there is a trivial lower

bound of n(n) messages for AND. This can be strengthed to n(N) messages, as is shown

in the next theorem.

Theorem ·a.3 Every nondeterministic algorithm that computes AND for all rings of size

n ~ N has complexity n(N) messages for all n ~ N.

Proof: If n 2: N /2, then the n(n) lower bound suffices so assume n < N /2. Let a be

a nondeterministic algorithm that computes AND and suppose that for some n < N /2,

a has message complexity less than N /2. Then there is some computation, C, such that

C = h1, • • ·, hn is the computation of 7l' = 71'1, ••• , 7l'n where 7l'i E a(l) and 71'1, ••• , 7l'n

strongly evaluates AND on input 1n and ICI < N/2. Then for some i, lhil < N/(2n). Let

k = l N;1 j. Then the computation of the sequence p = (7!')k,, where, E a(O), is a possible

computation of a on a ring of size m = nk + 1 $ N with input 1nko. But k 2: N/(2n).

So, by lemma 5.4, the last copy of 7l' in p has histories h~, ... , h~, each of which match the

histories in C for at least the first N/(2n) messages. Since the computation terminates

distributively, the kth copy of 7l'i accepts the input after these N/(2n) messages. Since the

input contains a O, this contradicts the assumption that a computes AND on rings of size

m = nk + 1 $ N. •

Chapter 6: Unknown Ring Size 84

Attrition is at the heart of both the leader election algorithm in section 2.4 and the AND

algorithm in section 6.1. Algorithms for other common problems can also be constructed

from attrition. The pervasiveness of potential applications of attrition is perhaps not

surprising. Both feasibility and efficiency are affected by randomized attrition. For some

problems, a solution is not possible while symmetric configurations persist. Symmetry can

be broken by attrition. Communication (measured either as messages or bits) is reduced

by ensuring that processors do not duplicate the work of others. Attrition furthers this

end by avoiding redundant messages.

Recall that an attrition procedure, with probability 1, reduces the number of con­

tenders to one without any possibility of eliminating all contenders. It is frequently use­

ful to have such a procedure when constructing algorithms. A closely related problem,

envelope-attrition, is the problem of eliminating all but one message envelope. Note that

the algorithm for attrition that is introduced in chapter 2 and used in subsequent chap­

ters, solves envelope-attrition as well as (contender) attrition. For the purpose of proving

lower bounds, the envelope-attrition problem is more convenient. Unless stated otherwise,

envelope-attrition is assumed to be the problem of reducing the number of envelopes from

n to one, where n is the ring size. That is, all processes are assumed to be initiators.

As will be seen, attrition is not just useful but is, in fact, an essential part of AND in

the sense that an efficient algorithm for AND implies an efficient algorithm for envelope­

attrition. Lower bounds for both the best case and the expected case of AND can be

derived from the corresponding lower bounds for envelope-attrition.

The envelope-attrition lower bound that follows, holds for a less general model than

the nondeterministic model of the previous theorem. It will be shown in chapter 7 that

both envelope and contender attrition can be done very efficiently if deadlock is permit­

ted even with low probability. But nondeterminism permits deadlock. Therefore, under

the full power of nondeterminism, AND would inherit only a weak lower bound from

envelope-attrition. By forbidding deadlock, the desired lower bound can be achieved. The

nondeadlocking restriction imposed upon nondeterministic algorithms, results in a model

that characterizes the best case execution, over all possible random experiments, of a Las

Chapter 6: Unknown Ring Size 85

Vegas algorithm.

Recall that the complexity of an algorithm is defined as the worst case over all possible

inputs. Hence, the best case complexity of a Las Vegas message-driven algorithm, a, is the

maximum over all inputs, /, of the minimum over all computations, C of a on I, of the

complexity of C.

Lemma 6.4 Let a be a Las Vegas algorithm for AND on rings of size n E [a, b] with

complexity f (n) bits in the best case. Then there is an envelope-attrition procedure for

rings of size n E [a,b] that has best case complexity at most O(n) + f(n) bits.

Proof: Let ; denote the simple attrition procedure of chapter 2. Then ; is both an

envelope and a contender attrition procedure.

Procedure ATTRITIONl:
1. choose a bit, mybit E {O, 1};
2. IF mybit = 0 THEN

create an envelope and initiate;;
henceforth participate in; and discard all a messages

ELSE
initiate a;
Participate in a only as long as no; message arrives;
Upon receipt of a; message, participate in; as a
noncontender and discard all subsequent a messages;
IF a confirms ''all 11 s 11 THEN initiate;.

Step 2 performs envelope-attrition on the set of processors that choose O in step 1. In

the event that there were no attrition participants, all processors run a. On input 1 n

a confirms "all 1 's" and thus ensures that all processors initiate simple attrition. Thus,

ATTRITIONl is an envelope-attrition procedure.

The number of bits sent by ATTRITIONl in the best case is no more than the number

of bits communicated when exactly one processor generates O in step 1. In this situation,

the best case complexity of ATTRITIONl is O(n) bits for attrition plus at most f(n) bits

for the best case execution of a on input 1n-10. ■

Chapter 6: Unknown Ring Size 86

This reduction is similar to a more general reduction in chapter 7. However, this one

is simpler because there is no requirement to accommodate algorithms that permit error

and because the cost attributed to the reduction is the cost assuming a favourable outcome

of the arbitrary choices in step 1. The object is to prove a lower bound on the best case

complexity of any Las Vegas algorithm for AND by proving the required lower bound for

the best case of envelope-attrition. But best case lower bounds carry across best case

reductions. Thus, it suffices to analyse the cost of the reduction in the best case. A

superlinear lower bound for the best case of an envelope-attrition computation implies the

same lower bound for the best case of a Las Vegas AND computation.

It only remains to bound the best case bit complexity of envelope-attrition.

A lemma is isolated from the proof because it is useful again in chapter 7. The definition

of a computation can be extended to include partial computations by allowing a scheduler

to suspend the sending of messages temporarily before all message traffic has ceased. In

a suspended computation, message envelopes that are not yet terminated are assumed to

reside at processes rather than on links. Though a ring of deterministic processes has only

one (complete) computation, there are many possible partial computations.

Lemma 6.5 Let C = h1, • • • ,hn be any partial computation of 11' = 71'1, ••• , 11'n where

lhil = 1h11 for some i < j. Refer to P1 = 71'1, .. ,,7l'i,7l'j+1, .. ,,1rn and P2 = 7l'i+1, .. ,,7l'j

as segments. Then for each segment Pi, i = 1, 2, the number of envelopes initiated by Pi is

equal to the number of envelopes terminated by Pi plus the number of envelopes suspended

in Pi•

Proof: Any message envelope that is both initiated and terminated or suspended by

the same segment contributes an equal number of messages to hi and hj, Each message

envelope that is initiated by Pl and terminated or suspended by p2 contributes one more

message to hi than to hj. Similarly, each message envelope that is initiated by p2 and

terminated or suspended by Pl contributes one more message to hj than to hi, Since hi

and hi have an equal number of messages, there must be the same number of message

envelopes of each kind. ■

Chapter 6: Unknown Ring Size 87

Theorem 6.6 Let a be any envelope-attrition procedure for rings of size n E ((1- ¼)N, N]

where k ~ 1. Then, for all rings of size n E [(1 - ½)N, N], the best case bit complexity of

a is n (n 1,g n) .

Proof: Let n E [(1 - ½)N, N]. The mapping from inputs to sets of processes that

defines a degenerates to just one set of processes because there are no inputs for envelope­

attrition and all processors a.re initiators. Let 1r = 1r1, ••. , 7rn be a sequence of deterministic

processes in a. Suspend the computation of 1r when it first occurs that exactly one message

envelope remains and the envelope has returned to its initiator, 7re , Let C = h1, • • •, hn

be the partial computation of 7r = r.1 , ... , 7r n up to this point. Suppose that IICII <

(nlogn)/(3k). Since at least (nlogn)/2 bits are required to encode n distinct histories,

there exists if; j such that hi= h;. If e ,t [i + 1,j], then let 1r' = 1r,+1, ... , 7rj, otherwise

let 1r' = 7rj+1, ••• , 7rn, 1r1 , .•• , 7ri, Ring 1r' produces a computation such that each process

1r1 E 1r' realizes a history h1 that is a prefix of its history in 1r. The suspended message

envelope is not in segment 1r'. It follows, from lemma 6.5, that the number of message

envelopes initiated by segment 1r' equals the number terminated by 1r
1

• Therefore, the

computation of 1r' terminates all message envelops.

Further shrink 1r
1 by repeatedly removing segments between identical histories until all

remaining histories are distinct. The resulting sequence, 1 , also terminates all message

envelopes . Denote the length of I by a. By lemma 5.1, a ~ klog(;{::;/(Jk)) < I for large

enough N.

By replicating I lN/aJ times, a new sequence of processes, 6, is obtained with length

within [(1 - ¼) N, N]. But the computation of 6 is a possible computation of a. This

computation deadlocks eliminating all message envelopes, contradicting the correctness of

■

Corollary 6. 7 Every Las Vegas algorithm that computes AND for all rings of size N /2 ~
n ~ N has complexity f!(nlogn) bits even in the best case for any n E [N/2,N].

Chapter 6: Unknown Ring Size 88

Notice that the upper and lower bounds for AND match. If n > N / log N then the

lower bound is fl(n log n) bits. But this is fl(n log N) for these values of n. If n ~ N / log N,

then the lower bound of n(N) messages dominates. This is achieved by algorithm AND2

which has complexity O(N) expected bits for these values of n.

6.3 Extensions to PARITY

Section 6.1 describes how a simple Las Vegas algorithm for PARITY is constructed from

leader election. Leader election is feasible as long as ring size is known to within a factor

of two. Thus, knowledge of ring size to within a factor of two is sufficient to compute

PARITY. The next theorem show that the same knowledge of ring size is necessary for

any, even nondistributively terminating, algorithm that computes PARITY.

Theorem 6.8 Let a be any (even nondistributively terminating) nondeterministic algo­

rithm that computes PARITY for rings of size n E [N/2,N]. Then for every odd parity

input, I, on rings of size N /2, there is no computation of a that strongly evaluates PARITY

on input I.

Proof: Let I = i1, ... , iN;2 be any input with odd parity. Let C = h1, ... , hN/2 be the

computation of 1r = rr1 , .•• ,7f'N/2 where 7l'j E a(i;) and 1r strongly evaluates PARITY on

input J. Each hi must be an accepting history. By lemma 5.3, the computation of the

sequence 1r' = 11'11' is C' = h1 , ... ,hN;2 ,h1 , ... ,hN;2 where each history is accepting. This

is a possible computation of a on a ring of size N with input JI which has even parity,

contradicting the assumption that a computes PARITY on rings of size N. ■

Since algorithms for SUM can be used to compute PARITY, the same amount of

knowledge of ring size is required to compute SUM.

Lemma 6.4 relates the complexity of AND to the complexity of envelope-attrition. Sim­

ilar reductions relate the complexity of many other functions to that of envelope-attrition.

Let f be any function that has the property that for all inputs some message must have

Chapter 6: Unknown Ring Size 89

trace at least n. An efficient procedure for envelope-attrition can be constructed from

an efficient algorithm for f in a manner similar to procedure ATTRITIONl. The al­

gorithm for f replaces the algorithm for AND in that reduction. If f terminates, then

any envelope-attrition algorithm is initiated. It is easily checked that the procedure is an

envelope-attrition procedure and that the cost of the reduction in the best case remains

0(n) bits. Therefore, the n(n log n) best case lower bound for envelope-attrition extends

to best case lower bounds for PARITY for rings of size n E [N,2N -1]. Clearly, SUM and

OR inherit the same lower bound from envelope-attrition.

6.4 Summary

The best case nature of the n(n log n) lower bound for AND, OR, PARITY, and SUM leaves

some room for improvement. These lower bounds are based on the same lower bound for

deadlock free envelope-attrition. Algorithms for rings of size n E [N /2, NJ appear to require

n(n log n) _hits in the best case to strongly evaluate AND on input 1 n even if deadlock is

permitted. Although envelope-attrition can be efficient if deadlock is allowed even with

small probability, it seems that n(n log n) bits are needed just to verify that a function value

of 1 is correct. Nondeterministic algorithms are permitted to deadlock. Therefore, what is

needed is an extension of the existing lower bound to the more powerful nondeterministic

model; but this extension appears to require new techniques.

The following table provides a summary of the improvements over deterministic algo­

rithms that are provided by Las Vegas algorithms for computing functions such as AND

and PARITY. It also underscores the fact that Las Vegas algorithms for these functions

require essentially the same amount of communication in the best case as on average. The

nondeterministic f2(N) messages lower bound for AND is achieved even in the average case

using constant length messages. Thus, this term contributes only O(N) expected bits of

communication to the upper bound.

Chapter 6: Unknown Ring Size 90

deterministic Las Vegas - Las Vegas -

expected case best case

AND and OR on rings
0(N2) bits O(nlogn + N) bits

!l(nlogn) bits+

of size n $ N !l(N) messages

PARITY on rings of
impossible O(nlogn) bits n(n log n) bits

size N /2 $ n < N

Chapter 7

Evaluation of Specific Functions

II: Known Ring Size

It was shown in chapter 6 that any algorithm for AND has complexity 0(n log n) expected

bits when it must work for n E [N /2, N]. The results of chapter 5 rely on a problem, solitude

detection, whose complexity, given exact knowledge of ring size, drops from 0(n log n) to

0(nJ log n) expected bits. The question arises whether number theoretic properties of

the ring size might also be used to reduce the complexity of functions like AND when the

ring size is fixed.

This chapter shows:

1. The best case complexity of AND drops from 0(nlogn) bits when ring size n is

known to within a factor of two, to 0(nJ'logn) bits when n is known exactly.

2. The expected complexity of AND remains 0(n log n) messages when ring size n is

known exactly.

There is a nondeadlocking attrition procedure for rings of fixed size n, that has best case

complexity O(nloglogn) bits. This attrition procedure can be combined with the efficient

solitude detection algorithm of section 5.3 to yield a leader election algorithm (and hence

91

Chapter 7: Known Ring Size 92

an AND algorithm) for rings of fixed size, with best case complexity 0(n/'Iogn) bits.

The analysis of the best case execution of attrition and the implications of the result are

contained in section 7.1.

The n(n log n) lower bound for AND on rings of size n E [N /2, N] was achieved by

supplying the same lower bound for the best case execution of nondeadlocking envelope­

attrition together with a reduction from envelope-attrition to AND. Because of the exis­

tence of an attrition procedure for ring of known size with low best case complexity, this

approach cannot be extended to AND on rings of known size. Furthermore, all the lower

bound techniques employed in previous chapters apply to the best case of Las Vegas al­

gorithms. Therefore, they cannot possibly provide a lower bound of n(nlog n) expected

bits for Las Vegas AND on fixed size rings. New tools capable of distinguishing Las Vegas

algorithms from nondeterministic ones are needed to achieve this goal. Such tools can be

constructed from the techniques recently introduced by Duris and Galil in [14]. They prove

that:

The average number of messages required by any deterministic algorithm that

elects a leader on an asynchronous bidirectional ring with distinct identifiers,

where ring size n is known and is a power of 2, is n(n log n), for any sufficiently

large identifier set.

This result implies the same lower bound for the expected message complexity of any

Las Vegas leader election algorithm for an anonymous ring of known size n = 2k, as is now

demonstrated. Let a be a Las Vegas leader election algorithm for a ring of size n = 2k.

Suppose that with very high probability, no processor uses more than /(n) random bits

when running a. Now consider the class 'R of rings of size n with distinct identifiers taken

from the interval [1, 2/(nl]. A deterministic algorithm /3 for 'R can be constructed from a

by using the bits of the processor identifiers in place of the random bits. In the rare event

that some processor requires more pseudo-random bits than provided by the identifiers,

/3 proceeds by running any 0(n log n) messages deterministic leader election algorithm.

Algorithm a must have complexity f!(n log n) expected messages since otherwise algorithm

Chapter 7: Known Ring Size 93

{3 would contradict the n(nlogn) messages lower bound for deterministic leader election.

Alternatively, an n(n log n) expected message lower bound for nondeadlocking envelope­

attrition can be achieved directly using modifications of the techniques of Duris and Galil.

In the deterministic model, counting arguments are used to ensure that the characteristic of

distinct identifiers is maintained. In the randomized model, these combinatorial techniques

are not needed. As a consequence, the proof of a lower bound of n(n log n) expected

messages for nondeadlocking envelope-attrition when n is a power of two, is significantly

simpler than the corresponding proof of a lower bound of n(n log n) messages on average

for deterministic leader election. The simplicity facilitates extension of the result in two

directions; namely, for fixed ring sizes that are not a power of two, and for algorithms that

permit error with probability at most £. An envelope-attrition procedure that deadlocks

with probability at most € is called €-attrition. Specifically, a procedure for €-attrition

must, with probability 1- €1 eliminate all but one message envelope. It is shown, in section

7.2, that every €-attrition procedure for rings of known size n has expected complexity

n (n min {log n, log log (1/E)}) messages.

A Monte Carlo AND algorithm that errs with probability at most € can be converted

into a €-attrition procedure. Section 7.3 contains a reduction from €-attrition to Monte

Carlo AND that permits the €-attrition lower bound to extend to AND and numerous other

functions. The section also describes simple Monte Carlo algorithms for these problems,

which demonstrate that the lower bound is tight. A large number of problems including

AND, OR, PARITY, SUM and leader election are thus shown to have expected complexity

0(nmin{logn,loglog(l/€)}) messages on rings of known size n.

7 .1 Best Case Attrition

Recall that by definition a nondeadlocking attrition procedure runs forever, and hence that

the communication complexity of an attrition computation is defined as the number of bits

exchanged until one message envelope remains. Let v(n) be the smallest positive integer

that does not divide n. Note that v(n) = O(log n) (see [22]).

Chapter 7: Known Ring Size 94

Theorem 7 .1 There is a nondeadlocking attrition procedure for rings of known size, n,

that has best case complexity 0(n log v(n)) bits.

Proof: The following describes such as procedure. Initially all processors are contenders.

Each processor in the ring randomly chooses a number in {0, 1, ... , v(n)-1} and sends that

number to its successor. If a processor sends l and receives (l + 1) mod v(n), it becomes a

non-contender and sends no message. The algorithm proceeds by running simple attrition

on the remaining contenders after this first round. Since v(n) does not divide n, it is not

possible for all processors to become non-contenders in the first round. But there is a

computation of this procedure (for example, processor 11'i chooses i mod v(n)) that leaves

exactly one contender and one message envelope after the first exchange of messages. The

bit complexity of this computation is O(n log v(n)). ■

As was the case for other attrition procedures, the attrition procedure of theorem 7.1

solves both envelope and contender attrition. The following theorem demonstrates that

this is the best that an envelope-attrition procedure could achieve.

Theorem 7 .2 Every nondeadlocking envelope-attrition procedure for rings of fixed size, n,

has complexity !1(n log v(n)) bits even in the best case.

Proof: Let a be a nondeadlocking envelope-attrition procedure for rings of fixed size n.

Let 1r = 1r1 , ••• , 1r n be a sequence of deterministic processes in a. Suspend the computation

of 1r when it first occurs that exactly one message envelope remains and it has returned

to its initiator, ?re, Let C = h1,"•,hn be the partial computation of 11' = 1r1 , .. ,,7!'n

up to this point. Suppose that IICII < (nlogp(n))/2 where p(n) = v(n) - 1. Say that

history hi is short if llhill < logp(n) - 1. Then at least half of then histories are short.

Starting at he+l partition 7r and its partial computation C in to segments 1r = ,1, ... , 1'n/ p(n)

and C = S1,,,.,Sn/p(n) where each 1'i has length p(n) and each segment Si contains p(n)

histories. Some segment Sk must contain at least p(n)/2 short histories. But there are fewer

than 210s p(n)-l = p(n)/2 distinct short histories. Hence, Sk must contain two identical

short histories, say hi and hj, Let a= j-i. Because a$ p(n), a divides n. So the segment

Chapter 7: Known Ring Size 95

,ri, ..• , ,r i- l can be replicated n / a times to form a new ring 8 of size exactly n, which is a

possible sequence of processes in a. Since the suspended message envelope is not in 8, by

lemma 6.5, the number of message envelopes initiated by 6 equals the number terminated

by 6. Therefore, the computation of 6 terminates all messages. So a possible computation

of a deadlocks, contradicting the assumption that a is an envelope-attrition procedure. ■

A Las Vegas leader election algorithm for rings of fixed size n which has best case

complexity O(nv'Jogn) bits is fanned by combining the attrition procedure of theorem 7.1

with algorithm SD of section 5.3. Call the first round of the attrition procedure described

in theorem 7.1, 11(n)-attrition. Specifically, this leader election algorithm is:

1. All processors run one round of 11(n)-attrition.

2. Remaining contenders initiate algorithm SD.

3. If solitude is confirmed then the sole remaining contender is elected. If solitude is

not confirmed then remaining contenders elect a leader using any leader election

algorithm.

In the best case, the first step will reduce the contenders to one (O(nlog11(n)) bits) and

this will be detected in step 2 (O(nJlog n) bits). Thus:

Theorem 7.3 There is a Las Vegas leader election algorithm (and hence a Las Vegas AND

algorithm) for rings of fixed size, n, with best case complexity 0(nJlog n) bits.

According to theorem 5.7, this is optimal even for nondeterministic algorithms.

7.2 Lower Bounds for e-attrition

Up to this point, the discussion concerning attrition has focussed on nondeadlocking attri­

tion - attrition procedures that never terminate all message envelopes. A more general

notion of attrition (£-attrition) permits deadlock with probably at most L This section

bounds the expected message complexity of £-attrition. It will be shown that any £-attrition

Chapter 7: Known Ring Size 96

procedure has expected message co11;1plexity n (nmin {log n,log log (1/E)}). The expected

message complexity of nondeadlocking envelope-attrition (fl(nlogn)) is derived from the

general result by setting the allowable probability of deadlock, E, to less than 1/2n..

The lower bounds of chapter 5 and chapter 6 address bit complexity for either nondeter­

ministi.c or best case Las Vegas computation. They apply to any (even non-message-driven)

' Las Vegas algorithm and hold for all possible schedulers. In contrast, what follows is a mes-

sage complexity lower bound and applies only to the expected number of messages. Since

the proof imposes constraints on the scheduler, the result holds for the worst case rather

than for the best case over all schedulers, but also applies to even non-message-driven

algorithms.

The proof relies on the model of a randomized algorithm as a mapping from input

values to probability spaces of deterministic processes, a perspective developed in chapter

4. Because attrition has no inputs, a Monte Carlo envelope-attrition procedure (that

is, an E-attrition procedure) is interpreted as a single probability space of deterministic

processes. The techniques used here are applicable to bidirectional rings, so the lower bound

is presented in that generality. Although the detailed model of a deterministic process for

a unidirectional ring, also in chapter 4, could be extended to a model for bidirectional

rings, a coarser model suffices for the current result. This is because the unidirectional

process model proved useful for examining bit complexity, but includes more detail than

is necessary for proofs concerning message complexity. It is enough to assume that the

behaviour of each process is entirely determined by its current state, where the current

state records all information the process can know. Since this is all that is assumed of a

process, the result applies even to processes that are not necessarily message-driven.

The proof uses two techniques that are adapted from those introduced by Duris and

Galil [14]. The first technique argues that expected message complexity for parts of the

E-attrition procedure cannot be too low because otherwise deadlock will occur, under a

specified scheduler, with intolerably high probability. This is the essence of lemma 7.4.

The second technique, used here in theorem 7 .5, sums these expected message complexities

for disjoint parts of the E-attrition procedure to get a lower bound on total expected message

Chapter 7: Known Ring Size 97

complexity.

Definitions and Notation:

Let o be an €-attrition procedure for anonymous rings of known size n. Let P be the

probability space of deterministic processes associated with o. P1 denotes the product

space formed from l copies of P together with the induced product probability measure.

Let 'R be a ring of n processes each from P and let II be any sequence of consecutive

processes in 'R. Let /en(II) denote the number of processes in sequence II. If len(II) = l,
then II is called an I-process.

Imagine placing barriers on the links before and after sequence II, and running o on II

with the barriers remaining in place until 'R is quiescent, that is, all remaining messages are

queued at barriers and computation cannot proceed until at least one barrier is removed.

(There is no loss of generality in assuming that with probability 1, a random sequence

of processes reaches quiescence for every scheduler, because otherwise a _large amount of

message traffic can be forced.) A computation of a on II is any pattern of message traffic

on the segment II that could occur from the beginning of the computation up to the

point when 'R is quiescent, under any scheduler that respects the barriers before and

after the sequence II. A partition of II is a sequence of subsequences of processes whose

concatenation is II. A partition of II into subsequences Il1, ... , Ilk is denoted II1 III2 I .. , IIIk.

A decomposition for an integer Lis any sequence '1, ... ,lk of positive integers that sum

to Land is denoted l1ll2I, .. Ilk, The partition II1III2I • .. IIIk is said to be consistent with

decomposition '11121,., Ilk if li = len(IIi) for 1 ~ i ~ k.

Suppose that barriers are placed on the links between adjacent members of some par­

tition II1 III2I , . , IIIk of II. It is intended to measure the number of additional messages

sent by o on sequence II after removal of all the barriers between adjacent segments of the

partition while the links at either end of II remain blocked. The scheduler, however, is only

partially constrained by the barriers. Several different computations may still arise depend­

ing on the scheduling of messages within each of the segments in the partition and on the

Chapter 7: Known Ring Size 98

scheduling after the barriers are removed. A scheduling function is a function that assigns

a fixed schedule to each sequence of processes. If S is a scheduling function, then S(II) is

a scheduled process. If II is a sequence of deterministic processes, then there is exactly one

computation that can arise from S(II). The notation is extended so that S(II1 jII21, .. !Ilk)

denotes the schedule S applied separately to each process IIi in II1 III2 I .. , IIIk, To avoid

the ambiguity caused by undetermined schedulers, the following will establish a scheduling

function that assigns a fixed scheduled process S*(II) to a sequence II.

Let S' be some scheduling function that schedules II by first running S(II1III2l, .. IIIk)

and then removing the barriers between the segments of the partition II1 jII2 I .. , IIIk and

continuing with o until II is quiescent. S' is an extension of S for II1III2l, .. IIIk. The

computation that occurs under S' after removal of the barriers in II1llhl ... IIIk and up

to the point where II is quiescent, is a possible continuation of S(II 1 jII21 •• , IIIk)- The

continuation of S(II1III2I,., IIIk) that minimizes the number of messages sent during the

continuation, is the minimum continuation of S(II1III2l, .. jIIk), The cost of the continua­

tion of S(II1III2I ... IIIk) is the number of messages sent during the minimum continuation

of S(II1III2I -. , IIIk),

As a first step toward defining s•, a fixed partition is specified fQF each sequence of

processes. Let L ~ n and let k be the integer satisfying liic j ~ L < lsk': 1 j. Let l = lsl'TI' j.
Define the decomposition D(L) = lill2ll3jl4llsll6 by Ii = 12 = /3 - 1 = /4 - 1 = ls =land

/6 = L- Ef li, The partition II1I .. , III6 of II E pL that is consistent with D(L) is denoted

6(II).

Given a sequence II E pL, the decomposition, D(L), and the corresponding partition,

6(II), are used to associate a fixed scheduled process, S*(II), with II. s•(II) is specified

recursively by:

1. If L < 8 then S*(II) is the scheduler that minimizes the number of messages sent in

a computation of o on II.

2. Otherwise, S*(II) is the extension of s• for 6(II) that minimizes the number of

messages sent in the continuation of S*(6(II)).

Chapter 7: Known Ring Size 99

The cost of the continuation of S*(Ili!Ihl ... !Ilk) is denoted CC(Il1!Il2I, .. !Ilk)·

Lemma 7.4 bounds the expectation of CC(Il1I • • · 1Il6) when 1111 • • • IIl6 is a partition

of Il that is consistent with D(L). That is, given that IT is a random £-process partioned

consistently with D(L) into 111 1 • • • 1Il6, lemma 7.4 bounds the minimum, over all extensions

of S*(II1 I·•• III6), of the expected number of messages sent in the continuation of the

extension. In general, CC(II1III2I .. , IIIk) is dependent on the choice of II as well as on

the partition of Il. However, the expectation of CC(I11 III21 •• , !Ilk) depends only on the

decomposition /en(II1)I,. -llen(Ilk). To emphasize this dependence, define Ecc(l1I ... Ilk) to

be the expected value of CC(Il1 1Il2I -.. !Ilk) over all processes II such that Il1 1Il2I -.. !Ilk

is a partition of Il consistent with /11 ... Ilk.

If S ~ P1, then Pr(S) is used to abbreviate Pr(x E Six E P1).

Lemma 7.4 For any €-attrition procedure for anonymous bidirectional rings of fixed size

n and for all L ::5 n,

E (D(L)) > (1 - EL/(64n))2 .!:_ cc - 211 .

Proof: Let D(L) =Iii ... 115. By definition '1 = /2 = l3 - 1 = l4 - 1 =ls= I and 16 > l

where / = lsih J for integer k satisfying lffe J $ L < ls1c':.i J. Therefore, n = sk+t • l + r
where r < 3k+l.

There are two cases, depending on the size of the remainder, r.

Case 1: r < 4 • gk. In this case it will be shown that

A summary of the central ideas are as follows. The values of l and r imply that a ring

of size n can be partitioned into segments of length / and (/ + 1) in such a way that no

two (I+ 1) segments are adjacent. If all of Ecc(ll/), Ecc(/I/ + 1) and Ecc(/ + lll) are small

and adjacent barriers are removed from the partitioned ring, then, with high probability,

the traces of the additional message traffic will not intersect. Such a situation results in

deadlock. So it must be concluded that at least one of Ecc(lll), Ecc(lll + 1) or Ecc(/ + lll)

Chapter 7: Known Ring Size 100

is not small. However, all combinations of I and (I+ 1) are included as adjacent lengths in

the decomposition, D(L). Therefore, the expected cost, over all partitions consistent with

D(L), of the (minimum) continuation is also not small.

Let a be any (-attrition procedure for anonymous bidirectional rings of fixed size n.

Let P be the space of deterministic processes available to a. Let x and y be two ran­

dom I-processes from P1 and let z be a random (l + !)-process from pl+i. Let ,\ = 1 -

min{Pr(CC(xly)::; ½),Pr(CC(xlz)::; ½),Pr(CC(zlx)::; ½)}. Then Pr(CC(xly)::; ½) ~

1 - ,\ and Pr(CC(xlz) ::; ½) 2::: 1 - ,\ and Pr(CC(zlx) ::; ½) 2::: 1 - ,\, Let S1 =

{sis E P1 A Pr(CC(sly) $ ½) > 1 - ,\112}. Then Pr(S1) 2::: 1 - >..1/2 since otherwise

Pr(CC(x!y) $ ½) < (1 - >..112
) + >.112 (1 - ,\112

) = 1 - >... Similarly, let:

I
S2 = {sis E P1 A Pr(CC(yis) $ 2) > 1- ,\112}

I
S3 = {sis E P1 A Pr(CC(slz)::; 2) > 1- ,\112

}

I
S4 = {sis E P1 A Pr(CC(zls) ~ 2) > 1- ,\112}

Then, in the same way, Pr(Si) 2::: 1 - ,\112 for i = 2, 3 and 4. Let C = S1 n S2 n S3 n S4•

Then Pr(C) ~ 1 - 4,\ 1/ 2 •

In summary, with high probability (1 - >.. 112) a randomly chosen I-process in C will

combine on either side with a randomly chosen /-process or (l + 1)-process to produce a

partition with a small (less than I/2) cost of continuation.

Let d = 4 • 8k. Consider the class of rings, B, with length n, defined by:

B = { •1, ... , z,, I z; E C for i = 1, 3, ... , 2d - 1,

Xi E pl+l for i = 2,4, ... ,2r,

Xi E P1 for i = 2r + 2,, ... , 2d,

and CC(z;J•;+t) '., 4 for 1:, i < 2d, and CC(z,,Jzt) '., 4}
Then Pr(B) in the product space pn can be bounded as follows. Since a random /-process

is in C with probability at least 1- 4,\112 , all Xi, for i = 1,3, ... ,2d-1, are in C with

Chapter 7: Known Ring Size 101

probability at least (1 - 4>.1l2)d. Given Xi E C for i = 1, 3, ... ,2d - 1, CC(xilXi+i) :$ ½

with probability at least 1- >.1/ 2 and CC(x;+1 lxi+2) :$ ½ with probability at least 1- >.1/2 •

Hence, for a fixed i = 2,4, ... , 2d, the conditions on B are met with probability at least

1 - 2>.112 • Hence, Pr(B) 2: (1 - 4>.1l2)d(l - 2>.1l2)d > (1 - 4>.1l2)Ln/lJ.

For every process sequence II = x1, ... , x 2d E B, schedule IT with the minimum ex­

tension S' of S*(x1 1 •• , lx2d), Since CC(xilx;) is at most l/2 additional messages, and

segments in the partition are of length at least l, it is impossible for messages generated

by the removal of any pair of barriers to interact. Hence, after removal of all barriers

there are at most (l/2)(n/l) additional messages before all message traffic ceases. Since

envelope-attrition is required to retain one message envelope, elements of B produce erro­

neous €-attrition computations under scheduler S'.

Since deadlock occurs with probability at most E, Pr(B) :S €, which implies that (1 -

4>.1l2)Ln/lJ < €. Thus,>.> (1-E1/n)2 /16. But from the definition of>., either Pr(CC(xjy) :S

½) = 1->. or Pr(CC(xjz) :S ½) = 1->. or Pr(CC(zjx) :$ ½) = 1->.. Hence, either Ecc(ljl) =

E(CC(xly)) 2: >.-½ > (1-€//n)2 i2 or Ecc(lll+l) > (l-€l/n)2 i2 or Ecc(l+lll) > (l-€//n)2 j2 •

The decomposition D(L) contains every combination of l and (/ + 1) as adjacent in­

tegers. Furthermore, if a continuation of the whole partition behaves differently than the

combination of the continuations on each of the adjacent segments of the partition, then

there must have been interaction between these adjacent pieces. This alone would require

more than //2 messages. Therefore, the cost of continuation of a partition consistent with

D(L) must be at least the maximum of the cost of continuation on the segments composed

of adjacent pairs in the partition. Thus, Ecc(lil .. , lls) 2: (1- €l/n)2 j2 • But/= l~ j and

L < lsi.':1 j implying ~ ~ /. Hence Ecc(/1 1 ••• 116) 2: (1 - €L/(64n))2-{rr.

Case 2: r > 4 • gk. In this case,

max{Ecc(l + lj/ + 1), Ecc(ljl + 1), Ecc(l + lll)} 2: (1 - €l/n)
2

3
1
2

The proof of this case mimics case 1, and is therefore omitted. •

Chapter 7: Known Ring Size 102

Theorem 7.5 Every €-attrition pr~edure for anonymous rings of fixed size n has expected

message complexity n (n min {log n, log log (1/ E)}) on rings of size n.

Proof: Let o be an €-attrition procedure for rings of fixed size n and let 'P be the

probability space of processes available to o.

Let costs•(II) be the total number of messages sent by scheduled process sequence

S*(II) and define Em.,g(L) = E(costs•(II)III E PL). Let II E pL and recall that o(II) is

the partition of II consistent with D(L). Then

6

costs,(II) = CC(o(II)) + L costs,(IIi)
i=l

implies
6

Em.,g(L) = E(CC(o(II))) + LEm.,g(Ii)
i=l

By lemma 7.4, E (CC(o(II))) is at least fo(l - EL/(64"))2. Therefore

Em.,g(L) 2': 2:1 . (1 - €L/(64n))2 + t Em.,g(/i)
i=l

Claim:

Proof of claim: The basis is clear so assume the inductive hypothesis:

I log64 I

E (') > 211
"'"""' (1 _ c//{64in))2

mag _ ~ "

i=l
(7.1)

for all / < L. Then:

Em.,g(L) 2': 2~1 . (1 - cL/(64n))2 + t Em.,g(li)
i=l

L 6 [log114 /;

> 2°. (1 _ €L/(64n))2 + ~
2
;
1
~ (l _ €/;/(64'n))2

s=l 1=1

(by 7.1)

Chapter 7: Known Ring Size 103

So the claim holds.

Let 'R =71'1 , ••• , 71' n be a random element of pn. Place a barrier between 71'1 and 71' n and

consider the computation of a on segment 71'1 , ••• , 71'n under schedule s•. Then:

log64 n

() n '°" (s4-i)2 Em.,9 n ~ 211 ~ 1 - €

J=l

Notice that (1- £64-z)2 ~¼as long as x ~ log64 log(l/£) = (loglog(l/£))/6. Therefore:

min{log64 n, ¼ log log(l/l)}

E () > ..2:.. '"' (1 - ,,.64-')2
msg n 211 ~ "

t=l

n 1 . {i loglog(l/£)}
~ 211 4 mm ogs4 n, 6

= n (n min { log n, log log½}) .

■

7 .3 Monte Carlo Complexity of Natural Functions

The nondeadlocking attrition procedure, ;, of section 2.2 has complexity O(nlog c) ex­

pected messages when there are c ~ 1 initial contenders (lemma 2.1). As shown below,

this attrition can be converted to an £-attrition procedure, /3, with expected bit complex­

ity O (n min {log n, log log (1/ €)}), when there are n initial envelopes. This shows that the

n (n min {log n, log log (1 / £)}) expected messages bound in theorem 7 .5 is tight to within

a constant factor. Let A= min{n,ln(l/£)}. Processors first choose to be contenders with

probability Ajn and the contenders run;. Then A contenders are expected. Let c denote

the number of actual contenders and let complexity.a denote the complexity of /3.
n

E(complexity,a) = L E(complexity13 ic) · Pr(c)
c=l

Chapter 7: Known Ring Size 104

n

= I)nlogc) • Pr(c)
c=l

$ n log (t c · Pr(c)) by the convexity of log

= nlogE(c)

= n log>.

Thus, (3 has the desired complexity. The only way that (3 can deadlock is if ln (1/£) < n

and no processor chooses to be a contender. This happens with probability (1 - >./nt $

e-A = £.

The n (n min {log n, log log (1/£)})) lower bound on the expected message complex­

ity of £-attrition implies the same lower bound on Monte Carlo leader election, because

envelope-attrition reduces trivially to leader election. This lower bound is tight. Sec­

tion 2.4 describes how a Las Vegas leader election algorithm can be assembled from

nondeadlocking attrition and deterministic solitude detection. Analogously, £-attrition

and Monte Carlo solitude detection can be combined into a Monte Carlo leader elec­

tion algorithm. As was shown in (4], Monte Carlo solitude detection has complexity

0 (n min { jlog n, J log log(1/£) + log v(n), loglog(l/£)}) expected bits on rings of known

size, where v(n) is the smallest nondivisor of n. Thus:

Theorem 7.6 There is a Monte Carlo leader election algorithm that errs with probability

at most£ and has complexity O(nmin{logn, loglog(l/£)}) expected bits.

The preceding discussion illustrates that envelope-attrition is an essential and dominant

part of leader election in the sense that the complexities of the two problems are equivalent

(even in the probabilistic case). Envelope-attrition is similarly related to other natural

problems.

In lemma 6.4, nondeadlocking envelope-attrition is reduced to a Las Vegas algorithm

for AND. The following is a generalization of this reduction, which illustrates that the

£-attrition bound extends to computing AND with probability of error at most £ on rings

of known size.

Chapter 7: Known Ring Size 105

Theorem 7. 7 The expected complexity of every Monte Carlo algorithm that with confi­

dence at least 1- £ computes AND on a ring of fixed size n is n (n min {log n, log log (1/ £)})

messages.

Proof: Let a be a Monte Carlo algorithm for AND which errs with probability at most £.

Let f(n,£) be the expected message complexity of a. Let "f be the attrition procedure of

section 2.2. On a ring of size n, the expected complexity of "f is 0(n log c) messages, where c

is the actual number of contenders (not necessarily known). Let >.=min {ln n,ln ln (1/£)}.

Each processor on a ring executes the following:

Procedure ATTRITION2:
1. generate a random bit, myflip E {0, 1} such that Pr(0) = >../n;
2. IF myflip = 0 THEN

become a contender and initiate"(;
henceforth participate in "f and discard all a messages

ELSE
initiate a;
Participate in a only as long as no "f message arrives;
Upon receipt of a "f message, participate in "fas a
non-contender and discard all subsequent a messages;
IF a confirms ''all 1's'' THEN go to step 1.

Step 2 performs £-attrition on an expected small number of contenders. In the event that

there were no contenders, the processors are alerted to try again. Thus, ATTRITION2 is

an £-attrition algorithm.

Error: The only way that the £-attrition procedure, ATTRITION2, deadlocks is if all

processors flip 1 and the AND algorithm a fails to confirm all 1 's. Therefore, the probability

of deadlock of ATTRITION2 is at most £ I:~1 ((1 - * r) i ::; eLi :::; £ as long as £ :::; 1/ e.

So £ < 0.367 suffices.

Complexity: Let random variable C be the number of processors with myfiip = 1. Denote

the number of messages sent by ATTRITION2 by complexitYATT2 • Then the expected

complexity of ATTRITION2 is given by

Chapter 7: Known Ring Size

E (complexitYArr2) = E (complexitYArnlall l's) Pr(all l's)+

Therefore

E (complexity ATT2iat least one 0) Pr(at least one 0)

< (!(n, f) + E(complexity ATT2)) (1 - ~) n +

(f(n,f) + E(nlogC)) (1 - (1 - ~) n)

f(n,f) + nlogA (1 - e-.\)
E(complexitYATT2) $ 1 _ e->-

< 2f(n, f) + n min { log log n, log log log~}

(if n > 2 and f < 0.135)

106

Since ATTRITION2 is an €-attrition algorithm, the expected complexity of ATTRITION2

is n(nmin{logn, loglog(l/E-)}) bits. Hence, the expected complexity of f(n, f) is

n(nmin{logn, loglog(l/f)}) bits. ■

It is easily verified that €-attrition also reduces to other functions such as OR or PAR­

ITY, and lower bounds for SUM are inherited from PARITY. Furthermore, the lower

bounds are tight because AND (and similarly OR and PARITY) can be computed on a

ring of size n by expending an additional 0(n) bits after electing a leader. Therefore:

Corollary 7.8 The expected complexity of computing AND (or OR or PARITY) with

confidence at least 1 - f on a ring of fixed size n is 0 (n min {log n, log log (1 / f)}) messages

and bits.

The leader election of theorem 7 .6 that is used to achieve the lower bounds above is

composed of the Monte Carlo solitude detection algorithm in [4] and €-attrition. The Monte

Carlo solitude detection algorithm errs only by occasionally terminating with the wrong

answer and only one-sided error is possible. On the other hand, the E-attrition procedure

errs only by deadlocking. Thus, the leader election algorithm exhibits two types of possible

error - deadlock and termination with an incorrect conclusion.

Chapter 7: Known Ring Size 107

Alternative algorithms for leader election and thus for AND and other natural functions

for rings of fixed size n can be constructed from the algorithm SD in section 5.3 and €·

attrition. These algorithms err only by deadlocking. This approach is illustrated here for

AND; it is a variation of algorithm SIMPLE-LE in section 2.4. Let >. = min{n,log(l/€)}.

Algorithm AND3:
generate a random bit, myflip E {O, 1} such that Pr(O) =).jn;
IF myflip = 0 THEN contender +-true:
WHILE contender AND NOT leader DO

log>. rounds of attrition:
IF contender THEN

initiate algorithm SD
IF solitude is confirmed THEN leader +-t

IF leader THEN accumulate the AND bit.

Each execution of solitude detection requires O(nJ'logn) expected bits. Each execu­

tion of the attrition step requires n log >. bits. Since >. contenders are expected initially, a

constant number of passes through the WHILE loop are expected, and the repeated passes

through the WHILE loop do not increase the order of the expected complexity over that of

a single pass. Thus, AND3 is a Monte Carlo algorithm which errs only by deadlocking and

has an expected complexity of O(nJ'Iogn + nloglog(l/€)) bits for€~ 2-n where€ is the

probability of deadlock.

Chapter 8

Conclusions

8.1 Summary of Contributions

Many fundamental issues that affect the complexity of computing on a ring have been

addressed in the previous chapters. One object of this section is to summarize these issues

and point to specific examples which illustrate them. Principal among these factors is

the effect of randomization on distributed computing. Numerous other factors are also

summarized. Another goal is to isolate some general techniques from particular results.

The advantages of the general model of chapter 4, and the most significant results achieved

using this model are reiterated.

8.1.1 Impact of randomization

New efficient randomized algorithms for fundamental distributed computing problems on

rings have been described. The following list summarizes the positive contributions of

randomization to the solutions of some of these problems.

1. Some of the Las Vegas algorithms provide solutions to problems that have no de­

terministic solution. For example, each of the problems, leader election, orientation,

SUM, and PARITY, on anonymous rings of size n E [N /2 + 1, N] can be solved by a

108

Chapter 8: Conclusions 109

Las Vegas algorithm, whereas no deterministic solutions exist for this class of rings.

2. For some problems, though deterministic solutions exist, Las Vegas solutions improve

significantly upon the complexity of any deterministic solution. Deterministic solu­

tions of AND and OR on an anonymous ring of size n E (N /2, N] have complexity

!l(n2) messages compared to O(nlogn) expected bits for Las Vegas algorithms. In

fact, all functions on rings of size n E [N /2 + 1, N] can be computed by a Las Vegas

algorithm using at most O(nlogn) expected messages because leader election has

this complexity, whereas many require f2(n 2) messages in the deterministic model. A

nontrivial function is described in section 5.3 which can be computed in O(nJlogn)

expected bits on rings of fixed size n, but no deterministic algorithm for a nontrivial

function has complexity less than n(nlogn) bits ([21]).

3. Randomization makes complexity dependent on coin flips as well as on the processors'

inputs. This dependence may eliminate the need to design an elaborate algorithm

which guards against expensive computations that arise from specific inputs. As

a consequence, efficient Las Vegas algorithms are often also simple. Many of the

algorithms in the previous chapter have a simple structure. Most employ attrition,

which is a natural technique if randomization is available.

4. The possibility of probabilistic solutions can be entertained in models that support

randomization. For many natural problems, when a solution with confidence of 1 - €.

is sufficient, a Monte Carlo algorithm exists that has lower complexity than the

corresponding Las Vegas one (cf. theorem 7.6). The solitude verification results in

(4] demonstrate that even when there is no algorithm that is correct with certainty,

there are Monte Carlo algorithms that are almost certainly correct.

5. The message complexity of Las Vegas solutions on anonymous rings frequently com­

pares favourably with that of deterministic solutions for rings with distinct identifiers.

Besides not requiring identifiers, the Las Vegas solutions are frequently achieved us­

ing 0(1) length messages as opposed to O(log n) length messages for deterministic

solutions. The Las Vegas leader election algorithm, LE, in chapter 2 on page 22,

Chapter 8: Conclusions 110

has an expected message complexity of the same order as the average complexity of

deterministic leader election on an asynchronous ring with distinct identifiers. More­

over, the complexity is achieved using messages of constant length as opposed to the

messages of size about log n bits for the deterministic algorithms.

These examples of the positive effect of randomization support a central thesis of this

research: that randomization is an effective tool for the design of efficient distributed

algorithms. Some of the reasons for this effectiveness are discussed in chapter 1.

Randomization is by no means a panacea, however. Consider the function:

. . { 1 if i1 , , , in = in+ 1 , , , i2n
f(i1,,,,,i2n) =

0 otherwise

There is an obvious O(n2) bits deterministic algorithm for evaluating f on rings of

known (and even) size. Each processor sends its input and all messages are forwarded n

times. A simple argument, adapted from (32], can be used to show that ther~ is some input

for which S1(n2) bits are required to certify a function value of 1. Suppose there is some

nondeterministic algorithm a that has a correct computation for all input strings xx where

the length of x is n/2. For each such input, the corresponding correct computation must

determine that each input bit matches the one diametrically opposite. There are on the

order of 2n possible strings y such that f(y) is 1. By an adaptation of well known crossing

sequence arguments for Turing machines, there is some input for which there must be on

the order of log(2n) bits sent across each of n/2 links. Thus, then comparisons require

n2 bits of communication for this input. Hence, even nondeterministic algorithms cannot

significantly reduce the bit complexity of evaluating f. (Notice, however, that the n(n2)

messages deterministic complexity off can be reduced to 0(n log n) expected messages in

a randomized model by first executing Las Vegas leader election.)

8.1.2 Model

Las Vegas algorithms presented in this thesis are accompanied by matching lower bounds.

To derive such bounds requires a precise model of the communication that occurs during

Chapter 8: Conclusions 111

a distributed computation. Chapter 4 contributes a unified collection of models that cap­

tures the essential characteristics of a spectrum of distributed algorithms - those that

are error free (deterministic, Las Vegas, and nondeterministic), and those that err with

small probability (Monte Carlo and nondeterministic/probabilistic). The unification helps

to clarify the essential differences between the progressively more general notions of a dis­

tributed algorithm. The bounds frequently vary depending on the type of algorithm being

investigated, thus underscoring the fact that these differences are more than notational.

Various parameters, in addition to the type of algorithm being considered, can be

accommodated within the general framework of the model. These include the class of

rings for which the algorithm is required to work, the presence or absence of identifiers,

the domain of input values for the algorithm, and the termination requirements of the

algorithm. The lower bounds are sensitive to assumptions concerning these parameters.

The fact that the model reveals this sensitivity, attests to the appropriateness of the model.

8.1.3 General techniques

Techniques for designing randomized algorithms and for proving randomized lower bounds

can be distilled from particular results.

Many of the algorithms can be viewed as combinations of two techniques - coin flipping

and counting - and variations on these techniques. Coin flipping is used to break symmetry

while counting facilitates termination. This is first seen in the leader election algorithm

(algorithm LE on page 22) where attrition of contenders is achieved via exchanges of

random coin tosses, and solitude is verified by sending a counter to measure the gaps

between remaining contenders.

Variations of straightforward counting occur in subsequent algorithms. Counting mod­

ulo a small number and counting up to a threshold are combined in the algorithm for

solitude detection when ring size is fixed (algorithm SD on page 71). Number theoretic

properties of the ring size are exploited to derive e~ough information from these two cheaper

kinds of counting to determine solitude. In algorithm AND2 in chapter 6 on page 79, the

Chapter 8: Conclusions 112

values of adjacent gap counters are compared to assure that all gaps (likely only one) are

the same size. Probabilistic extensions of these counting techniques are developed in [3]

and [4]. Ordinary and threshold counting are replaced by probabilistic counting in which

processors increment a counter with a fixed probability less than one rather than with

certainty. In another variation (similar to a scheme used in [16]) a collection of processors

repeat the experiment of randomly choosing from {O, 1} such that 1 is chosen with low

but increasing probability until at least one processor chooses 1. These schemes yield an

estimate on the number of participating processors. In all of these examples, the purpose

of counting is to gather enough information to assure correct termination.

Reducing the number of message envelopes is central to many of the algorithms. It

is always achieved by a simple exchange of strings of random bits. Both nondeadlocking

and £-attrition proceed similarly, the only difference being that by risking deadlock the £­

attrition version can significantly reduce the initial number of contenders without incurring

any communication cost. After this reduction, £-attrition is the same as nondeadlocking

attrition on the smaller set of contenders.

Lower bound techniques are of two distinct kinds, one especially suited for nondeter­

ministic or best case bit complexity, the other for expected message complexity. Best case

bit complexity proofs begin with the assumption that there is some computation that has

low complexity. Familiar combinatorial arguments are used to conclude that some proces­

sors have identical histories. The repeated histories provide the endpoints of segments that

can be removed from the ring without affecting the histories of the remaining processes

(shrinking). The reduced computation is replicated and, if necessary, an additional piece is

spliced into the ring to produce a new ring and computation of the required length. After

shrinking, replicating and splicing, what results is a feasible but erroneous computation of

the algorithm. Hence, the assumption of low complexity must be incorrect.

Proving lower bounds on the expected message complexity of algorithms that admit

efficient best cases requires techniques that distinguish between best case and average case

computations. Thus, the techniques must account for probabilities of computations. The

idea is to impose a scheduler on the computation in such a way that the computation is

Chapter 8: Conclusions 113

divided into disjoint parts that can be individually analysed. The ring is partitioned into

segments by inserting blocks between processes. Different levels are associated with the

blocks; and the blocks are removed one level at a time as the computation progresses.

As each set of blocks is removed, enough additional communication must occur to ensure

that the computation does not deadlock. Thus, a lower bound is derived for the expected

amount of communication that takes place at each level. By summing over the disjoint

parts of the computation, a lower bound on total expected communication is derived.

8.1.4 Issues effecting complexity

type of algorithm:

The type of algorithm (deterministic, Las Vegas, Monte Carlo, nondeterministic, or non­

deterministic/probabilistic) is frequently a major factor in determining the complexity of

the solution to a distributed computing problem. Differences between the complexities of

deterministic and Las Vegas solutions for many problems have already been summarized

in subsection 8.1.1.

The complexity of computing AND on rings of known size exhibits extreme sensitiv­

ity to the type of algorithm being considered. The complexity of AND on rings of fixed

size decreases for each generalization from one of these types of algorithms to a more

powerful one. The deterministic complexity of AND on rings of known size n is 0(n2)

bits. The Las Vegas complexity is 0(n log n) expected bits; and the nondeterministic

complexity is 0(nJlog n) bits. The complexity of AND in the Monte Carlo model is

0 (n min{log n, log log (l/€)}) expected bits. A nondeterministic/probabilistic algorithm

for AND, with complexity O (n min { Jlog n, Jlog log(l/€) + log v(n),log log(l/ €)}) ex­

pected bits on rings of known size, where v(n) is the smallest nondivisor of n, can be

constructed from a combination of the 0(nlogv(n)) attrition of section 7.1, and the non­

deterministic/probabilistic solution for solitude verification from [4].

Not all problems are as sensitive to algorithm type as is AND on rings of known size.

The function J described in subsection 8.1.1 (page 110) illustrates the opposite extreme

Chapter 8: Conclusions 114

where algorithm type has essentially no effect on bit complexity.

For other problems, the complexity decreases with a change from the deterministic to

the Las Vegas model, but does not further decrease through a generalization from the Las

Vegas to the nondeterministic model. This was shown for problems such as leader election,

AND, and PARITY on rings of size n E [N/2,N], as well as for the function described in

chapter 5 on page 7 4.

knowledge of ring size:

Another theme of this dissertation is the degree to which knowledge of ring size influences

the inherent complexity of the solution to a given problem. Las Vegas solutions for soli­

tude detection and for minimum nonconstant function evaluation are sensitive to exact

knowledge of ring size (chapter 5). While the best case complexity of AND and (many

other functions) is reduced for rings of known size, the expected complexity is insensitive to

information about ring size that is more refined than to within a constant factor (chapter

7).

The range of ring sizes for which a solution even exists depends upon the type of

algorithm that is required. Severe constraints on the ring size are required for deterministic

solutions for SUM (n known exactly) and for Orientation (n known exactly and n odd) for

anonymous rings. However, both these problems can be solved by a Las Vegas algorithm

as long as ring size is known to within a factor of two.

type of termination:

Some problems exhibit a drop in complexity when only nondistributive termination is

required, while for others the nondistributive termination lower bounds can be achieved

with distributively terminating algorithms.

AND provides an example of a significant drop in complexity, from 0(n2) bits (deter­

ministic) or 0(nlogn) expected bits (Las Vegas) to 0(n) bits, when the requirement is

weakened from distributive to nondistributive termination. For a more elaborate and less

Chapter 8: Conclusions 115

obvious example, see [4]. There it is shown that the complexity of solitude detection on

rings of known size drops from 0(nJlog n) to 0(n log log n) expected bits under the same

relaxation of the termination condition.

permissibility of error:

It has already been observed that complexity can often be decreased if a solution that is

correct with high probability rather than correct with certainty is acceptable. The natural

functions discussed in chapter 7 have complexity 0 (nloglog(l/E)) expected bits if error

with probability E > 1/2n can be tolerated, whereas, the complexity is 0(nlog n) expected

bits if no error is allowed. Other examples occur in [3] and [4] where solitude detection

problems are shown to have lower complexity in the Monte Carlo model than in the Las

Vegas Model.

kind of error:

The traditional notion of a Monte Carlo algorithm is one that errs with small probability.

Typically an algorithm, o:, for a decision problem may err in a number of ways. One type

of error is when o: terminates with the wrong decision. Alternatively, o: may err by failing

to terminate. Finally, o: may terminate without any decision. A more restricted notion

of a Monte Carlo algorithm (cf. for example [11]) assumes that a Monte Carlo algorithm

always terminates with some decision in a bounded amount of time. Thus, the only error

permitted is of the first kind.

In the classical single processor environment, this restriction is not an essential one.

Typically a Monte Carlo algorithm that errs with probability at most E can be converted

to a restricted Monte Carlo algorithm that errs with probability at most E by enforcing

termination with a predefined conclusion for computations that exceed a sufficiently large

bound on running time.

Notice that a clock is central to this conversion. In the distributed asynchronous setting

there is an essential distinction in the various type of errors.

Chapter 8: Conclusions 116

The algorithm AND3 of page 107 errs only by deadlocking. It is correct given dead­

lock does not occur, and has complexity O(nJlog n + nloglog(l/E)) expected bits. The

more efficient Monte Carlo algorithm for AND which is constructed from Monte Carlo

leader election (corollary 7 .8) has complexity O (n min {log n, log log (1/ E)}) expected bits.

This algorithm errs both by deadlocking and by terminating with an incorrect answer.

Admissibility of both kinds of error is essential to achieve this drop in complexity.

existence of identifiers:

Rings with identifiers have not been a significant focus of the preceding chapters. It has

been observed, however, that there is some overlap of the role played by processor iden­

tifiers and by random sequences in distributed computation. The message complexity of

deterministic algorithms on rings with distinct identifiers is often of the same order as that

of Las Vegas algorithms on anonymous rings. The leader election algorithm for rings with

distinct identifiers (chapter 2, page 23) illustrates this phenomenon. It is tbe relationship

between these two models that accounts for the similarity in proof techniques between the

average case leader election results in [14], and the expected case Las Vegas AND result

described in chapter 7 on page 92.

8. 1.5 Fundamental problems

It was shown in chapter 2 that leader election can be decomposed into two even more fun­

damental problems, solitude verification and attrition. These two subproblems of leader

election continued to appear throughout the remaining chapters. The algorithms either

implicitly or explicitly incorporate a solution to at least one of these two problems. Fur­

thermore, the lower bounds are derived either by mimicking the proofs of the lower bounds

for attrition and solitude verification, or by appealing directly to a reduction from one of

these problems.

This is evidence of the distinguished role of these two problems. The function that

achieves the lower bound for nontrivial function evaluation (chapter 5, page 74) is an

Chapter 8: Conclusions 117

encoding of solitude verification. Hence, solitude verification can be thought of as the

generic representative of the simplest nontrivial problems. Attrition, on the other hand,

is pervasive. For a large class of natural problems, attrition is required of any efficient

algorithm for any problem in the class.

8.1.6 Principal results

Two specific results can be isolated from the others because of their relative significance.

1. If g is any nonconstant cyclic function of n variables, then any nondeterministic

algorithm for computing g on an anonymous ring of size n has complexity S1{nJlog n)

bits of communication; and, there is a is nonconstant cyclic boolean function f, such

that f can be computed by a Las Vegas algorithm in O(nJ"Iogn) expected bits of

communication on a ring of size n.

2. The expected complexity of computing AND (and a number of other natu­

ral functions) on a ring of fixed size n within the Monte Carlo model is

0{nmin{logn,loglog(l/E)}) messages and bits where Eis the allowable probability

of error.

8.2 Further Research

There are two problems that are immediately suggested by results in this dissertation, but

which remain unsolved.

1. As described in section 5.4, the extension of item 1 in subsection 8.1.6 above to

include Monte Carlo algorithms is incomplete.

2. The extension of the S1(nlog n) bits lower bound for the best case of Las Vegas

algorithms that compute AND on a ring of size n E [.N /2, N] to a nondeterministic

lower bound remains a conjecture.

Chapter 8: Conclusions 118

The investigation of other topics related to those already discussed has been carried to

various stages of completion.

leader election in an arbitrary network:

A leader can be elected deterministically on an arbitrary network with unique identifiers us­

ing 0(e+n log n) messages in the worst case, where n is the number of nodes in the network,

and e is the number of edges [26]. Each message has length at least log n bits. It might be

hoped that message length could be reduced to a constant by using random sequences in

place of identifiers. However, it is possible that forwarding information dominates the coin

toss values resulting in nonconstant length messages. Yamashita and Kameda [30,31] have

characterized the anonymous networks for which deterministic leader election is possible.

The Las Vegas leader election algorithm in chapter 2 exploits randomization to break sym­

metry. A similar exchange of coin tosses can be used reduce the number of contenders on

an arbitrary -network. If randomization is permitted, there are no restrictions to leader

election provided the network size is known.

tradeoffs:

Recall that the Las Vegas complexity of solitude verification on ring of known size is

0(nJ log n) expected bi ts. The square root term results from minimizing the bit com­

plexity, which can be achieved only at the expense of sending more messages. In fact, the

complexity is a specific point in a tradeoff between the message and bit complexity for

this problem. It appears that the square root term appearing in the complexity results for

other problems on rings of known size (chapter 5, see also [4 16]) signals a similar tradeoff

between message and bit complexity. Another parameter, maximum message length, in­

troduces further tradeoffs between each of the message and bit parameters. Tradeoffs have

been established for both deterministic and Las Vegas solitude verification. The extensions

to the Monte Carlo model seem to be more involved.

Chapter 8: Conclusions 119

bidirectional rings:

It is natural to enquire whether the bit complexity results for unidirectional rings extend

to the bidirectional case. It appears that shrinking, replicating and splicing techniques can

be adapted to bidirectional rings.

time complexity:

The time complexity of a Las Vegas asynchronous algorithm is the maximum, over all in­

puts and all schedules, of the expected number of unit time intervals before the algorithm

terminates, under the assumption that messages travel each communication link in at most

unit time and local processing is instantaneous. Nothing in this dissertation has addressed

the time complexity of distributed computation. But the analysis of asynchronous time

may be simplified on a unidirectional ring because the scheduler cannot influence compu­

tation sequences. For this reason the ring is an appealing topology on which to begin an

investigati<m of time complexity.

References

[1] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick. The bit
complexity of probabilistic leader election on a unidirectional ring. In Distributed
Algorithms on Graphs, pages 1-12, Carleton University Press, 1986. Proc. 1st Inter­
national Workshop on Distributed Algorithms.

(2] K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick. The bit
complexity of random.ized leader election on a ring. SIAM Journal on Computing,
1988. In press.

[3) K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic Solitude
Detection I: Rings Size I<nown Approximately. Technical Report 87-8, University of
British Columbia, 1987. submitted for publication.

[4) K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic Solitude
Detection II: Rings Size Known Exactly. Technical Report 86-26, University of British
Columbia, 1986. subm.itted for publication.

[5] K. Abrahamson, A. Adler, L. Higham, and D. Kirkpatrick. Probabilistic solitude
verification on a ring. In Proc. 5th Annual A CM Symp. on Principles of Distributed
Computing, pages 161-173, 1986.

(6) K. Abrahamson, A. Adler, L. Higham, and D. I{jrkpatrick. Randomized function
evaluation on a ring. In Lecture Notes in Computer Science #912, pages 324-3311

Springer Verlag, 1987. Proc. 2nd International Workshop on Distributed Algorithms.

[7] Y. Afek and E. Gafni. Simple and efficient distributed algorithms for election in
complete networks. In Proc. 22nd Ann. Allerton Conj. on Communication, Control,
and Computing, pages 689-698, 1984.

[8) D. Angluin. Local and global properties in networks of processors. In Proceedings of
the Twelfth Annual ACM Symposium on Theory of Computing, pages 82-93, 1980.

[9] H. Attiya, N. Santoro, and S. Zaks. From Rings to Complete Graphs -0(nlogn) to
0(n) Distributed Leader Election. Technical Report SCS-TR-109, Carleton University,
1987.

120

References 121

[10] H. Attiya, M. Snir, and M. Warmuth. Computing on an anonymous ring. In Proc. ,Ith
Annual ACM Symp. on Principles of Distributed Computing, pages 196-203, 1985.

[11] G. Brassard and P. Bratley. Algorithmics Theory and Practice. Prentice-Hall, 1987.
pre-publication manuscript, Universite de Montreal.

[12] J. Burns. A Formal Model for Message Passing Systems. Technical Report TR-91,
Indiana University, 1980.

[13] D. Dolev, M. Klawe, and M. Rodeh. An 0(n log n) unidirectional distributed algo­
rithm for extrema finding in a circle. J. Algorithms, 3(3):245-260, 1982.

(14] P. Duris and Z. Galil. Two lower bounds in asynchronous distributed computation
(preliminary version). In Proc. 28nd Annual Symp. on Foundations of Comput. Sci.,
pages 326-330, 1987.

[15] G. Fredrickson and N. Lynch. The impact of synchronous communication on the
problem of electing a leader in a ring. In Proceedings of the Sixteenth Annual ACM
Symposium on Theory of Computing, pages 493-503, 1984.

[16] A. Greenberg and R. Ladner. Estimating the multiplicities of conflicts in multi­
ple access channels. In Proc. 2,lnd Annual Symp. on Foundations of Comput. Sci.,
pages 383-392, 1983.

[17) A. Itai and M. Rodeh. Symmetry breaking in distributed networks. In Proc. 22nd
Annual Symp. on Foundations of Comput. Sci., pages 150-158, 1981.

[18] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some distributed
algorithms for a complete network of procesors. In Proc. 3rd Annual ACM Symp. on
Principles of Distributed Computing, pages 199-207, 1984.

[19] M. Loui, T. Matsushita, and D. West. Election in a complete network with a sense of
direction. Information Processing Letters, 22(4):185-187, 1986.

[20] Y. Mansour and S. Zaks. On the bit complexity of distributed computations in a
ring with a leader. In Proc. 5th Annual ACM Symp. on Principles of Distributed
Computing, pages 151-160, 1986.

(21] S. Moran and M. Warmuth. Gap theorems for distributed computation. In Proc. 5th
Annual ACM Symp. on Principles of Distributed Computing, pages 131-140, 1986.

(22] T. Nagell. Introduction to Number Theory. John Wiley and Sons Inc., New York,
1951.

[23] J. Pach!. A Lower Bound for Probabilistic Distributed Algorithms. Technical Re­
port CS-85-25, University of Waterloo, Waterloo, Ontario, 1985.

[24] J. Pachl, E. Korach, and D. Rotem. Lower bounds for distributed maximum finding.
J. Assoc. Comput. Mach., 31(4):905-918, 1984.

References 122

[25] G. Peterson. An 0(n logn) algorithm for the circular extrema problem. A CM Trans.
on Prog. Lang. and Systems, 4(4):758-752, 1982.

[26] P. H. Robert Gallager and P. Spira. A distributed algorithm for minimum weight
spanning trees. ACM Trans. on Prog. Lang. and Systems, 5(1):66-77, 1983.

[27] J. Sack, N. Santoro, and J. Urrutia. O(n) Election Algorithms in Complete Graphs
With Sense of Direction. Technical Report SCS-TR-49, Carleton University , Ottawa,
Ontario, 1984.

(28] N. San taro. Sense of direction, topological awareness, and communication complexity.
SIGACT News, 16(2):50- 56, 1984.

[29] V. Syrotiuk and J. Pachl. A veroge Complexity of a Distributed Orientation Algorithm.
Technical Report CS-87-23, UnJversity of Waterloo, Waterloo, Ontario, 1987.

[30] M. Yamashita and T. Kameda. Computing Functions on an Anonymou.s Net-
work. Technical Report LCCR-TR-87-16, Simon Fraser University, Burnaby, British
Columbia, 1987.

(31] M. Yamashita and T. Kameda. Computing on an Anonymous Network. Technical
Report LCCR-TR-87-15, Simon Fraser University, Burnaby, British Columbia, 1987.

(32] A. Yao. Some complexity questions related to distributive computing. In Proceedings
of the Eleventh Annual ACM Symposium on Theory of Computing, pages 209- 213;
1979.

