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Abstract 

A formal semantics of Yoda's Theory of Pairs is given which takes the natural­

deduction form of Gilmore's first-order set theory. The complete proof theory corre­

sponding to this semantics is given. Then, a logic programming system is described 

in the form of a computational proof theory for the Gilmore semantics. This system 

uses parallel disjunction and the technique of precomplete negation; these features are 

shown to make it more complete than conventional logic programming languages. 

Finally, some alternative formulations are explored which would bring the logic 

programming system described closer to conventional systems. The semantic problems 

arising from these alternatives are explored. 

Included in appendices are the proof of completeness of the complete proof theory, 

and the environment solution algorithm which is at the heart of precomplete negation 

over pairs. 
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Chapter 1 

Introduction 

Kowalski (Kow74] expressed the paradigm of logic programming as "the interpreta­
tion of sentences in predicate logic as programs., of derivations as computations and 
of proof procedures as feasible executors of predicate logic programs." This paradigm 
is now generally accepted. However, since the popularization of Prolog the connec­
tion between logic programming and mathematical logic has sometimes seemed vague. 
Research has largely diverged into two styles: the implementation of systems which 
are computationally powerful but theoretically far from formal logic, and the study of 
systems that are formally well-founded but computationally uninteresting. 

Recent research has attempted to reassert the connection between traditional logic 
and useful programming. In Paul Yoda's work, a Theory of Pairs (TP) is developed 
as an axiomatic first-order theory, in order to provide a logical foundation for compu­
tations over a simple, recursively-defined domain. Then, programming languages are 
embedded in that theory, in the sense that each programming language is defined by 
a proof theory which can prove a subset of the theorems of TP. 

The main contribution of this part of Yoda's work is not the particular programming 
languages set forth, but rather the enclosing structure given by the Theory of Pairs, 
and the simple but rigouxous association of languages with logic. 

This thesis makes three main contributions. Firstly, it expresses the relatively 
informal semantics of Yoda's original papers by a natural deduction Gilmore semantics. 
Secondly, it provides a complete proof theory in the style of Gilmore, which can be 
used as a tool to prove properties of programs and programming systems. Thirdly, 
it describes a language which handles negation in a way which comes much closer to 
complete classical negation than does negation as failure, the most popular treatment 
of negation in logic programming. 

This precomplete negation was defined by the author following suggestions by Yoda, 
and is the main feature of the language. Voda has described precomplete negation 
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over the domain of integers in [Vod86c]; Gilmore [Gil86a] has described a very similar 
technique for computing negation in a database-oriented set theory. 

The domain of this paper is that of the pairs; however, in the formal semantics 
and the proof theories described in these pages, all variables are collapsed into a single 
variable which takes values ranging over the environments. So it seems a good charac­
terization to describe the theory as "an environment theory with precomplete negation 
over pairs". 



Chapter 2 

Research Background 

The present thesis could be seen as making contributions to applications of natural 
deduction first-order logic with truth-value gaps; programming language semantics; 
and the treatment of negation in logic programming. In this chapter we trace some of 
the background of these areas of research. 

2.1 Natural Deduction Semantics and Proof Theo-
• r1es 

Until the time of Gentzen, the proof theories most studied were those classified as 
"axiomatic", that is characterized by many axioms and few rules of deduction. The 
proof theory presented by Hilbert and Ackermann [HA38], for instance, contains modus 
ponens as the sole rule of deduction. Such proof theories are consistent and complete 
with respect to the standard semantics, as proved by Godel (see for instance [Men641); 
however, the rules of deduction are not necessarily clearly related to the semantics. 

Gentzen's approach [Gen69] was to define a proof theory using few axioms and many 
rules of deduction, and to emphasize the purely syntactic, proof-theoretic component 
of formal first-order logic. The basic elements of his proof theory were sequents, rather 
than individual formulae. He proved consistency of his system by showing that the 
empty sequent ( the basic form of contradiction) could not be derived in the proof 
theory. The Hauptsatz, or Main Theorem, leading to this conclusion was his proof of 
cut elimination. This was the proof that a derivation using applications of the cut rule, 
the only rule of inference which decreased the number of formulae in a sequent, could 
be manipulated to remove all such applications. 

The rules of deduction of Gentzen's system looked very much like the semantic 
entailment rules - hence the description of it as a "natural deduction" system. In 
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such a system, consistency and completeness of the proof theory with respect to the 
semantics can be proven in a simple manner, and without the use of the cut-elimination 
result. Such proofs, however, still resort to the intuitive notions of set and number 
which form the basis of model theory. 

Following on this work, Beth [Bet66] and Smullyan [Smu68], among others, ex­
pressed proofs in the form of "semantic" or "analytic tableaux", which are equivalent 
to Gentzen-style sequent proofs. These presentations considered the basic elements of 
the proof theory as trees of formulae rather than as structured sequences. 

Gilmore, in his presentation of first-order logic [Gil86b], adopts a style of proof 
theory much closer to that of Gentzen. Sentences are given a "sign" denoting truth 
value, as in Smullyan. Sequents are once again the basic proof-theoretic elements, but 
are considered as sets of signed sentences rather than sequences of formulae. This leads 
to a straightforward definition of validity based on intuitive notions of set theory. 

The main purpose of Gilmore's work, however, is to present extensions of classical 
first- and second-order logic which define a formal set theory. This set theory resolves 
the standard set-theory paradoxes (see for instance [Bet66]) by refusing to assign a 
truth value to paradoxical sentences. It is on the first-order version of Gilmore's set 
theory, for a specific domain of constants ( the domain of pairs) that the present work 
is largely built. The analogues of set terms are programmatic predicate definitions. 
Definitions can be made which would lead the language into infinite computation. 
Calls to predicates with such definitions are not assigned the same truth value in all 
bases, and therefore are effectively of indeterminate truth value. 

2.2 Truth-Value Gaps 

Kripke, in his presentation of a truth-value semantics for language [Kri75] which is 
similar to Gilmore's for set theory, discusses these truth-value gaps, arguing from a 
philosophical viewpoint that it is not always possible to determine the truth of an 
assertion. He points out that the existence of a truth-value gap does not imply the 
existence of a third truth value, only that some formulae cannot be assigned a truth 
value. He proposes a transfinite hierarchy of truth definitions for a hierarchy of abstract 
languages, one of which languages (at some ordinal) will be able to refer to its own 
truth definition. 

Around the same time, Scott [Sco75] proposes a similar hierarchy for a logic based 
on the lambda-calculus. However, he describes the hierarchy only up tow. Naturally 
only the first of the hierarchy of truth predicates corresponds to computable truth. 

Fitting [Fit85] accepts the gappy first-order truth definition as a given. He formu­
lates the standard fixpoint semantics of logic programs (see below) in a three-valued 
setting, although the third value is described as meaning only "undefined". 
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In the sequel we will present the extended first-order logic of environment with only 
two truth values. As Scott points out, "[an undefined formula] could indeed be given a 
truth value if we would want to be perverse, but there is no need to be so". However, 
we will sometimes act as if this third truth value exists for the purpose of clarity; we 
will say that a sentence takes the undefined truth value, or takes the? sign, when that 
sentence's truth value is not determinate in all bases. 

2.3 Programming Language Semantics 

The traditional method of defining the semantics of algorithmic languages is that of 
operational semantics, in which an abstract machine is defined which computes the 
language. One problem with operational semantics is the possible need to define the 
semantics of the abstract machine, and so on down to the bit flow level; the other 
problem is deeper. 

What is actually defined by operational semantics is simply a characterization of the 
computations performed by the system. This characterization could be expressed either 
semantically or syntactically; the syntactic expression leads to a proof theory, while 
the semantic expression leads to a model theory with respect to which the proof theory 
is trivially complete (trivially because the semantics is no more than a transcription 
of the proof theory into semantic concepts). Denotational semantics [Sto77] solves 
the first problem of the operational approach by basing the language on well-studied 
notions of set and function, but fails to solve the problem of semantic triviality. 

An operational semantics for logic programming is given by van Emden and Kowal­
ski [vEK76], but they consider it useful only as a characterization of the computations. 
The fixpoint semantics they give has become the standard semantical model for P rolog 
and logic programming in general. Fixpoint semantics arises from the observation that 
the set of all Herbrand interpretations for a set of Horn clauses ( a Prolog program) form 
a complete lattice under the subset relation. Thus each program is seen as defining a 
separate first-order theory with a separate semantics. 

The goal of computation is seen as finding the least fixpoint of a monotone transfor­
mation on this lattice (the predicate-application transformation). This is then proved 
to be the least upper bound of all the interpretations, on the lattice, of the clauses of 
the goal. 

The standard proof theory for logic programs is some application of the resolution 
principle, such as SLD-resolution [AvE82]. Although SLD-resolution is complete, it is 
not deterministic, i.e., not systematic, to use the terminology of Smullyan. Therefore, 
if it is to be considered as a proof theory for a computational system there must be 
a further description of the method of generating proofs for the system to be fully 
characterized. 
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Lloyd, therefore, adds to a fixpoint semantics in the style of van Emden and Kowal­
ski, and the resolution-based proof theory in the style of Apt and van Emden, a "pro­
cedural semantics" for finding resolution proofs, which is really a form of operational 
semantics. 

Voda presents a markedly less complex view of logic programming. In a series of pa­
pers ([Vod84], [Vod85], [Vod86b]), he describes a first-order theory of basic data types, 
the Theory of Pairs; he then presents logic programming systems as proof theories 
which can prove subsets of conservative extensions of that theory. Predicate defini­
tions are conservative extensions; queries are theorems to be derived; and solutions 
are the completely deterministic derivations of the queries which are defined by the 
programming systems. 

Logical semantics is not discussed in any depth in Voda's work. The traditional 
truth-functional semantics, in which individual sentences are assigned truth values 
based on their constituent subformulae, suffices. What computer scientists often refer 
to as "semantics" - that is, the flow of data and control in a computation - is absorbed 
into the proof theory and ceases to be a semantic issue at all. 

No lattice theory is needed because the concepts of program, query, and solution 
are completely proof-theoretic; no procedural semantics is needed because the proof 
theory is deterministic and completely describes the computation. 

The domain of the fixpoint semantics, in most treatments, is the set of constant 
symbols which appear in the program. The program is in this sense like a database 
which specifies all the objects known about in the theory. In the Theory of Pairs, on 
the other hand, the domain is the set of terms generated by the 0-ary generator O and 
the binary generator[-,-] of pairing. These pairs correspond to the S-expressions of 
Lisp. The constant symbols can then be defined as being equivalent to specific pairs. 

The present thesis builds on Voda's concepts of semantics by expressing the Theory 
of Pairs as the basis for a family of non-deterministic natural deduction proof theories. 
It presents on the one hand the natural deduction semantics corresponding to that 
family, and on the other hand a deterministic proof theory which is sound with respect 
to the semantics, and which proves a large subset of the theorems of that family. 

2.4 Negation in Logic Programming 

Van Emden and Kowalski's original conception of a logic program was as a set of Horn 
clauses to which some variant of resolution or Modus Ponens could be applied [vEK76]. 
This restriction to Horn clauses has been recognized, at least since [Cla78], as being 
insufficient to express all databases of formulae of first-order logic. Accordingly, most 
Prolog systems have retained a Horn clause-like syntax but have moved outside the 
domain of Horn clauses by adding some ability to negate a formula. 

I • 
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This negation is generally computed by the inference rules collectively called "nega­
tion as failure" by Clark [Cla78]. If a formula A is not true under any variable substi­
tution, the formula -,A is inferred to be true. The main problem with this approach 
is that if the formula A is true under some non-null variable substitution, nothing can 
be said about the formula -,A. Only in the case of a null substitution can -,A safely 
be inferred to be false. 

This logical pitfall was apparently not avoided by many Prolog implementations. In 
some systems bindings occurring within negations are not retracted when other clauses 
using the same variables are computed. In others, the bindings are retracted but the 
negated goal is considered to have failed; the effect is that by finding one substitution, 
the system assumes that all substitutions succeed. 

Clark recognized the drawbacks of negation as failure. Since he was studying in the 
domain of logic databases, his solution was to maintain the restriction of the database 
(the analogue of a program) to Horn clauses, and to restrict queries to those in which all 
negative conjuncts contained only variables which had been fully instantiated by other, 
positive conjuncts. He informally proved the completeness of computations under this 
restriction. 

An alternate solution ( expressed within a Lloyd-style theory of logic programming) 
is to delay the evaluation of any negative conjunct in a goal or predicate body until all 
the terms in the conjunct are ground; that is, until the computation of other conjuncts 
has restricted all variables in the conjunct to stand for single terms. Lloyd [Llo84] has 
proven that this scheme is sound, and some Prolog interpreters such as MU-Prolog 
[Nai84] have implemented it. 

Voda's formalism of logic programming, in itself, does not solve the problem of 
handling of negation. Proof theories such as that involving one-variable environments 
[Vod86b] contain a version of negation as failure which does not use delayed nega­
tion (and therefore is less powerful than IC-Prolog), but which blocks when -variable 
bindings are changed within the negated formula (ensuring soundness). 

However, recent work by Voda and the author has led to a "precomplete" negation 
which is significantly more powerful than negation as failure. This result has been 
achieved in part because of the clarity of the truth-functional semantics of Voda's 
system. Precomplete negation may be characterized as the computational technique of 
treating negated identity formulae as constraints to be retained as variable bindings are 
retained, and of using those constraints to compute whether given additional bindings 
or constraints can successfully be added. 

As presented here, negated formulae are solved by pushing the negation down 
through the formula by De Morgan's laws. When the negation reaches an equality 
subformula, an algorithm (similar to but more general than unification) is used which 
solves for equations of the form a # b as well as of the form a = b. 
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Gilmore [Gil86a] uses a similar technique for computing negation over database 
queries; however, the emphasis there is on the solution of either variable-free queries 
or queries involving enumeration of a finite domain. Gilmore's theory, being a general 
set theory, is also able to handle such things as quantification over sets, which is not 
attempted here. We concentrate, rather, on the details of finding all terms which satisfy 
recursively-defined predicates over a specific domain, which Gilmore's work does not 
explore deeply. 

This method therefore decides almost all positive formulae containing negations. 
Some formulae it does not decide are of the form AV ,A, in which A contains a 
reference to a predicate causing infinite computation. Although the truth value of 
each subformula in such a sentence is indeterminate, the entire sentence should be true 
in a logic with classical excluded middle. Since the language described here does not 
have such an excluded middle, it is similar to intuitionistic logic, but it might not prove 
the same set of theorems. 

The system could be made classically complete by letting it decide excluded-middle 
formulae. Voda argues, however [Vod86a], that decreased completeness is desirable for 
logic programming to avoid inefficient computation, and is in fact needed only for full 
theorem-proving. 

'· : 
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Chapter 3 

Environment Theory 

This chapter gives the formal details of the system we call environment theory. The el­
ementary syntax, that is the linguistic structure of proof-theoretic objects, is described 
in section 3.1; due to the natural-deduction structure of the system, many of these 
syntactic elements form the basis of its formal semantics, described in section 3.2. As 
usual, some naive set theory is assumed in the presentation of the semantics. 

Section 3.3 presents a proof theory which is complete, in a strong sense, with respect 
to the semantics. This proof theory is therefore a valuable tool with which to analyze 
other proof theories. It is used as such in section 3.4, which presents a strong, though 
not complete, proof theory. It is this latter proof theory, R, which attains a high level 
of determinism by the use of precomplete negation. 

The main point of this presentation is to provide some underpinning to the proof 
theory R, which is implementable as a logic programming system. The structure of all 
of environment theory is therefore dependant, in a retrograde way, on decisions taken 
in the design of R. 

Rather than interleave a discussion of these design considerations with the discus­
sion of the theory, we have chosen to expound on the primary design in this chapter. 
In the next chapter we will discuss some important variants that would have arisen 
from following different paths in the design process, and their relative merits. 

3.1 Elementary Syntax 

The elementary syntax will be used in both the logical semantics and the proof theory. 
In classical model theory, a mapping must be defined between model-theoretic and 
proof-theoretic elements; in the tradition followed here, such a mapping is unnecessary. 
Many of the concepts here are explained more fully in [Vod86b] and [Gil86bj, and are 
simply summarized here. 

9 



3.1. ELEMENTARY SYNTAX 10 

As the basic syntactic units of our theory, we shall have an infinite set of parameters 
pi, p2 , ••• ; an infinite set of predicate names Pi, P 2 , ••• ; the constant symbol O; and the 
variable name w. We shall use boldface p, q, rand P, Q, R, possibly subscripted, as 
meta-variables ranging over parameters and predicate names, respectively. 

Informally, terms will be built up from the parameters and w, using the pairing 
function (which builds up data structures) and the projection functions (which take 
them apart). We follow Yoda's one-variable formulation, in which all quantified entities 
are parts of a single environment, denoted by the variable w. The domain of this 
variable is the terms. However, in the deterministic proof theory R, we will use only 
terms which belong to the subclass of environments; this subclass will be seen to have 
some useful properties. 

While w is called a variable here, it may be more useful to think of it as a distin­
guished parameter, since it will never fully be within the scope of any quantifier. 

The projection functions are the symbols h (head) and t (tail). These functions 
correspond to the CAR and CDR functions of Lisp. 

Definition 3.1.1 A projection is a (possibly empty) sequence of symbols h and t. 

We shall use Greek letters as meta-variables ranging over projections. The empty 
projection will be denoted by f. Projections can be concatenated in the manner of 
character strings; if "f contains the sequence of symbols represented by a, followed by 
those represented by /3, then we can say that a./3 is identical to 1 . 

Definition 3.1.2 a is a term iff either 

1. a is a parameter, the variable w, or the constant O; or 

2. a is of the form ha, where bis a term; or 

3. a is of the form [b, c], where band care terms. 

We shall use boldface lower-case letters a, b, c, possibly subscripted, as meta-variables 
ranging over terms. Similarly, we shall use x, y, z, possibly subscripted, as meta­
variables ranging over the terms of the form wa; these terms will be called pointers. 

The functions h and t take apart terms built up by pairing. The effect of these 
functions can be seen best in the definition of the metatheoretic notion of a part of a 
term, which we will need in later discssion. 

Definition 3.1.3 For a term a and projection a, part a of a, denoted a/ a, is defined 
as follows. 

1. a/ f. is a; 
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2. [a, b]/h/3 is a//3; 
3. [a, b]/t/3 is b/ /3; 
4. Otherwise, a/ a is undefined. 

The characterization of the terms wa as "pointers" is useful primarily when we 
think of terms as data structures within computer memory, or as abstract trees (see 
[Vod86b]). Pointers appearing within a term to be bound tow can be seen as referring 
to other parts of that term; that is, pointing to the left or right, or to themselves. 

Definition 3.1.4 If, for a term a, a/ a = wa, that occurrence of the pointer wa is 
said to be a self-pointer. If a/ ah/3 = wed,, that pointer is said to point to the right. 
If a/ at/3 = w o.h,, that pointer is said to point to the I eft. (Note: we use the symbol = 
to mean "is identical to", that is in the sense of meta theoretic or syntactic identity.) 

Definition 3.1.5 A w-term is a term built up by pairing from the term O and the 
pointers wa. 

Definition 3.1.6 A proper environment is a w-term in which every pointer is either a 
self-pointer or points to the right. An environment is either a proper environment or 
the term [w, OJ, which is often written as fail. · 

Environments have two very useful properties. For every term a, if w = a then 
there exists an environment a' such that w = a' [Vod86b]. Thus, for the purposes of 
computing over terms, it is sufficient to compute over environments. 

For every environment a, no infinite chain of parts a 1 , a 2 , ••• can be constructed 
such that o:; = wa;+1, unless they are all identical. Proofs about algorithms which 
compute with environments, such as the Environment Solution Algorithm we shall 
encounter later, can use this property to prove such things as termination and compu­
tational complexity. 

Definition 3.1. '1 A is a formula iff either: 

1. A is of the form a= b, where a and bare terms; or 

2. A is of the form P(a), where a is a term; or 

3. A is of the form B V C or B & C, where Band C are formulae. 

4. A is of the form ,B, 3B, or VB, where Bis a formula; or 

If A is of one of the first two forms, it is also an atomic formula. If all terms appearing 
in the formula are w-terrris, it is also a w-formula. 
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We shall use boldface capital letters A, B, C, possibly subscripted, as meta-variables 
ranging over formulae. 

Note the absence of quantified variables after the quantifiers :3 and V. Since we are 
using Yoda's one-variable formulation, a quantifier itself can be thought of as generating 
a new variable to be referred to within its scope. The new variable is the head of the 
environment w, and the environment outside the scope of the quantifier is referred to 
as wt within the quantifier. 

Definition 3.1.8 Because what a pointer signifies depends on the formula it appears 
in, each pointer is actually an alias of some other pointer within a given formula. 

1. An occurrence of a pointer wa is an alias of itself within an atomic formula. 

2. If an occurrence of wa is an alias of w(3 within A or B, it is also an alias of w(3 
within A & B, AV B, or ,A. 

3. If an occurrence of wa is an alias of wt(3 within A, it is an alias of w(3 within :3A 
or VA. 

Readers may think of the parameters as being free in any formula in which they 
appear, and the terms wa as being free within the scope of n quantifiers if and only if a 
begins with nor more t's. But since a formula with such "free variables" will still take 
on a truth value in the semantics, without substitutions for the free variables, notions 
of free and bound variables are largely irrelevant. We have the following definitions. 

Definition 3.1.9 A sentence is a formula. (We will use this word when we wish to 
emphasize the lack of free variables in any well-formed formula.) A signed sentence is 
a sentence preceded by a + or - sign. 

Definition 3.1.10 The complexity of a formula A, comp(A), is the following. 

1. The complexity of a= b and P(a) are 0. 

2. The complexity of ,A, :IA, and VA are comp(A) + 1. 

3. The complexity of A & Bis the greater of comp(A) and comp(B). 

The complexity of a signed sentence ±A is comp(A). 

Definition 3.1.11 a{b := c} represents the term a, with all occurrences of the sub­
term b substituted by occurrences of the subterm c (strong substitution). Formally, 
b{b := c} = c, and if the term being substituted in is not identical to b, then: 

1. O{b:=c}=O 
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2. [a1 , a2]{b := c} = [ai{b := c}, a2{b := c}] 

3. ah{b := c} = {a{b := c})h 

4. at{b := c} = {a{b := c})t 

Strong substitution in a formula, A{b := c }, is defined similarly. 

1. (a1 = a2){b := c} = (a1{b := c} = a2{b := c}) 

2. P(a){b := c} = P(a{b := c}) 

3. (-iA){b := c} = -iA{b := c} 

4. (A & B){b := c} = A{b := c} & B{b := c} 

5. (Av B){b := c} = A{b := c} & B{b := c} 

6. (3A){b := c} = 3A{b := c} 

7. (VA){b := c} = VA{b := c} 

Note that the last two subcases of strong substitution in a formula do not always 
adequately handle the renaming of parts of the environment; that is, they make the 
same mistake with renaming often made in early axiomatic first-order theories. Often, 
we will want to remedy this by substituting for all aliases of win a term or formula . We 
will also want to do so in a contextual manner, with wt being substituted by the tail 
of the substituting term, and so on. Such a substitution, while achieving the desired 
semantic intent, will also preserve the form of a term as a w-term or an environment 
[Vod84]. 

Definition 3.1.12 The contextual substitution of a term b for w in another term a, 
written a(b), or in a formula A, written A(b), is defined as follows. 

1. o(a) = o 

2. [a, b](c) = [a(c), b(c)] 

3. wa(w!J) = w{ja 

4. wa(O) = 0 

5. w([a, bl) = [a, b] 

6. wha([a, bl) = wa(a) 

7. wta([a, bl) = wa(b) 

8. (a= b)(c) = a(c) = b(c) 

9. P(a)(b) = P(a(b)) 
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10. (,A)(a) = ,A(a) 

11. (A & B)(a) = A(a) & B(a) 

12. (AV B)(a) = A(a) V B(a) 

13. (::lA)(a) = =lA(wh, a(wt)) 

14. (VA)(a) = VA(wh, a(wt)) 

The basic elements of the proof theory will be sequents. These are defined as 
sets, following Smullyan, rather than as Gentzen's purely syntactic entities, in order 
to simplify the relationships between the syntax and semantics. 

Definition 3.1.13 A sequent is a possibly infinite set of signed sentences with either 
the + or the - sign. A finite sequent is a sequent with a finite set of elements. 

We will often use a notation similar to that of Gentzen to represent sequents. Every 
sequent S is the union of a set { +P1, +P2 , + P 3 , ••• } of sentences with a+ sign, and a 
set { - Mi, - J..12 , - M 3 , ••• } of sentences with a - sign. We can therefore represent S 
uniquely with the notation {M1 , M2 , M3, .•• -+- P1, P2, Ps, .. . }. The Greek letters rand 
~, possibly subscripted, shall be used to represent sequences of ( unsigned) sentences; 
thus, the standard form for a sequent shall be {r -+- ~}. 

Definition 3.1.14 If P is a predicate name and A is a sentence, then P( w) +-+ A is a 
predicate definition. We shall refer to a finite set of predicate definitions as a program. 

3.2 Formal Semantics 

The model-theoretic part of environment theory consists of a definition of a base, that 
is one assignment of signs to atomic sentences, and rules for constructing the set of 
sentences entailed by a base. As with the definition of sequent in the last section, much 
of the formal semantics relies on informal notions of sets and natural numbers. 

This material is derivative of the semantic definitions of (Gil86b], but differs in 
several important respects. Bases are restricted to those which satisfy identity over 
pairs, which has special properties in addition to those of standard identity. The 
quantifiers take the one-variable interpretation described informally in the last section. 
And, most important to the structure of the semantics, we will be interested only in 
bases which are interpretations of a given program II, in the sense that they satisfy a 
substitutivity criterion derived from II. 

Definition 3.2.1 A base B is a set of signed atomic sentences such that the following 
conditions hold. 
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1. For every atomic sentence A, exactly one of +A and -A is a member of B. 
( Completeness and atomic excluded middle.) 

2. For every atomic sentence A, terms a and b, and parameter p, whenever 
±A{p := a} and =r=A{p := b} are both in B, -a= bis in B. 

3. For all terms a, +a = a is in 8. (This clause and the one preceding define 
standard identity.) 

4. For all terms a and b, the following signed sentences are in 8: 

(a) +0 = 0o:, 0o: = 0 

(b) -[a, b] = [a, b]o:, -[a, b]o: = [a, b] for all nonempty o: 

(c) +[a, b]h = a, +a= [a, bjh 

(d) +[a, b]t = b, +b = [a, b]t 

5. For all terms a, b, and c, whenever all of +ah= b, +at= c, and -a= 0) are in 
B, +a= [b,c] is in B. 

6. For all terms a, b, and c, whenever one of -ah = b, -at = c, or +a = 0) is 
in B, -a= [b, c] is in 8. (This clause and the two preceding define the special 
properties of identity between pairs.) 

Bases give the truth value for atomic sentences; the truth value for non-atomic 
sentences can be derived inductively. We use the concepts of semantic entailment, 
semantic successor, and closure of a base to collect all the semantic consequences of 
the sentences in a base. 

Definition 3.2.2 We shall say that a set of signed sentences entails another signed 
sentence ( {±A, ±B, .. . } f---+ ± C) in the following cases, assuming that A and B are 
formulae. 

1. Conjunction: 

(a) { +A, +B} f---+ + A & B 

(b) {-A} f---+ - A & B 

(c) {-B} f---+ - A & B 

2. Disjunction: 

(a) { +A} f---+ +AV B 

(b) { + B} f---+ + A V B 

(c) {-A, -B} f---+ - AV B 
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3. Negation: {±A} r-+ ,= ,A 

4. Existential quantifier: 

(a) {+A([a,w])} ~ + 3A 
where a is some term 

(b) {-A([ai, w]), -A([a2, w]), ... } ~ - 3A 
where a 1 , a 2, ••• is the enumeration of all the terms 

5. Universal quantifier: 

(a) { +A([a1 , w]), +A([a2, w]), .. . } ~ + VA 
where a 1 , a 2 , ••• is the enumeration of all the terms 

(b) { ~A([a, w])} ~ - VA 
where a is some term 

Definition 3.2.3 The semantic successor of a set of signed sentences S, succ(S), is 
the set of signed sentences <Y for which either <Y E S, or there exists a subset T of S 
such that T ~ u. We define the n th semantic successor of S, succn(S), for all n 2: 0, 
as follows: succ0 (S) is S, and succn+l(S) is succ(succn(S)). 

Definition 3.2.4 The closure of a base B, Cl(B), is the union of all the semantic 
successors of B. That is, a signed sentence is in Cl(B) iff it is in succi(B) for some 
finite i. 

Definition 3.2.5 A base B is an interpretation of a program II if, for every predicate 
definition P(w) +-+ A in II, and every term a, whenever ±A(a) is in Cl(B), ±P(a) is 
in 8. 

Definition 3.2.6 A base 8 is a model of a sequent S (equivalently, Sis true in B) iff 
Sn Cl(B) ~ 0; that is, if there is a signed sentence <Y such that u ES and <YE succi(B) 
for some i. 

Definition 3.2. 7 A sequent S is valid with respect to a program II iff all interpreta­
tions of TI are models of S; that is, iff S is true in all interpretations of TI. 

Note that these definitions of truth and validity obtain precisely because intuitive 
set theory is used for defining both the model-theoretic notions of base and entailment, 
and the proof-theoretic notion of sequent. 

Theorem 3.2.8 (Closure Completeness and Consistency) ForeverybaseB and 
every sentence A, exactly one of the signed sentences ±A appears in Cl(B). 
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Proof. By induction on the complexity of A. All atomic sentences ( complexity 0) are 
in B with exactly one sign, and the nth semantic successor of B contains all the signed 
sentences of complexity n + 1; the semantic entailment rules determine uniquely the 
sign of each sentence. □ 

Bases vary in the assignment of sign to individual atomic sentences, and the as­
signment of values to parameters and the variable w. The set of interpretations of an 
individual program is smaller than the set of all bases; the only variability is in the 
assignment of values to the parameters and w, and the assignment of sign to predicate 
calls for which the corresponding defining sentence is never computed. 

For every predicate name P defined by a program TI, there is a set of predicate 
call formulae P(a) whose sign must be the same in all interpretations of TI. If the 
definition P(w) +-+ 0 = 0 is in II, for example, + P(a) must be in all interpretations of 
II. However, if the definition P(w) +-+ P(w) is in TI, then P(a) can be given any sign 
in interpretations of II; and if P(w) +-+ ,P(w) is in IT, then no interpretations of TI 
exist! 

As we will see, the predicate call formulae whose signs are not determined corre­
spond exactly to those predicate calls wh ose computation causes a search down an 
infinite branch of the solution tree; that is, in programming language terms, infinite 
recursion. Some complex predicate definit ions may result in success for some calls, 
failure for some calls, and infinite recursion for others; the first class corresponds to 
formulae assigned a+, the second to formulae assigned a -, and the third to formulae 
assigned different signs in different bases. 

Since the sign of some predicate calls is not determined, it may be helpful to imagine 
the existence of a third truth value, "unknown", represented by the sign ? . Then a 
truth table with this third sign, for the above definitions of conjunction and disjunction, 
may be given as follows. 

Conjunction: 
& + - ? 

+ + - ? 
- - - -
? ? - ? 

Disjunction: 
V + - ? 

+ + + + 
- + - ? 
? + ? ? 

These tables illustrate the fact that a formula's sign is determined in all bases if and 
only if there is enough information to determine that sign. The sign of both immediate 
subformulae is not always necessary for this determination, but at least one is. 
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For the purposes of this exposition, it is more useful to assume the existence of 
only two truth values, because this gives such properties as excluded middle for all 
formulae, which aid in some proofs. However, readers may find it helpful to relate the 
material that follows to the formulation with three truth values. 

3.3 Proof theory C: Complete 

We present here a complete natural deduction proof theory for the environment theory 
semantics. This proof theory cannot be used to directly implement a theorem-prover or 
logic programming system; the high degree of non-determinacy means that there must 
be additional information about how such things as eigenvalues of existential formulae 
are searched for. The next section can be seen as an attempt to put more information 
about implementation details into a proof theory, to make it more deterministic. In 
fact, this can be seen to be the thrust of much of Voda's recent work. 

Such a proof theory has the same value as in set theor ies (see for instance [Gil86b]); 
that is, it allows one to give a computably verifiable derivation of a valid sequent. It 
will be used later to prove important properties of the computational proof theory. 

Although we refer to C as one proof theory, it is in fact a family of proof theories 
C+IT, which are identical save for the rules dealing with the introduction of formulae 
including predicates defined in the program IT. 

A: 
Axioms are of one of the following forms, for any terms a and b and atomic formula 

1. {f,A-+ A,A} 

2. {f, [a, b] = [a, b]a-+ A}, {f, [a, b]a = [a, b]-+ A} for nonempty a 

3. {f-+ A,Oa = O}, {f-+ A,0 = Oa} 

4. {f-+ A, [a, b]h = a}, {f-+ A, a= [a, b]h} 

5. {f-+ A, [a, b]t = b}, {f-+ A, b = [a, b]t} 

6. {f-+ A, a= a} 

The rules of inference of C+IT, for any program IT, follow. 

1. Pairing 

(a) left: 
{f,ah = b,at = c-+ A,a = O} 

{f,a = [b,c]-+ A} 

, 
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(b) right: 

2. Identity, left: 

3. Conjunction 

(a) left: 

(b) right: 

4. Disjunction 

(a) left: 

(b) right: 

5. Negation 

(a) left: 

(b) right: 

6. Existential 

(a) left: 

{r, a= O-+ A} {r-+ A, ah= b} {r-+ A, at= c} 
{r-+ A,a = [b,c]} 

{r-+ A,A{p := a}} {f,A{p := b}-+ A} 
{f,a=b-+A} 

{r,A,B-+ A} 
{r,A & B-+ A} 

{r-+ A,A} {r-+ A,B} 
{r-+ A,A & B} 

{f,A-+ A} {r,B -+ 6.} 
{f, AV B-+ 6.} 

{r-+ 6., A, B} 
{f-+ 6.,A VB} 

{r-+ 6., A} 
{f,,A-+ A} 

{f,A([p,w])-+ 6.} 
{f,3A-+ A} 

for some parameter p which does not appear in the conclusion 

19 
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(b) right: 
{r--+ A,A([a,w])} 

{r--+ A, :lA} 

for some term a 

7. Universal 

(a) left: 
{r, A([a, w]) --+ A} 

{f,VA--+ A} 

for some term a 

(b) right: 
{r--+ A,A([p,w])} 

{r--+ A, VA} 

for some parameter p which does not appear in the conclusion 

8. Predicate introduction 

(a) left: 
{r, A(a) --+ A} 
{f, P(a) --+ A} 

where the definition P(w) f-+ A is in IT 

(b) right: 
{f--+ A,A(a)} 
{r --+ A, P( a)} 

where the definition P{w) f-+ A is in IT 

20 

These rules can all be proved to preserve validity; that is, if the premiss of rule 
application is a valid sequent, then the conclusion is a valid sequent. 

We can derive with these rules the intuitive truths that O is not equal to any pair: 

{Oh= a, Ot = b--+ 0 = O} 
{O = [a, b] --+} 

That every term is either O or a pair: 

{--+ ah = ah, a = O} {--+ at = at, a = O} { a = 0 --+ a = O} 
{--+a= [ah,at],a = O} 

And that no term is both O and a pair: 
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{a= 0, ah= b, at= c-+ a= O} 
{a= O,a = [b , c] -+} 

21 

Somewhat longer derivations show that the sequents {[a, b] = [c, d] -+ a= c & b = 
d} and {a= c & b = d-+ [a, b] = [c, d]} are derivable. 

Theorem 3.3.1 (Completeness) If a sequent S is valid with respect to IT, then it 
is derivable in C with respect to IT using the above rules. 

Proof. See Appendix A. 

Theorem 3.3.2 (Thinning) If S is valid with respect to IT, then so is SUS'. 

Proof. Assume the premise, that is that Sn Cl(B) is nonempty for all interpre­
tations 8 of IT. Then clearly (SUS') n Cl(B) is also nonempty for all such 8, and is 
therefore also valid with respect to IT. □ 

Theorem 3.3.3 (Cut) If SU { +A} and SU {-A} are valid with respect to IT, then 
so is S. 

Proof. Assume S is not valid with respect to some IT. Then there must exist some 
8 which is an interpretation of IT but not a model of S; that is, such that Sn Cl ( 8) "¥ 0. 
By the Closure Completeness Theorem (3.2.8), exactly one of -A or +A must be a 
member of Cl(8); therefore, either SU +A or SU-A must have an empty intersection 
with 8. Contrapositively, if both SU +A and SU -A have non-empty intersections 
with 8, then there is no IT with respect to which S is not valid; that is, S is valid. □ 

Theorems 3.3.2 (Thinning) and 3.3.3 (Cut) motivate us to add two rules to C to 
facilitate derivations. These rules are, as shown by the Completeness theorem, not 
necessary to ensure completeness of C, but have been found to be useful in shortening 
derivations. 

1. Thinning 

(a) left: 

(b) right: 

2. Cut: 
{r-+ Ll,A} {r ,A-+ Ll} 

{r -+ Ll} 
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3.4 Proof Theory R: a+ -Maple 

This section presents a proof theory, R, which is similar to the language R + -Maple, 
described in [Vod86b]. The main differences are that R uses parallel disjunction and 
precomplete negation, whereas R+-Maple uses left-to-right sequential disjunction and 
negation as failure. Left-to-right disjunction and negation as failure are two compu­
tational techniques which were considered for this proof theory, but were rejected for 
reasons explained in the next chapter. 

Again, R is used to refer to a family of proof theories R+ II, where II is any program. 
To assist in the proof of validity of R, we will need to prove some preliminary 

theorems. 

Lemma 3.4.1 (Substitutivity) If {r -+ 6-} is a valid sequent, then so is 
{r([P, w]) -+ ~([p, w])}. 

Proof. If {r-+ 6-} is an axiom of C, then {r([p, w]) -+ ~([p, w])} must be of one 
of the forms {f'-+ 6-1

, Oa = O}, {f', [a', b'] = [a', b']a-+ 6-'}, {f'-+ 6-1
, [a', b']h = a'}, 

{f'-+ ~',[a',b']t = b'}, {r'-+ 6-',a' = a'}, or {f',a'a =a'-+ ~',a'= o}, with 
the terms in the indicated identity formulae possibly exchanged. All of these are also 
axioms of C and therefore valid. 

If {r -+ ~} is not an axiom of C but is valid, then it must have a derivation in C. We 
can transform the proof tree of {r-+ 6-} into a tree with {f([p,w]) -+ 6-([p, w])} at 
the root by first replacing all occurrences of p by occurrences of some other parameter 
(to preserve the validity of :I-left rule applications), and then replacing all occurrences 
of w in the tree by occurrences of [p, w]. Axioms will be transformed into axioms 
by this transformation, and valid rule applications into valid rule applications. The 
resulting tree will therefore be a well-formed proof tree of C, and by consistency of C 
{f([P, w]) ----+ ~([p, w])} will be valid. □ 

Theorem 3.4.2 (Expansion) If {A -+ B} and {B -+ A} are both valid, then so 
are{ ... A ... -+ ... B ... } and{ ... B ... -+ ... A ... }. That is, so are {A'-+ B'} and 
{B' -+ A'}, where A' is any formula of which A is a subformula, and B' is just A' 
with the subformula A replaced by the subformula B. 

Proof. By induction on the difference in complexity between A and A'. Let the 
complexity of A be i. Assume that {A-+ B} and {B-+ A} are both valid. 

Let P(i) be the proposition that {A' -+ B'} and {B' -+ A'} are valid, where A' 
is any formula of complexity J. of which A is a subformula, and B' is just A' with an 
occurrence of A replaced by an occurrence of B. 
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I. j - i = 0. {A' ---t B'} and {B' ---t A'}, are just {A ---t B} and {B ---t A}, and so 
are trivially valid. 

IL i - i > 0. Assume that P(i) holds for all i < j::; k, and consider P(k + 1). The 
complexity of A' is k + 1, and A must be one of several forms. 

1. A' = C & ... A .. .. We have the derivation 

{C, ... A ... ---t C} {C, . .. A ... ---t ... B ... } 
{C& ... A ... ---tC} {C& ... A ... ---t ... B ... } 

{C& ... A ... -+C& ... B ... } 

Clearly {C -+ C} is an axiom, and { ... A ... ---t ... B ... , C} is valid by the 
induction assumption and Theorem 3.3.2. The derivation of {B' ---t A'} is similar, 
as are the derivations for the case when A'= ... A ... & C. 

2. A'= CV ... A ... , A'= ... A ... V C. Similar to the cases in (1). 

3. A'=--, ... A .... In this case {A'-+ B'} is {, ... A ... -+ --, ... B .. . }. We have 
the derivation 

{ ... B ... -+ ... A ... } 
{-+, ... B ... , ... A ... } 
{, ... A ... ---t , ... B ... } 

and since { ... B ... -+ ... A ... } is valid by the induction assumption, so 1s 
{A'-► B'}. The derivation of {B' -+ A'} is similar. 

4. A'= :3 ... A .... We have the derivation 

{ ... A ... ([p, w]) -+ ... B ... ([p, w])} 
{ ... A ... ([p,w])-+ 3 ... B ... } 

{3 . . . A ... -+3 ... B ... } 

and by Lemma 3.4.1 and the induction assumption, 
{ ... A([p,w]) ... ---t ... B([p,wl) ... } is valid; therefore so is {A'-+ B'}. The 
derivation of {B'-+ A'} is similar. 

5. A' = V ... A . ... Similar to the cases in ( 4). 

III. Since P ( i) is true, and if P (k) is true then P ( k + 1) is true, P (i) is true for all 
i ~ i; therefore, if {A-+ B} and {B ---t A} are both valid, so are{ ... A ... ---t ... B .. . } 
and { ... B . .. -+ ... A ... } . D 
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Corollary 3.4.3 (Rule Validity) If {A ~ B} and {B ~ A} are both valid se­
quents, then the rule 

Su{± ... A ... } 
SU {± ... B ... } 

preserves validity. 

Proof. Assume that {A ~ B} and {B ~ A} are valid. By Theorem 3.4.2, the 
sequent {=f ... A ... ,± ... B .. . } is valid; by applying the thinning rule of C, we can 
show that SU {=f ... A ... ,± ... B . .. } is also valid. If SU{± ... A ... } is valid, then 
by an application of the cut rule of C, we can derive the sequent S U {± ... B .. . }; 
therefore it is valid as well, and the rule preserves validity. D 

What the above corollary shows is that if we want to prove that each of the rules 
of some proof theory preserve validity when they are in the stated form, it suffices to 
show that the two related sequents have derivations in proof theory C. Since all of the 
rule schemes of the proof theory R are of the stated form, we can employ this corollary 
to great advantage in proving the validity of R. 

Definition 3.4.4 A constraint list is a formula either of the form wa = wa or of the 
form ,wa = w/3 & N, where /3 is to the right of a and N is a constraint list. 

Definition 3.4.5 An environment characterization is a formula either of the form fail 
or of the form w = a & N, where a is an environment and N is a constraint list. 

In the sequel the symbols E and F stand for environment characterizations. En­
vironment characterizations are so called because they completely characterize the 
values of all the parts of the environment variable w. In the original R+ -Maple lan­
guage, the role of environment characterizations was played by identity formulae of the 
form w = a. This was sufficient to describe the bindings of the environment parts be­
cause negation as failure was used to compute negated formulae; it was not necessary, 
therefore, to express negative information. It will turn out (see Appendix B) that every 
conjunction of formulae of the form w = a or ,w = a is equivalent to a disjunction of 
environment characterizations, although this disjunction may be infinitely long when 
expanded. 

We will use the symbol fail in the same was as in R+-Maple, to denote the formula 
w = [w, O] (which is not true in any base). 

Definition 3.4.6 The De Morgan negation of a part of an environment characteri­
zation E, written neg(E), is a meta theoretic transformation of the formula E, defined 
as follows: 
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1. neg(fail) = w = w 

2. neg(w = a & N) = ,w = a V neg(N) 

3. neg(,wa = w{3 & N) = wa = w{3 V neg(N) 

4. neg(wa = wa) = fail 

Theorem 3.4. 7 The De Morgan negation of any environment characterization 1s 
equivalent to ,E; that is, the sequent { neg(E) ---+ ,E} is valid. 

Proof. By induction, giving a derivation in C of the above sequent for each clause 
of the definition of neg(E). □ 

Definition 3.4.8 The quantifier dischargement of a part of an environment character­
ization E, written dis(E), is a metatheoretic transformation of the formula E, defined 
as follows: 

1. dis(fail) = fail 

2. dis(w = [a, b(wt)] & N) = w = b & dis(N) 

3. dis(,wta = wt{3 & N) = ,wo: = w{3 & dis(N) 

4. dis(,who: = w{3 & N) _ dis(N) 

5. dis(wta = wto:) = wa = wo: 

Theorem 3.4.9 The quantifier dischargement of any environment characterization is 
equivalent to :3E; that is, the sequent { dis(E) ---+ :3E} is valid. 

Proof. By induction, giving a derivation in C of the above sequent for each clause 
of the definition of dis(E). □ 

We now move to the formal definition of the proof theory R+II. It is similar 
in structure to R + -Maple, but it uses formula markers in the style of [Vod85]. Two 
markers, up(A) and down(A), are introduced to mark computations descending deeper 
into the formula tree, and computations returning upward with partial solutions in the 
form of environment characterizations. 

These markers can easily be introduced by extending the environment theory 
semantics to include them, with the entailment rules {A} ~ up(A) and {A} ~ 
down(A), and the appropriate additions to proof theory C. Alternatively, we can con­
sider them as metatheoretic abbreviations for distingushed formulae equivalent to the 
marked formula A; for instance, down(A) = (p1 = p1) & A, up(A) = (p2 = p2) & A. 
We have the following theorem: 
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Theorem 3.4.10 If p and q are parameters, and { A -+ B} and {B -+ A} are both 
valid sequents, then the rule 

Su{± ... p = p & A ... } 
SU{± ... q = q & B .. . } 

preserves validity. 

Proof. Similar to that of Theorem 3.4.2. 
This theorem effectively states that we can ignore the markers for the purposes of 

proving rule validity; that is, that they are truly markers which will have significance 
only to the flow of control of the computation. 

While the proof is considered to proceed from axioms to conclusions, the course of 
the computation is considered to proceed from the bottom of the derivation to the top. 
We can consider a proof of a sequent of the form{-+ :ldown(w = [wh, wt] & A(wh))} 
to be a query which asks whether there are any bindings for the variable w which will 
result in the formula A being true. 

The axioms of R+IT are the sequents of the form 

1. {-+ :lup(E)}, or of the form 

2. {-+ :lup(E VB)}. 

The environment characterization E of the axiom is the "solution" to the query ( the 
sequent at the bottom of the proof), in the sense that it can be proven from the 
computed derivation of {-+ :ldown(w = [wh, wt] & A(wh))} that a derivation for 
{E-+ A} exists. Further solutions can be obtained from an axiom of the second form 
by computation on the backtrack formula B. 

The rules of deduction for R+IT follow. Some rules are accompanied by proofs of 
validity preservation employing Corollary 3.4.3. 

1. Downward: 

(a) Conjunction 
{-+ ... down(E & A) & B .. . } 

{-+ ... down(E & (A & B)) .. . } 

Validity preservation: 

{E,A,B-+A}{E,A,B-+B} 
{E,A,B-+ E } {E,A, B -+ A & B } 

{E,A,B-+ E & (A & B )} 
{E & A, B-+ E & (A & B)} 

{ (E & A) & B -+ E & ( A & B)} 
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(b) Disjunction 

( c) Existential 

{E,A,B---+E}{E,A,B---+A} 
{E,A,B---+ E & A} {E,A,B---+ B} 

{E,A,B---+ (E & A) & B} 
{E, A & B ---+ (E & A) & B} 

{E & (A & B) ---+ (E & A) & B} 

{---+ ... down(E & A) V down(E & B) .. . } 
{---+ ... down(E & (AV B)) .. . } 

{---+ ... :3down((w = [wh,a(wt)] & N(wt)) & A) ... } 
{---+ ... down(E & :3A) ... } 

where E is of the form w = a & N 
Validity preservation: 

{ w = a, N---+ w = a} { w = a, N---+ N} 
{ w = a, N ---+ w = a & N} 

{ w = a & N ---+ w = a & N} 
{w = a & N,A(b)---+ w = a & N} {(w = a & N),A(b)---+ A(b)} 

{w=a&N,A(b)---+ (w=a&N) &A(b)} 
some pairing, identity, and cut rule applications 

{w = a & N,A(b)---+ ((!b = [bh, a(bt)] & N(bt)) & A(b))} 
{w = a & N, A(b)---+ :3((w = lwh, a(wt)] & N(wt)) & A)} 
{w = a & N, 3A---+ 3{(w = [wh, a(wt) ] & N(wt)) & A)} 

{(w = a & N) & 3A---+ 3((w = [wh, a(wt)] & N(wt)) & A)} 

where b = [P, w] 
(The proof of the inverse is similar.) 

( d) Universal 

{---+ ... E & V,down((w = [wh, a(wt)] & N(wt)) & ,A) ... } 
{---+ ... down(E & VA) ... } 

where E is of the form w = a & N 
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(e) Predicate call 

{ - ... 3down((w = [b(wt),a(wt)] & N(wt)) & A(wh)) . .. } 
{ - ... down(E & P(b)) . . . } 

where P(w) +-+Aisin II and E = (w = a & N) 

2. Environment Solution: 
{- . .. up(B) . .. } 

{ - ... down(E & A) ... } 
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where A is of the form a = b or of the form ,a = b, and B is the result of 
the Environment Solution Algorithm (see appendix B) applied to the formula 
E & A, and there are no subformulae of the form up(C) in the conclusion. 

3. Upward normalization: 

4. Failure: 

(a) Conjunction 

(b) Disjunction 

Validity preservation: 

{- .. . up(B) VA ... } 
{- ... AV up(B) . . . } 

{- ... up(fail) ... } 
{- ... up(fail) & A ... } 

{- ... down(A) .. . } 

{- ... up(fail) VA ... } 

{A - fail,A} 
{A- fail VA} 

{wh = w, wt= 0 - A,w = O} 
{w= [w,o]-A} {A-A} 

{ w = [w, 0) VA - A} 

( c) Existential 
{- ... up(fail) ... } 
{- ... :Jup(fail) ... } 
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(d) Universal 

5. Success, no backtrack: 

(a) Conjunction 

(b) Disjunction 

( c) Existential 

{- ... up(E) .. . } 
{ - ... E & \f,up(fail) . . . } 

{- ... down(E & B) .. . } 
{- ... up(E) & B .. . } 

{- ... up(EVB) ... } 
{ - ... up(E) VB ... } 

{ - ... up(F) .. . } 
{ - ... 3up(E) .. . } 

where F is the quantifier dischargement of E 

(d) Universal 
{- ... down(E & G) . .. } 
{ - ... E & \f,up(F) . .. } 

where G is the De Morgan negation of the quantifier dischargement of F 

6. Success with backtrack: 

(a) Conjunction 
{- ... down(E& A) V (C & A) ... } 

{ - ... up(E V C) & A ... } 

(b) Disjunction 
{- ... up(Ev (CV A)) . .. } 
{ - ... up(E V C) VA ... } 

( c) Existential 
{- ... up(Fv:3C) . . . } 
{- . .. 3up(Ev C) ... } 

where F is the quantifier dischargement of E 

( d) Universal 
{ - ... down(E & G) & \f,C . .. } 
{- ... E & \f,up(F V C ) ... } 

where G is the De Morgan negation of the quantifier dischargement of F 
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Validity preservation: 

{C([p, w]) -+ C([p, w])} 
{F([p,w])-+ F([p,w])} {,C([p,w]),C([p,wl) -+} 

{F([p, w]}-+ 3F} {V, C, C([p, w]) -+} 
{V,C, F([p, w]) -+ 3F} {V,C, C([p, w]) -+ 3F} 

{V,C, (F([p, w]) V C([p, w])) -+ 3F} 

{V,C, (F([p, w]) V C([p, wl)) -+ 3F} 
{V,C-+ ,(F([p, w]) V C([p, w])), =IF} 

{V,C -+ V,(F v C) , 3F} 
{E, V,C -+ E, 3F} {E, V,C -+ V,(F V C), 3F} 

{E, V,C -+ E & \f, (F V C), :lF} 
{E, , 3F, V,C -+ E & V, (F v C)} 

{E & , 3F, V, C--+ E & V, (F V C)} 
{ (E & ,3F) & \l, C -+ E & V, (F V C)} 

(The proof of the inverse is similar.) 

7. Negation: 

(a) Conjunction 
{-+ ... down(E & (,AV ,B)) .. . } 
{-+ ... down(E & ,(A & B)) ... } 

(b) Disjunction 
{-. .. . down(E & (,A & ,B)) ... } 
{-+ ... down(E & ,(AV B)) ... } 

(c) Double negation 
{--+ ... down(E & A) ... } 

{-+ ... down(E & ,,A) ... } 

( d) Existential 
{-+ ... down(E & V,A) ... } 
{-+ ... down(E & ,3A) ... } 

( e) Universal 
{--+ ... down(E & :hA) ... } 
{-+ ... down(E & ,VA) ... } 
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(f) Predicate call 

{---+ ... E & 'v'-,down((w = [b(wt),a(wt)] & N(wt)) & A(wh)) ... } 
{---+ ... down(E & -,P(b)) .. . } 

where P(w) +-+Aisin IT and E = (w = a & N) 
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A brief description of the computation may be in order. A stream of computation 
"descends" into the formula tree where a down marker appears. If the formula to be 
processed is a conjunction, the computation descends into the left-hand conjunct; if it 
is a disjunction, the computation "splits" into two separate streams, each marked; if it 
is a quantified formula, the computation moves inside the quantifier; if it is a predicate 
call, the appropriate predicate body is substituted; and if it is a negated formula, the 
negation is pushed down farther by De Morgan's laws. 

When a leaf node in the formula tree ( a subformula of the form a = b or -,a = b) is 
reached, the environment solution algorithm (a generalization of unification) is applied, 
and the partial solution obtained begins to "ascend" the formula tree again, moving 
back through any quantifiers it left behind. For simplicity's sake, only one stream 
of computation is allowed to be ascending at a time, hence the restriction on the 
environment solution rule. When an stream ascends to the level of a disjunction, the 
formula is normalized by making and ascending stream the left-hand one. If at any 
time in its ascent the formula meets a conjunction (whose computation was previously 
suspended), it descends into the conjunct; otherwise, it ascends all the way to the top 
level, effectively reporting a solution to the original query. 

The proof theory R is not fully deterministic, because in any computation there 
can be several subformulae with down markers, where computation can take place. 
However, at each down marker, there is only one rule which can possibly apply to 
that marked subformula. The next chapter describes a fully deterministic proof theory 
which is equivalent to R. 

R is precomplete with respect to the given semantics in the following informal sense. 
For any program IT and most sentences A, if the sequent {---+ 3A(wh)} is derivable 
in C+II, then the equivalent sequent {---+ 3down(w == w & A(wh))} is derivable 
in R+II. However, sentences A of the form P(a) V -,P(a), where the definition of 
P causes computation of P(a) to diverge, do not have this property, although they 
clearly receive the + sign in all bases. 

This behaviour of R suggests that it could be equivalent to a proof theory having 
some restricted form of excluded middle. The excluded middle of intuitionistic theories 
seems too weak; there are some theorems of R which would not be theorems of an 
intuitionistic system, such as 

{---+ 3down(w = [wh, wt] & V(wh = 0 V -,wh = 0)) 



3.4. PROOF THEORY R: R+-MAPLE 32 

However, we cannot have full classical excluded middle, due to the unprovability in R 
of the sentences noted above. 

The search for an equivalent classical-style proof theory could be restated as the 
search for a reductionist semantics with respect to which R is a consistent and complete 
proof theory. By "reductionist" we here mean a semantics which assigns truth value 
to individual atomic sentences, and to non-atomic sentences based solely on the truth 
values of their constituent subformulae. As we shall see in the next chapter, R, rather 
than variants of R employing left-to-right disjunction or negation as failure, seems 
more likely to yield a solution to this search. 



Chapter 4 

Alternative Formulations 

In this chapter, we will explore some alternative ways in which the evironment theory of 
the last chapter could be formulated and presented. These include formulations with a 
sequential evaluation of disjunction; those with negation as failure rather than precom­
plete negation; and those designed with greater efficiency and ease of implementation 
in mind. 

4.1 Simulated Parallelism 

The computational rules given in the last chapter assume a parallel algorithm. Com­
putation goes on at the down( ... ) nodes in the formula tree, and when it reaches a 
disjunction, the computation forks; that is, where there was one down( ... ) subformula 
there are now two, and computation proceeds at each node. 

If we are trying to develop a sequential implementation, we have two main choices. 
We could alter the rules for disjunction so, that they are truly sequential, but as dis­
cussed in the next section, this approach has its disadvantages. If we still wish to use 
the parallel algorithm, however, we could simulate parallel computation by the use of 
the device known in recursive function theory as dovetailing. 

An interpreter ( universal function) simulates the evaluation of a program (the Godel 
number of a partial recursive function) by processing each individual instruction in the 
program. Similarly, a dovetailing interpre·ter simulates the evaluation of two or more 
programs by processing an instruction from each program, then the next instruction 
from each program, and so on. 

The dovetailing in an environment-theory computationa.1 proof theory could take 
place on several levels. The highest would be on the level of the operating system; this 
is basically what a timesharing operating system does all the time. An i.,n.termediate 
level would be to simulate parallelism within the interpreter, but to retain the rules and 
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data structures of a truly parallel computation. The lowest level would be to express 
the parallelism in the computational rules. 

The two higher levels are not interesting from a logical point of view. However, a 
study of the lowest level provides some useful insights into the issues behind imple­
mentations of logic programming. 

The purpose of the computational "markers" [Vod85] is to incorporate some notion 
of program control into the formulae being computed, and into the computational 
rules. To incorporate the flow of control in a dovetailing implementation, we could 
augment the markers with an integer indicating the current stage of computation of 
the subformula. Consider the proof theory RDl, defined as being identical to R except 
for the following modifications. 

1. The marker in the axioms, instead of being of the form up, is of the form upn, 
for any n. (We could call this n the marker counter; the markers with counters 
could be defined with parameters in the same way as the original markers, since 
we have a denumerable number of parameters.) 

2. Similarly, the marker in the conclusion of each rule is of the form downn or upn, 
for any n. 

3. When the marker counter in the conclusion of a rule is n, the marker in the 
premiss of each rule is of the form downn+l or upn+l. 

4. Each rule has the additional condition that the indicated conclusion subformula 
downn(A) is the leftmost subformula with the same marker counter as the right­
most marker. 

We claim that proof theory RDl is complete in the same sense that R is; that is, 
that RDl+II can prove all sequents of the form{----+ :ldown(w = [wh, wt] & A)} proven 
by R+II. Each branch of the computation is executed, one rule application at a time, 
with the rule applications going from leftmost to rightmost marker and then resuming 
at the leftmost marker. Of course, in an implementation the marker counters would 
not be necessary; each marker would have an associated data structure which pointed 
to the next marker to be evaluated. 

Actually, it is not necessary to execute the branches in parallel at the level of indi­
vidual rule applications. It suffices to stop an infinite downward sequence of evaluation 
resulting from a recursive predicate definition. Consider the proof theory RD2, defined 
as being identical to R except for the following modifications. 

1. The marker in the axioms, instead of being of the form up, is of the form upn, 
for any n. 
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2. Similarly, the marker in the conclusion of each rule is of the form downn or up'\ 
for any n. 

3. When the marker counter in the conclusion of a rule is n, the marker in the 
premiss of each rule is of the form downn or upn, except in the rules for predicate 
evaluation, in which the marker in the premiss of each rule is of the form down n+i. 

4. Each rule has the additional condition that the indicated conclusion subformula 
downn(A) is the leftmost subformula with the same marker counter as the right­
most marker. 

Again, we claim that RD2 is complete in the same sense that R is. It may be 
possible to increase the granularity of the computation even more, by incorporating 
into the marker information about (for instance) what predicates have been called since 
the last pause in computation on the branch. 

4.2 Sequential Disjunction 

Many implementations of logic programming languages use a left-to-right sequential 
computation of disjunction; that is, if the equivalent of the formula A VB is about to be 
decided, the computation proceeds by first deciding A, and if all solutions from A lead 
to failure, by then deciding B. The main reason for this implementation approach is to 
ensure that the exponential explosion of space required by parallel disjunction does not 
occur. Other reasons include the inefficiency of implementing disjunctive parallelism on 
the operating system level, and the difficulty of implementing a sequential simulation 
of parallelism by dovetailing. 

Altering our proof theory R so that it uses sequential disjunction is fairly simple. 
The rule for downward movement into a disjunction would become: 

{ ~ ... down(E & A) v B ... } 
{ ~ ... down(E & ( A V B)) ... } 

and the rule for failure of one branch of a disjunction would become: 

{ ~ ... down(A) .. . } 
{ ~ ... up(fail) VA ... } 

These rules would essentially suspend computation of the right-hand disjunct until all 
solutions from the left-hand disjunct had led to failure. 

But here we run into a semantical question: what is the real meaning of this 
sequential disjunction? There are several approaches we can take to an answer. 
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4.2.1 Unchanged Semantics 

One approach is to simply retain the old semantics for environment theory. Sequential 
disjunction can be proven to be sound with respect to the standard model theories; 
the proofs of soundness of the various resolution strategies which employ it basically 
do this [Llo84]. 

Sequential disjunction is not complete with respect to the standard model theories, 
however. Consider the top-level goal w = a & (A VB). If A is a predicate with a 
definition that goes into infinite recursion, B will never be computed even if we can 
see intuitively that w = a & B can be proven. 

We will not get all possible solutions from a sequential disjunction, and in fact we 
may not get any, even when solutions exist. The same ca:ri. be said for any formula 
which contains a disjunction or a call to a predicate which contains a disjunction. This 
is a significant divergence from the accepted semantics of disjunction, but it can be 
argued that this lack of completeness is unimportant. As long as we are always proving 
correct things, and the set of things we can prove is sufficiently large for our purposes, 
why do we need completeness? 

On the other hand, the above argument could be used to question the need for a 
semantics in the first place; if we need only validity but not completeness, then surely 
our definition of truth can become arbitrarily trivial, mimicking the computation and 
declaring everything computed to be true as true. But if the standard semantics de­
scribes accurately our intuitive notion of truth and meaning, why then must our com­
puter systems implement a significantly reduced notion of truth and meaning? What, 
in fact, is the notion of truth and meaning implemented by sequential disjunction? 

Most logic programming theorists have not dealt with this question. Its answer 
requires modifications to the semantics of the programming system. 

4.2.2 Modified Semantics for Disjunction 

A first stab at the answer is provided by a modification to the semantics for disjunction. 
We want the truth value of a disjunction to remain the same for the case when the 
left-hand disjunct is defined, but to be undefined (in the three-valued logic analogue, 
to receive the ? sign) when the left-hand disjunct is undefined, regardless of the value 
of the right-hand disjunct. 

Let us call this model theory SD, for "sequential disjunction". The entailment rules 
for the other connectives remain the same. The truth table for disjunction becomes 
the following. 
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V + - ? 

+ + + + 
- + - ? 
? ? ? ? 

( Compare with that in the section on Formal Semantics, above.) The rules for 
entailment involving disjunction become: 
{ +A} ~ +(AV B) 
{- A,±B} ~ ±(Av B) 
Proof theory O can be modified in a similar manner in order to retain its completeness. 
But have we acheived completeness for proof theory R? We have for the propositional 
case, but lose it when we introduce quantifiers. 

For example, the sequent{---+ 3((,wh "'= 0 & P(w)) V (wh = O))} is valid in SD due 
to the validity of the sequent {---+ ( ,0 = 0 & P([O, w])) V (0 = O)}, but if we compute 
with it by the rules for existential quantifier, and the predicate call P( w) goes into 
infinite recursion, it will never find the answer - exactly the situation in which we 
wanted the truth value to be indeterminate. 

The reason for this discrepancy becomes clearer when we note that the existential 
quantifier is in some sense an infinite disjunction. ~A is essent ially stating the same 
thing as A([a1 , w]) V A([a2 , w]) V A([a3 , w]) V ... , where a 1 , a 2 , a 3 , ... is the enumeration 
of all the terms and where the disjunction is computed in parallel. We have succeeded 
in modelling the sequential nature of the explicit, propositional disjunction, but not 
the sequential algorithm we must employ when computing the implicit disjunction of 
the quantifiers. If we still want to achieve completeness, it seems we must modify the 
semantics of the quantifiers as well. 

4.2.3 Modified Semantics for Disjunction and Quantifiers 

Unfortunately, when we try to develop a consistent truth definition for the existential 
quantifier, we run into problems almost immediately. Recall that no formula which 
contains a disjunction is guaranteed to yield all solutions under sequential disjunction. 
We can define the truth value of 3{A VB) as being the same as the value of 3A V 3B, 
and the value of 3A, where A is an atomic formula, as before. But 3(A & B) cannot be 
defined as easily. Such a sentence will be transformed into some disjunction 3(C VD) 
by the computation algorithm, and we must know what disjunction it is to define its 
truth value. 

In other words, since we cannot use proof-theoretic constructs in the semantics 
( e.g., by .referring to the computability of a formula), it seems we must mimic the 
computation in the definition of the existential quantifier. 

The same argument applies for the universal quantifier, since its definition in the 
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Gilmore semantics depends on an infinite conjunction which is transformed to a dis­
junction in the computation rules. We can make the following conjecture in fairly 
informal language: 

Conjecture 4.2.1 If M is a semantics of a computational logic which contains the 
standard connectives and quantifiers, and P is a deterministic proof theory of that 
computational logic which uses sequential disjunction, and P is complete with respect 
to M, then the definition of truth in M mimics the computations in P. In other words, 
M is a trivial semantic characterization of the proof theory P. 

We cannot, at this point, prove the above conjecture (partly because its language 
is not sufficiently rigourous). We feel that another promising area for further research 
will be to express this conjecture more rigorously and prove it. We must make decisions 
on the design of our logic programming systems based on the proof of this conjecture: 
do we wish them to be complete only with respect to a trivial semantics, or should 
we have the goal of making them as complete as possible with respect to the fairly 
intuitive and well-accepted truth-functional semantics of mathematical logic? 

We make the second choice, and use parallel disjunction rather than sequential. The 
fact that parallel disjunction can be sequentially simulated using dovetailing (simulated 
parallelism) is another factor in favour of making this choice. 

4.3 Parallel Conjunction 

If the use of left-to-right sequential disjunction creates such a wide gap between proof 
theory and any non-trivial semantics, why then does the proof theory Ruse sequential 
conjunction? The answer lies in what we want to use the proof theory for. 

In logic programming, we are interested mainly in the use of the proof theory for 
generating sets of variable bindings which make a query true: We are not necessarily 
interested in using the proof theory to refute things. 

When sequential disjunction is used, the system may not be able to find solutions 
to a query of the form AV B when solutions to B exist. When sequential conjunction 
is used, on the other hand, the processing of a query of the form A & B must always 
result in solutions if they exist, because both A and B must be true in the same base. 
The system will be unable to prove that a query of the form A & B is unsatisfiable in 
general, although many unsatisfiable queries will be able to be so proven. 

Although a parallel conjunction would be desirable, we conclude that it is not nec­
essary. The good reasons for using sequential disjunction - lessening of the exponential 
explosion of space usage and simplicity of algorithm - also hold in the case of sequential 
conjunction. 
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4.4 Negation as Failure 

The standard method of computing negation is the general paradigm known as negation 
as failure (Cla78]. No negation as failure is complete with respect to classical semantics, 
but certain types have been proved to be sound [Llo84]; indeed, a great deal of recent 
research has gone into such soundness proofs. 

In Voda's paper describing environments [Vod86b], the language described uses a 
version of negation as failure. When a computation moves into a negation, it does so 
essentially by the following rule: 

{-+ .. . w = a & ,down(w = a & A) ... } 
{-+ . .. down(w = a& ,A) ... } 

But if the sentence is then transformed by the computation into an equivalent one 
of the form w = a & ,w = b, where b is different from a, the computation blocks. 
Conditions on the environment are expressed by a single environment equation of the 
form w = a, and therefore cannot express the conjunctive condition. 

The analogue in Prolog is the situation when a computation moves into a negated 
formula without all terms in the formula ground, i.e., assigned a value. If any bindings 
take place within the evaluation of the formula, the bindings cannot be passed through 
the negation, or the computation will become unsound, so the computation must block, 
reporting that the goal formula can be neither proven nor refuted. 

The method of preference for avoiding this problem is delayed negation; see for 
instance [CG83). The computation of a negation is delayed until such time as all the 
terms in the negated formula have become ground due to results from other conjunctive 
subgoals. Once all terms are ground, the computation of negation as failure can be 
proven to be both sound and complete. 

The obvious difficulty with this approach is that if the negated formula is not part 
of a conjunction, there are no other conjunctive subgoals to produce values, and thus 
there is no way to ground the terms in the negated formula. Lloyd [LJo84] ignores this 
case. However, there is one important situation where it arises consistently; namely, 
when the universal quantifier is used or simulated. 

Consider the standard first-order logic formula P(x) & \iyQ(x, y). Since Prolog 
has no explicit quantifiers, but only implicit universal quantifiers at the beginnings of 
predicate definitions, we must express such a formula in a different way if we are to 
compute it. First we note that the formula is equivalent to P(x) & ,3y, Q(x, y), and 
then note that the only way to obtain an existential quantifier in that position is to 
define a predicate containing the formula being quantified. Thus, the formula must be 
computed in Prolog by defining the predicate R by the clause 
R{x) : - ,Q(x, y). 
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and deciding the goal 
P(x), ,R(x). 
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Clearly, the body of R is exactly the type of formula which is not decidable by 
negation as failure. Since this situation arises every time a universal quantifier is en­
countered, we must conclude that it is not feasible to have full universal quantification 
in a system with negation as failure. 

In addition to the conflict with universal quantification, there are difficulties in 
defining the semantics of negation as failure. Here we run into many of the same 
problems as we did with sequential disjunction. Let us assume that we want our 
negation as failure rule to be complete with respect to the semantics. We want the 
formula w = a & ,fail to take the same sign as the formula w = a, and the formula 
w = a & ,w = a to take the sign - (the cases decided by negation as failure). However, 
we want the formula w = a & ,w = b to take the sign? (i.e., to be of undefined truth 
value) when w = a -f► w = b, since this is the case negation as failure cannot decide. 

Again, the truth value of the formula in question depends on the surrounding 
formulae. But what, then, is the truth value of a formula of the form A & ,B? It 
depends on the order of the solutions which are computed from the individual formulae 
A and B; that is, it depends on things which we cannot deduce without doing the 
computation. With either true parallel disjunction, simulated parallel disjunction, or 
left-to-right sequential disjunction, the order of solutions obtained cannot be predicted. 
We expect a similar result to that for sequential disjunction will obtain; namely, that 
negation as failure is a complete procedure only with respect to a trivial semantics. 



Chapter 5 

Conclusions and Future Work 

We have shown that the semantics of Yoda's Theory of Pairs can be expressed formally 
by a system similar to Gilmore's natural deduction first-order set theory. Using Yoda's 
technique of describing programming languages as proof theories, we have given a 
language which can prove a large subset ofpossible logic programming queries. While 
not complete with respect to the given semantics, this language is precomplete in some 
well-defined sense, mainly due to its improved treatment of negation. To show the 
soundness of the language with respect to the semantics, we have used the complete 
natural deduction proof theory corresponding to the semantics as an effective analytic 
tool. 

Future work arising from this study covers a fairly wide area. Theoretically, the 
goal of studying logic programming formally is to develop improved logic programming 
languages; it would be desirable to implement the language described here. An attempt 
to implement the language may expose inconsistencies in the definition, and may lead 
to an improved language which corresponds better to actual computation. This Line 
of research follows along the same path as previous work by Voda: the attempt to 
describe, in standard logic, the data and control structures used in the interpreter of 
a programming language. 

We are not entirely satisfied with our definition of environment characterization and 
the environment solution algorithm. We feel that a less complex notation may be ob­
tainable, which expresses the negative information of the characterization as compactly 
as the environment expresses positive information. It would also be nice if the form 
of environment characterization so obtained had the property that the environment 
solution algorithm on it terminated on all failures as well as on all successes. The key 
requirement for an environment characterization, however, is that it can pass outside a 
quantifier easily, discharging the quantified variable with a minimum of computational 
effort. 
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The semantic characterizability of left-to-right sequential disjunction and negation 
as failure is also an interesting area. If we cannot give a semantics with respect to 
which a language using these techniques is complete, other than a trivial one, any 
assertion that such a language corresponds to formal logic is considerably weakened. 
An analysis of the issues here would seem to demand a formal definition of a semantics, 
and also definitions of the acceptability and triviality of a semantics. It is not clear at 
this stage what these definitions would look like. 

Finally, we have a strong but, for now, intuitive feeling that there is a connec­
tion between logic programming with precomplete negation and such set theories as 
Gilmore's, with its form of excluded middle. To be able to prove the equivalence of a 
precomplete logic programming language with some formulation of predicate calculus 
with restricted excluded middle may be a result of some theoretical importance. 
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Appendix A 

Completeness Proof for C 

In the body of this appendix, we will assume that the proof theory referred to is 
always the proof theory C described above, augmen_ted by the rules concerning the 
program II. That is, "derivability" will mean "derivability in C+II", etc. We will also 
assume that the signed sentences of the theory can be enumerated with the enumeration 
0-1, 0-2, 0"3, • • • 

Theorem A .. 1 (Subset) A sequent is derivable if and only if some finite subset of 
it is derivable. 

Proof. ( +-) If a finite subset of a sequent is derivable, we can construct a derivation 
of the whole sequent by simply augmenting every sequent in the proof by the remainder 
of the sequent. Clearly this derivation will be correct. 

(--t ) We can construct one finite derivable subset from the derivation of any sequent. 
For an axiom, the subset is the one or two formulae required to be in it by the definition 
of axiom. Assume that for all sequents derivable with n steps, we can build such a 
subset. 

Consider any sequent derivable with n + 1 steps. Let the premisses be of the 
form Seq U S1 , ... Seq U Sn, and let the conclusion be of the form Seq U {A}. If 
T1 , ••• Tn are the constructed finite derivable subsets of the premisses, then clearly 
(T1 U ... U Tn U {A}) - (81 U ... U Sn) is also derivable. 

A finite derivable subset of any derivable sequent can thus be built up by induction. 

□ 

Definition A .. 2 The parameter set of a sequent is the set of all parameters in all the 
terms appearing in that sequent. 

Intuitively, we will prove the completeness of C by proving that any non-derivable 
sequent must not be valid. We will do this by extending the sequent by the addition of 
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formulae, forming a chain of non-derivable sequents whose union will be the foundation 
for a base in which the sequent is not true. This chain will be one path through the 
Ext tree, defined as follows. 

Definition A .. 3 The sets Extn(Seq) and Chkn(S eq), and the formula AtBatn(Seq), 
for any sequent Seq with a finite parameter set, form an infinite trinary tree in which 
every node n has nodes 3n - 1, 3n, and 3n + 1 as children. These constructs can be 
thought of as the "extensions" of Seq, the "check sets" corresponding to each extension, 
and the "formula at bat" in each extension. Their definition is mutually recursive. 

1. Exti(Seq) is Seq. 

2. Chk1(Seq) is the empty set,{}. 

3. If there are members of Extn(Seq) which are not members of Chkn(Seq), 
AtBatn(Seq) is the earliest such signed sentence in the enumeration sequence 
a 1 , a 2 , ••• Otherwise, AtBatn(Seq) is undefined. 

4. For n > 1, if AtBatn(Seq) is defined, then for 3n - 1 ~ m ~ 3n + 1, Extm(Seq) 
is Extn(Seq) U ~(Extm(Seq)). ~(Extm(Seq)) is defined by the following table. 

AtBatn(Seq) ~(Ext3n-1 (Seq)) ~(Ext3n(Seq)) ~(Ext3n+1 (Seq)) 
+a= [b,c] {+ah= b} {+at= c} {-a= O} 
+[b,c] = a 
-a= [b,c] {-ah= b,-at = c,+a = O} -[b,c] = a 
±a=b {} 
(not pairs) 

+A&B {+A} {+B} 
-A&B {- A,-B} 
+AvB {+A,+B} 
-AVB { - A} {-B} 
±-.A {=t=A} 
+3A { +A([af, w]), +A([a2, w]), .. . }l0 i 

-3A {-A([p", w]) }l01 

+VA { + A([p", w]) }l0J 

-VA {-A([af, w]) , -A([a21, w]), .. . }\ 0
) 

±P(a) {±AJ.-' (a)}leJ 
Notes: 
(a) af, a 2, ... is the enumeration of all the terms generated from the parameter 
set of Extn(Seq). 
(b) p" is a parameter not appearing in Extn(Seq). 
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(c) AP is the definition of predicate Pin the program TI; i.e., P(w) t--+ AP is in 
TI. 

5. If AtBat,,.(Seq) is defined and of the form +VA or -.:!A, then 
Chk3n-1(Seq) ... Chksn+i(Seq) are (Chkn(Seq) u {AtBatn(Seq)}) - MU, where 
MU is the set of all signed sentences in Extn(Seq) of the form -VB or +.:!A. 

6. If AtBatn(Seq) is defined and not of one of the above forms, then 
Chksn-1(Seq) ... Chk3n+i(Seq) are just Chkn(Seq) U {AtBatn(Seq)}. 

7. If AtBatn(Seq) is undefined, then Ext3n-1(Seq) ... Extsn+1(Seq) are identical to 
Extn(Seq), and Chksn-i(Seq) ... Chksn+1(Seq) are identical to Chkn(Seq). 

Theorem A .. 4 (Tree Derivability) If, for some sequent Seq with a finite parameter 
set, Extsn-i(Seq), Ext3n(Seq), and Ext3n+I(Seq) are derivable, then so is Extn(Seq). 

Proof. The proof is by case analysis on the cases given in the table in definition 
A .. 3. Consider case ( 4.4), for example. If Ext2n(Seq) is derivable, then a proof for 
Ext,,.(Seq) can be constructed by simply adding a step onto the proof of Ext2,,.(Seq). 
The other cases are very similar, except for case (4.6), which we will consider here. 

In case (4.6), if Ext2n(Seq) is derivable, then by Theorem 1 some finite subset of 
it is derivable. Call this finite subset S. If S is also a subset of Extn(Seq), then by 
Theorem 1 that is derivable as well. Otherwise, S must be of the form S1 U S2 , where 
S1 is a subset of Extn(Seq), and all the formulae in S2 are of the form - [t/x]A. A 
proof for S1 U { -(x)A} can be constructed by adding one step for every sentence in S2 , 

replacing each by -(x)A. But 81 U {-(x)A} is clearly a subset of Ext,,.(Seq), which 
is therefore derivable. □ 

Corollary A .. 5 If Extn(Seq) is not derivable, then either Ext2n(Seq) or Ext2n+1(Seq) 
is not derivable. 

Proof. This is just the contrapositive to Thm. A . .4. □ 

Corollary A .. 6 If Seq is not derivable, then there is an infinite sequence of integers 
71'1,71'2, ••• such that 

1. 71'1 is 1, 

2. For all i > 1, '.ll'i is either 3'.ll'i - 1, 37ri, or 2'.ll'i + 1, and 

3. For no i 2: 1 is Ext,r,(Seq) derivable. 

Proof. The proof is by induction, using Cor. A .. 5 in the induction step. □ 
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Definition A .. 7 If 1r1, 11"2 , ••• is the sequence mentioned in Cor. A .. 6 for a sequent Seq, 
then NDExti(Seq) is Ext,..,.(Seq), NDGhki(Seq) is Ghk,..i(Seq), and NDAtBati(Seq) 
is AtBat11JSeq). 

Theorem A .. 8 (Batting Order) Consider any underivable sequent Seq with a finite 
parameter set. If the signed sentence C1j is a member of N DExti(Seq) but not of 
NDGhki(Seq), there is a k ~ j such that NDAtBatk(Seq) is ui. 

Proof. Let S be the set of signed sentences of the form - YA or + :lA which are 
before C1i in the enumeration, and let T be the set of signed sentences of all other forms 
before C1i in the enumeration. Then let mn, for n ~ 1, be \S - NDGhkn(Seq)\ + i * 
IT- NDGhkn(Seq)\. For all k such that NDAtBatk(Seq) is before oi, we can show 
that mk ~ mk+l· This is because if such an NDAtBatk(Seq) is of the form -(x)A, 
mk+1 will be m.1: - 1, and if it is of any other form, mk+l will be at least m.1: - i and at 
most m.1: - 1. 

Let C1i appear in NDExti(Seq), but not in NDChki(Seq). It will thus appear 
in NDExt.1:(Seq) for all k ~ j. Now assume that there is no k ~ J. such that a, 
is NDAtBat1c(Seq). Thus, for all k ~ J·, there is some signed sentence before C1; in 
the enumeration which appears in N DExt1e(Seq) but not in N DChk.1:(Seq). We can 
conclude, since m" is decreasing for all k ~ j, that there is some k at which m.1: is 
zero. But the only way that could happen would be if all signed sentences before a, in 
the enumeration were in NDGhk1c(Seq), in which case NDAtBatk(Seq) would have 
to be e11, contradicting our assumption. Therefore there must be some k ~ i such that 
N DAtBat.1:(Seq) is e11• D 

Corollary A .. 9 If the signed sentence a; appears in any N DExti(Seq), then there is 
a k such that N DAtBat.1:(Seq) is a,. 

Proof. For;'> 1, every member of NDChk;(Seq) appears in NDExt;-i(Seq). If 
C1i appears in any N DExt;(Seq), there must be a smallest such J·; therefore for that 
smallest j, u; is a member of NDExt;(Seq) but not of NDChk;(Seq), and the result 
of Theorem 3 holds. □ 

With the informal notions about sets that we have been using, we can assert that 
the "infinite union" of the sequents NDExti(Seq) exists. That is, there is a set (let 
-us call it Ext•(Seq)) such that a signed sentence is in Ext*(Seq) if and only if it is in 
some N DExti(Seq), for some finite i ~ 1. 

Theorem A .. 10 (Extension non-derivability) For any underivable sequent Seq 
with a finite parameter set, Ext*(Seq) is not derivable. 
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Proof. Assume Ext•(Seq) is derivable. Then some finite subset of it is deriv­
able. By our definition of Ext*(Seq), each member of this subset appears in some 
N DExti(Seq). 

But by our definitions, every N DExt;(Seq) is a subset of N DExti+i(Seq), so there 
must be some NDExt;(Seq) in which every member of this subset appears. This 
would make N DExt;(Seq) derivable as well, contradicting our assumptions about the 
formation of Ext•(Seq). Therefore, Ext*(Seq) cannot be derivable. □ 

Corollary A .. 11 Whenever a signed sentence ±A appears in Ext*(Seq), the signed 
sentence =FA does not also appear. 

Proof. If it did, Ext•(Seq) would be an axiom, and therefore derivable. □ 

Corollary A .. 12 No signed sentence of the form +a= a appears in Ext*(Seq). 

Proof. If it did, Ext*(Seq) would be an axiom, and therefore derivable. □ 

Corollary A .. 13 Whenever the signed sentences -a= band +A{p := a} appear in 
Ext*(Seq), the signed sentence -A{p := b} does not also appear. 

Proof. If it did, the finite subset of Ext*(Seq), { +A{p := a}, -A{p := b}, -a= 
b} could be derived from the two sequents { +A{p := a}, -A{p :=a}} and { +A{p := 
b }, - A{p := b} }, so Ext• (Seq) would also be derivable. □ 

Definition A .. 14 ~(Seq), which we will prove to be the falsifying interpretation of 
Seq, is defined as follows. Let us assume, without loss of generality, that the parameter 
Po is a member of the parameter set of Seq. 

1. If ±A is in Ext"'(Seq) for A of the form a= b or P(a), then =t=A is in ~(Seq). 

2. For all terms a, +a= a is in ~(Seq). 

3. For all terms a and b, the following signed sentences are in ~(Seq): 

(a) +O = Oa, Oa = O 

(b) -[a, b] = [a, b]a, -[a, b]a = [a, b] for all nonempty a 

(c) +[a, b]h = a, +a= [a, b]h 

(d) +[a, b]t = b, +b = [a, b]t 

4. If the parameter set of Ext*(Seq) does not contain all the parameters, then, for 
all parameters p; not in that set, the signed sentence +P, =Pois in ~(Seq). 

5. If both ±A{p := a} and +a= bare in ~(Seq), then ±A{p := b} is in ~(Seq). 
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6. If both ±A{p := a} and =r=A{p := b} are in <I>(Seq), then -a= bis in <I>(Seq). 

7. For all other atomic sentences A, +A is in <I>(Seq). 

Theorem A .. 15 (<I> Interpretation) For any underivable sequent Seq with a finite 
parameter set, <I>(Seq) is an interpretation of II. 

Proof. That all atomic sentences are represented in one sign or another is obvious 
from clause 6 of the definition of <I>(Seq). No sentence in the set by virtue of clause 
1 is represented with both + and - signs, because by Cor. A .. 11 no sentence is in 
Ext• (Seq) with both + and - signs. 

The signed sentence +a = b can enter <I>(Seq) only if a and b are identical, or if 
-a= b is in Ext•(Seq) (in which case by Cor. A .. 13 not both of ±A{p := a} and 
=r= A{p := b} can be in <I>(Seq)), or if a is not in the parameter set of Ext•(Seq), or 
if t here is no A such that both ± A{p := a} and =r=A{p := b} are in <I>(Seq). In 
all cases where both ± A{p := a} and =r= A.{p := b} are in Ext*(Seq), -a= bis in 
<I>(Seq). Clearly, the conditions for interpretations of II on identity sentences are met, 
and no sentence can appear with both a + and - sign in <I>(Seq), so <I>(Seq) is an 
interpretation of II. □ 

Theorem A .. 16 (Extension Completeness) For any underivable sequent Seq 
whose parameter set is finite, Ext•(Seq) is not true in <I>(Seq). 

Proof. This is equivalent to saying that no signed sentence in Ext*(Seq) appears 
in the closure of <I>(Seq). The proof is by induction on the complexity of individual 
signed sentences in Ext• (Seq). 

By the definition of <I>(Seq), if ±A is in Ext•(Seq) for A of the form a= b or P(a), 
then =r=A is in <I>(Seq); so clearly, all signed sentences in Ext*(Seq) of complexity Oare 
not in the closure of <I>(Seq). 

Assume that all sentences of complexity k in Ext*(Seq) are not in the closure. If 
a signed sentence of the form ±,A and of complexity k + 1 is in Ext*(Seq), then it 
must be in some NDExt,(Seq); therefore by Cor. A .. 9 there must be some j such 
that the formula is N DAtBat;(Seq); therefore =r=A is in N DExt;+1(Seq) and thus 
in Ext*(Seq); therefore by our induction assumption ±A must be in the closure of 
<I>(Seq); therefore by the semantic successor rules =f,A must also be in the closure of 
<I>(Seq); therefore ±,A cannot be in the closure of <I>(Seq). 

The other cases for signed sentences <1 are similar, except for the case where <1 is 
of the form +:lA (or -VA), which will be covered here. Every term a which appears 
in Ext*(Seq) is formed from a finite number of parameters. Therefore, there is some 
earliest N DExt1r,(Seq) whose parameter set contains all the parameters from which a 
is formed. Further, either k = 1 or N DAtBat1r,- 1(Seq) is of the form -:lA ( or +VA). 
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So if u is in Ext•(Seq), it must be NDAtBatm(Seq) for some m ~ k, because even if 
u is an element of NDExt1c(Seq), it will not be an element of NDChk1c(Seq), and so 
by Theorem A .. 8, must come "up to bat" again. 

We therefore must have ±A([a, w]) in Ext•(Seq) for all a formed from parame­
ters in the parameter set of Ext•(Seq). By our induction assumption, we must have 
=fA([a, w]) in the closure of <I>(Seq) for all such a. Because all parameters which are 
not members of the parameter set of Ext•(Seq) are made equivalent to one which is, 
=fA([a, w]) must also be in the closure of <I>(Seq) for all terms formed from those pa­
rameters as well; in other words, for all terms a. By the semantic successor rules, we 
must therefore have -:3A (+VA) in the closure of <I>(Seq), and therefore u is not in 
the closure. 

By induction, we can therefore say that Ext*(Seq) is not true in <I>(Seq). □ 

Corollary A .. 17 No underivable sequent Seq whose parameter set is finite is true in 
<I>(Seq). 

Proof. Since Ext''(Seq) has no intersection with the closure of <I>(Seq), no subset 
of it can have an intersection with the closure either. Seq, however, is a subset of 
Ext* (Seq), and therefore cannot be valid with respect to <I> (Seq). □ 

Corollary A .. 18 (Completeness) Every valid finite sequent is derivable. 

Proof. Consider any underivable finite sequent Seq. The parameter set of Seq 
must be finite; therefore, there is a base, <I>(Seq), in which it is not true; therefore it is 
not valid. Conversely, therefore, every valid sequent is derivable. □ 

Cor. A .. 18 is the main result of this appendix. It tells us that the proof theory C we 
have developed for environment theory is complete; that is, that every finite sequent 
which is valid, and therefore desirable to be derived, is in fact derivable. 



Appendix B 

Environment Solution Algorithm 

Definition B .. 19 A pointer x in an environment a is dereferenced if a/x - x. An 
environment a is dereferenced if all pointers it contains are dereferenced; that is, if all 
pointers either are self-pointers or point to self-pointers. 

Lemma B .. 20 There is a terminating algorithm which converts every environment a 
to an equivalent dereferenced environment a'. 

Proof. There are a finite number of undereferenced pointers x in a (pointers such 
that a/x "t x). Starting at the rightmost such pointer, at part y of a, set a/y to 
a/(a/y). The altered environment will be equivalent to the original, and all pointers 
in a/y will now point to self-pointers; therefore the number of undereferenced pointers 
will have been lowered. Repeat with the rightmost undereferenced pointer until the 
number of such pointers reaches 0. D 

Definition B .. 21 An equation system is a formula of the form D 1 V D 2 V .•• V Dn, 
where each disjunct D, is of the form w = a, & Ci,1 & Ci,2 & ... & Ci,m; and each 
conjunct C,,; is of the form b,,; = Ci,; (an equation conjunct) or bi,; =/:. Ci,; (an inequality 
conjunct). 

Lemma B .. 22 If, in an equation system, for all equation conjuncts Ci,; of the disjunct 
Di, 

1. bi,; is a pointer Xi,;, 

2 . . [ h t l d . Ci,; 1s a pair ci,;, c,,; , an 

3. each of the pointers Xi,; appears in some Ci,k, where Ci,k is an equation conjunct, 

then the disjunct Di is equivalent to fail; that is, the sequent { -Di} is valid. 
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Proof. Assume the stated conditions. Let us say that a pointer b;,; refers to 
another pointer b;,k if b;,k is a part of c;,1. Because each b;,k is referred to by some 
bi,i, we can easily construct a list of pointers y 1 , y 2 , •.• Ym;+l such that Yi+l refers to 
Yi for all l ::; i ~ m1. Clearly there must be some b;,; which appears twice in the list. 
This implies that b;,; is a proper part of itself; that is, that +bi,ia = bi,; , for some 
nonempty o:, is in any base whose closure contains + Di. Since this is not allowed by 
the semantics of pair identity, -Di must be in the closure of all bases, and Di must 
be equivalent to fail. □ 

Definition B .. 23 The depth of O and of all pointers is O; the depth of a pair is the 
greater of the depths of its head and tail. The depth measure of an equation a = b or 
inequality a=/- bis wd, where w is the first transfinite limit ordinal and dis the greater 
of the depths of a and b. 

Environment Solution Algorithm. The algorithm considers the disjuncts as a 
linear list. The addition of a disjunct to the end of the list is done in the natural way, 
by increasing the value of mi. The conjuncts within each top-level disjunct are also 
treated as a list, and can be added to or eliminated individually. 

Throughout, the order of terms in an equality or inequality is disregarded; any 
reference to (say) an equation of the form a= b can be considered as referring also to 
equations of the form b = a. 

1. Repeat, for all disjuncts Di not of the form fail, until either one disjunct D; is 
such that C;,; = X;,; =/- Yi,i for all 1 ::; J ::; m;, or all disjuncts have been replaced 
by fail: 

(a) If a; is not dereferenced, dereference a;. (From lemma B .. 20 we know that 
this procedure terminates.) 

(b) Otherwise, if there is a pointer xa appearing in any C;,; such that a;/x = x 
and a "t e, then for each such pointer: 

i. Replace every occurrence of x{3 in D;, for every {3, with 0. 

ii. Create a new disjunct which is identical to Di, except that every occur-
rence of x in a; is replaced by an occurrence of [xh, xt]. 

(This loop terminates because there are a finite number of dangling pointers 
in the original Di, and no new dangling pointers are introduced into Di by 
the procedure.) 

( c) Otherwise, if there is any pointer x appearing in any Ci,i such that ai/x "t x, 
then for each such pointer, replace it by adx, (Since there are a finite 
number of pointers in the list of conjuncts, this procedure clearly terminates. 
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After this step, due to the definition of a dereferenced environment, every 
pointer x in every bi,; or ci,i points to a self-pointer; that is, ~/x = x.) 

( d) Otherwise, if any conjunct bi,i = ci,i of depth measure wd;,; is such that 
bi,i = [b?.i-, ht;] and Ci,; = [ct;, cL], then for each such conjunct, replace 
the conjunct by h?,; = cf,; and create a new conjunct of the form bL = c:,;. 
(The depth measure of each new conjunct must be ::; wd,-,J-l, so the sum of 
the depth measures of the equality conjuncts has been decreased by at least 
wd;,; - 2wd;,;-1 _) 

(e) Otherwise, if there are any conjuncts of the form O = 0, eliminate them. 
(Each elimination decreases the sum of the equality conjunct depth measures 
by 1.) 

( f) Otherwise, if any conjunct is of the form O = [ cf.i, c!,;], replace the entire 
disjunct by fail. 

(g) Otherwise, if any conjunct is of the form x = Ci,; or its inverse, where Ci,f is 
either O or a pointer to the right of x, then for each such conjunct, replace 
occurrences of x in Di by occurrences of ci,f, and eliminate the original 
conjunct. (Due to the fact that all pointers pointed to self-pointers, the 
environment remains fully dereferenced, and all pointers in all conjuncts 
still point to self-pointers. The depths of the other conjuncts have not been 
changed, but one conjunct has been eliminated, so the sum of the equality 
conjunct depth measures has been decreased. At this point in the algorithm, 
we can assume without loss of generality that every equality conjunct is of 
the form x = [c~ ., c~ .].) 1,3 1,3 

(h) Otherwise, if every pointer bi,i in an equality conjunct appears in some ci,k 
in an equality conjunct, then by Lemma B .. 22, replace the entire disjunct 
by fail. 

(i) Otherwise, if there are still equality conjuncts in the disjunct, let Ci,i be 
an equality conjunct such that bi,i = x does not appear in any ci,k in an 
equality conjunct. 

1. Replace every occurrence of x in ai with an occurrence of Ci,i• 

ii. A finite number of pointers in ai will now point to a self-pointer to the 
left. For each such pointer y at part ai/ z, replace all occurrences of y 
in ~ by occurrences of z. (This will effectively shift all pointers so that 
they point to the right.) 

iii. Eliminate the original conjunct, x = Ci,i• 

iv. Replace every occurrence ofx in the disjunct with an occurrence of a;jx. 
(These occurrences can only be on the left hand side of conjuncts.) 
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Say that the depth of the original ci,i was d. The depth measures of some 
conjuncts have been raised to wa. However, at the next repetition of step 4a, 
because all right hand sides are pairs, they will all be split into two conjuncts 
of depth d - 1. Therefore, a factor of wa will have been subtracted from the 
sum of the equality conjunct depth measures, but only a finite number of 
factors of wd-l will have been introduced. There will therefore have been a 
net decrease in the sum of the equality conjunct depth measures. 

(j) Otherwise, if there are conjuncts of the form [bf,;, bL] =/- [cf,;, ct;], then for 
each such conjunct, 

i. Replace the conjunct by bf,; =/- cf,1. 

ii. Create a new disjunct which is identical to Di, except that Ci,i is re­
placed by b!,; # c:,1. 

(k) Otherwise, if there are conjuncts of the form O =/- 0 or x =/- x, replace the 
entire disjunct by fail. 

(l) Otherwise, if there are conjuncts of the form O =/- [cf,;, ct;], eliminate them. 
(At this point we can assume without loss of generality that all conjuncts 
are of the form Xi,; # c,,;, where X.,; is a pointer to a self-pointer in ai.) 

(m) Otherwise, if there are conjuncts of the form x1,; =/- [cf,;, cL], then for each 
such conjunct: 

1. Create a new disjunct which is identical to D,, except that every occur­
rence of x,,; is replaced by an occurrence of [x1,;h, x1,;t]. 

11. Replace every occurrence of x,,; in D, by an occurrence of 0. 

m. Eliminate the original conjunct. 

(n) Otherwise, there must be conjuncts of the form Xi,; =/- 0. For each such 
conjunct, replace all occurrences of x,,; in D 1 by occurrences of [x,,;h, x,,;t], 
and eliminate the original conjunct. 

2. If all disjuncts are of the form fail, terminate returning fail. 

3. Otherwise, if one disjunct D 1 is such that a 1 is a proper environment and each C1,; 

is of the form x 1,; =I- Yi,;, terminate returning (w = a, & C 1,1 & ... & C,,m;) V 

D1 V ••. V D 1-1 V DH1 V •.• V Dn. 

End of algorithm. 

Theorem B .. 24 Given an equation system, the environment solution algorithm above 
will terminate finding an equivalent equation system of the form ( w = a & x 1 =/­
y1 & ... & Xm =f y m) V B, if and only if there is such an equation system. If such an 
equation system does not exist, the given equation system will be equivalent to fail. 
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Proof. Note the following things about the algorithm. 

1. All of the clauses contain a condition and an action; the action is performed if 
and only if the condition holds and none of the conditions in the previous clauses 
hold. 

2. All of the actions in all the clauses terminate individually. 

3. If the action in clause l(a) has been performed for a particular disjunct Di, none 
of the subsequent clauses will allow its condition to become true again; similarly 
for clauses l(b) and l(c). 

4. As long as there are equality conjuncts in a particular disjunct, one of the clauses 
l(d) - l(i) will be performed on that disjunct at every repetition of the loop. 

5. The action in each of the clauses l(d) - l{i), when applied to any disjunct Di, 
causes the sum of the depth measures of the equality conjuncts to decrease; 
therefore, since the sum of the depth measures is always a countable ordinal, by 
transfinite induction the conditions on all the clauses must not hold after some 
finite number of repetitions. 

6. None of the clauses l(j) - l(n) causes any of the conditions in the previous clauses 
to become true. 

7. The action in each of the clauses l(j) - l(n), when applied to any disjunct Di, 
causes the sum of the depth measures of the remaining conjuncts to decrease. 
Again, by transfinite induction these clauses can be repeated only a finite number 
of times for each Di, 

From the above points it should be clear that for each disjunct, each clause in step 
(1) can be applied to it only a finite number of times before it becomes converted to 
one of the success forms. However, by that time it may have generated more disjuncts 
at the end of the list. 

Each original disjunct can generate only a finite number of additional disjuncts by 
virtue of clause l{b), because the new disjunct created there will have either fewer 
dangling pointers, or one pointer will be dangling at a lower level. Similarly, only a 
finite number of additional disjuncts can be created by virtue of clause 1 (j), because 
the new disjunct will have a lower sum of depth measures than the original. The 
problematic clause is clause l(m). 

Consider the disjunct w = a & (x =/- y & x =/- [y, z] & w = w ). When clause l{m) is 
applied to this disjunct, it will create a new disjunct of the form w = a & ([xh, xt] =/­
y & [xh, xt] =/- [y, z] & w = w). Clause l(j) will then be applied, converting the new 
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disjunct to the form w = a & ([xh,xt] # y & xh # y & w = w) and creating another 
disjunct. But the new disjunct will be of the same form as the original; therefore an 
infinite production of new disjuncts will be generated, unless the algorithm terminates 
due to some other disjunct succeeding. 

However, note that at each iteration of this creation of disjuncts, the depth of the 
environment ~ will be increased. If the entire disjunction has a solution, however, 
it must have a solution with an environment of finite depth. Therefore, the infinite 
iteration of applications of clause l(m) can only take place if the entire equation system 
has no solution. 

The algorithm will convert the equation system to an equivalent one of the solution 
form if such an equivalent form exists; if one does not exist, the equation system will 
be equivalent to fail, and in that case the algorithm may or may not terminate. □ 

Thus, the environment solution algorithm is similar to the rest of the computa­
tion algorithm in the following sense. If a sequent containing only +E & a = b or 
+E & ,a= bis valid, where Eis an environment characterization, then the algorithm 
will terminate finding an environment characterization F such that {F ---+ E & a= b} 
is valid. However, if the sequent is not valid, there is no guarantee that the algorithm 
will invariably so conclude. 

Although this is sufficient for the purposes of this theory, it is not entirely satisfying, 
since we may be able to describe deterministically the set of all equation systems 
which fail. In doing so, we will be forced to change the form or use of an environment 
characterization. We should preserve the property of the environment characterization 
that it be easy to pass back through a quantifier, and this may not be easy to do. 




