
AN ENVIRONMENT THEORY
WITH PRECOMPLETE NEGATION OVER PAIRS

by

James Harold Andrews

Technical Report 86-23

November 1986

AN ENVIRONMENT THEORY

WITH PRECOMPLETE NEGATION OVER PAIRS

By

JAMES HAROLD ANDREWS

B.Sc., University of British Columbia, 1982

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September 1986

© James Harold Andrews, 1986

Abstract

A formal semantics of Yoda's Theory of Pairs is given which takes the natural­

deduction form of Gilmore's first-order set theory. The complete proof theory corre­

sponding to this semantics is given. Then, a logic programming system is described

in the form of a computational proof theory for the Gilmore semantics. This system

uses parallel disjunction and the technique of precomplete negation; these features are

shown to make it more complete than conventional logic programming languages.

Finally, some alternative formulations are explored which would bring the logic

programming system described closer to conventional systems. The semantic problems

arising from these alternatives are explored.

Included in appendices are the proof of completeness of the complete proof theory,

and the environment solution algorithm which is at the heart of precomplete negation

over pairs.

11

Acknowledgement

My family, friends, and workmates have all contributed to making these last two

years enjoyable and educational. In particular, for interesting and often crucial discus­

sions about my thesis work I would like to thank Karl Abrahamson, Peter Apostoli,

Paul Gilmore, Rick Morrison, and of course Paul Voda.

This work has been supported by scholarships from the Natural Sciences and Engi­

neering Research Council and from Bell-Northern Research Ltd., for which I am greatly

appreciative.

iii

Chapter 1

Introduction

Kowalski (Kow74] expressed the paradigm of logic programming as "the interpreta­
tion of sentences in predicate logic as programs., of derivations as computations and
of proof procedures as feasible executors of predicate logic programs." This paradigm
is now generally accepted. However, since the popularization of Prolog the connec­
tion between logic programming and mathematical logic has sometimes seemed vague.
Research has largely diverged into two styles: the implementation of systems which
are computationally powerful but theoretically far from formal logic, and the study of
systems that are formally well-founded but computationally uninteresting.

Recent research has attempted to reassert the connection between traditional logic
and useful programming. In Paul Yoda's work, a Theory of Pairs (TP) is developed
as an axiomatic first-order theory, in order to provide a logical foundation for compu­
tations over a simple, recursively-defined domain. Then, programming languages are
embedded in that theory, in the sense that each programming language is defined by
a proof theory which can prove a subset of the theorems of TP.

The main contribution of this part of Yoda's work is not the particular programming
languages set forth, but rather the enclosing structure given by the Theory of Pairs,
and the simple but rigouxous association of languages with logic.

This thesis makes three main contributions. Firstly, it expresses the relatively
informal semantics of Yoda's original papers by a natural deduction Gilmore semantics.
Secondly, it provides a complete proof theory in the style of Gilmore, which can be
used as a tool to prove properties of programs and programming systems. Thirdly,
it describes a language which handles negation in a way which comes much closer to
complete classical negation than does negation as failure, the most popular treatment
of negation in logic programming.

This precomplete negation was defined by the author following suggestions by Yoda,
and is the main feature of the language. Voda has described precomplete negation

1

2

over the domain of integers in [Vod86c]; Gilmore [Gil86a] has described a very similar
technique for computing negation in a database-oriented set theory.

The domain of this paper is that of the pairs; however, in the formal semantics
and the proof theories described in these pages, all variables are collapsed into a single
variable which takes values ranging over the environments. So it seems a good charac­
terization to describe the theory as "an environment theory with precomplete negation
over pairs".

Chapter 2

Research Background

The present thesis could be seen as making contributions to applications of natural
deduction first-order logic with truth-value gaps; programming language semantics;
and the treatment of negation in logic programming. In this chapter we trace some of
the background of these areas of research.

2.1 Natural Deduction Semantics and Proof Theo-
• r1es

Until the time of Gentzen, the proof theories most studied were those classified as
"axiomatic", that is characterized by many axioms and few rules of deduction. The
proof theory presented by Hilbert and Ackermann [HA38], for instance, contains modus
ponens as the sole rule of deduction. Such proof theories are consistent and complete
with respect to the standard semantics, as proved by Godel (see for instance [Men641);
however, the rules of deduction are not necessarily clearly related to the semantics.

Gentzen's approach [Gen69] was to define a proof theory using few axioms and many
rules of deduction, and to emphasize the purely syntactic, proof-theoretic component
of formal first-order logic. The basic elements of his proof theory were sequents, rather
than individual formulae. He proved consistency of his system by showing that the
empty sequent (the basic form of contradiction) could not be derived in the proof
theory. The Hauptsatz, or Main Theorem, leading to this conclusion was his proof of
cut elimination. This was the proof that a derivation using applications of the cut rule,
the only rule of inference which decreased the number of formulae in a sequent, could
be manipulated to remove all such applications.

The rules of deduction of Gentzen's system looked very much like the semantic
entailment rules - hence the description of it as a "natural deduction" system. In

3

2.2. TRUTH- VALUE GAPS 4

such a system, consistency and completeness of the proof theory with respect to the
semantics can be proven in a simple manner, and without the use of the cut-elimination
result. Such proofs, however, still resort to the intuitive notions of set and number
which form the basis of model theory.

Following on this work, Beth [Bet66] and Smullyan [Smu68], among others, ex­
pressed proofs in the form of "semantic" or "analytic tableaux", which are equivalent
to Gentzen-style sequent proofs. These presentations considered the basic elements of
the proof theory as trees of formulae rather than as structured sequences.

Gilmore, in his presentation of first-order logic [Gil86b], adopts a style of proof
theory much closer to that of Gentzen. Sentences are given a "sign" denoting truth
value, as in Smullyan. Sequents are once again the basic proof-theoretic elements, but
are considered as sets of signed sentences rather than sequences of formulae. This leads
to a straightforward definition of validity based on intuitive notions of set theory.

The main purpose of Gilmore's work, however, is to present extensions of classical
first- and second-order logic which define a formal set theory. This set theory resolves
the standard set-theory paradoxes (see for instance [Bet66]) by refusing to assign a
truth value to paradoxical sentences. It is on the first-order version of Gilmore's set
theory, for a specific domain of constants (the domain of pairs) that the present work
is largely built. The analogues of set terms are programmatic predicate definitions.
Definitions can be made which would lead the language into infinite computation.
Calls to predicates with such definitions are not assigned the same truth value in all
bases, and therefore are effectively of indeterminate truth value.

2.2 Truth-Value Gaps

Kripke, in his presentation of a truth-value semantics for language [Kri75] which is
similar to Gilmore's for set theory, discusses these truth-value gaps, arguing from a
philosophical viewpoint that it is not always possible to determine the truth of an
assertion. He points out that the existence of a truth-value gap does not imply the
existence of a third truth value, only that some formulae cannot be assigned a truth
value. He proposes a transfinite hierarchy of truth definitions for a hierarchy of abstract
languages, one of which languages (at some ordinal) will be able to refer to its own
truth definition.

Around the same time, Scott [Sco75] proposes a similar hierarchy for a logic based
on the lambda-calculus. However, he describes the hierarchy only up tow. Naturally
only the first of the hierarchy of truth predicates corresponds to computable truth.

Fitting [Fit85] accepts the gappy first-order truth definition as a given. He formu­
lates the standard fixpoint semantics of logic programs (see below) in a three-valued
setting, although the third value is described as meaning only "undefined".

2.3. PROGRAMMING LANGUAGE SEMANTICS 5

In the sequel we will present the extended first-order logic of environment with only
two truth values. As Scott points out, "[an undefined formula] could indeed be given a
truth value if we would want to be perverse, but there is no need to be so". However,
we will sometimes act as if this third truth value exists for the purpose of clarity; we
will say that a sentence takes the undefined truth value, or takes the? sign, when that
sentence's truth value is not determinate in all bases.

2.3 Programming Language Semantics

The traditional method of defining the semantics of algorithmic languages is that of
operational semantics, in which an abstract machine is defined which computes the
language. One problem with operational semantics is the possible need to define the
semantics of the abstract machine, and so on down to the bit flow level; the other
problem is deeper.

What is actually defined by operational semantics is simply a characterization of the
computations performed by the system. This characterization could be expressed either
semantically or syntactically; the syntactic expression leads to a proof theory, while
the semantic expression leads to a model theory with respect to which the proof theory
is trivially complete (trivially because the semantics is no more than a transcription
of the proof theory into semantic concepts). Denotational semantics [Sto77] solves
the first problem of the operational approach by basing the language on well-studied
notions of set and function, but fails to solve the problem of semantic triviality.

An operational semantics for logic programming is given by van Emden and Kowal­
ski [vEK76], but they consider it useful only as a characterization of the computations.
The fixpoint semantics they give has become the standard semantical model for P rolog
and logic programming in general. Fixpoint semantics arises from the observation that
the set of all Herbrand interpretations for a set of Horn clauses (a Prolog program) form
a complete lattice under the subset relation. Thus each program is seen as defining a
separate first-order theory with a separate semantics.

The goal of computation is seen as finding the least fixpoint of a monotone transfor­
mation on this lattice (the predicate-application transformation). This is then proved
to be the least upper bound of all the interpretations, on the lattice, of the clauses of
the goal.

The standard proof theory for logic programs is some application of the resolution
principle, such as SLD-resolution [AvE82]. Although SLD-resolution is complete, it is
not deterministic, i.e., not systematic, to use the terminology of Smullyan. Therefore,
if it is to be considered as a proof theory for a computational system there must be
a further description of the method of generating proofs for the system to be fully
characterized.

2.4. NEGATION IN LOGIC PROGRAMMING 6

Lloyd, therefore, adds to a fixpoint semantics in the style of van Emden and Kowal­
ski, and the resolution-based proof theory in the style of Apt and van Emden, a "pro­
cedural semantics" for finding resolution proofs, which is really a form of operational
semantics.

Voda presents a markedly less complex view of logic programming. In a series of pa­
pers ([Vod84], [Vod85], [Vod86b]), he describes a first-order theory of basic data types,
the Theory of Pairs; he then presents logic programming systems as proof theories
which can prove subsets of conservative extensions of that theory. Predicate defini­
tions are conservative extensions; queries are theorems to be derived; and solutions
are the completely deterministic derivations of the queries which are defined by the
programming systems.

Logical semantics is not discussed in any depth in Voda's work. The traditional
truth-functional semantics, in which individual sentences are assigned truth values
based on their constituent subformulae, suffices. What computer scientists often refer
to as "semantics" - that is, the flow of data and control in a computation - is absorbed
into the proof theory and ceases to be a semantic issue at all.

No lattice theory is needed because the concepts of program, query, and solution
are completely proof-theoretic; no procedural semantics is needed because the proof
theory is deterministic and completely describes the computation.

The domain of the fixpoint semantics, in most treatments, is the set of constant
symbols which appear in the program. The program is in this sense like a database
which specifies all the objects known about in the theory. In the Theory of Pairs, on
the other hand, the domain is the set of terms generated by the 0-ary generator O and
the binary generator[-,-] of pairing. These pairs correspond to the S-expressions of
Lisp. The constant symbols can then be defined as being equivalent to specific pairs.

The present thesis builds on Voda's concepts of semantics by expressing the Theory
of Pairs as the basis for a family of non-deterministic natural deduction proof theories.
It presents on the one hand the natural deduction semantics corresponding to that
family, and on the other hand a deterministic proof theory which is sound with respect
to the semantics, and which proves a large subset of the theorems of that family.

2.4 Negation in Logic Programming

Van Emden and Kowalski's original conception of a logic program was as a set of Horn
clauses to which some variant of resolution or Modus Ponens could be applied [vEK76].
This restriction to Horn clauses has been recognized, at least since [Cla78], as being
insufficient to express all databases of formulae of first-order logic. Accordingly, most
Prolog systems have retained a Horn clause-like syntax but have moved outside the
domain of Horn clauses by adding some ability to negate a formula.

I •

2.4. NEGATION IN LOGIC PROGRAMMING 7

This negation is generally computed by the inference rules collectively called "nega­
tion as failure" by Clark [Cla78]. If a formula A is not true under any variable substi­
tution, the formula -,A is inferred to be true. The main problem with this approach
is that if the formula A is true under some non-null variable substitution, nothing can
be said about the formula -,A. Only in the case of a null substitution can -,A safely
be inferred to be false.

This logical pitfall was apparently not avoided by many Prolog implementations. In
some systems bindings occurring within negations are not retracted when other clauses
using the same variables are computed. In others, the bindings are retracted but the
negated goal is considered to have failed; the effect is that by finding one substitution,
the system assumes that all substitutions succeed.

Clark recognized the drawbacks of negation as failure. Since he was studying in the
domain of logic databases, his solution was to maintain the restriction of the database
(the analogue of a program) to Horn clauses, and to restrict queries to those in which all
negative conjuncts contained only variables which had been fully instantiated by other,
positive conjuncts. He informally proved the completeness of computations under this
restriction.

An alternate solution (expressed within a Lloyd-style theory of logic programming)
is to delay the evaluation of any negative conjunct in a goal or predicate body until all
the terms in the conjunct are ground; that is, until the computation of other conjuncts
has restricted all variables in the conjunct to stand for single terms. Lloyd [Llo84] has
proven that this scheme is sound, and some Prolog interpreters such as MU-Prolog
[Nai84] have implemented it.

Voda's formalism of logic programming, in itself, does not solve the problem of
handling of negation. Proof theories such as that involving one-variable environments
[Vod86b] contain a version of negation as failure which does not use delayed nega­
tion (and therefore is less powerful than IC-Prolog), but which blocks when -variable
bindings are changed within the negated formula (ensuring soundness).

However, recent work by Voda and the author has led to a "precomplete" negation
which is significantly more powerful than negation as failure. This result has been
achieved in part because of the clarity of the truth-functional semantics of Voda's
system. Precomplete negation may be characterized as the computational technique of
treating negated identity formulae as constraints to be retained as variable bindings are
retained, and of using those constraints to compute whether given additional bindings
or constraints can successfully be added.

As presented here, negated formulae are solved by pushing the negation down
through the formula by De Morgan's laws. When the negation reaches an equality
subformula, an algorithm (similar to but more general than unification) is used which
solves for equations of the form a # b as well as of the form a = b.

2.4. NEGATION IN LOGIC PROGRAMMING 8

Gilmore [Gil86a] uses a similar technique for computing negation over database
queries; however, the emphasis there is on the solution of either variable-free queries
or queries involving enumeration of a finite domain. Gilmore's theory, being a general
set theory, is also able to handle such things as quantification over sets, which is not
attempted here. We concentrate, rather, on the details of finding all terms which satisfy
recursively-defined predicates over a specific domain, which Gilmore's work does not
explore deeply.

This method therefore decides almost all positive formulae containing negations.
Some formulae it does not decide are of the form AV ,A, in which A contains a
reference to a predicate causing infinite computation. Although the truth value of
each subformula in such a sentence is indeterminate, the entire sentence should be true
in a logic with classical excluded middle. Since the language described here does not
have such an excluded middle, it is similar to intuitionistic logic, but it might not prove
the same set of theorems.

The system could be made classically complete by letting it decide excluded-middle
formulae. Voda argues, however [Vod86a], that decreased completeness is desirable for
logic programming to avoid inefficient computation, and is in fact needed only for full
theorem-proving.

'· :
I

Chapter 3

Environment Theory

This chapter gives the formal details of the system we call environment theory. The el­
ementary syntax, that is the linguistic structure of proof-theoretic objects, is described
in section 3.1; due to the natural-deduction structure of the system, many of these
syntactic elements form the basis of its formal semantics, described in section 3.2. As
usual, some naive set theory is assumed in the presentation of the semantics.

Section 3.3 presents a proof theory which is complete, in a strong sense, with respect
to the semantics. This proof theory is therefore a valuable tool with which to analyze
other proof theories. It is used as such in section 3.4, which presents a strong, though
not complete, proof theory. It is this latter proof theory, R, which attains a high level
of determinism by the use of precomplete negation.

The main point of this presentation is to provide some underpinning to the proof
theory R, which is implementable as a logic programming system. The structure of all
of environment theory is therefore dependant, in a retrograde way, on decisions taken
in the design of R.

Rather than interleave a discussion of these design considerations with the discus­
sion of the theory, we have chosen to expound on the primary design in this chapter.
In the next chapter we will discuss some important variants that would have arisen
from following different paths in the design process, and their relative merits.

3.1 Elementary Syntax

The elementary syntax will be used in both the logical semantics and the proof theory.
In classical model theory, a mapping must be defined between model-theoretic and
proof-theoretic elements; in the tradition followed here, such a mapping is unnecessary.
Many of the concepts here are explained more fully in [Vod86b] and [Gil86bj, and are
simply summarized here.

9

3.1. ELEMENTARY SYNTAX 10

As the basic syntactic units of our theory, we shall have an infinite set of parameters
pi, p2 , ••• ; an infinite set of predicate names Pi, P 2 , ••• ; the constant symbol O; and the
variable name w. We shall use boldface p, q, rand P, Q, R, possibly subscripted, as
meta-variables ranging over parameters and predicate names, respectively.

Informally, terms will be built up from the parameters and w, using the pairing
function (which builds up data structures) and the projection functions (which take
them apart). We follow Yoda's one-variable formulation, in which all quantified entities
are parts of a single environment, denoted by the variable w. The domain of this
variable is the terms. However, in the deterministic proof theory R, we will use only
terms which belong to the subclass of environments; this subclass will be seen to have
some useful properties.

While w is called a variable here, it may be more useful to think of it as a distin­
guished parameter, since it will never fully be within the scope of any quantifier.

The projection functions are the symbols h (head) and t (tail). These functions
correspond to the CAR and CDR functions of Lisp.

Definition 3.1.1 A projection is a (possibly empty) sequence of symbols h and t.

We shall use Greek letters as meta-variables ranging over projections. The empty
projection will be denoted by f. Projections can be concatenated in the manner of
character strings; if "f contains the sequence of symbols represented by a, followed by
those represented by /3, then we can say that a./3 is identical to 1 .

Definition 3.1.2 a is a term iff either

1. a is a parameter, the variable w, or the constant O; or

2. a is of the form ha, where bis a term; or

3. a is of the form [b, c], where band care terms.

We shall use boldface lower-case letters a, b, c, possibly subscripted, as meta-variables
ranging over terms. Similarly, we shall use x, y, z, possibly subscripted, as meta­
variables ranging over the terms of the form wa; these terms will be called pointers.

The functions h and t take apart terms built up by pairing. The effect of these
functions can be seen best in the definition of the metatheoretic notion of a part of a
term, which we will need in later discssion.

Definition 3.1.3 For a term a and projection a, part a of a, denoted a/ a, is defined
as follows.

1. a/ f. is a;

3.1. ELEMENTARY SYNTAX 11

2. [a, b]/h/3 is a//3;
3. [a, b]/t/3 is b/ /3;
4. Otherwise, a/ a is undefined.

The characterization of the terms wa as "pointers" is useful primarily when we
think of terms as data structures within computer memory, or as abstract trees (see
[Vod86b]). Pointers appearing within a term to be bound tow can be seen as referring
to other parts of that term; that is, pointing to the left or right, or to themselves.

Definition 3.1.4 If, for a term a, a/ a = wa, that occurrence of the pointer wa is
said to be a self-pointer. If a/ ah/3 = wed,, that pointer is said to point to the right.
If a/ at/3 = w o.h,, that pointer is said to point to the I eft. (Note: we use the symbol =
to mean "is identical to", that is in the sense of meta theoretic or syntactic identity.)

Definition 3.1.5 A w-term is a term built up by pairing from the term O and the
pointers wa.

Definition 3.1.6 A proper environment is a w-term in which every pointer is either a
self-pointer or points to the right. An environment is either a proper environment or
the term [w, OJ, which is often written as fail. ·

Environments have two very useful properties. For every term a, if w = a then
there exists an environment a' such that w = a' [Vod86b]. Thus, for the purposes of
computing over terms, it is sufficient to compute over environments.

For every environment a, no infinite chain of parts a 1 , a 2 , ••• can be constructed
such that o:; = wa;+1, unless they are all identical. Proofs about algorithms which
compute with environments, such as the Environment Solution Algorithm we shall
encounter later, can use this property to prove such things as termination and compu­
tational complexity.

Definition 3.1. '1 A is a formula iff either:

1. A is of the form a= b, where a and bare terms; or

2. A is of the form P(a), where a is a term; or

3. A is of the form B V C or B & C, where Band C are formulae.

4. A is of the form ,B, 3B, or VB, where Bis a formula; or

If A is of one of the first two forms, it is also an atomic formula. If all terms appearing
in the formula are w-terrris, it is also a w-formula.

3.1. ELEMENTARY SYNTAX 12

We shall use boldface capital letters A, B, C, possibly subscripted, as meta-variables
ranging over formulae.

Note the absence of quantified variables after the quantifiers :3 and V. Since we are
using Yoda's one-variable formulation, a quantifier itself can be thought of as generating
a new variable to be referred to within its scope. The new variable is the head of the
environment w, and the environment outside the scope of the quantifier is referred to
as wt within the quantifier.

Definition 3.1.8 Because what a pointer signifies depends on the formula it appears
in, each pointer is actually an alias of some other pointer within a given formula.

1. An occurrence of a pointer wa is an alias of itself within an atomic formula.

2. If an occurrence of wa is an alias of w(3 within A or B, it is also an alias of w(3
within A & B, AV B, or ,A.

3. If an occurrence of wa is an alias of wt(3 within A, it is an alias of w(3 within :3A
or VA.

Readers may think of the parameters as being free in any formula in which they
appear, and the terms wa as being free within the scope of n quantifiers if and only if a
begins with nor more t's. But since a formula with such "free variables" will still take
on a truth value in the semantics, without substitutions for the free variables, notions
of free and bound variables are largely irrelevant. We have the following definitions.

Definition 3.1.9 A sentence is a formula. (We will use this word when we wish to
emphasize the lack of free variables in any well-formed formula.) A signed sentence is
a sentence preceded by a + or - sign.

Definition 3.1.10 The complexity of a formula A, comp(A), is the following.

1. The complexity of a= b and P(a) are 0.

2. The complexity of ,A, :IA, and VA are comp(A) + 1.

3. The complexity of A & Bis the greater of comp(A) and comp(B).

The complexity of a signed sentence ±A is comp(A).

Definition 3.1.11 a{b := c} represents the term a, with all occurrences of the sub­
term b substituted by occurrences of the subterm c (strong substitution). Formally,
b{b := c} = c, and if the term being substituted in is not identical to b, then:

1. O{b:=c}=O

,,
,I

3.1. ELEMENTARY SYNTAX 13

2. [a1 , a2]{b := c} = [ai{b := c}, a2{b := c}]

3. ah{b := c} = {a{b := c})h

4. at{b := c} = {a{b := c})t

Strong substitution in a formula, A{b := c }, is defined similarly.

1. (a1 = a2){b := c} = (a1{b := c} = a2{b := c})

2. P(a){b := c} = P(a{b := c})

3. (-iA){b := c} = -iA{b := c}

4. (A & B){b := c} = A{b := c} & B{b := c}

5. (Av B){b := c} = A{b := c} & B{b := c}

6. (3A){b := c} = 3A{b := c}

7. (VA){b := c} = VA{b := c}

Note that the last two subcases of strong substitution in a formula do not always
adequately handle the renaming of parts of the environment; that is, they make the
same mistake with renaming often made in early axiomatic first-order theories. Often,
we will want to remedy this by substituting for all aliases of win a term or formula . We
will also want to do so in a contextual manner, with wt being substituted by the tail
of the substituting term, and so on. Such a substitution, while achieving the desired
semantic intent, will also preserve the form of a term as a w-term or an environment
[Vod84].

Definition 3.1.12 The contextual substitution of a term b for w in another term a,
written a(b), or in a formula A, written A(b), is defined as follows.

1. o(a) = o

2. [a, b](c) = [a(c), b(c)]

3. wa(w!J) = w{ja

4. wa(O) = 0

5. w([a, bl) = [a, b]

6. wha([a, bl) = wa(a)

7. wta([a, bl) = wa(b)

8. (a= b)(c) = a(c) = b(c)

9. P(a)(b) = P(a(b))

3.2. FORMAL SEMANTICS 14

10. (,A)(a) = ,A(a)

11. (A & B)(a) = A(a) & B(a)

12. (AV B)(a) = A(a) V B(a)

13. (::lA)(a) = =lA(wh, a(wt))

14. (VA)(a) = VA(wh, a(wt))

The basic elements of the proof theory will be sequents. These are defined as
sets, following Smullyan, rather than as Gentzen's purely syntactic entities, in order
to simplify the relationships between the syntax and semantics.

Definition 3.1.13 A sequent is a possibly infinite set of signed sentences with either
the + or the - sign. A finite sequent is a sequent with a finite set of elements.

We will often use a notation similar to that of Gentzen to represent sequents. Every
sequent S is the union of a set { +P1, +P2 , + P 3 , ••• } of sentences with a+ sign, and a
set { - Mi, - J..12 , - M 3 , ••• } of sentences with a - sign. We can therefore represent S
uniquely with the notation {M1 , M2 , M3, .•• -+- P1, P2, Ps, .. . }. The Greek letters rand
~, possibly subscripted, shall be used to represent sequences of (unsigned) sentences;
thus, the standard form for a sequent shall be {r -+- ~}.

Definition 3.1.14 If P is a predicate name and A is a sentence, then P(w) +-+ A is a
predicate definition. We shall refer to a finite set of predicate definitions as a program.

3.2 Formal Semantics

The model-theoretic part of environment theory consists of a definition of a base, that
is one assignment of signs to atomic sentences, and rules for constructing the set of
sentences entailed by a base. As with the definition of sequent in the last section, much
of the formal semantics relies on informal notions of sets and natural numbers.

This material is derivative of the semantic definitions of (Gil86b], but differs in
several important respects. Bases are restricted to those which satisfy identity over
pairs, which has special properties in addition to those of standard identity. The
quantifiers take the one-variable interpretation described informally in the last section.
And, most important to the structure of the semantics, we will be interested only in
bases which are interpretations of a given program II, in the sense that they satisfy a
substitutivity criterion derived from II.

Definition 3.2.1 A base B is a set of signed atomic sentences such that the following
conditions hold.

3.2. FORMAL SEMANTICS 15

1. For every atomic sentence A, exactly one of +A and -A is a member of B.
(Completeness and atomic excluded middle.)

2. For every atomic sentence A, terms a and b, and parameter p, whenever
±A{p := a} and =r=A{p := b} are both in B, -a= bis in B.

3. For all terms a, +a = a is in 8. (This clause and the one preceding define
standard identity.)

4. For all terms a and b, the following signed sentences are in 8:

(a) +0 = 0o:, 0o: = 0

(b) -[a, b] = [a, b]o:, -[a, b]o: = [a, b] for all nonempty o:

(c) +[a, b]h = a, +a= [a, bjh

(d) +[a, b]t = b, +b = [a, b]t

5. For all terms a, b, and c, whenever all of +ah= b, +at= c, and -a= 0) are in
B, +a= [b,c] is in B.

6. For all terms a, b, and c, whenever one of -ah = b, -at = c, or +a = 0) is
in B, -a= [b, c] is in 8. (This clause and the two preceding define the special
properties of identity between pairs.)

Bases give the truth value for atomic sentences; the truth value for non-atomic
sentences can be derived inductively. We use the concepts of semantic entailment,
semantic successor, and closure of a base to collect all the semantic consequences of
the sentences in a base.

Definition 3.2.2 We shall say that a set of signed sentences entails another signed
sentence ({±A, ±B, .. . } f---+ ± C) in the following cases, assuming that A and B are
formulae.

1. Conjunction:

(a) { +A, +B} f---+ + A & B

(b) {-A} f---+ - A & B

(c) {-B} f---+ - A & B

2. Disjunction:

(a) { +A} f---+ +AV B

(b) { + B} f---+ + A V B

(c) {-A, -B} f---+ - AV B

3.2. FORMAL SEMANTICS 16

3. Negation: {±A} r-+ ,= ,A

4. Existential quantifier:

(a) {+A([a,w])} ~ + 3A
where a is some term

(b) {-A([ai, w]), -A([a2, w]), ... } ~ - 3A
where a 1 , a 2, ••• is the enumeration of all the terms

5. Universal quantifier:

(a) { +A([a1 , w]), +A([a2, w]), .. . } ~ + VA
where a 1 , a 2 , ••• is the enumeration of all the terms

(b) { ~A([a, w])} ~ - VA
where a is some term

Definition 3.2.3 The semantic successor of a set of signed sentences S, succ(S), is
the set of signed sentences <Y for which either <Y E S, or there exists a subset T of S
such that T ~ u. We define the n th semantic successor of S, succn(S), for all n 2: 0,
as follows: succ0 (S) is S, and succn+l(S) is succ(succn(S)).

Definition 3.2.4 The closure of a base B, Cl(B), is the union of all the semantic
successors of B. That is, a signed sentence is in Cl(B) iff it is in succi(B) for some
finite i.

Definition 3.2.5 A base B is an interpretation of a program II if, for every predicate
definition P(w) +-+ A in II, and every term a, whenever ±A(a) is in Cl(B), ±P(a) is
in 8.

Definition 3.2.6 A base 8 is a model of a sequent S (equivalently, Sis true in B) iff
Sn Cl(B) ~ 0; that is, if there is a signed sentence <Y such that u ES and <YE succi(B)
for some i.

Definition 3.2. 7 A sequent S is valid with respect to a program II iff all interpreta­
tions of TI are models of S; that is, iff S is true in all interpretations of TI.

Note that these definitions of truth and validity obtain precisely because intuitive
set theory is used for defining both the model-theoretic notions of base and entailment,
and the proof-theoretic notion of sequent.

Theorem 3.2.8 (Closure Completeness and Consistency) ForeverybaseB and
every sentence A, exactly one of the signed sentences ±A appears in Cl(B).

3.2. FORMAL SEMANTICS 17

Proof. By induction on the complexity of A. All atomic sentences (complexity 0) are
in B with exactly one sign, and the nth semantic successor of B contains all the signed
sentences of complexity n + 1; the semantic entailment rules determine uniquely the
sign of each sentence. □

Bases vary in the assignment of sign to individual atomic sentences, and the as­
signment of values to parameters and the variable w. The set of interpretations of an
individual program is smaller than the set of all bases; the only variability is in the
assignment of values to the parameters and w, and the assignment of sign to predicate
calls for which the corresponding defining sentence is never computed.

For every predicate name P defined by a program TI, there is a set of predicate
call formulae P(a) whose sign must be the same in all interpretations of TI. If the
definition P(w) +-+ 0 = 0 is in II, for example, + P(a) must be in all interpretations of
II. However, if the definition P(w) +-+ P(w) is in TI, then P(a) can be given any sign
in interpretations of II; and if P(w) +-+ ,P(w) is in IT, then no interpretations of TI
exist!

As we will see, the predicate call formulae whose signs are not determined corre­
spond exactly to those predicate calls wh ose computation causes a search down an
infinite branch of the solution tree; that is, in programming language terms, infinite
recursion. Some complex predicate definit ions may result in success for some calls,
failure for some calls, and infinite recursion for others; the first class corresponds to
formulae assigned a+, the second to formulae assigned a -, and the third to formulae
assigned different signs in different bases.

Since the sign of some predicate calls is not determined, it may be helpful to imagine
the existence of a third truth value, "unknown", represented by the sign ? . Then a
truth table with this third sign, for the above definitions of conjunction and disjunction,
may be given as follows.

Conjunction:
& + - ?

+ + - ?
- - - -
? ? - ?

Disjunction:
V + - ?

+ + + +
- + - ?
? + ? ?

These tables illustrate the fact that a formula's sign is determined in all bases if and
only if there is enough information to determine that sign. The sign of both immediate
subformulae is not always necessary for this determination, but at least one is.

3.3. PROOF THEORY C: COMPLETE 18

For the purposes of this exposition, it is more useful to assume the existence of
only two truth values, because this gives such properties as excluded middle for all
formulae, which aid in some proofs. However, readers may find it helpful to relate the
material that follows to the formulation with three truth values.

3.3 Proof theory C: Complete

We present here a complete natural deduction proof theory for the environment theory
semantics. This proof theory cannot be used to directly implement a theorem-prover or
logic programming system; the high degree of non-determinacy means that there must
be additional information about how such things as eigenvalues of existential formulae
are searched for. The next section can be seen as an attempt to put more information
about implementation details into a proof theory, to make it more deterministic. In
fact, this can be seen to be the thrust of much of Voda's recent work.

Such a proof theory has the same value as in set theor ies (see for instance [Gil86b]);
that is, it allows one to give a computably verifiable derivation of a valid sequent. It
will be used later to prove important properties of the computational proof theory.

Although we refer to C as one proof theory, it is in fact a family of proof theories
C+IT, which are identical save for the rules dealing with the introduction of formulae
including predicates defined in the program IT.

A:
Axioms are of one of the following forms, for any terms a and b and atomic formula

1. {f,A-+ A,A}

2. {f, [a, b] = [a, b]a-+ A}, {f, [a, b]a = [a, b]-+ A} for nonempty a

3. {f-+ A,Oa = O}, {f-+ A,0 = Oa}

4. {f-+ A, [a, b]h = a}, {f-+ A, a= [a, b]h}

5. {f-+ A, [a, b]t = b}, {f-+ A, b = [a, b]t}

6. {f-+ A, a= a}

The rules of inference of C+IT, for any program IT, follow.

1. Pairing

(a) left:
{f,ah = b,at = c-+ A,a = O}

{f,a = [b,c]-+ A}

,

3.3. PROOF THEORY C: COMPLETE

(b) right:

2. Identity, left:

3. Conjunction

(a) left:

(b) right:

4. Disjunction

(a) left:

(b) right:

5. Negation

(a) left:

(b) right:

6. Existential

(a) left:

{r, a= O-+ A} {r-+ A, ah= b} {r-+ A, at= c}
{r-+ A,a = [b,c]}

{r-+ A,A{p := a}} {f,A{p := b}-+ A}
{f,a=b-+A}

{r,A,B-+ A}
{r,A & B-+ A}

{r-+ A,A} {r-+ A,B}
{r-+ A,A & B}

{f,A-+ A} {r,B -+ 6.}
{f, AV B-+ 6.}

{r-+ 6., A, B}
{f-+ 6.,A VB}

{r-+ 6., A}
{f,,A-+ A}

{f,A([p,w])-+ 6.}
{f,3A-+ A}

for some parameter p which does not appear in the conclusion

19

3.3. PROOF THEORY C: COMPLETE

(b) right:
{r--+ A,A([a,w])}

{r--+ A, :lA}

for some term a

7. Universal

(a) left:
{r, A([a, w]) --+ A}

{f,VA--+ A}

for some term a

(b) right:
{r--+ A,A([p,w])}

{r--+ A, VA}

for some parameter p which does not appear in the conclusion

8. Predicate introduction

(a) left:
{r, A(a) --+ A}
{f, P(a) --+ A}

where the definition P(w) f-+ A is in IT

(b) right:
{f--+ A,A(a)}
{r --+ A, P(a)}

where the definition P{w) f-+ A is in IT

20

These rules can all be proved to preserve validity; that is, if the premiss of rule
application is a valid sequent, then the conclusion is a valid sequent.

We can derive with these rules the intuitive truths that O is not equal to any pair:

{Oh= a, Ot = b--+ 0 = O}
{O = [a, b] --+}

That every term is either O or a pair:

{--+ ah = ah, a = O} {--+ at = at, a = O} { a = 0 --+ a = O}
{--+a= [ah,at],a = O}

And that no term is both O and a pair:

3.3. PROOF THEORY C: COMPLETE

{a= 0, ah= b, at= c-+ a= O}
{a= O,a = [b , c] -+}

21

Somewhat longer derivations show that the sequents {[a, b] = [c, d] -+ a= c & b =
d} and {a= c & b = d-+ [a, b] = [c, d]} are derivable.

Theorem 3.3.1 (Completeness) If a sequent S is valid with respect to IT, then it
is derivable in C with respect to IT using the above rules.

Proof. See Appendix A.

Theorem 3.3.2 (Thinning) If S is valid with respect to IT, then so is SUS'.

Proof. Assume the premise, that is that Sn Cl(B) is nonempty for all interpre­
tations 8 of IT. Then clearly (SUS') n Cl(B) is also nonempty for all such 8, and is
therefore also valid with respect to IT. □

Theorem 3.3.3 (Cut) If SU { +A} and SU {-A} are valid with respect to IT, then
so is S.

Proof. Assume S is not valid with respect to some IT. Then there must exist some
8 which is an interpretation of IT but not a model of S; that is, such that Sn Cl (8) "¥ 0.
By the Closure Completeness Theorem (3.2.8), exactly one of -A or +A must be a
member of Cl(8); therefore, either SU +A or SU-A must have an empty intersection
with 8. Contrapositively, if both SU +A and SU -A have non-empty intersections
with 8, then there is no IT with respect to which S is not valid; that is, S is valid. □

Theorems 3.3.2 (Thinning) and 3.3.3 (Cut) motivate us to add two rules to C to
facilitate derivations. These rules are, as shown by the Completeness theorem, not
necessary to ensure completeness of C, but have been found to be useful in shortening
derivations.

1. Thinning

(a) left:

(b) right:

2. Cut:
{r-+ Ll,A} {r ,A-+ Ll}

{r -+ Ll}

3.4. PROOF THEORY R: R+ -MAPLE 22

3.4 Proof Theory R: a+ -Maple

This section presents a proof theory, R, which is similar to the language R + -Maple,
described in [Vod86b]. The main differences are that R uses parallel disjunction and
precomplete negation, whereas R+-Maple uses left-to-right sequential disjunction and
negation as failure. Left-to-right disjunction and negation as failure are two compu­
tational techniques which were considered for this proof theory, but were rejected for
reasons explained in the next chapter.

Again, R is used to refer to a family of proof theories R+ II, where II is any program.
To assist in the proof of validity of R, we will need to prove some preliminary

theorems.

Lemma 3.4.1 (Substitutivity) If {r -+ 6-} is a valid sequent, then so is
{r([P, w]) -+ ~([p, w])}.

Proof. If {r-+ 6-} is an axiom of C, then {r([p, w]) -+ ~([p, w])} must be of one
of the forms {f'-+ 6-1

, Oa = O}, {f', [a', b'] = [a', b']a-+ 6-'}, {f'-+ 6-1
, [a', b']h = a'},

{f'-+ ~',[a',b']t = b'}, {r'-+ 6-',a' = a'}, or {f',a'a =a'-+ ~',a'= o}, with
the terms in the indicated identity formulae possibly exchanged. All of these are also
axioms of C and therefore valid.

If {r -+ ~} is not an axiom of C but is valid, then it must have a derivation in C. We
can transform the proof tree of {r-+ 6-} into a tree with {f([p,w]) -+ 6-([p, w])} at
the root by first replacing all occurrences of p by occurrences of some other parameter
(to preserve the validity of :I-left rule applications), and then replacing all occurrences
of w in the tree by occurrences of [p, w]. Axioms will be transformed into axioms
by this transformation, and valid rule applications into valid rule applications. The
resulting tree will therefore be a well-formed proof tree of C, and by consistency of C
{f([P, w]) ----+ ~([p, w])} will be valid. □

Theorem 3.4.2 (Expansion) If {A -+ B} and {B -+ A} are both valid, then so
are{ ... A ... -+ ... B ... } and{ ... B ... -+ ... A ... }. That is, so are {A'-+ B'} and
{B' -+ A'}, where A' is any formula of which A is a subformula, and B' is just A'
with the subformula A replaced by the subformula B.

Proof. By induction on the difference in complexity between A and A'. Let the
complexity of A be i. Assume that {A-+ B} and {B-+ A} are both valid.

Let P(i) be the proposition that {A' -+ B'} and {B' -+ A'} are valid, where A'
is any formula of complexity J. of which A is a subformula, and B' is just A' with an
occurrence of A replaced by an occurrence of B.

3.4. PROOF THEORY R: R+ -MAPLE 23

I. j - i = 0. {A' ---t B'} and {B' ---t A'}, are just {A ---t B} and {B ---t A}, and so
are trivially valid.

IL i - i > 0. Assume that P(i) holds for all i < j::; k, and consider P(k + 1). The
complexity of A' is k + 1, and A must be one of several forms.

1. A' = C & ... A We have the derivation

{C, ... A ... ---t C} {C, . .. A ... ---t ... B ... }
{C& ... A ... ---tC} {C& ... A ... ---t ... B ... }

{C& ... A ... -+C& ... B ... }

Clearly {C -+ C} is an axiom, and { ... A ... ---t ... B ... , C} is valid by the
induction assumption and Theorem 3.3.2. The derivation of {B' ---t A'} is similar,
as are the derivations for the case when A'= ... A ... & C.

2. A'= CV ... A ... , A'= ... A ... V C. Similar to the cases in (1).

3. A'=--, ... A In this case {A'-+ B'} is {, ... A ... -+ --, ... B .. . }. We have
the derivation

{ ... B ... -+ ... A ... }
{-+, ... B ... , ... A ... }
{, ... A ... ---t , ... B ... }

and since { ... B ... -+ ... A ... } is valid by the induction assumption, so 1s
{A'-► B'}. The derivation of {B' -+ A'} is similar.

4. A'= :3 ... A We have the derivation

{ ... A ... ([p, w]) -+ ... B ... ([p, w])}
{ ... A ... ([p,w])-+ 3 ... B ... }

{3 . . . A ... -+3 ... B ... }

and by Lemma 3.4.1 and the induction assumption,
{ ... A([p,w]) ... ---t ... B([p,wl) ... } is valid; therefore so is {A'-+ B'}. The
derivation of {B'-+ A'} is similar.

5. A' = V ... A Similar to the cases in (4).

III. Since P (i) is true, and if P (k) is true then P (k + 1) is true, P (i) is true for all
i ~ i; therefore, if {A-+ B} and {B ---t A} are both valid, so are{ ... A ... ---t ... B .. . }
and { ... B . .. -+ ... A ... } . D

3.4. PROOF THEORY R: R+ -MAPLE 24

Corollary 3.4.3 (Rule Validity) If {A ~ B} and {B ~ A} are both valid se­
quents, then the rule

Su{± ... A ... }
SU {± ... B ... }

preserves validity.

Proof. Assume that {A ~ B} and {B ~ A} are valid. By Theorem 3.4.2, the
sequent {=f ... A ... ,± ... B .. . } is valid; by applying the thinning rule of C, we can
show that SU {=f ... A ... ,± ... B . .. } is also valid. If SU{± ... A ... } is valid, then
by an application of the cut rule of C, we can derive the sequent S U {± ... B .. . };
therefore it is valid as well, and the rule preserves validity. D

What the above corollary shows is that if we want to prove that each of the rules
of some proof theory preserve validity when they are in the stated form, it suffices to
show that the two related sequents have derivations in proof theory C. Since all of the
rule schemes of the proof theory R are of the stated form, we can employ this corollary
to great advantage in proving the validity of R.

Definition 3.4.4 A constraint list is a formula either of the form wa = wa or of the
form ,wa = w/3 & N, where /3 is to the right of a and N is a constraint list.

Definition 3.4.5 An environment characterization is a formula either of the form fail
or of the form w = a & N, where a is an environment and N is a constraint list.

In the sequel the symbols E and F stand for environment characterizations. En­
vironment characterizations are so called because they completely characterize the
values of all the parts of the environment variable w. In the original R+ -Maple lan­
guage, the role of environment characterizations was played by identity formulae of the
form w = a. This was sufficient to describe the bindings of the environment parts be­
cause negation as failure was used to compute negated formulae; it was not necessary,
therefore, to express negative information. It will turn out (see Appendix B) that every
conjunction of formulae of the form w = a or ,w = a is equivalent to a disjunction of
environment characterizations, although this disjunction may be infinitely long when
expanded.

We will use the symbol fail in the same was as in R+-Maple, to denote the formula
w = [w, O] (which is not true in any base).

Definition 3.4.6 The De Morgan negation of a part of an environment characteri­
zation E, written neg(E), is a meta theoretic transformation of the formula E, defined
as follows:

3.4. PROOF THEORY R: R+ -MAPLE 25

1. neg(fail) = w = w

2. neg(w = a & N) = ,w = a V neg(N)

3. neg(,wa = w{3 & N) = wa = w{3 V neg(N)

4. neg(wa = wa) = fail

Theorem 3.4. 7 The De Morgan negation of any environment characterization 1s
equivalent to ,E; that is, the sequent { neg(E) ---+ ,E} is valid.

Proof. By induction, giving a derivation in C of the above sequent for each clause
of the definition of neg(E). □

Definition 3.4.8 The quantifier dischargement of a part of an environment character­
ization E, written dis(E), is a metatheoretic transformation of the formula E, defined
as follows:

1. dis(fail) = fail

2. dis(w = [a, b(wt)] & N) = w = b & dis(N)

3. dis(,wta = wt{3 & N) = ,wo: = w{3 & dis(N)

4. dis(,who: = w{3 & N) _ dis(N)

5. dis(wta = wto:) = wa = wo:

Theorem 3.4.9 The quantifier dischargement of any environment characterization is
equivalent to :3E; that is, the sequent { dis(E) ---+ :3E} is valid.

Proof. By induction, giving a derivation in C of the above sequent for each clause
of the definition of dis(E). □

We now move to the formal definition of the proof theory R+II. It is similar
in structure to R + -Maple, but it uses formula markers in the style of [Vod85]. Two
markers, up(A) and down(A), are introduced to mark computations descending deeper
into the formula tree, and computations returning upward with partial solutions in the
form of environment characterizations.

These markers can easily be introduced by extending the environment theory
semantics to include them, with the entailment rules {A} ~ up(A) and {A} ~
down(A), and the appropriate additions to proof theory C. Alternatively, we can con­
sider them as metatheoretic abbreviations for distingushed formulae equivalent to the
marked formula A; for instance, down(A) = (p1 = p1) & A, up(A) = (p2 = p2) & A.
We have the following theorem:

3.4. PROOF THEORY R: R+ -MAPLE 26

Theorem 3.4.10 If p and q are parameters, and { A -+ B} and {B -+ A} are both
valid sequents, then the rule

Su{± ... p = p & A ... }
SU{± ... q = q & B .. . }

preserves validity.

Proof. Similar to that of Theorem 3.4.2.
This theorem effectively states that we can ignore the markers for the purposes of

proving rule validity; that is, that they are truly markers which will have significance
only to the flow of control of the computation.

While the proof is considered to proceed from axioms to conclusions, the course of
the computation is considered to proceed from the bottom of the derivation to the top.
We can consider a proof of a sequent of the form{-+ :ldown(w = [wh, wt] & A(wh))}
to be a query which asks whether there are any bindings for the variable w which will
result in the formula A being true.

The axioms of R+IT are the sequents of the form

1. {-+ :lup(E)}, or of the form

2. {-+ :lup(E VB)}.

The environment characterization E of the axiom is the "solution" to the query (the
sequent at the bottom of the proof), in the sense that it can be proven from the
computed derivation of {-+ :ldown(w = [wh, wt] & A(wh))} that a derivation for
{E-+ A} exists. Further solutions can be obtained from an axiom of the second form
by computation on the backtrack formula B.

The rules of deduction for R+IT follow. Some rules are accompanied by proofs of
validity preservation employing Corollary 3.4.3.

1. Downward:

(a) Conjunction
{-+ ... down(E & A) & B .. . }

{-+ ... down(E & (A & B)) .. . }

Validity preservation:

{E,A,B-+A}{E,A,B-+B}
{E,A,B-+ E } {E,A, B -+ A & B }

{E,A,B-+ E & (A & B)}
{E & A, B-+ E & (A & B)}

{ (E & A) & B -+ E & (A & B)}

3.4. PROOF THEORY R: R+ -MAPLE

(b) Disjunction

(c) Existential

{E,A,B---+E}{E,A,B---+A}
{E,A,B---+ E & A} {E,A,B---+ B}

{E,A,B---+ (E & A) & B}
{E, A & B ---+ (E & A) & B}

{E & (A & B) ---+ (E & A) & B}

{---+ ... down(E & A) V down(E & B) .. . }
{---+ ... down(E & (AV B)) .. . }

{---+ ... :3down((w = [wh,a(wt)] & N(wt)) & A) ... }
{---+ ... down(E & :3A) ... }

where E is of the form w = a & N
Validity preservation:

{ w = a, N---+ w = a} { w = a, N---+ N}
{ w = a, N ---+ w = a & N}

{ w = a & N ---+ w = a & N}
{w = a & N,A(b)---+ w = a & N} {(w = a & N),A(b)---+ A(b)}

{w=a&N,A(b)---+ (w=a&N) &A(b)}
some pairing, identity, and cut rule applications

{w = a & N,A(b)---+ ((!b = [bh, a(bt)] & N(bt)) & A(b))}
{w = a & N, A(b)---+ :3((w = lwh, a(wt)] & N(wt)) & A)}
{w = a & N, 3A---+ 3{(w = [wh, a(wt)] & N(wt)) & A)}

{(w = a & N) & 3A---+ 3((w = [wh, a(wt)] & N(wt)) & A)}

where b = [P, w]
(The proof of the inverse is similar.)

(d) Universal

{---+ ... E & V,down((w = [wh, a(wt)] & N(wt)) & ,A) ... }
{---+ ... down(E & VA) ... }

where E is of the form w = a & N

27

3.4. PROOF THEORY R: R+ -MAPLE

(e) Predicate call

{ - ... 3down((w = [b(wt),a(wt)] & N(wt)) & A(wh)) . .. }
{ - ... down(E & P(b)) . . . }

where P(w) +-+Aisin II and E = (w = a & N)

2. Environment Solution:
{- . .. up(B) . .. }

{ - ... down(E & A) ... }

28

where A is of the form a = b or of the form ,a = b, and B is the result of
the Environment Solution Algorithm (see appendix B) applied to the formula
E & A, and there are no subformulae of the form up(C) in the conclusion.

3. Upward normalization:

4. Failure:

(a) Conjunction

(b) Disjunction

Validity preservation:

{- .. . up(B) VA ... }
{- ... AV up(B) . . . }

{- ... up(fail) ... }
{- ... up(fail) & A ... }

{- ... down(A) .. . }

{- ... up(fail) VA ... }

{A - fail,A}
{A- fail VA}

{wh = w, wt= 0 - A,w = O}
{w= [w,o]-A} {A-A}

{ w = [w, 0) VA - A}

(c) Existential
{- ... up(fail) ... }
{- ... :Jup(fail) ... }

3.4. PROOF THEORY R: R+ -MAPLE

(d) Universal

5. Success, no backtrack:

(a) Conjunction

(b) Disjunction

(c) Existential

{- ... up(E) .. . }
{ - ... E & \f,up(fail) . . . }

{- ... down(E & B) .. . }
{- ... up(E) & B .. . }

{- ... up(EVB) ... }
{ - ... up(E) VB ... }

{ - ... up(F) .. . }
{ - ... 3up(E) .. . }

where F is the quantifier dischargement of E

(d) Universal
{- ... down(E & G) . .. }
{ - ... E & \f,up(F) . .. }

where G is the De Morgan negation of the quantifier dischargement of F

6. Success with backtrack:

(a) Conjunction
{- ... down(E& A) V (C & A) ... }

{ - ... up(E V C) & A ... }

(b) Disjunction
{- ... up(Ev (CV A)) . .. }
{ - ... up(E V C) VA ... }

(c) Existential
{- ... up(Fv:3C) . . . }
{- . .. 3up(Ev C) ... }

where F is the quantifier dischargement of E

(d) Universal
{ - ... down(E & G) & \f,C . .. }
{- ... E & \f,up(F V C) ... }

where G is the De Morgan negation of the quantifier dischargement of F

29

3.4. PROOF THEORY R: R+ -MAPLE

Validity preservation:

{C([p, w]) -+ C([p, w])}
{F([p,w])-+ F([p,w])} {,C([p,w]),C([p,wl) -+}

{F([p, w]}-+ 3F} {V, C, C([p, w]) -+}
{V,C, F([p, w]) -+ 3F} {V,C, C([p, w]) -+ 3F}

{V,C, (F([p, w]) V C([p, w])) -+ 3F}

{V,C, (F([p, w]) V C([p, wl)) -+ 3F}
{V,C-+ ,(F([p, w]) V C([p, w])), =IF}

{V,C -+ V,(F v C) , 3F}
{E, V,C -+ E, 3F} {E, V,C -+ V,(F V C), 3F}

{E, V,C -+ E & \f, (F V C), :lF}
{E, , 3F, V,C -+ E & V, (F v C)}

{E & , 3F, V, C--+ E & V, (F V C)}
{ (E & ,3F) & \l, C -+ E & V, (F V C)}

(The proof of the inverse is similar.)

7. Negation:

(a) Conjunction
{-+ ... down(E & (,AV ,B)) .. . }
{-+ ... down(E & ,(A & B)) ... }

(b) Disjunction
{-. .. . down(E & (,A & ,B)) ... }
{-+ ... down(E & ,(AV B)) ... }

(c) Double negation
{--+ ... down(E & A) ... }

{-+ ... down(E & ,,A) ... }

(d) Existential
{-+ ... down(E & V,A) ... }
{-+ ... down(E & ,3A) ... }

(e) Universal
{--+ ... down(E & :hA) ... }
{-+ ... down(E & ,VA) ... }

30

3.4. PROOF THEORY R: R+ -MAPLE

(f) Predicate call

{---+ ... E & 'v'-,down((w = [b(wt),a(wt)] & N(wt)) & A(wh)) ... }
{---+ ... down(E & -,P(b)) .. . }

where P(w) +-+Aisin IT and E = (w = a & N)

31

A brief description of the computation may be in order. A stream of computation
"descends" into the formula tree where a down marker appears. If the formula to be
processed is a conjunction, the computation descends into the left-hand conjunct; if it
is a disjunction, the computation "splits" into two separate streams, each marked; if it
is a quantified formula, the computation moves inside the quantifier; if it is a predicate
call, the appropriate predicate body is substituted; and if it is a negated formula, the
negation is pushed down farther by De Morgan's laws.

When a leaf node in the formula tree (a subformula of the form a = b or -,a = b) is
reached, the environment solution algorithm (a generalization of unification) is applied,
and the partial solution obtained begins to "ascend" the formula tree again, moving
back through any quantifiers it left behind. For simplicity's sake, only one stream
of computation is allowed to be ascending at a time, hence the restriction on the
environment solution rule. When an stream ascends to the level of a disjunction, the
formula is normalized by making and ascending stream the left-hand one. If at any
time in its ascent the formula meets a conjunction (whose computation was previously
suspended), it descends into the conjunct; otherwise, it ascends all the way to the top
level, effectively reporting a solution to the original query.

The proof theory R is not fully deterministic, because in any computation there
can be several subformulae with down markers, where computation can take place.
However, at each down marker, there is only one rule which can possibly apply to
that marked subformula. The next chapter describes a fully deterministic proof theory
which is equivalent to R.

R is precomplete with respect to the given semantics in the following informal sense.
For any program IT and most sentences A, if the sequent {---+ 3A(wh)} is derivable
in C+II, then the equivalent sequent {---+ 3down(w == w & A(wh))} is derivable
in R+II. However, sentences A of the form P(a) V -,P(a), where the definition of
P causes computation of P(a) to diverge, do not have this property, although they
clearly receive the + sign in all bases.

This behaviour of R suggests that it could be equivalent to a proof theory having
some restricted form of excluded middle. The excluded middle of intuitionistic theories
seems too weak; there are some theorems of R which would not be theorems of an
intuitionistic system, such as

{---+ 3down(w = [wh, wt] & V(wh = 0 V -,wh = 0))

3.4. PROOF THEORY R: R+-MAPLE 32

However, we cannot have full classical excluded middle, due to the unprovability in R
of the sentences noted above.

The search for an equivalent classical-style proof theory could be restated as the
search for a reductionist semantics with respect to which R is a consistent and complete
proof theory. By "reductionist" we here mean a semantics which assigns truth value
to individual atomic sentences, and to non-atomic sentences based solely on the truth
values of their constituent subformulae. As we shall see in the next chapter, R, rather
than variants of R employing left-to-right disjunction or negation as failure, seems
more likely to yield a solution to this search.

Chapter 4

Alternative Formulations

In this chapter, we will explore some alternative ways in which the evironment theory of
the last chapter could be formulated and presented. These include formulations with a
sequential evaluation of disjunction; those with negation as failure rather than precom­
plete negation; and those designed with greater efficiency and ease of implementation
in mind.

4.1 Simulated Parallelism

The computational rules given in the last chapter assume a parallel algorithm. Com­
putation goes on at the down(...) nodes in the formula tree, and when it reaches a
disjunction, the computation forks; that is, where there was one down(...) subformula
there are now two, and computation proceeds at each node.

If we are trying to develop a sequential implementation, we have two main choices.
We could alter the rules for disjunction so, that they are truly sequential, but as dis­
cussed in the next section, this approach has its disadvantages. If we still wish to use
the parallel algorithm, however, we could simulate parallel computation by the use of
the device known in recursive function theory as dovetailing.

An interpreter (universal function) simulates the evaluation of a program (the Godel
number of a partial recursive function) by processing each individual instruction in the
program. Similarly, a dovetailing interpre·ter simulates the evaluation of two or more
programs by processing an instruction from each program, then the next instruction
from each program, and so on.

The dovetailing in an environment-theory computationa.1 proof theory could take
place on several levels. The highest would be on the level of the operating system; this
is basically what a timesharing operating system does all the time. An i.,n.termediate
level would be to simulate parallelism within the interpreter, but to retain the rules and

33

4.1. SIMULATED PARALLELISM 34

data structures of a truly parallel computation. The lowest level would be to express
the parallelism in the computational rules.

The two higher levels are not interesting from a logical point of view. However, a
study of the lowest level provides some useful insights into the issues behind imple­
mentations of logic programming.

The purpose of the computational "markers" [Vod85] is to incorporate some notion
of program control into the formulae being computed, and into the computational
rules. To incorporate the flow of control in a dovetailing implementation, we could
augment the markers with an integer indicating the current stage of computation of
the subformula. Consider the proof theory RDl, defined as being identical to R except
for the following modifications.

1. The marker in the axioms, instead of being of the form up, is of the form upn,
for any n. (We could call this n the marker counter; the markers with counters
could be defined with parameters in the same way as the original markers, since
we have a denumerable number of parameters.)

2. Similarly, the marker in the conclusion of each rule is of the form downn or upn,
for any n.

3. When the marker counter in the conclusion of a rule is n, the marker in the
premiss of each rule is of the form downn+l or upn+l.

4. Each rule has the additional condition that the indicated conclusion subformula
downn(A) is the leftmost subformula with the same marker counter as the right­
most marker.

We claim that proof theory RDl is complete in the same sense that R is; that is,
that RDl+II can prove all sequents of the form{----+ :ldown(w = [wh, wt] & A)} proven
by R+II. Each branch of the computation is executed, one rule application at a time,
with the rule applications going from leftmost to rightmost marker and then resuming
at the leftmost marker. Of course, in an implementation the marker counters would
not be necessary; each marker would have an associated data structure which pointed
to the next marker to be evaluated.

Actually, it is not necessary to execute the branches in parallel at the level of indi­
vidual rule applications. It suffices to stop an infinite downward sequence of evaluation
resulting from a recursive predicate definition. Consider the proof theory RD2, defined
as being identical to R except for the following modifications.

1. The marker in the axioms, instead of being of the form up, is of the form upn,
for any n.

4.2. SEQUENTIAL DISJUNCTION 35

2. Similarly, the marker in the conclusion of each rule is of the form downn or up'\
for any n.

3. When the marker counter in the conclusion of a rule is n, the marker in the
premiss of each rule is of the form downn or upn, except in the rules for predicate
evaluation, in which the marker in the premiss of each rule is of the form down n+i.

4. Each rule has the additional condition that the indicated conclusion subformula
downn(A) is the leftmost subformula with the same marker counter as the right­
most marker.

Again, we claim that RD2 is complete in the same sense that R is. It may be
possible to increase the granularity of the computation even more, by incorporating
into the marker information about (for instance) what predicates have been called since
the last pause in computation on the branch.

4.2 Sequential Disjunction

Many implementations of logic programming languages use a left-to-right sequential
computation of disjunction; that is, if the equivalent of the formula A VB is about to be
decided, the computation proceeds by first deciding A, and if all solutions from A lead
to failure, by then deciding B. The main reason for this implementation approach is to
ensure that the exponential explosion of space required by parallel disjunction does not
occur. Other reasons include the inefficiency of implementing disjunctive parallelism on
the operating system level, and the difficulty of implementing a sequential simulation
of parallelism by dovetailing.

Altering our proof theory R so that it uses sequential disjunction is fairly simple.
The rule for downward movement into a disjunction would become:

{ ~ ... down(E & A) v B ... }
{ ~ ... down(E & (A V B)) ... }

and the rule for failure of one branch of a disjunction would become:

{ ~ ... down(A) .. . }
{ ~ ... up(fail) VA ... }

These rules would essentially suspend computation of the right-hand disjunct until all
solutions from the left-hand disjunct had led to failure.

But here we run into a semantical question: what is the real meaning of this
sequential disjunction? There are several approaches we can take to an answer.

4.2. SEQUENTIAL DISJUNCTION 36

4.2.1 Unchanged Semantics

One approach is to simply retain the old semantics for environment theory. Sequential
disjunction can be proven to be sound with respect to the standard model theories;
the proofs of soundness of the various resolution strategies which employ it basically
do this [Llo84].

Sequential disjunction is not complete with respect to the standard model theories,
however. Consider the top-level goal w = a & (A VB). If A is a predicate with a
definition that goes into infinite recursion, B will never be computed even if we can
see intuitively that w = a & B can be proven.

We will not get all possible solutions from a sequential disjunction, and in fact we
may not get any, even when solutions exist. The same ca:ri. be said for any formula
which contains a disjunction or a call to a predicate which contains a disjunction. This
is a significant divergence from the accepted semantics of disjunction, but it can be
argued that this lack of completeness is unimportant. As long as we are always proving
correct things, and the set of things we can prove is sufficiently large for our purposes,
why do we need completeness?

On the other hand, the above argument could be used to question the need for a
semantics in the first place; if we need only validity but not completeness, then surely
our definition of truth can become arbitrarily trivial, mimicking the computation and
declaring everything computed to be true as true. But if the standard semantics de­
scribes accurately our intuitive notion of truth and meaning, why then must our com­
puter systems implement a significantly reduced notion of truth and meaning? What,
in fact, is the notion of truth and meaning implemented by sequential disjunction?

Most logic programming theorists have not dealt with this question. Its answer
requires modifications to the semantics of the programming system.

4.2.2 Modified Semantics for Disjunction

A first stab at the answer is provided by a modification to the semantics for disjunction.
We want the truth value of a disjunction to remain the same for the case when the
left-hand disjunct is defined, but to be undefined (in the three-valued logic analogue,
to receive the ? sign) when the left-hand disjunct is undefined, regardless of the value
of the right-hand disjunct.

Let us call this model theory SD, for "sequential disjunction". The entailment rules
for the other connectives remain the same. The truth table for disjunction becomes
the following.

4.2. SEQUENTIAL DISJUNCTION 37

V + - ?

+ + + +
- + - ?
? ? ? ?

(Compare with that in the section on Formal Semantics, above.) The rules for
entailment involving disjunction become:
{ +A} ~ +(AV B)
{- A,±B} ~ ±(Av B)
Proof theory O can be modified in a similar manner in order to retain its completeness.
But have we acheived completeness for proof theory R? We have for the propositional
case, but lose it when we introduce quantifiers.

For example, the sequent{---+ 3((,wh "'= 0 & P(w)) V (wh = O))} is valid in SD due
to the validity of the sequent {---+ (,0 = 0 & P([O, w])) V (0 = O)}, but if we compute
with it by the rules for existential quantifier, and the predicate call P(w) goes into
infinite recursion, it will never find the answer - exactly the situation in which we
wanted the truth value to be indeterminate.

The reason for this discrepancy becomes clearer when we note that the existential
quantifier is in some sense an infinite disjunction. ~A is essent ially stating the same
thing as A([a1 , w]) V A([a2 , w]) V A([a3 , w]) V ... , where a 1 , a 2 , a 3 , ... is the enumeration
of all the terms and where the disjunction is computed in parallel. We have succeeded
in modelling the sequential nature of the explicit, propositional disjunction, but not
the sequential algorithm we must employ when computing the implicit disjunction of
the quantifiers. If we still want to achieve completeness, it seems we must modify the
semantics of the quantifiers as well.

4.2.3 Modified Semantics for Disjunction and Quantifiers

Unfortunately, when we try to develop a consistent truth definition for the existential
quantifier, we run into problems almost immediately. Recall that no formula which
contains a disjunction is guaranteed to yield all solutions under sequential disjunction.
We can define the truth value of 3{A VB) as being the same as the value of 3A V 3B,
and the value of 3A, where A is an atomic formula, as before. But 3(A & B) cannot be
defined as easily. Such a sentence will be transformed into some disjunction 3(C VD)
by the computation algorithm, and we must know what disjunction it is to define its
truth value.

In other words, since we cannot use proof-theoretic constructs in the semantics
(e.g., by .referring to the computability of a formula), it seems we must mimic the
computation in the definition of the existential quantifier.

The same argument applies for the universal quantifier, since its definition in the

4.3. PARALLEL CONJUNCTION 38

Gilmore semantics depends on an infinite conjunction which is transformed to a dis­
junction in the computation rules. We can make the following conjecture in fairly
informal language:

Conjecture 4.2.1 If M is a semantics of a computational logic which contains the
standard connectives and quantifiers, and P is a deterministic proof theory of that
computational logic which uses sequential disjunction, and P is complete with respect
to M, then the definition of truth in M mimics the computations in P. In other words,
M is a trivial semantic characterization of the proof theory P.

We cannot, at this point, prove the above conjecture (partly because its language
is not sufficiently rigourous). We feel that another promising area for further research
will be to express this conjecture more rigorously and prove it. We must make decisions
on the design of our logic programming systems based on the proof of this conjecture:
do we wish them to be complete only with respect to a trivial semantics, or should
we have the goal of making them as complete as possible with respect to the fairly
intuitive and well-accepted truth-functional semantics of mathematical logic?

We make the second choice, and use parallel disjunction rather than sequential. The
fact that parallel disjunction can be sequentially simulated using dovetailing (simulated
parallelism) is another factor in favour of making this choice.

4.3 Parallel Conjunction

If the use of left-to-right sequential disjunction creates such a wide gap between proof
theory and any non-trivial semantics, why then does the proof theory Ruse sequential
conjunction? The answer lies in what we want to use the proof theory for.

In logic programming, we are interested mainly in the use of the proof theory for
generating sets of variable bindings which make a query true: We are not necessarily
interested in using the proof theory to refute things.

When sequential disjunction is used, the system may not be able to find solutions
to a query of the form AV B when solutions to B exist. When sequential conjunction
is used, on the other hand, the processing of a query of the form A & B must always
result in solutions if they exist, because both A and B must be true in the same base.
The system will be unable to prove that a query of the form A & B is unsatisfiable in
general, although many unsatisfiable queries will be able to be so proven.

Although a parallel conjunction would be desirable, we conclude that it is not nec­
essary. The good reasons for using sequential disjunction - lessening of the exponential
explosion of space usage and simplicity of algorithm - also hold in the case of sequential
conjunction.

4.4. NEGATION AS FAILURE 39

4.4 Negation as Failure

The standard method of computing negation is the general paradigm known as negation
as failure (Cla78]. No negation as failure is complete with respect to classical semantics,
but certain types have been proved to be sound [Llo84]; indeed, a great deal of recent
research has gone into such soundness proofs.

In Voda's paper describing environments [Vod86b], the language described uses a
version of negation as failure. When a computation moves into a negation, it does so
essentially by the following rule:

{-+ .. . w = a & ,down(w = a & A) ... }
{-+ . .. down(w = a& ,A) ... }

But if the sentence is then transformed by the computation into an equivalent one
of the form w = a & ,w = b, where b is different from a, the computation blocks.
Conditions on the environment are expressed by a single environment equation of the
form w = a, and therefore cannot express the conjunctive condition.

The analogue in Prolog is the situation when a computation moves into a negated
formula without all terms in the formula ground, i.e., assigned a value. If any bindings
take place within the evaluation of the formula, the bindings cannot be passed through
the negation, or the computation will become unsound, so the computation must block,
reporting that the goal formula can be neither proven nor refuted.

The method of preference for avoiding this problem is delayed negation; see for
instance [CG83). The computation of a negation is delayed until such time as all the
terms in the negated formula have become ground due to results from other conjunctive
subgoals. Once all terms are ground, the computation of negation as failure can be
proven to be both sound and complete.

The obvious difficulty with this approach is that if the negated formula is not part
of a conjunction, there are no other conjunctive subgoals to produce values, and thus
there is no way to ground the terms in the negated formula. Lloyd [LJo84] ignores this
case. However, there is one important situation where it arises consistently; namely,
when the universal quantifier is used or simulated.

Consider the standard first-order logic formula P(x) & \iyQ(x, y). Since Prolog
has no explicit quantifiers, but only implicit universal quantifiers at the beginnings of
predicate definitions, we must express such a formula in a different way if we are to
compute it. First we note that the formula is equivalent to P(x) & ,3y, Q(x, y), and
then note that the only way to obtain an existential quantifier in that position is to
define a predicate containing the formula being quantified. Thus, the formula must be
computed in Prolog by defining the predicate R by the clause
R{x) : - ,Q(x, y).

4.4. NEGATION AS FAILURE

and deciding the goal
P(x), ,R(x).

40

Clearly, the body of R is exactly the type of formula which is not decidable by
negation as failure. Since this situation arises every time a universal quantifier is en­
countered, we must conclude that it is not feasible to have full universal quantification
in a system with negation as failure.

In addition to the conflict with universal quantification, there are difficulties in
defining the semantics of negation as failure. Here we run into many of the same
problems as we did with sequential disjunction. Let us assume that we want our
negation as failure rule to be complete with respect to the semantics. We want the
formula w = a & ,fail to take the same sign as the formula w = a, and the formula
w = a & ,w = a to take the sign - (the cases decided by negation as failure). However,
we want the formula w = a & ,w = b to take the sign? (i.e., to be of undefined truth
value) when w = a -f► w = b, since this is the case negation as failure cannot decide.

Again, the truth value of the formula in question depends on the surrounding
formulae. But what, then, is the truth value of a formula of the form A & ,B? It
depends on the order of the solutions which are computed from the individual formulae
A and B; that is, it depends on things which we cannot deduce without doing the
computation. With either true parallel disjunction, simulated parallel disjunction, or
left-to-right sequential disjunction, the order of solutions obtained cannot be predicted.
We expect a similar result to that for sequential disjunction will obtain; namely, that
negation as failure is a complete procedure only with respect to a trivial semantics.

Chapter 5

Conclusions and Future Work

We have shown that the semantics of Yoda's Theory of Pairs can be expressed formally
by a system similar to Gilmore's natural deduction first-order set theory. Using Yoda's
technique of describing programming languages as proof theories, we have given a
language which can prove a large subset ofpossible logic programming queries. While
not complete with respect to the given semantics, this language is precomplete in some
well-defined sense, mainly due to its improved treatment of negation. To show the
soundness of the language with respect to the semantics, we have used the complete
natural deduction proof theory corresponding to the semantics as an effective analytic
tool.

Future work arising from this study covers a fairly wide area. Theoretically, the
goal of studying logic programming formally is to develop improved logic programming
languages; it would be desirable to implement the language described here. An attempt
to implement the language may expose inconsistencies in the definition, and may lead
to an improved language which corresponds better to actual computation. This Line
of research follows along the same path as previous work by Voda: the attempt to
describe, in standard logic, the data and control structures used in the interpreter of
a programming language.

We are not entirely satisfied with our definition of environment characterization and
the environment solution algorithm. We feel that a less complex notation may be ob­
tainable, which expresses the negative information of the characterization as compactly
as the environment expresses positive information. It would also be nice if the form
of environment characterization so obtained had the property that the environment
solution algorithm on it terminated on all failures as well as on all successes. The key
requirement for an environment characterization, however, is that it can pass outside a
quantifier easily, discharging the quantified variable with a minimum of computational
effort.

41

42

The semantic characterizability of left-to-right sequential disjunction and negation
as failure is also an interesting area. If we cannot give a semantics with respect to
which a language using these techniques is complete, other than a trivial one, any
assertion that such a language corresponds to formal logic is considerably weakened.
An analysis of the issues here would seem to demand a formal definition of a semantics,
and also definitions of the acceptability and triviality of a semantics. It is not clear at
this stage what these definitions would look like.

Finally, we have a strong but, for now, intuitive feeling that there is a connec­
tion between logic programming with precomplete negation and such set theories as
Gilmore's, with its form of excluded middle. To be able to prove the equivalence of a
precomplete logic programming language with some formulation of predicate calculus
with restricted excluded middle may be a result of some theoretical importance.

Bibliography

[AvE82] Krzysztof R. Apt and Maarten H. van Emden. Contributions to the theory
of logic programming. Journal of the Association for Computing Machinery,
29(3):841-862, July 1982.

[Bet66] Evert W. Beth. Foundations of Mathematics. Harper and Row, New York,
1966.

[CG83] K. L. Clark and S. Gregory. PARLOG: A Parallel Logic Programming Lan­
guage. Technical Report DOC 83/5, Department of Computing, Imperial
College, London, 1983.

[Cla78] Keith L. Clark. Negation as Failure, pages 293-322. Plenum Press, New
York, 1978.

[Fit85] Melvin Fitting. A Kripke-Kleene semantics for logic programs. Journal of
Logic Programming, 4:295-312, 1985.

[Gen69] Gerhardt Gentzen. The Collected Papers of Gerhard Gentzen. North­
Holland, Amsterdam, 1969.

[Gil86a] Paul C. Gilmore. Computer Science 504 Course Notes. University of B. C.
Department of Computer Science, Vancouver, B. C., 1986.

[Gil86b] Paul C. Gilmore. Natural deduction based set theories: a new resolution of
the old paradoxes. Journal of Symbolic Logic, 51(2):393-411, June 1986.

[HA38] David Hilbert and W. Ackermann. Grundziige der Theoretischen Logik.
Springer, Berlin, 1938.

[Kow7 4] Robert Kowalski. Predicate logic as programming language. In Information
Processing 14 - Proceedings of the IFIP Conference, North-Holland, 1974.

[Kri75] Saul Kripke. Outline of a theory of truth. Journal of Phi'losophy, 72:690-716,
1975.

43

BIBLIOGRAPHY 44

[Llo84] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
1984.

[Men64] Elliott Mendelson. Introduction to Mathematical Logic. D. van Nostrand,
Princeton, 1964.

[Nai84] Lee Naish. MU-Prolog 9.1db Reference Manual. University of Melbourne,
1984.

[Sco75] Dana Scott. Combinators and Classes, pages 1-26. Volume 37 of Lecture
Notes in Computer Science, Springer-Verlag, 1975.

[Smu68] Raymond M. Smullyan. First-Order Logic. Springer-Verlag, Berlin, 1968.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. The MIT Press, Cambridge, Massachusetts,
1977.

[vEK76] Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate
logic as a programming language. Journal of the Associ'ation for Computing
Machinery, 23(4):733-742, October 1976.

[Vod84] Paul J. Voda. Theory of Pairs, Part I: Provably Recursive Functions. Tech­
nical Report 84-25, Department of Computer Science, University of British
Columbia, Vancouver, December 1984.

[Vod85] Paul J. Voda. A view of programming languages as symbiosis of meaning
and computations. New Generation Computing, 3:71-100, 1985.

[Vod86a] Paul J. Voda. Choices in, and limitations of, logic programming. In Pro­
ceedings of the Third International Logic Programming Conference, 1986.

[Vod86b] Paul J. Voda. Computation of full logic programs using one-variable envi­
ronments. New Generation Computing, 4(2), 1986.

[Vod86c] Paul J. Voda. Precomplete Negation and Universal Quantification. Tech­
nical Report 86-9, Department of Computer Science, University of British
Columbia, Vancouver, April 1986.

Appendix A

Completeness Proof for C

In the body of this appendix, we will assume that the proof theory referred to is
always the proof theory C described above, augmen_ted by the rules concerning the
program II. That is, "derivability" will mean "derivability in C+II", etc. We will also
assume that the signed sentences of the theory can be enumerated with the enumeration
0-1, 0-2, 0"3, • • •

Theorem A .. 1 (Subset) A sequent is derivable if and only if some finite subset of
it is derivable.

Proof. (+-) If a finite subset of a sequent is derivable, we can construct a derivation
of the whole sequent by simply augmenting every sequent in the proof by the remainder
of the sequent. Clearly this derivation will be correct.

(--t) We can construct one finite derivable subset from the derivation of any sequent.
For an axiom, the subset is the one or two formulae required to be in it by the definition
of axiom. Assume that for all sequents derivable with n steps, we can build such a
subset.

Consider any sequent derivable with n + 1 steps. Let the premisses be of the
form Seq U S1 , ... Seq U Sn, and let the conclusion be of the form Seq U {A}. If
T1 , ••• Tn are the constructed finite derivable subsets of the premisses, then clearly
(T1 U ... U Tn U {A}) - (81 U ... U Sn) is also derivable.

A finite derivable subset of any derivable sequent can thus be built up by induction.

□

Definition A .. 2 The parameter set of a sequent is the set of all parameters in all the
terms appearing in that sequent.

Intuitively, we will prove the completeness of C by proving that any non-derivable
sequent must not be valid. We will do this by extending the sequent by the addition of

45

46

formulae, forming a chain of non-derivable sequents whose union will be the foundation
for a base in which the sequent is not true. This chain will be one path through the
Ext tree, defined as follows.

Definition A .. 3 The sets Extn(Seq) and Chkn(S eq), and the formula AtBatn(Seq),
for any sequent Seq with a finite parameter set, form an infinite trinary tree in which
every node n has nodes 3n - 1, 3n, and 3n + 1 as children. These constructs can be
thought of as the "extensions" of Seq, the "check sets" corresponding to each extension,
and the "formula at bat" in each extension. Their definition is mutually recursive.

1. Exti(Seq) is Seq.

2. Chk1(Seq) is the empty set,{}.

3. If there are members of Extn(Seq) which are not members of Chkn(Seq),
AtBatn(Seq) is the earliest such signed sentence in the enumeration sequence
a 1 , a 2 , ••• Otherwise, AtBatn(Seq) is undefined.

4. For n > 1, if AtBatn(Seq) is defined, then for 3n - 1 ~ m ~ 3n + 1, Extm(Seq)
is Extn(Seq) U ~(Extm(Seq)). ~(Extm(Seq)) is defined by the following table.

AtBatn(Seq) ~(Ext3n-1 (Seq)) ~(Ext3n(Seq)) ~(Ext3n+1 (Seq))
+a= [b,c] {+ah= b} {+at= c} {-a= O}
+[b,c] = a
-a= [b,c] {-ah= b,-at = c,+a = O} -[b,c] = a
±a=b {}
(not pairs)

+A&B {+A} {+B}
-A&B {- A,-B}
+AvB {+A,+B}
-AVB { - A} {-B}
±-.A {=t=A}
+3A { +A([af, w]), +A([a2, w]), .. . }l0 i

-3A {-A([p", w]) }l01

+VA { + A([p", w]) }l0J

-VA {-A([af, w]) , -A([a21, w]), .. . }\ 0
)

±P(a) {±AJ.-' (a)}leJ
Notes:
(a) af, a 2, ... is the enumeration of all the terms generated from the parameter
set of Extn(Seq).
(b) p" is a parameter not appearing in Extn(Seq).

47

(c) AP is the definition of predicate Pin the program TI; i.e., P(w) t--+ AP is in
TI.

5. If AtBat,,.(Seq) is defined and of the form +VA or -.:!A, then
Chk3n-1(Seq) ... Chksn+i(Seq) are (Chkn(Seq) u {AtBatn(Seq)}) - MU, where
MU is the set of all signed sentences in Extn(Seq) of the form -VB or +.:!A.

6. If AtBatn(Seq) is defined and not of one of the above forms, then
Chksn-1(Seq) ... Chk3n+i(Seq) are just Chkn(Seq) U {AtBatn(Seq)}.

7. If AtBatn(Seq) is undefined, then Ext3n-1(Seq) ... Extsn+1(Seq) are identical to
Extn(Seq), and Chksn-i(Seq) ... Chksn+1(Seq) are identical to Chkn(Seq).

Theorem A .. 4 (Tree Derivability) If, for some sequent Seq with a finite parameter
set, Extsn-i(Seq), Ext3n(Seq), and Ext3n+I(Seq) are derivable, then so is Extn(Seq).

Proof. The proof is by case analysis on the cases given in the table in definition
A .. 3. Consider case (4.4), for example. If Ext2n(Seq) is derivable, then a proof for
Ext,,.(Seq) can be constructed by simply adding a step onto the proof of Ext2,,.(Seq).
The other cases are very similar, except for case (4.6), which we will consider here.

In case (4.6), if Ext2n(Seq) is derivable, then by Theorem 1 some finite subset of
it is derivable. Call this finite subset S. If S is also a subset of Extn(Seq), then by
Theorem 1 that is derivable as well. Otherwise, S must be of the form S1 U S2 , where
S1 is a subset of Extn(Seq), and all the formulae in S2 are of the form - [t/x]A. A
proof for S1 U { -(x)A} can be constructed by adding one step for every sentence in S2 ,

replacing each by -(x)A. But 81 U {-(x)A} is clearly a subset of Ext,,.(Seq), which
is therefore derivable. □

Corollary A .. 5 If Extn(Seq) is not derivable, then either Ext2n(Seq) or Ext2n+1(Seq)
is not derivable.

Proof. This is just the contrapositive to Thm. A . .4. □

Corollary A .. 6 If Seq is not derivable, then there is an infinite sequence of integers
71'1,71'2, ••• such that

1. 71'1 is 1,

2. For all i > 1, '.ll'i is either 3'.ll'i - 1, 37ri, or 2'.ll'i + 1, and

3. For no i 2: 1 is Ext,r,(Seq) derivable.

Proof. The proof is by induction, using Cor. A .. 5 in the induction step. □

48

Definition A .. 7 If 1r1, 11"2 , ••• is the sequence mentioned in Cor. A .. 6 for a sequent Seq,
then NDExti(Seq) is Ext,..,.(Seq), NDGhki(Seq) is Ghk,..i(Seq), and NDAtBati(Seq)
is AtBat11JSeq).

Theorem A .. 8 (Batting Order) Consider any underivable sequent Seq with a finite
parameter set. If the signed sentence C1j is a member of N DExti(Seq) but not of
NDGhki(Seq), there is a k ~ j such that NDAtBatk(Seq) is ui.

Proof. Let S be the set of signed sentences of the form - YA or + :lA which are
before C1i in the enumeration, and let T be the set of signed sentences of all other forms
before C1i in the enumeration. Then let mn, for n ~ 1, be \S - NDGhkn(Seq)\ + i *
IT- NDGhkn(Seq)\. For all k such that NDAtBatk(Seq) is before oi, we can show
that mk ~ mk+l· This is because if such an NDAtBatk(Seq) is of the form -(x)A,
mk+1 will be m.1: - 1, and if it is of any other form, mk+l will be at least m.1: - i and at
most m.1: - 1.

Let C1i appear in NDExti(Seq), but not in NDChki(Seq). It will thus appear
in NDExt.1:(Seq) for all k ~ j. Now assume that there is no k ~ J. such that a,
is NDAtBat1c(Seq). Thus, for all k ~ J·, there is some signed sentence before C1; in
the enumeration which appears in N DExt1e(Seq) but not in N DChk.1:(Seq). We can
conclude, since m" is decreasing for all k ~ j, that there is some k at which m.1: is
zero. But the only way that could happen would be if all signed sentences before a, in
the enumeration were in NDGhk1c(Seq), in which case NDAtBatk(Seq) would have
to be e11, contradicting our assumption. Therefore there must be some k ~ i such that
N DAtBat.1:(Seq) is e11• D

Corollary A .. 9 If the signed sentence a; appears in any N DExti(Seq), then there is
a k such that N DAtBat.1:(Seq) is a,.

Proof. For;'> 1, every member of NDChk;(Seq) appears in NDExt;-i(Seq). If
C1i appears in any N DExt;(Seq), there must be a smallest such J·; therefore for that
smallest j, u; is a member of NDExt;(Seq) but not of NDChk;(Seq), and the result
of Theorem 3 holds. □

With the informal notions about sets that we have been using, we can assert that
the "infinite union" of the sequents NDExti(Seq) exists. That is, there is a set (let
-us call it Ext•(Seq)) such that a signed sentence is in Ext*(Seq) if and only if it is in
some N DExti(Seq), for some finite i ~ 1.

Theorem A .. 10 (Extension non-derivability) For any underivable sequent Seq
with a finite parameter set, Ext*(Seq) is not derivable.

49

Proof. Assume Ext•(Seq) is derivable. Then some finite subset of it is deriv­
able. By our definition of Ext*(Seq), each member of this subset appears in some
N DExti(Seq).

But by our definitions, every N DExt;(Seq) is a subset of N DExti+i(Seq), so there
must be some NDExt;(Seq) in which every member of this subset appears. This
would make N DExt;(Seq) derivable as well, contradicting our assumptions about the
formation of Ext•(Seq). Therefore, Ext*(Seq) cannot be derivable. □

Corollary A .. 11 Whenever a signed sentence ±A appears in Ext*(Seq), the signed
sentence =FA does not also appear.

Proof. If it did, Ext•(Seq) would be an axiom, and therefore derivable. □

Corollary A .. 12 No signed sentence of the form +a= a appears in Ext*(Seq).

Proof. If it did, Ext*(Seq) would be an axiom, and therefore derivable. □

Corollary A .. 13 Whenever the signed sentences -a= band +A{p := a} appear in
Ext*(Seq), the signed sentence -A{p := b} does not also appear.

Proof. If it did, the finite subset of Ext*(Seq), { +A{p := a}, -A{p := b}, -a=
b} could be derived from the two sequents { +A{p := a}, -A{p :=a}} and { +A{p :=
b }, - A{p := b} }, so Ext• (Seq) would also be derivable. □

Definition A .. 14 ~(Seq), which we will prove to be the falsifying interpretation of
Seq, is defined as follows. Let us assume, without loss of generality, that the parameter
Po is a member of the parameter set of Seq.

1. If ±A is in Ext"'(Seq) for A of the form a= b or P(a), then =t=A is in ~(Seq).

2. For all terms a, +a= a is in ~(Seq).

3. For all terms a and b, the following signed sentences are in ~(Seq):

(a) +O = Oa, Oa = O

(b) -[a, b] = [a, b]a, -[a, b]a = [a, b] for all nonempty a

(c) +[a, b]h = a, +a= [a, b]h

(d) +[a, b]t = b, +b = [a, b]t

4. If the parameter set of Ext*(Seq) does not contain all the parameters, then, for
all parameters p; not in that set, the signed sentence +P, =Pois in ~(Seq).

5. If both ±A{p := a} and +a= bare in ~(Seq), then ±A{p := b} is in ~(Seq).

50

6. If both ±A{p := a} and =r=A{p := b} are in <I>(Seq), then -a= bis in <I>(Seq).

7. For all other atomic sentences A, +A is in <I>(Seq).

Theorem A .. 15 (<I> Interpretation) For any underivable sequent Seq with a finite
parameter set, <I>(Seq) is an interpretation of II.

Proof. That all atomic sentences are represented in one sign or another is obvious
from clause 6 of the definition of <I>(Seq). No sentence in the set by virtue of clause
1 is represented with both + and - signs, because by Cor. A .. 11 no sentence is in
Ext• (Seq) with both + and - signs.

The signed sentence +a = b can enter <I>(Seq) only if a and b are identical, or if
-a= b is in Ext•(Seq) (in which case by Cor. A .. 13 not both of ±A{p := a} and
=r= A{p := b} can be in <I>(Seq)), or if a is not in the parameter set of Ext•(Seq), or
if t here is no A such that both ± A{p := a} and =r=A{p := b} are in <I>(Seq). In
all cases where both ± A{p := a} and =r= A.{p := b} are in Ext*(Seq), -a= bis in
<I>(Seq). Clearly, the conditions for interpretations of II on identity sentences are met,
and no sentence can appear with both a + and - sign in <I>(Seq), so <I>(Seq) is an
interpretation of II. □

Theorem A .. 16 (Extension Completeness) For any underivable sequent Seq
whose parameter set is finite, Ext•(Seq) is not true in <I>(Seq).

Proof. This is equivalent to saying that no signed sentence in Ext*(Seq) appears
in the closure of <I>(Seq). The proof is by induction on the complexity of individual
signed sentences in Ext• (Seq).

By the definition of <I>(Seq), if ±A is in Ext•(Seq) for A of the form a= b or P(a),
then =r=A is in <I>(Seq); so clearly, all signed sentences in Ext*(Seq) of complexity Oare
not in the closure of <I>(Seq).

Assume that all sentences of complexity k in Ext*(Seq) are not in the closure. If
a signed sentence of the form ±,A and of complexity k + 1 is in Ext*(Seq), then it
must be in some NDExt,(Seq); therefore by Cor. A .. 9 there must be some j such
that the formula is N DAtBat;(Seq); therefore =r=A is in N DExt;+1(Seq) and thus
in Ext*(Seq); therefore by our induction assumption ±A must be in the closure of
<I>(Seq); therefore by the semantic successor rules =f,A must also be in the closure of
<I>(Seq); therefore ±,A cannot be in the closure of <I>(Seq).

The other cases for signed sentences <1 are similar, except for the case where <1 is
of the form +:lA (or -VA), which will be covered here. Every term a which appears
in Ext*(Seq) is formed from a finite number of parameters. Therefore, there is some
earliest N DExt1r,(Seq) whose parameter set contains all the parameters from which a
is formed. Further, either k = 1 or N DAtBat1r,- 1(Seq) is of the form -:lA (or +VA).

51

So if u is in Ext•(Seq), it must be NDAtBatm(Seq) for some m ~ k, because even if
u is an element of NDExt1c(Seq), it will not be an element of NDChk1c(Seq), and so
by Theorem A .. 8, must come "up to bat" again.

We therefore must have ±A([a, w]) in Ext•(Seq) for all a formed from parame­
ters in the parameter set of Ext•(Seq). By our induction assumption, we must have
=fA([a, w]) in the closure of <I>(Seq) for all such a. Because all parameters which are
not members of the parameter set of Ext•(Seq) are made equivalent to one which is,
=fA([a, w]) must also be in the closure of <I>(Seq) for all terms formed from those pa­
rameters as well; in other words, for all terms a. By the semantic successor rules, we
must therefore have -:3A (+VA) in the closure of <I>(Seq), and therefore u is not in
the closure.

By induction, we can therefore say that Ext*(Seq) is not true in <I>(Seq). □

Corollary A .. 17 No underivable sequent Seq whose parameter set is finite is true in
<I>(Seq).

Proof. Since Ext''(Seq) has no intersection with the closure of <I>(Seq), no subset
of it can have an intersection with the closure either. Seq, however, is a subset of
Ext* (Seq), and therefore cannot be valid with respect to <I> (Seq). □

Corollary A .. 18 (Completeness) Every valid finite sequent is derivable.

Proof. Consider any underivable finite sequent Seq. The parameter set of Seq
must be finite; therefore, there is a base, <I>(Seq), in which it is not true; therefore it is
not valid. Conversely, therefore, every valid sequent is derivable. □

Cor. A .. 18 is the main result of this appendix. It tells us that the proof theory C we
have developed for environment theory is complete; that is, that every finite sequent
which is valid, and therefore desirable to be derived, is in fact derivable.

Appendix B

Environment Solution Algorithm

Definition B .. 19 A pointer x in an environment a is dereferenced if a/x - x. An
environment a is dereferenced if all pointers it contains are dereferenced; that is, if all
pointers either are self-pointers or point to self-pointers.

Lemma B .. 20 There is a terminating algorithm which converts every environment a
to an equivalent dereferenced environment a'.

Proof. There are a finite number of undereferenced pointers x in a (pointers such
that a/x "t x). Starting at the rightmost such pointer, at part y of a, set a/y to
a/(a/y). The altered environment will be equivalent to the original, and all pointers
in a/y will now point to self-pointers; therefore the number of undereferenced pointers
will have been lowered. Repeat with the rightmost undereferenced pointer until the
number of such pointers reaches 0. D

Definition B .. 21 An equation system is a formula of the form D 1 V D 2 V .•• V Dn,
where each disjunct D, is of the form w = a, & Ci,1 & Ci,2 & ... & Ci,m; and each
conjunct C,,; is of the form b,,; = Ci,; (an equation conjunct) or bi,; =/:. Ci,; (an inequality
conjunct).

Lemma B .. 22 If, in an equation system, for all equation conjuncts Ci,; of the disjunct
Di,

1. bi,; is a pointer Xi,;,

2 . . [h t l d . Ci,; 1s a pair ci,;, c,,; , an

3. each of the pointers Xi,; appears in some Ci,k, where Ci,k is an equation conjunct,

then the disjunct Di is equivalent to fail; that is, the sequent { -Di} is valid.

52

53

Proof. Assume the stated conditions. Let us say that a pointer b;,; refers to
another pointer b;,k if b;,k is a part of c;,1. Because each b;,k is referred to by some
bi,i, we can easily construct a list of pointers y 1 , y 2 , •.• Ym;+l such that Yi+l refers to
Yi for all l ::; i ~ m1. Clearly there must be some b;,; which appears twice in the list.
This implies that b;,; is a proper part of itself; that is, that +bi,ia = bi,; , for some
nonempty o:, is in any base whose closure contains + Di. Since this is not allowed by
the semantics of pair identity, -Di must be in the closure of all bases, and Di must
be equivalent to fail. □

Definition B .. 23 The depth of O and of all pointers is O; the depth of a pair is the
greater of the depths of its head and tail. The depth measure of an equation a = b or
inequality a=/- bis wd, where w is the first transfinite limit ordinal and dis the greater
of the depths of a and b.

Environment Solution Algorithm. The algorithm considers the disjuncts as a
linear list. The addition of a disjunct to the end of the list is done in the natural way,
by increasing the value of mi. The conjuncts within each top-level disjunct are also
treated as a list, and can be added to or eliminated individually.

Throughout, the order of terms in an equality or inequality is disregarded; any
reference to (say) an equation of the form a= b can be considered as referring also to
equations of the form b = a.

1. Repeat, for all disjuncts Di not of the form fail, until either one disjunct D; is
such that C;,; = X;,; =/- Yi,i for all 1 ::; J ::; m;, or all disjuncts have been replaced
by fail:

(a) If a; is not dereferenced, dereference a;. (From lemma B .. 20 we know that
this procedure terminates.)

(b) Otherwise, if there is a pointer xa appearing in any C;,; such that a;/x = x
and a "t e, then for each such pointer:

i. Replace every occurrence of x{3 in D;, for every {3, with 0.

ii. Create a new disjunct which is identical to Di, except that every occur-
rence of x in a; is replaced by an occurrence of [xh, xt].

(This loop terminates because there are a finite number of dangling pointers
in the original Di, and no new dangling pointers are introduced into Di by
the procedure.)

(c) Otherwise, if there is any pointer x appearing in any Ci,i such that ai/x "t x,
then for each such pointer, replace it by adx, (Since there are a finite
number of pointers in the list of conjuncts, this procedure clearly terminates.

54

After this step, due to the definition of a dereferenced environment, every
pointer x in every bi,; or ci,i points to a self-pointer; that is, ~/x = x.)

(d) Otherwise, if any conjunct bi,i = ci,i of depth measure wd;,; is such that
bi,i = [b?.i-, ht;] and Ci,; = [ct;, cL], then for each such conjunct, replace
the conjunct by h?,; = cf,; and create a new conjunct of the form bL = c:,;.
(The depth measure of each new conjunct must be ::; wd,-,J-l, so the sum of
the depth measures of the equality conjuncts has been decreased by at least
wd;,; - 2wd;,;-1 _)

(e) Otherwise, if there are any conjuncts of the form O = 0, eliminate them.
(Each elimination decreases the sum of the equality conjunct depth measures
by 1.)

(f) Otherwise, if any conjunct is of the form O = [cf.i, c!,;], replace the entire
disjunct by fail.

(g) Otherwise, if any conjunct is of the form x = Ci,; or its inverse, where Ci,f is
either O or a pointer to the right of x, then for each such conjunct, replace
occurrences of x in Di by occurrences of ci,f, and eliminate the original
conjunct. (Due to the fact that all pointers pointed to self-pointers, the
environment remains fully dereferenced, and all pointers in all conjuncts
still point to self-pointers. The depths of the other conjuncts have not been
changed, but one conjunct has been eliminated, so the sum of the equality
conjunct depth measures has been decreased. At this point in the algorithm,
we can assume without loss of generality that every equality conjunct is of
the form x = [c~ ., c~ .].) 1,3 1,3

(h) Otherwise, if every pointer bi,i in an equality conjunct appears in some ci,k
in an equality conjunct, then by Lemma B .. 22, replace the entire disjunct
by fail.

(i) Otherwise, if there are still equality conjuncts in the disjunct, let Ci,i be
an equality conjunct such that bi,i = x does not appear in any ci,k in an
equality conjunct.

1. Replace every occurrence of x in ai with an occurrence of Ci,i•

ii. A finite number of pointers in ai will now point to a self-pointer to the
left. For each such pointer y at part ai/ z, replace all occurrences of y
in ~ by occurrences of z. (This will effectively shift all pointers so that
they point to the right.)

iii. Eliminate the original conjunct, x = Ci,i•

iv. Replace every occurrence ofx in the disjunct with an occurrence of a;jx.
(These occurrences can only be on the left hand side of conjuncts.)

55

Say that the depth of the original ci,i was d. The depth measures of some
conjuncts have been raised to wa. However, at the next repetition of step 4a,
because all right hand sides are pairs, they will all be split into two conjuncts
of depth d - 1. Therefore, a factor of wa will have been subtracted from the
sum of the equality conjunct depth measures, but only a finite number of
factors of wd-l will have been introduced. There will therefore have been a
net decrease in the sum of the equality conjunct depth measures.

(j) Otherwise, if there are conjuncts of the form [bf,;, bL] =/- [cf,;, ct;], then for
each such conjunct,

i. Replace the conjunct by bf,; =/- cf,1.

ii. Create a new disjunct which is identical to Di, except that Ci,i is re­
placed by b!,; # c:,1.

(k) Otherwise, if there are conjuncts of the form O =/- 0 or x =/- x, replace the
entire disjunct by fail.

(l) Otherwise, if there are conjuncts of the form O =/- [cf,;, ct;], eliminate them.
(At this point we can assume without loss of generality that all conjuncts
are of the form Xi,; # c,,;, where X.,; is a pointer to a self-pointer in ai.)

(m) Otherwise, if there are conjuncts of the form x1,; =/- [cf,;, cL], then for each
such conjunct:

1. Create a new disjunct which is identical to D,, except that every occur­
rence of x,,; is replaced by an occurrence of [x1,;h, x1,;t].

11. Replace every occurrence of x,,; in D, by an occurrence of 0.

m. Eliminate the original conjunct.

(n) Otherwise, there must be conjuncts of the form Xi,; =/- 0. For each such
conjunct, replace all occurrences of x,,; in D 1 by occurrences of [x,,;h, x,,;t],
and eliminate the original conjunct.

2. If all disjuncts are of the form fail, terminate returning fail.

3. Otherwise, if one disjunct D 1 is such that a 1 is a proper environment and each C1,;

is of the form x 1,; =I- Yi,;, terminate returning (w = a, & C 1,1 & ... & C,,m;) V

D1 V ••. V D 1-1 V DH1 V •.• V Dn.

End of algorithm.

Theorem B .. 24 Given an equation system, the environment solution algorithm above
will terminate finding an equivalent equation system of the form (w = a & x 1 =/­
y1 & ... & Xm =f y m) V B, if and only if there is such an equation system. If such an
equation system does not exist, the given equation system will be equivalent to fail.

56

Proof. Note the following things about the algorithm.

1. All of the clauses contain a condition and an action; the action is performed if
and only if the condition holds and none of the conditions in the previous clauses
hold.

2. All of the actions in all the clauses terminate individually.

3. If the action in clause l(a) has been performed for a particular disjunct Di, none
of the subsequent clauses will allow its condition to become true again; similarly
for clauses l(b) and l(c).

4. As long as there are equality conjuncts in a particular disjunct, one of the clauses
l(d) - l(i) will be performed on that disjunct at every repetition of the loop.

5. The action in each of the clauses l(d) - l{i), when applied to any disjunct Di,
causes the sum of the depth measures of the equality conjuncts to decrease;
therefore, since the sum of the depth measures is always a countable ordinal, by
transfinite induction the conditions on all the clauses must not hold after some
finite number of repetitions.

6. None of the clauses l(j) - l(n) causes any of the conditions in the previous clauses
to become true.

7. The action in each of the clauses l(j) - l(n), when applied to any disjunct Di,
causes the sum of the depth measures of the remaining conjuncts to decrease.
Again, by transfinite induction these clauses can be repeated only a finite number
of times for each Di,

From the above points it should be clear that for each disjunct, each clause in step
(1) can be applied to it only a finite number of times before it becomes converted to
one of the success forms. However, by that time it may have generated more disjuncts
at the end of the list.

Each original disjunct can generate only a finite number of additional disjuncts by
virtue of clause l{b), because the new disjunct created there will have either fewer
dangling pointers, or one pointer will be dangling at a lower level. Similarly, only a
finite number of additional disjuncts can be created by virtue of clause 1 (j), because
the new disjunct will have a lower sum of depth measures than the original. The
problematic clause is clause l(m).

Consider the disjunct w = a & (x =/- y & x =/- [y, z] & w = w). When clause l{m) is
applied to this disjunct, it will create a new disjunct of the form w = a & ([xh, xt] =/­
y & [xh, xt] =/- [y, z] & w = w). Clause l(j) will then be applied, converting the new

57

disjunct to the form w = a & ([xh,xt] # y & xh # y & w = w) and creating another
disjunct. But the new disjunct will be of the same form as the original; therefore an
infinite production of new disjuncts will be generated, unless the algorithm terminates
due to some other disjunct succeeding.

However, note that at each iteration of this creation of disjuncts, the depth of the
environment ~ will be increased. If the entire disjunction has a solution, however,
it must have a solution with an environment of finite depth. Therefore, the infinite
iteration of applications of clause l(m) can only take place if the entire equation system
has no solution.

The algorithm will convert the equation system to an equivalent one of the solution
form if such an equivalent form exists; if one does not exist, the equation system will
be equivalent to fail, and in that case the algorithm may or may not terminate. □

Thus, the environment solution algorithm is similar to the rest of the computa­
tion algorithm in the following sense. If a sequent containing only +E & a = b or
+E & ,a= bis valid, where Eis an environment characterization, then the algorithm
will terminate finding an environment characterization F such that {F ---+ E & a= b}
is valid. However, if the sequent is not valid, there is no guarantee that the algorithm
will invariably so conclude.

Although this is sufficient for the purposes of this theory, it is not entirely satisfying,
since we may be able to describe deterministically the set of all equation systems
which fail. In doing so, we will be forced to change the form or use of an environment
characterization. We should preserve the property of the environment characterization
that it be easy to pass back through a quantifier, and this may not be easy to do.

