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Abstract 

Upper and lower bounds that match to within a constant factor are found 
for the expected bit complexity of a problem on asynchronous unidirectional 
rings of known size n, for algorithms that must reach a correct conclusion with 
probability at least 1 - l for some small preassigned l ~ 0. The problem is 
for a nonempty set of contenders to determine whether there is precisely one 
contender. If distributive termination is required, the expected bit complex
ity is e{n min(log v(n) + y'log log(l/ E), y'1ogn, log log(l/E))), where 11(n) is 
the least nondivisor of n. For nondistributive termination, y' log log(l/E} and 
y' log n are replaced by log log log(l/l) and log log n respectively. The lower 
bounds hold even for probabilistic algorithms that exhibit some nondetermin
istic features. 





1 Introduction 

Our primary objective is to gain a deeper understanding of the nature of distributed 
computation. Our choice of an asynchronous ring as a network topology to study 
is motivated not just by the simplicity of this configuration but by the fact that 
it exhibits interesting features of distributed computation that can be expected to 
show up in other more complex topologies as well. 

Typical of issues that need to be addressed in solving problems in any dis
tributed setting are the following: 

• Knowledge: What do individual processors know about the global properties 
(size, organization) of the network? Are processors distinguishable? To what 
extent can this knowledge help in solving a specific problem? 

• Type of Algorithms: Is the desired algorithm deterministic, randomized or 
probabilistic? How does the type of algorithm affect the complexity of the 
solution? We use the terms randomized and error-free to describe an algorithm 
which may rely on coin tosses, but which never produces an incorrect result. 
The terms probabilistic and error-tolerant describe an algorithm which gives 
incorrect results with low but positive probability. 

• Type of termination: Must algorithms terminate distributively, or is non
distributive termination acceptable? (An algorithm terminates distributively 
if each processor, after reaching a conclusion, will not revoke its conclusion 
upon the receipt of subsequent messages. This is the usual requirement of 
an algorithm. A process executing a nondistributively terminating algorithm 
can never know that the algorithm has terminated.) What price do we pay 
for insisting on distributive termination? 

• :M;easure of complexity: What are appropriate things to measure in analy
sing the complexity of a specific problem? Messages, communication bits, 
synchronous time? 

One of a few fundamental problems that have been well studied in a dis
tributed computation setting is that of electing a leader - that is, causing a unique 
processor among a specified set of contending processors to enter a distinguished 
(leadership) state. Leader election on an asynchronous ring can be viewed (cf. [1,4]) 
as the composition of two even more fundamental problems: attrition and solitude 
detection. The attrition problem is that of reducing a set of contenders to exactly 
one contender. Solitude detection is the problem of confirming that attrition is 
complete. In fact, both attrition and solitude detection deterministically reduce to 
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leader election in simultaneous O(n) bits and time, on rings of size n, which further 
justifies the view of leader election as attrition plus solitude detection. 

This paper is concerned with the solitude detection problem on a unidirectional 
asynchronous ring. Let a nonempty set of processes on a ring be distinguished 
as contenders. The solitude detection problem is for every process to determine 
whether or not there is only one contender. A solitude detection algorithm is 
initiated simultaneously by all of the contenders. 

Deterministic [3,6,7], randomized [1,4] and probabilistic [2,5) solutions to prob
lems related to solitude detection, including leader election and maximum finding, 
have been considered earlier. Of particular relevance to the present paper are ear
lier results on the bit complexity of solitude verification, a subproblem of solitude 
detection. 

Solitude verification requires a contender to conclude that it is alone precisely 
when it is alone. There are no other requirements. For example, a solitude verifi
cation algorithm can fail to terminate when there are two or more contenders. The 
bit complexity of solitude verification is defined to be its complexity when there is 
exactly one contender. The relation between solitude verification, solitude detection 
and leader election is discussed in the concluding section of the paper. 

Prior results for solitude verification concern the case of processors which do 
not have exact knowledge of the ring size n. In the cases summarized below, as 
in the cases considered in this paper, processors do not necessarily have distinct 
identities. All of the stated upper bounds for solitude verification in fact apply to 
the stronger problem of solitude detection. 

The results below involve a parameter e. Throughout this paper, e represents 
a real number satisfying O < e :5 1/4. 

First suppose that processors have. no knowledge of n. Then solitude ver
ification is impossible with any distributively terminating probabilistic algorithm 
that is correct with probability bounded away from zero. However, there exists a 
nondistributively terminating probabilistic algorithm that solves solitude detection 
with probability of error at most e using O(nlog(l/e)) expected bits of commu
nication. Furthermore, any such algorithm requires fl(nlog(l/e)) expected bits of 
communication [2]. 

Now suppose that all processors know two integers N and 6. such that N-6. :5 
n :5 N. If 6. ~ N /2 then solitude verification is impossible for any randomized 
(i.e. error-free) algorithm even with nondistributive termination. However, there 
exist distributively terminating probabilistic algorithms that solve solitude detection 
with probability of error at most e using O(n✓ log(N/n) + nlog(l/e)) expected 
bits of communication. Furthermore, when n :5 N /2 any such algorithm requires 
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O(nJlog(N/n) + nlog(l/e)) expected bits (2]. 
If A < N /2 then there exist distributively terminating deterministic solitude 

detection algorithms that communicate O(n log n) bits in the worst case. Also, any 
even nondistributively terminating, nondeterministic solitude verification algorithm 
(i.e. a certification of solitude) must use n(n log A) bits in the best case (1]. 

If A ~ N/k where k > 2 then there exist distributively terminating proba
bilistic algorithms that solve solitude detection with probability of error at most 
E using O(nloglog(l/e)) expected bits. Furthermore, all such algorithms require 
O(min(n log A, n log log(l/e))) expected bits [2]. 

None of the results above adequately address the (realistic) case where A is 
very small, specifically A = 0 (i.e. n is known exactly). It is to this case that 
we devote our attention in the remainder of this paper. The main results can be 
,mmmarized briefly as follows. As above, all complexity bounds apply to the case 
of exactly one contender. In all cases, the bit complexity is 0(n) when there are 
two or more contenders. 

The bit complexity of detecting solitude without error using a distributively 
terminating algorithm is 0 ( nJ log n). When nondistributive termination is per
mitted, the bit complexity of error-free solitude detection drops to 0(nloglogn). 

The expected bit complexity of verifying solitude with probability of error at 
most Eis 0(nmin(log v(n)+Jloglog(l/e), Jlog n, log log(l/e))) if distributive ter
mination is desired, and 0(n min(logv(n) + log log log(l/e), loglogn, log log(l/e))) 
if nondistributive termination is acceptable, where v( n) denotes the smallest posi
tive nondivisor of n. 

Thus the asymptotic complexity of solitude detection for both distributively 
and nondistributively terminating algorithms is known, to within constant factors, 
for all values of the relevant parameters n and E. In fact, our lower bound .results 
are proved on a model of computation that permits much more powerful algorithms 
than th(?se used to achieve the corresponding upper bound results. A more detailed 
discussion contrasting our upper and lower bounds is presented in the concluding 
section of the paper. 

2 Solitude Verification Algorithms 

This section describes solitude detection algorithms for four conditions, depending 
on whether a randomized (error-free) or probabilistic (error-tolerant) algorithm is 
desired, and whether the algorithm must terminate distributively or not. In the 
probabilistic case, the algorithm errs (with low probability) only when there are two 
or more contenders. Since all of the algorithms are similar, they are all presented 
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as a single parameterized algorithm, consisting of five stages. Not all stages are 
executed in all conditions. Stage 4 is only executed if distributive termination is 
required. Stage 5 is only executed by probabilistic algorithms. 

The algorithm has an integer para.meter l ~ 4, which is adjusted according to 
type of algorithm desired. Let v(n) be the smallest positive nondivisor of n. Then 
v(n) is a prime power; say, v(n) = p'. Lett be the smallest integer such that p' > l. 
Let m = p11+t. Notice that m does not divide n and m > l. 

The algorithm is described for a contender. Non-contenders cooperate, as 
described. If a contender receives evidence that it is not a.lone before the algorithm 
is finished then it sends one of two kinds of alarm. A loud alarm is sent if the 
evidence is conclusive. Having sent a loud alarm, a contender aborts the algorithm, 
and concludes that it is not alone. A soft alarm is sent during a probabilistic 
algorithm when a contender has received strong but not conclusive evidence that 
it is not alone. After sending a soft alarm, a contender waits to receive an alarm, 
then proceeds directly to stage 5. 

Alarms a.re forwarded by non-contenders. A contender which receives an ala.rm 
while expecting some other type of message aborts what it is doing, and sends a loud 
alarm. Each contender sends at most one alarm of each kind. A contender which 
has finished the algorithm without sending or receiving a loud alarm concludes that 
it is alone. 

Stage 1: (The purpose of this stage is to keep the complexity low when there 
are many contenders.) Toss an unbiased coin K = f 2 log ml times, and send the 
outcomes, one at a time, to the right. After sending each coin toss, receive a toss 
from the left. If the toss received does not match what was just sent, send a loud 
alarm. 

Stage 2: (This stage will generate an alarm if there are i contenders, where 2 < 
i ~ l.) Send a counter, initially 1, to the right. The counter is incremented mod 
m2 by e.ach non-contender, and propagates to the next contender. Receive a count 
from the left. If the count is not congruent ton (mod m 2

), send a loud alarm. 

Stage 3: (This stage generates an alarm within every sequence of l distinct con
tenders.) Inform the contender to the right whether the distance separating it from 
yourself is greater than n/l. 

(a) For an error-free algorithm, send a counter, initially one, to the right. Each 
non-contender increments the counter, until the counter reaches a value greater 
than n/l. At that point, the message "long" is propagated to the next con
tender. Receive a message from the left. If the message is not "long," send a 
loud alarm. 
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(b) For an error-tolerant algorithm with error probability at most e, let .\ = 
4 pog(4l/e)l, If n :5 min(200log(l/e), lLXl + l)), then use a deterministic 
counter, as in (a). Otherwise, start a counter, initially zero. Before forwarding 
the counter to the right, the contender and each non-contender increments the 
counter with probability .\l/n. When the counter reaches a value greater than 
2)., the message "long" is propagated to the next contender. Receive a message 
from the left. If the message is a counter, not "long," let c be the value of the 
counter, send a soft alarm, wait for a soft alarm to arrive, then go to stage 5. 

Stage 4: (This stage is only executed if distributive termination is desired. It serves 
to flush alarms.) Alternately send and receive l "ok" messages. Of course, if an 
alarm arrives, forward a loud alarm. 

Stage 5: (This stage is only executed by processors which sent a soft alarm. It 
eliminates the possibility of error when there is a single contender.) Let c be the 
count received in stage 3, and let g = cn/(>.l) be an estimate of the distance to the 

nearest contender to the left. Let K = flog(l/E) + Jlog(n/fl) l +2, and alternately 
send and receive up to K coin tosses, as in stage 1. Send a loud alarm as soon as 
the toss received does not match that just sent. 

Correctness 

Error-free case. Alarms are sent only when a contender has conclusive evidence 
that it is not alone .. Hence, when there is a single contender, the algorithm answers 
correctly. 

Suppose there are i > 2 contenders. Shortly we will show that, if an alarm 
is sent by any contender, then all contenders conclude "not alone". So suppose no 
alarm is sent. Let gi, ... , g, be the lengths of the gaps separating the contenders. 
Then g1 + • • • + g, = n. Since no alarms are sent at stage 2, it must be the case 
that U; = n (mod m 2

) for j = 1, ... , i. Let r be the remainder when n is divided 
by m 2 • Then ir = r (mod m 2), from which it follows that m2 I (i- l)r. But m %n, 
so m .,fr, and, since mis a prime power, m I (i - 1). Hence, i > m > l, and one 
of the gaps u; must be less than n/l. So some processor will detect a short gap at 
stage 3, and will send an alarm. 

If nondistributive termination is sufficient, then it is clearly sufficient for an 
alarm to be sent. For distributive termination, each contender should receive an 
alarm before it reaches a conclusion. But notice that, for any l consecutive con
tenders (assuming more than l contenders), one of the gaps to the left of one of 
those contenders is shorter than n/l. So each contender will surely receive an alarm 
by the time it reaches the end of stage 4. 
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Error-tolerant case. Again, a loud alarm is only sent when a processor receives 
conclusive evidence that it is not alone, so it suffices to consider the case where there 
are i > 2 contenders. There are two ways to err: either some processor reaches the 
end of stage 4 without having sent any kind of alarm, or every processor sends an 
alarm, and some processor fails to send a loud alarm at stage 5. We show that the 
probability of each kind of error occurring is at most £/2. 

Consider the first kind of error. Let k = l n / l J > U>.. The mean value of the 
stage 3 count at distance k from the contender which started the count is at most 
>.. The probability that the count reaches 2>. + 1 before the k th coin toss is well into 

the tail of the binomial distribution, and is less than (2~) (¼)2.\ (1 - ¼/-2
.\. But 

(2k.\) < k2.\(2>.)-2.\e2\ so the probability that a gap of length at most k appears to 

be "long" is less than e2.\2-2.\e-.\(k~.\)2.\ < .83.\ < £/(41). 
Say that a gap is short if its length is less than n/l. It suffices to estimate 

the probability that som.e short gap is counted as long. That probability is clearly 
maximum when there are fewer than 2l contenders, since combining two very short 
gaps to produce one short gap can only increase the probability of many increments 
in some short gap. So the probability that some short gap is counted as long is less 
than 21( £/ 41) = £/2. 

Now consider stage 5. Loud alarms can only help, so suppose each contender 
has sent a soft alarm, and executes stage 5. Stage 5 is a version of an algorithm 
described in [2]. That algorithm assumes that the ;'" contender, for j = 1, ... , i, 
has an estimate 9; of the gap g; between it and the nearest contender to its left, and 
that E(g;) < g;. Suppose we use, for 9;, the value of 9 obtained by the;'" contender 
at stage 5. Assuming the;'" contender reaches stage 5, E(g;) = g;. Theorem 3 of 
[2] guarantees that, when there are i > 1 contenders, then with probability at least 
1- £/2 every contender will send an alarm. 

Complexity 

When there is one contender. The bit complexity of stages one and two together is 
O(nlogm) = O(nlogv(n) + nlogl). 

In the error-free case, stage 3 costs O ((n/l) log n) bits. For a nondistributively 
terminating algorithm, a choice of l = max ( 4, flog n 1) yields a total complexity of 
O(nlogv(n) +nloglogn) = O(nloglogn). 

For the distributively terminating error-free algorithm, stage 4 costs an ad
ditional O (nl) bits. Choosing l = max(4, r.Jlogn l) gives a total complexity of 

O(n.Jlogn) bits. 
Now consider the error-tolerant version. We can assume that n > 200log(l/£), 
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since otherwise an error-free algorithm is used, and has the desired complexity. 
When there is just one contender, the mean number of times its stage 3 counter 
is incremented is >.l ~ 4>.. The probability that a single contender sends a soft 

alarm at stage 3 (i.e. there are at most 2>. increments) is less than 2(
2
:) ( ~ ) 2

.\ x 

( )
n- 2A 

1 - 4,: < 2(0.66).\ < E. Moreover, given that a single contender does send 
a soft alarm, its estimate g of the gap to its left (which is just n) is almost surely 

very close to 2n/l. So E(Jlog(n/g)) < ~- Given the choices of l which will 
be made below, the total expected number of bits sent in stage 5 when there is a 
single contender is O(Enlog(l/E)) = 0(n). 

The expected cost of stage 3 is 0((n/l) log>.) = 0((n/l) loglogl + 
(n/l) loglog(l/E)). Choosing l = max(4, r1oglog(l/E)l) gives a total expected cost 
for stages 1, 2, 3 and 5 of O(nlogv(n) + nlogloglog(l/E)) bits, so that is the 
cost of achieving nondistributive termination. When stage 4 is included, choose 
l = max(4, rJloglog(l/E) l), The complexity of achieving distributive termination 

is then O (nlogv(n) + nJloglog(l/E)) expected bits. 

When the-re are two or more contenders, The following analysis applies to both 
the error-free and error-tolerant versions. Let k be 2, 3 or 4. The probability that a 
given contender executes stage k is at most 1/m2 , due to the coin tosses in stage 1. 
The probability that a given non-contender participates in stage k is also at most 
1/m2, since a non-contender participates only if the nearest contender to its left 
does. So the total expected cost of stages 2, 3 and 4 is O ((n/m2) (logm +log,.,+ l)), 
where 'Y is either ). or n/l. But in all cases, that is 0(n). Stages 1 and 5 require 
0(n) expected bits, since each contender sends 0(1) expected bits before it sends 
an alarm, and each non-contender sends as many bits as the nearest contender to its 
left. So the total cost is 0(n) expected bits, when there are two or more contenders. 

When E is very small, our error-tolerant algorithm can be more expensive than 
our error-free algorithm. Obviously, the cheaper algorithm should be used. In fact, 
there is· a third algorithm, given in [2], which in some circumstances can be more 
efficient than either the error-free or error-tolerant algorithm given here. That algo
rithm does not require exact knowledge of n, only that n is known to within a factor 
of c < 2, and uses 0(n log log(l/ E)) expected bits. By choosing the best of the three 
algorithms, we find that the expected bit complexity of solitude detection with confi
dence 1-E, when there is one initiator, is 0(n min(log v(n) +Jlog log(l/E), Jlog n, 
loglog(l/E))) for distributive termination and 0(nmin(logv(n) + logloglog(l/E), 
loglogn, loglog(l/e))) for nondistributive termination. 

The 0( n log log(l/ e)) bit algorithm of [2] has poor complexity when there are 
two or more contenders. But it can be modified along the lines of the algorithm 
given here to use only 0(n) bits when there are two or more contenders. Thus, 
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regardless of which of the three algorithms is chosen, the bit complexity is O(n) 
when there are two or more initiators. 

Given that our upper bound is a combination of three rather different algo
rithms, it would not be surprising, in the absence of further results, to find that a 
fourth algorithm performed better than all three of ours, at least sometimes. We 
now turn to lower bounds, and show that our upper bound is in fact optimal to 
within a constant factor. In some sense, there are just three essentially different 
algorithms, or three ideas to be exploited, each, for distributive and nondistributive 
termination. 

3 A Model for Proving Lower Bounds 

Our objective is to study the inherent bit complexity of distributed probabilistic 
algorithms that verify solitude on unidirectional rings with a high probability of 
correctness. A distributed algorithm is an assignment of processes to processors. 
So it suffices to model computations induced by a cyclic sequence of processes. Our 
model is based on the following non-restrictive assumptions: 

i) messages are self-delimiting; 

ii) only contenders may initiate; and 

iii) communication is message driven, and only one message is sent in response 
to receipt of a message. 

The algorithms of section 2 are consistent with these assumptions. Further
more, in the algorithms every contender (respectively, non-contender) executes the 
same probabilistic process. In our model we relax this assumption and allow the 
possibility that individual contenders (respectively, non-contenders) may execute 
different processes. It is assumed, however, that the correctness of the distributed 
algorithms does not rely on either the distinctness or the distribution of individual 
processes. For a further discussion of the differences between the models assumed 
for the algorithms and for the lower bounds, see section 5. 

A message is an element of M = {O, 1}* • □. The symbol □ is called the end of 
message marker. If mis a message we denote by llmll the length of m, including the 
end marker. A communication event is an element of MU {b.}. The null event b. 
denotes the absence of an input or an output message and should be distinguished 
from the empty message ' □ '. 

Any even length sequence of communication events, C = ( e1, e2, ..• , e2,) de
scribes a communication history. The subsequence (e1, es, ... e2,-1) is called the 
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input history of C and subsequence ( e2, e,, ... , e2t) is called the output history. Com
munication history C is said to be reduced if C does not begin or end with a pair 
of null events. 

If h E (MU {.6.}t is any history we denote by lhl the length of hand 11h11 the 
cost of h, that is, the sum of the lengths of all messages in h. 

A (probabilistic) process is modelled by an assignment of probabilities to com
munication histories. Let ,r be a process and C be a reduced communication history 
with input history h and output history h' (where, necessarily, lhl = lh'I). We de
note by h { ,r} h' the event that process 1r produces output history h', given that it 
has input history h. An event h { 7r} h' with nonzero probability is called a compu
tation of 7r with input history h. The possibility that a process can produce more 
or fewer messages than it reads is accounted for by padding one or both of h and 
h' with null events. 

We will only rarely have occasion to deal with unreduced communication his
tories. Identical probabilities are assigned to each of the events h { 1r} h', .6.h { ,r} .6.h' 
and h.6. { ,r} h' .6.. 

Since we have restricted our attention to message driven processes, we can 
assume that input histories are elements of .6. • M•. In fact, our main focus will be 
on what we call normal communication histories, in which the entire communication 
history is an element of .6. • M• .6.*. 

If h is a history let h(i) denote the length i prefix of h. By the sequential 
nature of communication, we have, 

Property 3.1: For all histories h and h' and all i > 1, Pr( h { 1r} h') < 
Pr(h(i) { 1r} h(i)). 

We say that process ,r is an initiator if EmeMPr(.6.{1r}m) > 0. All other 
processes are non-initiators. An initiator is just a process which has nonzero prob
ability of sending a message before it receives one. We presume that the contenders 
in any ring are just the initiators. 

If ,r1 and ,r2 are processes then their composition, denoted 1r1 1r2, is the process 
1r satisfying 

h." 

Thus, 1r1 ,r2 is obtained by identifying the output of 1r1 with the input of 1r2. If at 
most one of 1r1 and 1r2 are initiators and ,r1 and 1r2 realize only normal communication 
histories then so does their composition. 

The notion of process composition suffices to allow us to study the behaviour 
of a sequence of processes on a line as a function of the behaviours of the individual 
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processes. Our objective, however, is to study the behaviour of processes on a 
ring. Informally, process 7r is on a ring if its output is fed back into its input. 
Fortunately, the essential properties of process rings are reflected by properties of 
associated process lines. The relationship between rings and lines is given by the 
following: 

Property 3.2: Let 7r and 1r' be any processes. 

i) If Pr( 6h { 7r} h6) = p then, with probability p, computations of 7r on a ring 
result in 7r producing output history h6. 

ii) If Pr( 6' { 7r} h) = p then, with probability at least p computations of 1r' 7r on 
a ring result in 7r producing as output a (possibly infinite) string of messages 
with prefix h. 

The placement of nulls in property 3.2 is important. For example, it is quite 
possible that, when given input history h, process 7r produces output history h with 
positive probability, that is, Pr( h { 7r} h) > 0. But when 1r's output is fed back into 
its input, 7r produces no messages; 7r is deadlocked, waiting for itself. 

If 7r 1, ... , 7r, is a sequence of processes, let 7r ,,; denote the composition 7r, • • • 7r;, 
for 1 < i :5 i :5 t. It is convenient to view a sequences of processes 7ri, ... , 7rt as 
a single process, namely the composition 1r1,,. By abuse of notation, a sequence is 
frequently identified with its composition. The real difference between the two is 
that, although 7r1,t is a single process, with communication cost assigned only to its 
input and its output, the sequence 1r1, ... , 7rt has communication cost assigned to 
each link from 1r, to 7rH1, for 1 :5 i < t. 

The notion of a computation can be extended to sequences of processes. A 
sequence h0 , ••• , h, of histories describes a computation of the process line 1r1,, 
which is equivalent to the conjunction of the independent events h, {1r,+1} hH1, for 
0 :5 i < t, in the appropriate product space. The cost of such a computation is 
given by Et=1 llh,II, Note that ho does not contribute to the cost. If 7ri, ... , 7rt 
are processes (or sequences of processes), let h0 {1r1} h1 • .. {1r,}h, denote the event 
described by sequence h0 , ••• , h,. 

We distinguish a subset Ma C M called accepting messages, and a subset 
Mr ~ M called reiecting messages. A history is an accepting history ( respectively, 
reiecting history) iff its last message is an accepting message (respectively, rejecting 
message). A computation described by ho, ... , h, asserts solitude if each of the 
histories h, is an accepting history, and asserts non-solitude if each of the h, is a 
rejecting history. A process 7r is said to terminate distributively if 7r never outputs 
another message after having output an accepting message. 
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A sequence 1r1,t of processes is said to assert solitude (respectively, non-solitude) 
on a ring with probability p if computations of 1r1,t on a ring assert solitude (respec
tively, non-solitude) with probability p. 

The following lemma shows that if the expected cost of computations of a 
one-initiator sequence 71"1,t on a ring is bounded then inexpensive computations of 
the form L:!.h {P1,t} hL:!. occur with reasonably high probability, where p1,, is some 
cyclic permutation of 1r1,, and h is some fixed element of M•. 

Lemma 3.3: Let 1r1, ... , 7rt be any sequence of processes with exactly one 
initiator. Suppose that 1r1,t asserts solitude on a ring with probability at least 1- E. 

Suppose also that the expected cost of computations of 1r1,, that assert solitude is at 
most µt. Then there exists an integer i, where 1 < i < t, and an accepting history 
h with 11h11 < 4µ such that 

Pr(L:!.h {1ri+1,t 1r1,i} hL:!. & A) ~ (1 - E)2-(4µ+s) 

where A denotes the event that a computation of the process line 7ri+I,t 1r1,i with 
input history L:!.h has total cost at most 2µt. 

Proof:We know that with probability at least 1 - E each of the processes 1r1, 

••• , 7rt outputs an accepting history. Since the expected cost of accepting compu
tations is at most µt, the probability that an arbitrary computation of 1r1,, accepts 
and communicates fewer than 2µt bits is at least (1 - e)/2. 

Let e, denote the expected number of bits in the output history of process 71"i, 

over all accepting computations of 1r1,t with costs of at most 2µt bits. For some i, 
e, < 2µ, and hence with probability at least (1 - e)/4, 1r, has an accepting output 
history with no more than 4µ bits and the entire computation has cost at most 2µt. 
But there are fewer than 24"+1 distinct histories with at most 4µ bits and hence, 
with probability at least (1 - e)2- (4µ+s), 1ri outputs some fixed accepting history h, 
where 11h11 < 4µ and the entire (accepting) computation has cost at most 2µt. Thus 
Pr(L:!.h {1r,+1,t 1r1,;} hL:!. & A) > (1 - e)2- (4,i+s). ■ 

Let x be a number (which will be given a specific value whenever necessary) 
called the cheapness threshold. A computation of an arbitrary sequence of processes 
is said to be cheap if it has total cost at most X· Let h {1r1,t) h' denote the event 
h {1r1,t} h' & A, where A is the event that the computation of processor sequence 
1r1,t with input history h is cheap. Similarly, ho (1r1) h1 · • • (1r,) h, denotes the event 
ho {1r1} h1 · · · {1r,} ht & A. 

At the heart of our lower bound proofs is the observation that a sequence of 
histories of sufficiently small total cost must contain the same history twice. The 
following lemma refines that observation to a probabilistic setting, and provides 
information about the separation between the repetitions. 
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Lemma 3.4: Let 1r1,t be any sequence of processes. Let u and r be positive 
integers satisfying 

(a) r ~ 362
, 

(b) 24x < t log r, and 

(c) t > ru. 

Let h0 and h1 be any histories. Then there exist integers i, j and m, where 1 < i < 
j ~ t and 1 ~ m < r, and a history h• such that 

i) j - i = mu and 

ii) Pr(h0 (7r1,i-1) h• (7ri.;-1) h• (7r;,t) h1) ~ ,,.-1 Pr(h0 (7r1,t) h1
). 

Proof: Suppose without loss of generality that the event C = h0 (7r1,e) h1 has 
nonzero probability. For 1 ~ i < t, let ei be the expected cost of the output history 
of 71"i, conditional on C. That is, ei = Eh; llhill •Pr(h0 {7r1,i}h.{7ri+1,,}h1 IC). Let 
o = logr. 

If ei < 6/8, say that link i is cheap. If 11h11 < 6/4, say that history h is 
short. Suppose that link i is cheap and let hZ be the short history which maximizes 
Pr(h0 {7r1,i} hZ {7ri+1,,} h1 I C). Since there are fewer than 26/Hl = 2r114 short 
histories, it follows that Pr(h0 {7r1,i}h;{7ri+1,t}h1 I 0) > 4,.\µ,, since otherwise ei > 
(6/4)(1- !~:~:) = 6/8, contradicting the cheapness of link i. 

For 1 ::5 j < t - (r - l)u, let B; = {j + ku : 0 < k < r}. Choose a j such 
that at least 1/3 of the r members of B; are cheap links. Such a j must exist, 
since otherwise at least 2/3 of at least rul(t - 1)/ruJ ~ t/2 links are not cheap, 
contradicting the assumption that E:=1 ei ~ x < to /24. 

Again, because there are at most 2r114 short histories, at least w = r r 314/6l of 
the cheap members k of B; have identical h'ie, Let i1, ... , iw be w such members, and 
let h• d·enote the common history. Let D, denote the event h0 {7r1,,.-i} h• {7r,.,,} h1 , 

for 1 ~ s ::5 w. By the inclusion-exclusion principle, 

L Pr(Dr & D, I 0) ~ (E Pr(D, I o)) -1. 
r<, , 

Since Pr(D, I 0) ~ 
4
,.h,, there must exist rands such that 

Pr(Dr & D, I 0) 

1 
> -, 

r 

12 

for r > 362
• 



Thus Pr(D,. & D. & C) > r-1 Pr(C). So, it suffices to choose i = i,. and i = i.. ■ 

Lemma 3.4 only locates repeated histories. The following property and lemma 
use repeated histories to relate lines of different sizes. 

Property 3.5: Let 1r1, •.• , 1rt be a sequence of processes and let 1 < i < i < t. 
Let h0

, h1 and h• be histories. Let p = Pr(h0 {1r1,i_1) h• {,ri,;-1) h• {1r;,t) h1). Then 
Pr(h0 {1r1,i-1) h"' (1r;,t) h1) > p and Pr(h"' (1ri,;-1) h"') ~ p. 

Proof: It suffices to observe that any computation satisfying h0 (,rl,i-l) 

h"' (,ri,;-1) h• (,r ;,t) h1 includes disjoint subcomputations satisfying h0 (1r1,,_1) h"', 
h• (,ri,;-1) h"' and h• {1r;,t) h 1• ■ 

Lemma 3.6: Let ,r1 , ••• , 1r, be any sequence of processes with one distin-
guished process, say ,ri• Let u, T and t0 be positive integers satisfying 

(a) T ~ 362, 

(b) to st, 
(c) 48x s tologr, and 

(d) t0 ~ 2ru. 

Let h0 and h1 be any histories. Then there exists a length r (non-contiguous) 
subsequence 1rL,. = 1r,1 • • • 1r1r of 1r1,,, including 1r,, such that 

i) to - ru < r < to, 

ii) r = t (mod u), and 

iii) Pr(ho (1rL,.) hl) ~ T-1-2rln t-;;o Pr(ho {1r1,t) hl). 

Proof: Suppose that conditions a) through d) are satisfied. The idea is to 
apply Lemma 3.4 and property 3.5 repeatedly, each time eliminating some processes 
between repeated histories, being careful not to eliminate 1r,. At a given step, the 
sequence remaining has some length t', where t 0 < t' < t, and t' = t (mod u). 
Let x = 1r;i • • • 1r;e, be the current remaining sequence, which is a (non-contiguous) 
subsequence of 1r1 t including 11"i. Let c,• be the largest multiple of c, which does not 

I I 

exceed u + t -to 2r • 
Sequence x has a contiguous subsequence of length at least l t' /2 J not contain

ing 1r1. Assume without loss of generality that x = uv, where 1r1 occurs in sequence 
u, and v has length at least l t' /2 J. Treating u as a single process, sequence uv 
has length at least f (t' + 1)/21. By Lemma 3.4, with o-• playing the role of o- and 
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f (t' + 1)/21 playing the role oft, and by property 3.5, there exists a lengths (non
contiguous) subsequence y = 11"1:1 • • • 11"1:11 of x, including '11";, such that s = t' - mu•, 
1 ~ m < r, and Pr(h0 (y) h1) ~ r-1 Pr(h0 (x) h1). We call the act of constructing 
a subsequence y of x satisfying the above properties shrinking the sequence x. By 
starting with '11"1,t and shrinking some number g times in this fashion, we eventually 
construct a sequence 'll"i,. where 

I 

i) to - ru < r < to, 

ii) r = t (mod u), and 

iii) Pr(h0 ('11"L,.) h1) ~ r- 11 Pr(h0 ('11"1,t) h1) 

Each time we shrink, except for the final shrink, the value of t' - to decreases by a 
factor of 1 - 1/(2r). Since the last shrink is by at least u processes, it follows that 

g < 1 + g where g is the smallest integer such that (t - t0) (1 - lf')' < u. Taking 

logarithms to the base e, and using the fact that In ( 1 - 2
1f') < - 2

1f', we get that 
g < 2rln t-:0 • ■ 

4 Lower Bounds 

Let '11"1 , ••• , '11"n be a sequence of processes with exactly one initiating process '11"1 • 

Say that 11"1,n requires k bits for confidence 1 - f if at least one of the following is 
true. 

i) the expected cost of computations of '11"1,n on a ring that assert solitude is at 
least k. 

ii) computations of '11"1,n on a ring fail to assert solitude with probability greater 
than f. 

iii) there is a sequence of processes '11"i,n, including two or more initiators, such that 
a) for every j there is an i such that 11'i = 11";, and b) terminating computations 
of 11"~ n on a ring fail to assert non-solitude with probability greater than f. 

I 

(Tlms, with probability greater thane, some processor erroneously concludes 
that there is only one contender.) We call 1rLn a fooling sequence for 11"1,n• 

The following theorems, together with our upper bounds, completely charac-
terize the bit complexity of solitude verification to within a constant factor in all of 
the cases we have considered. In the interest of ease of presentation, we make little 
effort to establish strong constant factors. 
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Theorem 4.1: There is a constant c > 0 such that if 71"1,n is any sequence 
of distributively terminating processes with exactly one initiating process 71"1, then 
1r1,n requires en min ( J log n, V log log(l/e)) bits for confidence 1 - E. 

Proof: The theorem is trivially true when n or 1/ E are of moderate size, 
even for reasonable values of c, so assume that n is very large and E is very small. 
Suppose that computations of 71"1,n on a ring assert solitude with probability at least 
1- E. Furthermore, assume that the expected cost of computations of ,r1,n on a ring 

that assert solitude is µn where 1 ~ µ < (1/21) min {Jlogn, Jloglog(l/E) ). We 
construct a fooling sequence 71"i,n for 71"1,n• 

By Lemma 3.3, there exists an integer i, 1 < i < n, a cyclic permutation 
P1,n = 71"i+1,n 71"1,i of 71"1,n and an accepting history h with 11h11 :::; 4µ such that 
Pr(~h (Pi,n) h~) ~ (1- E)2-4

"-
8

, where the cheapness threshold is x = 2µn. Since 

µ < Jlogn/21, we haven > Bµr. Apply Lemma 3.6, choosing to = f n/(4µ)1, 
r = 2884

"'
2 

and u = Ln/(Bµr)J. The conditions of the lemma are easily checked. It 
follows that there exists subsequence z = 71"; 1 • • • 71";,. of P1,n, including ,r1, such that 
r < t0 and 

Pr(~h (z) h~) > ,,-i-2dn(l5µ,-) Pr(6h (P1,n) h~) 
> (1 _ e)r-l-27"ln(16µ,-) 2-4µ-s 

> ,,-sdn,-

Now treat sequence z as a single process, and imagine splicing together t = 
max(lhl, 2) < 4µ copies of z. By property 3.1, 

t-1 

Pr(~t {zt} h) > IT Pr(6t-;h(j) {z} ~t-;-1hc;+1)) 

j=O 

> ,,-stdn,-

> f 

sinceµ< (1/21)Jloglog(l/E). 
By property 3.2, it follows that with probability at least E computations of any 

ring R of n processes including the sequence zt result in some process producing 
a string of messages with prefix h. But since processes terminate distributively 
and his an accepting history, all such computations terminate with some processor 
concluding that it is alone. ■ 

Corollary 4.2: Any error-free distributively terminating solitude verification 
algorithm uses n(nJlog n) bits on every ring with a single contender. 
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Theorem 4.3: There is a constant c > 0 such that if 1r1,n is any sequence 
of (nondistributively terminating) processes with exactly one initiating process 1r1, 

then 1r1,n requires cnmin(logv(n), loglog(l/E)), bits for confidence 1- E. 

Proof: Let the expected cost of accepting computations of 1r1,n on a ring be 
µn, where 1 ~ µ < (1/100) log(v(n) -1). We will suppose thatµ< (1/100) logM, 
where M < min(v(n), log114(1/E)), and for simplicity Mis an integer. Sinceµ> 1, 
Mis quite large, and n is very large. We further presume that Eis small. Suppose 
1r1,n asserts solitude with probability at least 1- E. We construct a fooling sequence 
1rtn for 1r1,n• 

By Lemma 3.3, there exists a cyclic permutation p1,n = 1ri,n1r1,i-1 and an ac
cepting history h such that Pr(~h (Pi,n) h~) > (1- E)/(8M1125), where the cheap
ness threshold is x = 2µn. 

Temporarily think of the shorter of the sequences 1ri,l and 1ri,i-1 as a single 
process. Let a= nf'>..(M), where .X(M) is the least common multiple of the positive 
integers not exceeding M. Since M < v(n), a is a positive integer. Apply Lemma 
3.4, with t = n, T = lM/2j and u = a. Then there exist k and l, with k < l, 
without loss of generality in the interval [1, i - 1], an accepting history h• and an 
integer m, with 1 ~ m < r, such that l - k = ma and Pr(~h (1ri,n 1ri,k-i) h• (1rk,1-i) 

h• (1ri,i-i) h~) ~ p = 1/(8M26125). By property 3.5, Pr(h• {1rk,1-i} h•) > p and 
Pr(h• (1rk,n 11"1,1-1) h•) ~ p. 

Let D = l - k = ma. Since T ~ M/2, D divides n/2. Now apply Lemma 3.6 
to 1rk,n 1r1,l-l, using to = r n/21, u· = D and T = M 2

' with 1r1 as the distinguished 
process. We obtain a subsequence z = 7ri1 • • • 7rir of 7r having the following properties: 

(a) there is exactly one occurrence of 1r1 in z; 

(b) r ~ n/2; 

(c) n/2 = r (mod D); 

(d) n/2- r < M 2D and 

Since 7rA: 1_ 1 has length D, there is an integer j < M2 such that jD + r = n/2 and 
Pr(h• {;(,_1 z} h•) ~ q. Let the fooling ring be 1rLn = (1r(1_ 1 z) 2 • This ring has two 
occurrences of the initiating process 1r1, and incorrectly asserts solitude (since h• is 
an accepting history) with probability at least q2• By the prime number theorem, 
ln.X(M) is asymptotically equal to M, and in particular ln(.X(M)/2) < 2M for large 
M. So q2 > e for logM < (1/4) loglog(l/E). ■ 
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Theorem 4.4: There is a constant c > 0 such that if ,r1,n is any sequence 
of (nondistributively terminating) processes with exactly one initiating process ,r1, 
then 1r1,n requires en min (log log n, log log log(l/ E)) bits for confidence 1 - E. 

Proof: This proof proceeds along the same lines as the previous two, but is 
more involved. Again, assume that n is very large and E is very small. Suppose 
that the expected cost of accepting computations of ,r1,n on a ring is µ,n, where 
1 < µ, ~ (1/200) min(loglogn, logloglog(l/E)). Let A...:. r2µ,l, and let the cheapness 
threshold be x = An. 

By Lemma 3.3, there is a cyclic permutation Pi,n of ,r1,n and an accepting 
history h such that Pr(.6h (Pi,n) h.6) ~ (1 - E)2-2.\-s. We construct a fooling 
sequence 1rLn for 1r1,n• Construction of ,rf.n is broken into several steps. 

Step 1: The sequence 1rLn must have length exactly n. To aid in adjusting the 
size of the constructed sequence, we require two sequences of processes which can 
be spliced into another sequence. One is for making large adjustments in size, the 
other for fine tuning. 

SteplA: (Find the fine tuning sequence 0.) By Lemma 3.4, with parameters t = n, 
O' = 1 and T = a = 226.\, there exist integers i1 and j1 and a history h1 such that 
1 < Ji - i1 < a and 

Pr(.6h {P1,i1 -1) h1 {P,,;-1) h1 (P;i,n) h.6) > a-1 Pr(h (1r1,n) h) 
> a...:.12-2.\-3 

> a-2. 

Let d1 = ii - i1 and let fJ = p,1 ,;1-1. By property 3.5, Pr(h1 {fJ} h1) > a-2. Also, 
Pr(.6h {1r1,i1-1) h1 (1ri,n) h.6) ~ a-2. 

Step lB: (Find the large adjustment sequence tf,.) The length of tf, is crucial 
to the ~rgument. We will be collapsing Pl,n down to a sequence of size close to 
n' = l n / ( d1 + 1) J. Sequence tf, will aid in collapsing to a precisely chosen size in a 
small number of individual shrinking operations. 

Let M = (a2!) 4• Notice that m divides M for all 1 < m < a 2. Also, it is 
easily shown that n > 2M a. We will apply Lemma 3.4 to the larger of Pl,ii-l and 
Pii,n, which we can assume without loss of generality is Pii,n, treating the shorter 
one as a single process. The parameters used are t = r n/21, T = a 2 and u = U2 = 
d1 l:~;:;. j > d1• The lemma provides integers i2 and i2 and a history h2, such that 
Pr(h2 {P;2 ,.12-1} h2) ~ a - • and Pr(6h {'11"1.iJ-1) h1 {1r,1 ,,r1) h2 {1r,2 ,n) h.6) ~ a-4

• 

Let d2 = J2 - i2 and let tf, = Pi2 ,h-1• From Lemma 3.4, d2 = m0'2 where mis 
an integer, 1 ~ m < a 2. Since m divides M, d2 divides M u2. 
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Step 2: Now we do the collapsing. Let x = P1,i1-1, y = p,1,,rl and z = p,2 ,n, From 
step 1 we have Pr(.6h (x) h1 (y) h2 (z) h.6) ~ o:-•. The goal now is to shrink each of 
x, y and z until each of their lengths is at most n' /3. So apply Lemma 3.6 to each of 
x, y and z, in each case treating the rest of the sequence as a single process (or two 
processes in the case of y). Where appropriate, let the initiator be the distinguished 
process. Use parameters to = r n' /31, u = d2, and r = T3 = o:6a. The condition 
48x ~ t0 log r of the lemma follows easily from the fact that o: < n/25. Condition 
to ~ 2rsd2 follows from the fact that M ~ 12o:6a+s. 

The total number of individual shrinking operations applied cannot exceed 
n/d2, since at least d2 processors are removed in each shrink. Let x', y' and z' be 
the resulting sequences, and let n" = Ix' y' z'I• From Lemma 3.6, 

(a) n' - r8d2 < n" ~ n' 

(b) n" = n (mod d2) and 

(c) Pr(.6h{x'}h1 {y'}h2 {z'}h.6) ~ r-;n/d2 0:-• ~ o:-a
002 

sincen/d2 < 2M < o:8a
2

• 

Step 3: Notice that n'-Md1 ~ n-Mu2 ~ n'. The goal now is to pad the sequence 
y', obtaining a sequence y" such that n - Md2 < Ix' y" z'I < n'. 

If n - Md2 ~ n", then simply let y" = y'. Otherwise, n" = n (mod d2), and 
Mu2 = 0 (mod d2), son"= n-Mu2 (mod d2). So there must be a positive integer 
k < r3 such that n" + k~ = n - M u2. Let y" = y' <I>". Since Pr( h2 { </>} h2) > o:-', 

oa2 • 1002 

we have Pr( .6h { x'} h1 {y" z'} h~) > o:-a o:-•ra > o:-a . 

Step 4: Let w = (x'y" z')d1 be a sequence of d1 copies of x' y" z', and let u = 
x' y" z' w. From step 3 we have 

(a) n - Md1(d1 + 1) < lul ~ n, 

(b) luJ = n (mod di), since Ix' y" z'I = n (mod d2) and d1 divides d2. 

(c) Pr(~2h {x'} h1 {y" z'} ~h~ {w} h~2) > o:-a
10

"'

2

+i. 

Step 5: We are ready to do the fine tuning. Let k < M(d1 + 1) ~ Mo: be a nonneg
ative integer such that lul + kd1 = n. Let the fooling sequence 1rLn be x' O" y" z' w. 

Then Pr(~h {1r1,n} h~) > o:-a
1002

+
1 o:-2a > E. Since h is an accepting history, and 

1rLn has d1 + 1 > 1 initiators, 1rLn wrongly asserts solitude with probability greater 
thane. ■ 

Corollary 4.5: Any error-free (non-distributively terminating) solitude ver
ification algorithm uses n(nloglogn) bits on every ring with a single contender. 
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5 Conclusions 

We have presented upper and lower bounds that match to within a constant factor 
for the bit complexity of solitude detection on a ring of known size. A significant 
observation is that the bounds depend upon the specific requirements of the algo
rithm - whether it is error-free or error-tolerant, and whether it is distributively 
or nondistributively terminating. 

It is perhaps not surprising that number theoretic properties of the ring size n 
influence the bit complexity of solitude detection when n is known exactly. Let v(n) 
be the smallest nondivisor or n. For nondistributive termination with confidence 
1- E, the expected complexity of solitude detection is the minimum of that of three 
algorithms; specifically 0(nmin(logv(n) + logloglog(l/E), loglogn, loglog(l/E))) 
bits. Distributive termination can be achieved by appending a termination detecting 
phase to a nondistributively terminating algorithm. For distributive termination the 
bit complexity of solitude detection is 0(nmin(logv(n) + yloglog(l/E), vtogn, 
log log(l/t:))). 

When no error can be tolerated, the above results simplify to e(nvlogn) bits 
for distributive termination and 0(n log log n) bits for nondistributive termination. 

It is interesting to note that the inherent bit complexity of solitude detection 
when n is known depends upon whether or not distributive termination is required. 
This contrasts with the case when n is only known to within a factor of two, where 
relaxing the requirements of the solution from distributive to nondistributive ter
mination does not reduce the bit complexity of solitude detection [1,2). 

It is commonplace to find probabilistic algorithms with a factor of log(l/E) in 
their complexity bounds. (Typically, the complexity measure is time, as opposed to 
bits.) Indeed, one solitude verification algorithm has bit complexity O(nlog(l/t:)) 
[2). Such an algorithm generally works by applying a method which gives a cer
tificate of a given answer with some constant probability, and repeating it enough 
times to ensure a low probability of error. The probabilistic algorithms given here 
are more subtle than that. They reduce the dependence on the error probability E 
well below a factor of log(l/E). 

There are important distinctions between the models of computation used for 
the algorithms presented here and the models assumed for the lower bounds. 

The first is a distinction between types of probabilistic algorithms. Our up
per bounds are established in a weak system which can be termed determinis
tic /probabilistic. Every processor of a given type (contender or noncontender) runs 
the same algorithm. State changes occur either deterministically, as the result of 
receiving a message, or probabilistically, as the result of a coin toss. Two proces
sors which are in the same state choose their next message randomly from the same 
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distribution. 
In contrast, the lower bounds are proved for a nondeterministic/probabilistic 

model. Conceptually, state changes are made as the result either of a coin toss or of 
receiving a message or of a nondeterministic choice. As is common practice, we have 
modelled nondeterminism as a single choice at the beginning of the algorithm, where 
the algorithm decides which deterministic/probabilistic process to assign to each 
processor. The requirement is only that, no matter which nondeterministic choices 
are made, the algorithm must reach an erroneous conclusion with low probability. 
Complexity is measured for the best possible assignment of processes to processors. 

In the error-free case, nondeterminism subsumes randomization, and our lower 
bounds are really purely nondeterministic. But it can be advantageous for an error
tolerant algorithm to make use of randomization in addition to nondeterminism, 
since all nondeterministic choices must lead to a correct answer, while it suffices for 
most random choices to do so. 

There are a number of ways to view nondeterminism as it is used here. Tech
nically, our model requires nondeterministic choices to be made at the start of an 
algorithm. But such an algorithm can simulate decisions made on the fly by initially 
guessing a function from internal states to guesses. So, in fact, our lower bounds 
apply to algorithms which make nondeterministic choices on the fly, and they apply 
to the best case complexity. 

One might, in general, hope for an algorithm which works on all rings, and 
which works especially efficiently on a ring in which processors are labeled in a 
particular way. The fact that our lower bounds apply to best case precludes such 
algorithms for solitude detection. 

In addition to a naturally pleasing generality, there is an advantage to having 
nondeterministic lower bounds. It was pointed out in the introduction that soli
tude detection reduces to leader election in O(n) bits. In the case of distributively 
terminating algorithms, the reduction is an obvious one. But reduction to a nondis
tributively terminating algorithm can be subtle. The problem is that an individual 
processor cannot know that the given nondistributively terminating leader election 
algorithm has terminated, and that it is time to proceed with solitude verification. 
If a processor begins the solitude verification phase prematurely, then it may cause 
extra messages to be sent. 

The solution is elegant. Since the lower bounds on solitude verification hold for 
nondeterministic algorithms, they carry across nondeterministic reductions. Simply 
let each processor guess when leader election is finished. At that point, the leader 
checks for more than one contender. In the best case, there will be no premature 
"leaders". 

The second important way in which the upper and lower bounds differ is in the 

20 



type of error permitted. Our algorithms only admit one-sided error. That is, when 
there is exactly one contender the algorithms always confirm its solitude. The only 
allowable error is that of leading one or more of several contenders to an erroneous 
conclusion of solitude. The lower bounds, on the other hand, permit two-sided 
error, with probability of at most f of any kind of error. 

Thirdly, as pointed out in the introduction, although our algorithms all solve 
solitude detection, the lower bounds apply to the weaker problem of solitude veri
fication. So algorithms that might have high communication complexity or might 
deadlock or even fail to terminate when there are two or more contenders, still re
quire the same expected amount of communication when there is one contender. In 
fact if only solitude verification is needed, then step one of the algorithm in section 2 
can be omitted. One result is a completely deterministic distributively terminating 
error-free solitude verification algorithm with bit complexity 0( nJ log n) bits. The 
lower bound implies that even nondeterministic solutions must have at least this 
complexity. 

Finally the solitude detection algorithms all use randomization that is re
stricted to selecting one of only two possible messages. The lower bounds indicate 
that more elaborate uses of randomization do not help to reduce the complexity of 
solitude detection. 
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