
A SEMI-AUTOMATIC APPROACH TO PROTOCOL
IMPLEMENTATION - THE ISO CLASS 2 TRANSPORT

PROTOCOL AS AN EXAMPLE

by

Allen Chakming Lau

Technical Report 86-20

November, 1986

A SEMI-AUTOMATIC APPROACH TO PROTOCOL IMPLEMENTATION -

THE ISO CLASS 2 TRANSPORT PROTOCOL AS AN EXAMPLE

By

ALLEN CHAKMING LAU

B.Sc, Simon Fraser University, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

July 1986

© Allen Chakming Lau, 1986

Abstract

Formal Description Techniques (FDTs) for specifying communication protocols, and the

adopted FDT standards such as Estelle have opened a new door for the possibility of automating

the implementation of a complex communication protocol directly from its specification. After

a brief overview of Estelle FDT, we present the basic ideas and the encountered problems in

developing a C-written Estelle compiler, which accepts an Estelle specification of protocols and

produces a protocol implementation in C. The practicality of this tool - the Estelle compiler -

has been examined via a semi-automatic implementation of the ISO class 2 Transport Protocol

using the tool. A manual implementation in C/UNIX 4.2bsd of this protocol is also performed

and compared with the semi-automatic implementation. We find the semi-automatic approach

to protocol implementation offers several advantages over the conventional manual one. These

advantages include correctness and modularity in protocol implementation code and reduction

in implementation development time. In this thesis, we discuss our experience on using the

semi-automatic approach in implementing the ISO class 2 Transport Protocol.

11

Contents

Abstract

Contents

List of Figures

List of Tables

Acknowledgement

1 Introduction
1.1 Motivations
1.2 Scope and Contributions .
1.3 Thesis Outline

2 Estelle
2.1 Channel and Interaction Primitive
2.2 Module and Interaction Point .
2.3 Refinement and Process
2.4 Extended Finite State Machine

3 The Implementation Strategy
3.1 Data Structures .
3.2 Interactions
3.3 Transitions
3.4 System Interfaces .

4 The C-Estelle Compiler
4.1 The Structure
4.2 Translation Issues . . .

4.2.1 Pascal to C Problems
4.2.2 Estelle to C Considerations

111

ii

iii

V

vi

vii

1
1
2
3

4
4
6
7

10

14
14
17
17
18

20
21
21
21
24

5 Implementation Example - The ISO Transport Protocol
5.1 Overview of The ISO Class 2 Transport Protocol
5.2 Design of the Implementation

5.2.1 Structure
5.2.2 Implementation Issues
5.2.3 Scheduler Design . . .

5.3 Semi-Automatic Implementation
5.3.1 The Generated Code .
5.3.2 Integration Process .

5.4 Manual Implementation
5.5 Results

6 Conclusions
6.1 Thesis Summary
6.2 Future Work

Bibliography

A The ISO Class 2 Transport Protocol - State Diagram

B The ISO Class 2 Transport Protocol - Estelle Specification

26
26
30
30
30
31
32
32
34
35
36

40
40
41

43

45

47

C System Initialization and Scheduler - For Semi-Automatic Implementation 66

D System Initialization and Scheduler - For Manual Implementation 72

IV

List of Figures

2.1 An Example of Channel Specification 5
2.2 An Example of Module Specification 6
2.3 Typical Refinement of a Transport System. 8
2.4 An Example of Refinement Specification 9
2.5 An Example of Process Specification . . 11
2.6 An Example of Transition Specification 13

3.1 Procedure of the Semi-Automatic Implementation 15
3.2 Data Structure of an Interaction . .. 15
3.3 Data Structure of a Module Instance . 16
3.4 Data Structure of an Interaction Point 17

4.1 The Structure of the C-Estelle Compiler 22

5.1 Transport Service - Primitive Sequence . 28
5.2 Transport Protocol Data Unit Fixed Header Formats. 29

A.1 Transport Protocol State Diagram 46

V

List of Tables

5.1 Sizes of Different Parts of Implementations . 37

Vl

Acknowledgement

I would like to thank my supervisor, Dr. Son Vuong, for his guidance throughout the course

of this thesis and Dr. Harvey Abramson for his comments and careful reading of the thesis.

Many thanks are due to Susan Chan and Helen See for their helpful comments and their

fine editing skills.

Finally, l wish__to thank Frances Liu for her patience and love.

vii

Chapter 1

Introduction

1.1 Motivations

Formal Description Techniques (FDTs) [Boch80] for specifying protocols and services have

opened a new door for the possibility of automating the implementation of a complex com­

munication protocol directly from its specification. These FDTs are advance enough that

they are becoming standards such as [CCITT85], [Estelle85] and [Lotos84] and their compil­

ers, [Ansart83], [Bria86], [Ford85], [Gerber83] and [Hans84], are also being developed to make

themselves usable in the design and implementation of real-life protocols.

This new approach to protocol implementation is superior than the traditional approach

in that communication protocols are implemented semi-automatically in a systematic manner

rather than manually in an ad hoc manner. It avoids different interpretation of the specification

and various implementation errors, hence, provides confidence in conformance to the specifi­

cation. As a large portion of the protocol implementation is generated by the compiler in a

standard target language, the implementation is highly portable. Furthermore, the generated

code is well-constructed, and system-dependent features can be easily located in a few routines.

Thus, the implementation is easier to maintain.

1

CHAPTER 1. INTRODUCTION 2

The motivation of this thesis is to verify the usefulness of the semi-automatic approach to

protocol implementation. An Estelle compiler is chosen to implement a fairly complex ISO

class 2 Transport Protocol [CCITT85,ISO82b]. A manual implementation of this protocol is

also performed and compared with the semi-automatic implementation.

1.2 Scope and Contributions

The chosen compiler is developed by Daniel Ford in the language C on a VAX 11/7501

running UNIX 4.2bsd2 • The compiler accepts an Estelle specification for communication pro­

tocols and produces C code. The generated code is then incorporated with pre-written generic

and implementation-dependent routines to implement the specified protocol.

The original C-written Estelle compiler8 is erroneous and insufficiently tested. Its per­

formance has been greatly enhanced by transforming BNF grammars into LALR grammars

which best fit the YACC compiler [John75] for generating the parser of the C-Estelle compiler.

The grammar rules were also rewritten so that the compiler supports complex data structures

such as variant record and pointer which are commonly used in complex protocol specifications.

Furthermore, the translation routines were modified to produce optimized and better-organized

code.

The enhanced compiler was examined by using it to implement protocols such as hot

potato, alternating bit, and ISO class 2 Transport Protocol. It was also ported to several

SUN Workstations" and the protocol implementations are successfully running among the

VAX 11/750 and SUN Workstations.

1VAX is a trademark of Digital Equipment Corporation
2 UNIX is a trademark of AT&T Bell Laboratories.
8 For brevity we shall often use the terms C-F.stelle compiler in place of C-written F.stelle compiler

'SUN Workstation is a trademark of Sun Microsystems.

CHAPTER 1. INTRODUCTION 3

1.3 Thesis Outline

After an overview of Estelle in Chapter 2, the development of the automatic tool, C­

Estelle compiler is described. Chapter 3 explains the implementation strategy used in the tool,

and Chapter 4 discusses the problems encountered. An extensive application of the tool is

described in Chapter 5. The real-life ISO class 2 Transport protocol is implemented both semi­

automatically by using the tool and manually in an ad hoc manner. After a presentation of

their designs and implementations, experience learned from the implementations is discussed.

The last chapter summarizes the thesis and offers suggestions for future work.

Since the implementations of the C-Estelle compiler and the protocol were written in the

language C, all coding examples presented are C-like. In addition, implementations run on the

UNIX 4.2bsd operating system. Thus, reader are assumed to have a basic understanding of the

language C and the UNIX 4.2bsd operating system.

Chapter 2

Estelle

Estelle (Extended State Transition Language) is a formal description technique developed

by the International Standard Organization (ISO) TC 97 /SC 16/WG 1 - FDT, Subgroup B

[Estelle85,ISO84]. Based upon an extended finite state transition model and the Pascal prer

gramming language, Estelle is used for the specification of communication protocols and ser-

vices.

The framework of an Estelle specification is a set of c<roperating entities, each described as

a module, interacting with each other by exchanging information through channels. The actual

behaviour of a module is specified as either an integrated behaviour of a set of interacting

submodules oi at the innermost level, an extended finite state automaton.

2.1 Channel and Interaction Primitive

A channel is a twerway simultaneous pipe which transmits information between two con­

nected modules. A channel-type definition specifies a set of interaction primitives which is

grouped under two· different roles. These roles are used to distinguish the two sides of the

channel, and hence, the two connected modules. Primitives grouped under one role can only

be initiated by the module instance which plays that role in respect to the channel; and they

4

CHAPTER 2. ESTELLE 5

are received by the module instance which plays the other role. Information is transmitted

between module instances via the parameters of interaction primitives. As an example, fig­

ure 2.1 shows a definition of a channel-type TS..primitives. There are ten possible Transport

CHANNEL TS_primitives (TS_user, TS_provider };

BY TS_user:

T _CONNECT ..request

T _CONNECT ..response

T ..DATA..request
T .XPD..request
T ..DISCONNECT ..request

BY TS_provider:

T _CONNECT Jndication

T _CONNECT _confirm

T ..DATAJndication
T .XPDJndication
T ..DISCONNECT Jndication

END TS_primitives;

(From..transport_addr: ADDR_TYPE;
To_transport...addr : ADDR_TYPE;
Qual....of...service : QOS_TYPE;
TS_user_data : DATA._TYPE };

(QuaLof.Bervice : QOS_TYPE;
TS _user_data : DATA._TYPE);

(TS_user_data : DATA._TYPE);
(TS_user_data : DATA._TYPE);
(TS_user..data : DATA._TYPE);

(From_transport...addr : ADDR_TYPE;
To_transport...addr : ADDR_TYPE;
Qual....of...service : QOS_TYPE;
TS_user_data : DATA_TYPE);

(QuaLof..service : QOS_TYPE;
TS_user_data : DATA_TYPE);

{ TS_user_data : DATA_TYPE);
(TS_user_data : DATA_TYPE);
(Reason : REASON_TYPE;

TS_user_data : DATA_TYPE);

Figure 2.1: An Example of Channel Specification

service interaction primitives which can be used by a Transport service user to interact with

the service provider. Five of them, namely T_CONNECT..request, T_CONNECT..response,

T ..DATA..request, T .XPD..request and T ..DISCONNECT ..request, can be initiated by a module

CHAPTER 2. ESTELLE 6

instance which plays a role of TS_user in respect to the channel. The parameters of the inter­

action primitives, such as TS_user_data, carry the given information from a TS_user module

instance to a receiving TS_provider module instance.

2.2 Module and Interaction Point

A module is the basic component of an Estelle specification and represents an entity of

the specification. A module-type definition is a list of interaction points at which the module

interacts with its environment. Each interaction point, (also called port), is an abstract interface

of a module used to interact with the connected modules. For each interaction point, a role

of its associated channel-type is specified. An interaction is then identified by the name of the

interaction point at which it occurs and the name of the interaction. In addition, the interaction

has to be one of the defined interaction primitives in the corresponding channel-type definition.

The actual behaviour of a module is defined as either an integrated behaviour of a set of

interacting submodules or an extended finite state automaton. For a given module-type, one

or many module instances (i.e. protocol instances) can be obtained. An example of a module

specification is given in Figure 2.2. All possible interactions of a Transport service user with a

MODULE TS_user..module;

TSAP : TS_primitives (TS_user);

END TS_user .module;

Figure 2.2: An Example of Module Specification

Transport service provider is then through an interaction point TSAP. The interaction point

is associated with a TS_primitives channel, and the module plays a role of TS_user. Thus, at

this interaction point, the module can initiate the interaction primitives T _CONNECT ..request,

CHAPTER 2. ESTELLE 7

T _CONNECT ..response, T ..DATA_request, T _xi>D..request and T ..DISCONNECT ..request. It

is also allowed to receive other interaction primitives defined only for the TS_primitives channel.

2.3 Refinement and Process

In Estelle, the actual behaviour of a module is specified either indirectly as a Refinement

or directly as a Process. If a module is not a complete self-contained entity, it is decomposed

into a set of co-operating submodules, each of which may be further decomposed. The behaviour

of the module is the integrated behaviour of the submodules and hence it is called a refinement.

A module can also be specified as a process which describes the corresponding finite state

transition model of the module.

An Estelle refinement specification includes definitions of internal channel-types, submodule­

types, and specifications of the corresponding processes and refinements. After the definition of

the internal structures, module instances are created and connected accordingly. If necessary,

interaction points of internal module-types may be replaced by those of their parent module­

type.

A typical refinement of a Transport system is depicted in Figure 2.3. According to this

refinement, a Transport...system module is refined as a Transport_ref refinement, which is de­

composed into two TS_user modules, one ATP module, two RS modules, and four System

modules. The corresponding Estelle specification is shown in Figure 2.4. After defining the

internal structures, module instances are declared. Module instances are then connected pro­

vided that they play the different role of a channel through which they interact with each other.

There are no replacement because Transport...system module is a closed system.

An Estelle process definition specifies the queueing discipline associated with each interac-

CHAPTER 2. ESTELLE

Transport Service users
r--------.

u I u2

ATP
► (Abstract Transport Protocol)

Transport_system

AS I AS2

Network Service Providers

Transport_ref

Figure 2.3: Typical Refinement of a Transport System

S I

S2

S3

S4

System
Service
Providers

8

CHAPTER 2. ESTELLE

REFINEMENT Transport..ref FOR Transport.system;

(* Constant and Type Definitions *)

(* Channel Definitions *)

(* Module and Process/Refinement Declarations *)

(* Module Instances *)

UI : TS_userJnodule WITH TS_user_process(I);
U2 : TS_userJnodule WITH TS_user_process(2);

ATP : ATP .module

SI : SystemJnodule
S2 : System_module
S3 : System.module
S4 : System_module

RSI : RS_module
RSI : RSJnodule

WITH ATP ..process;

WITH System_process(I);
WITH System_process(2);
WITH System_process(3);
WITH System_process(4);

WITH RS_process(I);
WITH RS_process(2);

(* Connection Establishments *)

CONNECT

Ul.TSAP
U2.TSAP

TO ATP.TCEP[I];
TO ATP.TCEP[2];

ATP.NSAP[I] TO RSl.NCEP;
ATP.NSAP[2] TO RS2.NCEP;

ATP.SAPT[I] TO SI.SEP;
ATP.SAPT[2] TO S2.SEP;
ATP.SAPN[I) TO S3.SEP;
ATP.SAPN[2) TO S4.SEP;

END Transport..ref;

Figure 2.4: An Example of Refinement Specification

9

CHAPTER 2. ESTELLE 10

tion point, the initial condition and all possible transitions of the corresponding extended finite

state machine. For each interaction point of a module, an individual queue is reserved for the

queueing of incoming interactions from the peer module before these interactions are considered

as input by the module. These queues are on a first-come-first-serve basis and their lengths

are either infinite or zero. If the queue length is zero, an output interaction is not queued but

consumed immediately as an input by the rendezvous recipient module.

A process specification of a TS_user module is presented in Figure 2.5. The queueing

discipline of its interaction point TSAP, local variables, primitive functions and procedures are

first declared. The local variables are then initialized as the initial state of the corresponding

extended finite state machine. The remaining specification is a list of transition definitions.

2.4 Extended Finite State Machine

The operation of a process is modeled as an extended finite state machine which is a

finite state automaton extended with the addition of variables to the states, parameters to the

interactions, time constraints and priorities to the transitions. The state space of a module

is specified by a set of variables. One distinct variable, state, if defined, is used to represent

the state of a finite state machine upon which the module is based. This major state variable,

together with other context variables, determines a state of the module.

The general idea to express a transition, is that WHEN an interaction arrives, a transition

has to be performed, FROM the current major state TO a new major state PROVIDED a

condition is satisfied, through an action. The associated action of a transition is specified in

terms of Pascal statements, and may include the initiation of output interactions with its peer

modules.

CHAPTER 2. ESTELLE

PROCESS TS_user_process (TSjndex: integer) FOR TS_user..module;

QUEUED TSAP;

(* Type and Variables Declarations *)

(* Primitive function and procedure Declarations *)

INITIALIZE
BEGIN

END;

userjd := TSJndex;
state := IDLE;

for qkind := Q_NO_EXPEDITED..DATA to Q_EXTENDED..FORMAT do
quaLof..service.misc[qkind] := FALSE;

quaLof..service.class := CLASS_TWO;
sndcnt := O; xsndcnt := O;
rcvcnt := O; xrcvcnt := O;

(* Transition Definitions *)

END TS_user_process;

Figure 2.5: An Example of Process Specification

11

CHAPTER 2. ESTELLE 12

Transitions are classified into input and spontaneous transitions, depending on the pres­

ence of an input interaction (i.e. WHEN clause). An input transition occurs whenever there

is an input interaction at a specified interaction point. A spontaneous transition lacks such a

WHEN clause and may be executed regardless of any input interactions.

The Estelle state machine is non-deterministic in the sense that in a given major state

and at a given time, several different transitions may occur. As mentioned in the ISO FDT

document, an Estelle specification must not depend on non-deterministic choices. In order to

handle the non-deterministic situation, an ANY clause is used to select a random value of the

specified enumerated-type variable(s). Such an ANY clause can only be used in spontaneous

transitions.

Figure 2.6 lists some transition types, which occur in a TS.user module. Transition one is

an input interaction which is initiated by the Transport data arrival. The data arrival causes a

cyclic transition from the major state Alive to itself, and an execution of procedure Store_data

to store the data in a buffer pool. Transition two inherits the WHEN clause of transition one.

When data arrives and the current major state is Receiving, counter rcvcnt is incremented

and procedure TS_output is executed to notify the Transport service user the data arrival.

The current major state is also changed into Alive as a result of the transition. Transition

three is a spontaneous transition that is performed whenever the Transport service user has a

request. Whenever the user wants to initiate a Transport connection and the present major

state is Idle, it first sets up the parameters of the interaction primitive T .CONNECT ..request.

The request is then sent over the TS.primitives channel at interaction point TSAP and the

major state of the module is changed to Waiting.

CHAPTER 2. ESTELLE

TRANS

TRANS

WHEN TSAP.T..DATAJndication
FROM Alive TO Same
BEGIN

Store_data (pool, TS_user_data)
END;

FROM Receiving TO Alive
BEGIN

rcvcnt := rcvcnt + 1;

TS_output (userJd, response);
END;

PROVIDED TSJnput (userJd, request)
BEGIN

case request.kind of
T_CONNECT:

if state = Idle then begin
state := Waiting;

(* Transition One *)

(* Transition Two*)

(* Transition Three *)

OUT TSAP.T_CONNECT..request (local...addr,
remote...addr,
quaLof..service,
request.data)

end;

END;

Figure 2.6: An Example of Transition Specification

13

Chapter 3

The Implementation Strategy

In automatic implementation of protocols, a generic structure and organization of the imple­

mentation must be adopted. The implementation strategy adopted for our C-Estelle compiler

is similar to the one used by G. Gerber in his Pascal-written Estelle compiler [Gerber83]. This

approach makes use of data structures to represent module instances, interaction points, and

interactions among module instances. A set of pre-written generic functions is used to allo­

cate, initialize, and link data structures according to an Estelle specification. The pre-written

functions also dispatch an output interaction to a recipient module, select the next available

interaction, and make non-deterministic choice. Since different systems have different global

environments and scheduling schemes, two special functions, namely systemJnit and sched­

ule have to be tailored according to each specification. Figure 3.1 depicts the procedure of the

semi-automatic implementation.

3.1 Data Structures

There are three major data structures which represent module instances, interaction points

and interactions between module instances. When linked appropriately, these data structures

can represent an arbitrarily complex Estelle specification in a simple manner.

14

CHAPTER 3. THE IMPLEMENTATION STRATEGY 15

Primitives
Estelle _____r7__.__ + Generic _F7__ Executable

Specification----U---Generated+Functions~Code
Code

C-Estelle C
Compiler Compiler

Figure 3.1: Procedure of the Semi-Automatic Implementation

In Figure 3.2, data structure signal....block represents an interaction (i.e a signal) and is

struct signaLblock {

} ;

int signaUd;
struct signaLblock *next;
union {

} !vars;

Figure 3.2: Data Structure of an Interaction

comprised of three attributes, namely signaLid, next, and lvars. For convenience, interaction

primitives, specified in channel-type definitions, are numbered. These numbers are used in

signaLid to identify an interaction. The attribute next links data structures to implement the

queueing of incoming interactions at an interaction point. The values of the parameters of

an interaction a.re stored as a single attribute lvars in the data structure. A simple scheme is

applied to avoid the name conflict of having identical parameter names in different interaction

primitives and identical interaction names in different channel-types. Interaction primitives

CHAPTER 3. THE IMPLEMENTATION STRATEGY 16

under the same channel-type are grouped in a dummy structure which then appears as the only

attribute of a variant of lvars. Similarly, parameters of an interaction primitive are grouped in

a dummy structure which works as the only attribute of a variant of the interaction primitive.

Representing a module instance, data structure process_block (Figure 3.3) consists of

struct process_block {
struct process_block *next;
char pjdent[MAXJDENT..LENGTH+l];
struct channeLblock *chanJist;
struct process_block *refinement;
int (*proc_ptr)();
union {

} lvars;
};

Figure 3.3: Data Structure of a Module Instance

six attributes, namely next, p.ident, chanJist, refinement, proc_ptr, and lvars. Similar to

signaLblock structure, a variant is added to attribute lvars of the structure in each module

type definition. Local variables are grouped in a dummy structure as a single attribute in each

variant. The attribute proc_ptr is an entry point to a transition function which implements the

transition process of the corresponding protocol machine. The remaining attributes are used

to identify the corresponding transition function, and to build and link various data structures

modeling the specified system.

Representing an interaction point, data structure channeLblock (Figure 3.4) contains the

following attributes : target_proc, and target_channel are entry p9ints to data structures which

represent peer module instance and its corresponding interaction point; signaUist points to a list

of incoming interaction; queued is a boolean flag that indicates the queueing discipline (queued

CHAPTER 3. THE IMPLEMENTATION STRATEGY 17

struct channeLblock {
struct channeLblock *next;
int *signalJist;
int *target_proc;
struct channeLblock *target_channel;
int queued;
int cjd;
int index.num;

};

Figure 3.4: Data Structure of an Interaction Point

or rendezvous) of the interaction point; cJd identifies the interaction point and additional

indexJ1um is used in case of multiplexing channel; finally next links all interaction points of a

module-type.

3.2 Interactions

AB mentioned in Chapter 2, interactions can be classified into queued and rendezvous

types. Output queued interactions from a module are queued in the recipient module. They

are considered by the global scheduler as input interactions to the recipient module in due time.

On the other hand, output rendezvous interactions are sent to and consumed by the recipient

module immediately. If the recipient module is not in a state which the incoming interaction

can initiate a transition, the interaction is added to the awaiting incoming interaction queue

and will be considered immediately for execution in due time by the global scheduler.

3.3 Transitions

In a given global system state, a number of different transitions belonging to different

module instances is possible. The selection of the next available transition to be performed

CHAPTER 3. THE IMPLEMENTATION STRATEGY 18

is made by a global scheduler, which is not part of the Estelle specification but part of the

run-time support for the implementation. A simple round-robin scheduler is applied to choose

the next available transition.

For a given input interaction and a given major state of a module instance, several different

input transitions may occur. Similarly, several spontaneous transitions can exist for a given

major state of a module instance. For simplicity, the first possible transition in the same order

as defined in the specification is selected to be performed. Hence, for each cycle, in addition

to which module instance, the global scheduler selects the next input transition only based

on the interaction point and the input interaction, or just determines whether a spontaneous

transition to be taken next.

3.4 System Interfaces

For each implementation, the protocol implementors will have to manually look after the

system-dependent portion of the implementation, i.e. interactions between the specified proto­

col machine and its working environment. For instance, interactions with the operating system

usually cause an undesirable blocking of the protocol machine and the solution to avoid such

blocking varies largely on different machines and different operating systems. However, working

environment such as the operating system is always known and its interfaces with the specified

system can be well defined. This a.priori knowledge can be used to simplify the system interac­

tions. In our implementations, UNIX 4.2 socket primitive select is used to preview the socket

so that the blocking is avoided when reading a socket. Thus, output to the environment can

be implemented by invoking a set of system-dependent routines, while input from the environ­

ment by including spontaneous transitions which invoke the same set of routines. The global

CHAPTER 3. THE IMPLEMENTATION STRATEGY 19

scheduler is fully aware of when and which spontaneous transition should be performed.

Chapter 4

The C-Estelle Compiler

In order to support the implementation strategy described in Chapter 3, a C-Estelle com­

piler was developed by D. Ford [Ford85] who rewrote G. Gerber's [Gerber83] Pascal-written

Estelle compiler in the language C on a VAX 11/750 running UNIX 4.2bsd. The compiler was

then modified by K. Chan, adding the capability of recognizing the additional scope of tran­

sition group. The previous version of the C-Estelle compiler was erroneous and insufficiently

tested. In order to make it useful, the performance of the compiler has been greatly enhanced

by transforming the BNF grammars into LALR grammars which best fit the Y AOC compiler

for generating the parser of the C-Estelle compiler. The grammar rules were also rewritten so

that the compiler supports complex data structures such as variant record and pointer which

are commonly used in real-life protocol specifications. Furthermore, the translation routines

were modified to produce optimized and better-organized code. During the test period, many

minor problems, such as incorrect translation of Pascal for statement, have also been fixed.

The enhanced compiler was later ported to several SUN Workstations and protocol implemen­

tations such as hot potato, alternating bit and ISO class 2 Transport Protocol are successfully

running among the VAX 11/750 and SUN Workstations.

20

CHAPTER 4. THE 0-ESTELLE COMPILER 21

The enhanced C-Estelle compiler reads Estelle protocol specifications and produces C code.

The generated C code is then incorporated with sets of system-dependent and pre-written

generic routines into a C program which implements the specified communication protocol. This

semi-automatic construction of protocol implementation is the main purpose of the development

of the C-Estelle compiler.

4.1 The Structure

Similar to many other compilers [Aho78], the C-Estelle compiler is partitioned into several

phases as shown in Figure 4.1. Both lexical analyzer and parser were generated by the UNIX

standard utilities LEX [Lesk75) and YACC [John75) respectively. Error handling, table man­

agement and code generation were embedded in the YACC grammar input file. Currently, the

compiler does not optimize the generated C code. It completes the translation in a single pass

of the source specification.

A large number of semantic analysis is left untouched to the C compiler which compiles

the generated C code into executable ma.chine code. The C-Estelle compiler only verifies the

semantic conditions that would not be detected by the subsequent C compilation. For instance,

the C-Estelle compiler ensures, for each connection, that the two connected module instances

play the different roles of the same channel-type. On the other hand, the C-Estelle compiler

does not verify that arguments are of types which are legal for an application of an assignment.

4.2 Translation Issues

4.2.1 Pascal to C Problems

Since Estelle is a. Pascal-based language, translating Pascal code into C code is a primary

issue addressed during the implementation of the C-Estelle compiler. Although both Pascal and

CHAPTER 4. THE C-ESTELLE COMPILER

Table
Management

INPUT

Lexical Analysis

Parser

Intermediate
Code generation

Code Optimization

Code Generation

OUTPUT

Figure 4.1: The Structure of the C-Estelle Compiler

Error
Handling

22

CHAPTER 4. THE C-ESTELLE COMPILER 23

Care high-level programming languages which have similar control flow constructions and basic

data types, they have enough differences which makes the direct translation a very difficult task.

The following discussion has a great impact on the performance and the use of the C-Estelle

compiler.

First of all, both languages have very different approaches in defining the scope of objects. In

Pascal, procedures and functions can be nested, and identifiers have no storage class attributes.

The scope of an identifier is the block in which it is declared and every sub-block in which the

identifier is not declared again. Whereas in C, only external functions are supported; function

nesting is not allowed, and identifiers have a special storage class attribute. The scope of an

identifier within a source file is basically the same as the one in Pascal. In addition, identifier

which is not declared in any block, can be accessed within any blocks that is lexically after its

declaration. Furthermore, the scope of externals, identifiers whose storage class are extern,

may be defined in another source file. Two proposed solutions are to use multiple output files

and to make all identifiers distinct and external. Both solutions are not straight-forward and

very cumbersome to implement. For simplicity, the use of Pascal's scoping rules and nested

routines is disallowed. Thus, when using the C-Estelle compiler, both global variables and

nested routines are not allowed.

Secondly, self-referential data structures are declared in different sequences. Due to the

syntax of Pascal type declaration, self-referential data structure is defined in a way that a self­

referential pointer to an object can be exceptionally defined before the object is defined. C

does not have this syntax problem and an object must be defined before its reference pointer

is defined. Hence, direct translation is not possible. The solution employed in the C-Estelle

compiler is to define all objects first and then pointers.

CHAPTER 4. THE C-ESTELLE COMPILER 24

Thirdly, the formats of input/output statements are very different. Directly translation

is so difficult that only Pascal's output statements, i.e. write and wrlteln statements, are

supported and translated into equivalent C printf statements. Other forms of input/output

statements can be embedded in primitive routines.

Furthermore, Pascal's unique WITH statements and SET operations cannot be translated

directly into any equivalent C statements. Additional statements and pre-written functions are

required to make the translation. These Pascal features are currently not supported.

4.2.2 Estelle to C Considerations

In addition to the above-mentioned difficulties of translating Pascal into C, there are certain

aspects of Estelle which are very hard to handle. These are the additional Estelle scoping rules

introduced by the enabling conditions of a transition type and the additional variables used by

the run-time supporting routines. Some restrictions have been imposed in or.der to overcome

these problems.

First of all, the parameters of an input interaction, which are declared in the corresponding

channel-type definition, are accessible within the scope of a WHEN clause. To avoid the name

conflict, the parameter names cannot be used for local variables for any module-types which the

interaction may occur. Secondly, if the interaction point identifier in a WHEN clause is indexed,

the index identifier(s) must be declared as local variable(s) of the corresponding module-type.

Thirdly, since an ANY clause introduces additional variable(s) within the scope of the clause,

a block is used to hide the new variable(s) from other transitions. The value of the variable

is randomly selected from its specified domain by a pre-written function. Furthermore, addi­

tional identifiers are generated by the C-Estelle compiler and used by the run-time supporting

functions. These identifiers should never be in conflict with other identifiers of the specification

CHAPTER 4. THE C-ESTELLE COMPILER 25

which are still present in the generated C code.

Chapter 5

Implementation Example - The ISO
Transport Protocol

In order to evaluate the usefulness of the C-Estelle compiler, a fairly complex ISO class

2 Transport Protocol has been implemented both semi-automatically by using the C-Estelle

compiler and manually in an ad hoc manner. Both implementations run on a VAX 11/750 and

several SUN Workstations under the UNIX 4.2bsd operating system. After an overview of the

protocol, the design of its implementation is presented. The two implementation approaches

and the experience learned from the implementations are discussed, followed by a tentative

comparison of these implementations.

The state diagram of the protocol is depicted in Appendix A and the Estelle specification

of the protocol in Appendix B. The system initializer and scheduler of the semi-automatic

implementation is listed in Appendix C and those of the manual one in Appendix D.

5.1 Overview of The ISO Class 2 Transport Protocol

The ISO Transport Protocol !CCITT85,1SO82b] is a connection-oriented, end-to-end pro­

tocol, providing a reliable and efficient mechanism for the exchange of data between processes

26

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 27

in different computer systems. The class 2 protocol assumes a highly reliable network service,

such as X.25, and has the ability to multiplex multiple Transport connections onto a single

network connection. It also uses a credit allocation scheme to provide an explicit flow control

because a single network connection flow control is insufficient to handle individual flow control

of multiplexed Transport connections.

Since Transport layer provides end-to-end data transfer independent of the nature of the

underlying network, the Transport service is the same for all classes. The ten Transport service

primitives have been listed in Figure 2.1 and Figure 5.1 displays the sequence in which these

primitives are used. In order to communicate over a Transport connection, nine types of

Transport protocol data units (TPDUs) are used. These TPDUs, shown in Figure 5.2, carry

parameters which play an important role in the protocol mechanism.

Each TPDU conveys a destination reference which uniquely identifies the Transport con­

nection within the receiving Transport entity. Thus, multiplexing is allowed. After a Transport

connection is established by exchanging CR/CC TPDUs, each data TPDU (DT/ED TPDU)

is sequentially numbered. This sequence number is used for the flow control. A Transport

connection is released whenever the Transport entity has sent or received a DR TPDU. The

entity will then ignore any incoming TPDUs except DC/DR TPDUs. This explicit termina­

tion mechanism allows that a Transport connection is released independently of the underlying

network connection.

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 28

T_CONN T_CONN
request

T_CONN
request

........ T CONN
indication

T_CONN .. At'_01sc ,,
confi~

,,, ,,
,,'

request

Successful Rejection
Establishment by TS user

T_DATA T EXPD
request

'-A

Normal

T_DATA
indication

Data Transfer

T_DISC
request

T_DISC
request

request

T EXPO
indication

Expedited
Data Transfer

~%:0

T_CONN T_CONN

Release by
both users

request indication

Release
by provider

T_CONN
request

T_DISC

/

Rejection
by TS provider

T DISC

reques~', ,, I

l!"'o,sc

T_DISC
request

I /n-~ication

Release
by TS user

T _DISC
indication

Release by
user & provider

Figure 5.1: Transport Service - Primitive Sequence

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 29

LI I CR I CDTI Source Reference jc1siop1I

LI CC CDT Destination Reference Source Reference Cls Opt

LI DR - Destination Reference Source Reference Reason

LI DC - Destination Reference Source Reference

LI OT - Destination Reference

LI ED - Destination Reference

LI AK CDT Destination Reference YR-TU-NR

LI EA I - joestination Reference I YR-~~TU -1

LI ERR' - joestination Reference j Cause

Figure 5.2: Transport Protocol Data Unit Fixed Header Formats

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 30

5.2 Design of the Implementation

5.2.1 Structure

The overall structure of an Estelle specified Transport entity ha.s already given in Figure 2.3.

There are four different module types : TS_user, ATP, System and RS. Module instances of

these four module types are incorporated with each other to represent a Transport entity.

A TS_user module is a sub-layer which converts a Transport service user request into a

well-defined Transport service primitive or changes the module state according to the request.

A user task in the working environment can bind with one or more than one TS_user modules,

and hence one or more than one Transport connections. An ATP module is an abstract Trans­

port entity that establishes Transport connections, transfers data, and releases connections. A

System module simulates a system timer for an incoming network connection or the flow control

of a Transport connection. Finally, a RS module converts the network service primitives into

system calls. It also sets flag and stores data whenever an incoming network event occurs.

5.2.2 Implementation Issues

Since there are many unspecified properties in the protocol specification, these proper­

ties have to be determined for each particular implementation such that the resulting imple­

mentation best fits the working environment. Unspecified properties can be classified into

implementation-defined and implementation-dependent.

Implementation-defined properties are left unspecified and their definitions can vary from

one implementation to another. For instance, in the TS_primitives channel definition, data

type ADDR_TYPE is implementation-defined. Type ADDR_TYPE represents Transport ad­

dress which may be implemented differently by different implementors. Similarly, the buffer

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 31

management and data exchanged by TS_users and a TS_provider are all implementation-defined.

Their definitions and implementations are left untouched to the implementor.

On the other hand, some properties are defined in the specification but their implementation

is left unspecified. Examples of such properties are functions constructing Transport protocol

data units. The format of a Transport protocol data unit is specified but how to construct such

a TPDU is unspecified.

5.2.3 Scheduler Design

A simple round-robin scheduler is employed to select the next available input interaction.

This scheduler scans queues associated with each interaction point of module instances for the

existence of any input interactions. The first available interaction is chosen and passed together

with the information of the associated interaction point to the module instance which executes

a transition.

As mentioned in Section 3.3, for a given input interaction and a given module state, a

number of transitions may be possible. Which possible transition is chosen to execute depends

on the priority and the order it is defined in the specification. Generally, the chosen transition

is the one has the highest priority and the first one which enabling condition is satisfied.

At a regular time interval, a module instance which has spontaneous transitions is attempted

to execute one of its spontaneous transitions. The first possible spontaneous transition which

enabling condition is satisfied will be performed. This simple scheme works fine provided

that the enabling conditions of the spontaneous transitions are all distinct, and spontaneous

transitions are defined in a well-defined order.

The above consideration of spontaneous transitions does not work satisfactorily for those

initiated by the working environment. A module instance require to execute such a transition

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 32

immediately whenever the working environment notifies the module an external event occurred.

The global scheduler is fully aware of the external events, and invokes the module instance to

perform an action immediately whenever such event comes up.

5.3 Semi-Automatic Implementation

The protocol was first specified in Estelle from the description in the ISO document

[CCITT85,IS082b] and by adapting many other specification attempts [IS084,NBS83]. The

Estelle specification was then compiled by the C-Estelle compiler to generate parts of the

protocol implementation. After this automatic process, the generated code was incorporated

with the pre-written generic routines and the system-dependent functions into a C program to

implement the protocol in question.

5.3.1 The Generated Code

The generated code can be classified into three types. The first type is the deftype and

structure declarations which represent module instance, interaction, type and variable defini­

tions. These definitions are required by the run-time executives to store the state information

of the protocol machines. The second type is a set of functions which creates, initializes and

constructs data structures in the specified fashion. The last type is another set of functions

which implements the transition processes of the protocol machines.

Most data structures are self-explanatory and the special data structures have been discussed

in Chapter 3. They are the wheels of the protocol machines which are initialized and constructed

by the generated functions to implement the specified protocol.

Initialization functions can be further subdivided into two types, depending on their corre­

sponding Estelle specifications. A function which corresponds to an Estelle Process definition

,.

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 33

creates and initializes a process_block data structure. This process_block represents one of

the protocol machine instances in the specified system. Other type function corresponds to

an Estelle Refinement definition. It creates the sub-module instances and links the instances

according to the Estelle CONNECT and REPLACE definitions. Both type functions use a set

of pre-written generic function to perform the creation, initialization, and integration of the

specified system components.

Transition functions are simply a series of conditional expressions and statement blocks.

Expressions evaluate the enabling conditions of a possible transition type and block performs

the associated action. Unless priority is set, input transition types are always generated ahead

of spontaneous transition types. Only the first transition type, which enabling condition is

satisfied, will be performed at a given time.

Each transition type is generated in the same pattern. For an input transition, the operation

is preceded by tests on the identity (signaLid) of the received interaction and those (cjd and

index..num) of the interaction point at which it came. Additional tests, which correspond to

PROVIDED clause and/or TO clause, may also preceded the operation. At the end of each

transition type, a goto dispose statement passes control to the signal data structure dispose

code. For a spontaneous transition, the pattern is the same except that no tests on the identities

of the input interaction and the interaction point. For an ANY clause, which requires to make

a non-deterministic choice, a sub-block is created. The specified variable(s) is declared within

the sub-block and its value is randomly selected from its defined domain by the pre-written

function random..select.

Creation and destruction of signal structures which represent interactions between module

instances are implemented completely within the generated transition functions .. The output

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 34

statement OUT is implemented as follows. First, a signal structure is created and initialized

with the given parameters. The signal structure is then passed to a generic function out together

with the information of the interaction point at which the module instance interacts with the

peer. If the interaction is a queued type, the signal structure is placed in the reception queue

of the peer module instance. Control returns to the initiating module instance immediately. If

the interaction is a rendezvous type, the transition function corresponding to the peer module

is invoked directly at this point. The destruction of the signal structure is handled by the

recipient module instance.

5.3.2 Integration Process

For convenience, deftype and structure definitions of the generated code were first extracted

into a well-known header file defs.h. Two run-time supporting functions, system..init and

schedule, was then modified to suite the specified system. Finally, the generated code was

incorporated with the system-dependent primitives and the run-time supporting functions into

a C program to implement the protocol in question.

Besides defs.h, there is another global header file listdefs.h included in all files. File

listdefs.h contains macro definitions and specification-independent cbanneLblock structure

declaration. This structure is used to represent an interaction point of a module. Another

important header file fdtglobal.h, which is required to be modified for every different specifi­

cation, contains the declaration of all global variables and external functions. This fdtglobal.h

file is included only in the main routine file. There a.re two key global variables : p_block and

signaLpending. During execution, pointer p_block is an entry to the current machine in­

stance, and signaLpending is a counter of interactions which have been initiated and are

waiting for execution.

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 35

To execute, function system..init first builds and interconnects the specified machine in­

stances. The working environment is also set up so that the upcoming scheduler can be fully

aware of any interested external events. Function schedule is then invoked to repeatedly scan

all interaction queues associated with channels and to activate the module instances. Module

instances which contain spontaneous transitions are tried at a regular time interval. Further­

more, whenever an external event occurs, the scheduler will activate a proper module instance

to perform a special-designed spontaneous transition.

5.4 Manual Implementation

Based on the same specification and the semi-automatic implementation, the protocol was

re-implemented manually in an ad hoc manner. Most principles discussed in Chapter 3 and

previous Section 5.2 were followed. The overall structure is similar to that of the semi-automatic

implementation. The Transport entity is implemented as a single task in the operating system.

It communicates with user tasks and the network service provider through operating system

primitives (i.e. system calls). The major difference to the semi-automatic approach is the

implementation of scheduling interactions which are initiated either by a module instance or

the working environment.

Instead of using a single data structure process_block, three different data structures,

TS.MACHINE, TP .MACHINE and NP .MACHINE, are designed to store the state information

of a Transport service user, a Transport connection and a network service provider respectively.

Three global variables, tslist, tplist and nplist, are declared as head pointers of the three

different control queues.

The interactions between the Transport entity task and the working environment, user tasks

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 36

and the network service provider, are based on the inter-process communication primitives

provided by the operating system, i.e. UNIX 4.2bsd socket primitives. Spontaneous transitions

initiated by the working environment were handled in an ad hoc manner similar to that in the

semi-automatic implementation. Whenever an external event occurs, the corresponding module

instance is activated to perform a proper transition. A series of input transitions, initiated after

this spontaneous transition, is then performed until all module instances are in a steady state.

As a result of this transformation, the global scheduler is simply a loop which performs the

processing for the incoming external events one after the other.

5.5 Results

The size of different parts of the resulting implementations are shown in Table 5.1. Both

implementations used the same INET primitives to interact with the network service provider.

This network service provider is usually a daemon process in the operating system. INET

primitives provide an uniform access scheme which can be easily modified to suite different

network service access schemes in different systems. Similarly, TSP primitives were used for

the interactions between Transport service user tasks and the Transport entity task.

Both implementations spent a large amount of code in TPDU encoding/decoding and buffer

management. However, they were not very difficult to implement because of the powerfulness

of the C language. The encoding/decoding of TPDUs were implemented almost the same in

both implementations. Both implementations shared the same header file pdu.h and differed

only in the passing parameters when decoding a TPDU. Since the buffer management was

implemented intermixed with other code in the manual implementation, no separate entry for

its code is in the table.

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 37

PART OF
Number of Number of Program size

PROGRAM
Functions and Source Lines (in bytes)
Macros
(A) (B) (A) (B) (A) (8)

INET
PRIMITIVES 9 509 10969

TSP
PRIMITIVES

I 2 7 4 I 17073

ESTELLE
SPECIFICATION - 20 - 19 10 - 46351

GENERATED
CODE

20 1447 9 I 4 2 I

RUN-TIME
SUPPORTING

76 I 6 3420 770 78821 2 IO 5 4

ROUTINES

PRIMITIVE
ROUTINES

82 3049 71340

(A) --- Manual Implementation

(B) --- Semi-Auotmatic Implementation

Table 5.1: Sizes of Different Parts of Implementations

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 38

Forty two additional functions were used in the semi-automatic implementation. Sixteen of

them were pre-written run-time supporting functions and the rest were specially designed for

the global scheduler to activate the specific modules.

During the semi-automatic implementation, the most difficult task was integrating the gen­

erated code with the working environment. Both the implementation scheme using by the

C-Estelle compiler and the behaviour of the working environment must be thoroughly under­

stood in order to design the specific spontaneous transitions and to modify the two special

run-time supporting functions : systemJnit and schedule.

The weakness of Estelle forced the static allocation of data structure process_block which

represents a module instance. The number of Transport service users and network connections

must be pre-defined in the specification. The pre-definition was then used by the C-Estelle

compiler to generate code that the corresponding process_block structures must be allocated

in the global initialization phase. To execute, a pre-defined number of Transport service user

tasks must be executed so that the implemented system went through the global initialization

stage.

The advantages of the semi-automatic approach came from the well-constructed generated

code. Since the code was generated directly from a formal specification, the conformation was

almost guaranteed. The well-constructed code also localized hazards and system dependent

properties in a. few routines, and hence, maintenance was much easier.

On the other hand, the most difficult task of the manual implementation was to design

the interfaces with the operating system for interactions with the user tasks and the network

service provider. Interactions initiated by the working environment intermixed with other input

interactions. The layer structure was less clear in the resulting code. A longer debugging period

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 39

was spent and more exceptional cases were required to be handled.

Although the manual implementation was based on the same specification, no restriction

on static allocation was imposed in the global initialization phase. Any number of Transport

service user tasks can interact with the Transport entity. The Transport entity required no

static connections to go through its initialization phase. Furthermore, any number of network

connections can be established during the execution.

The manual implementation is tied closer with the working environment. An interaction

was implemented as simply a function call. It was always faster than the semi-automatic imple­

mentation because of the reduction of a large amount of generated code which had additional

swapping overhead for module interactions.

It took approximately one year to study and implement the ISO class 2 Transport Protocol

manually in an ad hoc manner without an Estelle specification. The protocol was subsequently

specified in Estelle, and re-implemented semi-automatically in about two months. After this

~

exercise, we gained a profound experience on protocol implementation and a good insight

to the ISO class 2 Transport Protocol. Therefore, in our last attempt, it took us only one

month to re-implement the protocol manually. From our experience, we think it saves protocol

development times and it is good practice to start with the semi-automatic approach to protocol

implementation, assuming one is familiar with the FDT compiler. The code produced this way

is well structured and easy to maintain. Even if the code is not efficient enough, we can always

attempt a manual implementation subsequently. Protocol implementations generally require a

lot of time on the development of the interfaces with the working environment. The manual

approach required additional time to implement module interactions. It also required more

debugging time than the semi-automatic approach.

Chapter 6

Conclusions

6.1 Thesis Summary

This thesis has discussed a semi-automatic approach to implement a protocol. The protocol

is first specified in the Estelle FDT, and translated into C code by using an automatic tool,

C-Estelle compiler. The generated code is then incorporated with system-dependent primitives

and run-time supporting functions into a C program which implements the protocol in question.

Despite the fact that the semi-automatic implementation tends to be slow and an initial

effort is required to learn the Estelle FDT and the automatic tool C-Estelle compiler, the new

approach has the following benefits :

1. Easy maintenance because the generated code was constructed in a simple and easy-to­
read pattern.

2. Good conformance because the specification was directly (automatically) translated into
C code.

3. High portability because large amount of code was generated in standard C language and
system-dependent properties were easily located and modified.

4. Less development time because large amount of code was translated directly from the
specification.

Experience on implementing the ISO class 2 Transport Protocol has verified the usefulness

40

CHAPTER 6. CONCLUSIONS 41

of the C-Estelle compiler and the semi-automatic approach to protocol implementation. From

our experience, it is a good practice to approach a protocol implementation in the following

sequence:

1. Implement the protocol semi-automatically using the C-Estelle compiler.

2. Optimize the semi-automatic implementation, especially the generated code.

3. Re-implement the protocol manually (if high performance is required.)

6.2 Future Work

Further study on the semi-automatic implementation would be useful, in that a protocol

can be implemented by two completely independent teams, one using the traditional ad hoc

approach and the other, the new semi-automatic approach. This way, more concrete and

objective comparisons can be made on the performance and usefulness of the new approach.

Further testing of the C-Estelle compiler on complex protocols such as ISO class 4 Transport

Protocol is a natural extension of our thesis. Such experiment would further demonstrate the

usefulness of the compiler . Several enhancements to this technique and the compiler are under

consideration.

In order to enhance the C-Estelle compiler, some of the high-level code for interactions

of the specified system with its working environment should be generated by the compiler.

Dynamic structure, such as Process allocation should be supported by the Estelle, and hence

the compiler. Since global variables, WITH statements and SET operations are very useful

features, the compiler is also required to support them.

To be realistic, the compiler should be modified to support a general multi-process struc­

ture instead of the procedure-oriented structure. Since UNIX 4.2bsd is a procedure-oriented

CHAPTER 6. CONCLUSIONS 42

operating system, a better working environment, such as V-system and Team Shoshin which

are process-oriented , may be chosen.

To overcome the Pascal-to-C problem, a C-oriented FDT would be desirable for protocol

implementors who are working in C/UNIX oriented environment. However, the apparently

irreversible decision by the ISO standard committee (ISO TC 97 /SC 16/WG 1 - FDT Subgroup

B) has been made to keep Estelle Pascal-oriented. Whenever the final Estelle standard becomes

available, the compiler will have to be adapted to that (our implementation of the C-Estelle

compiler is based on [ISO84], not the latest [Estelle85J).

AP, the last comment, the compiler can be well used as a simulation tool, and could be

incorporated with some validation, testing and performance evaluation facilities so that we

can have a complete automatic system for the design, validation, implementation, testing and

performance evaluation of the communication system.

Bibliography

[Aho78] Aho, A. and Ullman, J., "Principles of Compiler Design," Addison-Wesley, 1978.

[Ansart83] Ansart, J.P., Chari, V. and Simon, D., "From formal description to automated
implementation using PDIL," Protocol Specification, Testing and Verification,
(IFIP /WG 6.1), H. Rudin and C. H. West, eds, North Holland (1983).

[Blum82] Blumer, T.P. and Tenny, R., "A formal specification technique and implementation
method for protocols," Computer Networks, 6 (3), June 1982, pp. 201-217.

[Boch80] Bachmann, G.v. and Sunshine, C., "Formal Methods in communication Protocol
Design," IEEE Trans. on communications, COM-28 (2), April 1980, pp. 624-631.

[Boch84] Bachmann, G.v., Gerber, G. and Serre, J.M., "Semi-automatic Implementation
of Communication Protocols," TR 518, d'IRO,Universite de Montreal, Decem­
ber 1984.

[Bria86] Briand, J.P., Fehri, M.C., Logrippo, L. and Obaid, A., "Structure and Use of a
LOTUS Interpreter," SIGCOMM '86, Symposium, Vermont, 1986.

[Brin85] Brinksma, E., "A Tutotial on LOTUS," Protocol Specification, Testing and Veri­
fication V, (IFIP /WG 6.1), M. Diaz, eds, North Holland (1985).

[CCITT85] CCITT, Recommendations X.200 to X.250, Red Book, Geneva, 1985.

[Estelle85] ISO TC 7 /SC 21/WG 1 - FDT, Subgroup B, "Estelle - a formal description
technique based on an extended state transition model," Feb. 1985.

[Ford85] Ford, D.A., "Semi-Automatic Implementation of Network Protocols," Master
Thesis, University of British Columbia, March 1985.

[Gerber83] Gerber, G.W., "Une Methode D'Implantation Automatisq de Systemes Specifies
Formellement," Master Thesis, University of Montreal, 1983.

[Grog80] Grogono, P., "Programming in Pascal," Rev. ed., Addison-Wesley, 1980.

43

[Hans84]

[ISO82a]

[ISO82b]

[ISO84]

[John75]

[Kern78]

[Lesk75]

[Lotos84]

[NBS83]

[Rit78]

[Tanen81]

[Vuong86]

Hansson, H., "Aspie, A system for Automatic Implementation of Communication
Protocols," Uptec 8486R, Uppsala Institute of Technology, Uppsala, 1984.

ISO TC 97 /SC 16, DP 8073, "Transport Protocol specification," June 1982.

ISO TC 97 /SC 16, DP 8072, "Transport Service Definition," June 1982.

ISO TC 97 /SC 16/WG 1 - FDT, Subgroup B, "A Formal Description Technique
based on an extended state transition model," Working Document, March 1984.

John, S.C., "YACC : Yet Another Compiler-Compiler," CS TR 32, Bell Labora­
tories, NJ, 1975.

Kernighan, B.W. and Ritchie, D.M., "The C Programming Language," Prentice­
Hall, 1978.

Lesk, M.K., "Lex-A Lexical Analysis Genera.tor," CS TR 39, Bell Laboratories,
NJ, 1975.

ISO TC 7 /SC 16/WG 1 - FDT, Subgroup C, N 299, "Definition of the Temporal
Ordering Specification Language," May 1984.

National Bureau of Standards, "Specification of a Transport Protocol for Com­
puter Communication," ICST/HLNP 83-2, Feb. 1983.

Ritchie, D.M, and Thompson, K., "The UNIX time-sharing system," Bell Sys.
Tech., 57(6), July 1978, pp. 1905-1929.

Tanenbaum, A.S., "Computer Networks," Prentice-Hall, 1981.

Vuong, S.T., and Ford, D.A., "An Automatic Approach to Protocol Implementa­
tion," TR draft, Dept. of Comp. Sci., University of British Columbia, 1986.

44

Appendix A

The ISO Class 2 Transport
Protocol - State Diagram

45

APPENDIX A. THE ISO CLASS 2 TRANSPORT PROTOCOL - STATE DIAGRAM 46

T_CONN_REQ
I N_CONN_REQ

N_
.IN

CALLING

SCON _I.\D

CALLED

(UR) --- L Enabling Condition
R Output Interaction

N_CONN_CONF I CR

CR-SENT

T _DISCON_REQ
/ DR

cc
IT CONN CONF

CLOSING ESTABLISHED

:'i_l)ISCON_IND(f _DISCON_IND

DR/DC

CR-RCVD
rnrr _CONN_IND

DISCON-WAIT
N_DISCON_IND/ ---

Figure A.1: Transport Protocol State Diagram

Appendix B

The ISO Class 2 Transport
Protocol - Estelle Specification

47

MOOUL£ Transport system;
END Transport_system;

il.£,IN£M£NT Transport ref fOR Transport_system :

(...............
Tran3port Protocol machine Module

(• Constant and Type Definitions 'l

(• Channel Definitions•)

CHANNEL TS_primitives TS user, TS_provider)

BY T.S user :

T_ CONNECT_ request

T_ CONNECT_ response

T_ DATA request

T XPD_ rcc-.;.:,st

3Y TS_provide·:

T CONNSC7 1nd1cacion

T CONNECT confirm

T DATA indication

T XPD_ indication

T DISCONNECT indication

END TS primitives:

from transp<>rt adr1:
To transport addr
Qual of serv1ce
TS us er- ddta

Qual of s~r•Jice
TS user=data

TS user c ~~ t:.J

~=om t=anspo=: ace=
To transoort acer
Qual of ~er·✓Ice
TS user- data

Qual of service
TS user- data

TS user data

TS_ user_ data

;>.ea son
TS user data

CHANNEL NS_primitives

BY NS user :

tlS user, NS_prov1dec) ;

N_CONN£CT_request

N _ CONNECT respons•~;

N_DIITA_request

N DlSCONNECT request.

DY N!:i_pcovidcc :

N CONNECT indication

From network addr
To network. addr
QOS -

NS user dat;i

from network addr
To network addr
oos -

/',OOH TY~"> S ,
,\DD:\ - TY?E ,
QOS T'fPS ;
Dl,·:- A i·:-~)::

QOS '!"Y?~: :
DAT". ·:·,;,,:) ;

.:._r::i)il. TYP S ;
QOS TYPE;
DATA TYPE) ;

QOS TYPE;
DATA TYPE I;

DATA TYPE) ;

DAT.-\ TYPE J ;

RE.>.SOt-1 TY ? C::
D;..•~-~- _T°7?E

NADDR TYPC: ;
NADDR- TY?C:;
NQOS TYPS J ,

NDATJ\ TYr-S) .

NADDR TY?E;
NADDR- 'fYPS;
NOOS_TYPE l;

N CONNF.CT __ confinn;

N DATA indication

N DISCONNECT inrlicdtion

NS user da t.,

Redson

NDATJ_ TYPE);

RF.ASON_TYPE);

S user, S_provider

Timer _ reque:.;t N,1me TIMl::H - TY!'E;
Time integer ;
Seqno SEQUf.NCf. TYPE) :

Timer cancel Name TIMEH TYPE.-
Seqno SEQUENCE TYPE ;
Allseq: boolCdll

OY S_ pcovider

Timer_ response Name TIMER TYPE;
Seqno SEQUENCE TYPE) ;

END System_pr1m1tives;

MODI/Li: TS u,;c: _::iodule;

inte<;er :c?, TS -..;s~: _ rnodul~ ;

END TS_use~_p~ocess;

MODULE System_module;

SEP System_primitives S_provider);

END System_modu l e;

PROCESS System_process

SND Systern process.

Sys_index integer) :OR System_module :

(...)
MODULE ATP_module;

TCEP
NSAP
SAPT
SAPN

1::ND ATP_module;

ARR.AY(TSAP TYPE) Oc TS primitives (TS_provider) ;
ARRAY{NCEP-TYPEJ Oc NSyrimi tives (NS user);
ARRAY(TSAP-TYPE) OF System__primitives (S user);
ARRJ\Y{NCEP=TYPE) Oc System_primitives I S=user I;

PROCESS ATP_proces:; cOR ATP_module;

QUEUED TCF.P, NSAP;

(* Variable declarations•)

VAR
tc
nc

TP TABLE;
NS=TABLE;

,.idta, temp
ndat.a
pdu
: id
"id
·ik ind

" reason
nsdu len

D/\T.'I TYPE:
NDATA TYPE:

1 TPDU _TYPE;
TS,\P fO TYPF:;
tJCf..i" - 1D- TYPS;
CJ ML)..::: :'. [~JD;

SE:QUENCE TYPE :
REASON_ TYPE;
1nt~'Jer:

(• Primitive functions and procedures•)

PROCEDURE Add_request(V/\H tc
data

TP MACHINE;
DATA TYPE) ;

FUNCTION Alloc ref : RE:FERENCE: TYPE;

PROCEDURE Concatenate 2 N~DU (VAR nc
data

PROCEDURE Const:ruct AK(VAR packet
cclt
da,f
seqno
e:,tenced

PROCEDURE Cnnstrucl CC! VAP ~a~kc~

?ROCEDURE Constr~c: CR(~~~ ~ac~~:
::,uf :il

s ref
lsuf
fsuf
maxsz
qos
data

PROCEDURE Construct:_ DC(VAR packet
dref
s ref

PROCEDURE Const r11ct Di, ('lt\P. ::i.ackc:
:.:=~i
s re t
:,eJ$0Jl

d.ata

PROCEDURE Construct OT(VAR packet
dref
eflag
seqno
extended
data

PROCEDURE Construct ERR(VAR packet:
dref
reason
data

PROCEDURE Construct XAK(V/\R p<lCkt?t.
dref
xseqno
extended

PROCEDURE Construct - XPD(VAR packet

NS MAC:-l!N,: ;
DAT/\ T':'l'E I ;

D/\T/1 TYPE;
Sf:QUENCE: TYP
REfER!::NCS T':' c-.

SE:QUE:NCE TYP
boolean -) ,

D,\'!'A T':'PS;
SEOU~t-:CS ,·:?C:;
P.E: :.,-,c.,JC~ .. : =:.. ;

R£r~:=.~NC":: :-·:·:~~: .
SUF?" ::,: T':' f :.;
s:i::~:•: '!':'?:::

(}US 7·~·?:::
or.~ :-: -:-·:?~

D:\T.; :'":'?~;
SEQU:::NCE ,·:?:::.­
R£r"£?£NC~ 7':?S:
SUFFIX TY?E:
SUFFIX- TYPi::;
integer;
QOS TYPE;
DATA TYPE:

DATA TYPE;
REFERENCE TYPE;
REFERENCE-T~PE 1

DAT,~. TYPE;
REFE.:~:.NCC: "!'~·p;-::
REFE?.SNC:: TY!.':':.
REASON T~?S.
0/\TA TYPE

DATA TYPE;
REFERENCE TYP!::;
boolean; -
SEQUENCE TYPE;
boolean; -
DATA TYPE

DATA TYPE:
REFERENCE TYPE:
REASOIJ TYPE;
DATA TYPE

D/\T/1 TYPE;
r!EFERENCE TYPE :
SEQUENCE TYPE;
boolean - l ,

D/\TA TYPE :

PRIMITIVE;

PRIMITIVE:;

l'HIM!TIVE ;

l'IUMITIVE ,

PRIMITIVE;

PRIMITIVE;

PHIMITTVE ;

PRIMITIVE;

PRIMIT!VE :

PRIMITIVE;

so

PROCEU\JIH'. £x.L 1 '1l:t NSO\J (-

dr~f
xseqno
extended
data

REFl::RENCE TYPI::;
SEQUENCE TYPE ;
boolean;
DATA TYPE. I ;

dat.,
VAR pdu

TP TAB1,;; ;
DATA TYPE;
TPDU =TYPE I : TSJ\P ID TYPE;

V/\H nbu I' fe r NUUFFER PTR :

PRIMITIVE:

PRIMITIVE :

V/\11 nd <-1ta NDATA TYPf.) ; PRIMITIVE ; -
PROCED\JHE Ext f<lCt TPDU (nsd.Jta NDJ\TA TYPE ;

V/\H tpdata DAT/\ T YPE:
V/\R nslen integer I :

PROCEDURE Extract TSOU(buff c r BUftl::R TYPE ; - VAR tsdu
v11n count.

PROCEDURE Get net _ addr(VIIR naddr
taddr

PROCEDUR E Merqc(VAR buffer
pdu

PROCEDURE Release(VAR bu[~cr
scqno
kin-:.:
u11s•:!q

PROCSDU~2 ~eSL!~l~ ~J~<l(VAR ~c
v;;?{ nc

PROCEDURE Retrieve(buffer
seqno
kind
VAA data

DAT/\ TYPE;
SEQUENCE TYPE

11,\DDR TYPE;
ADDH _T YPE I

BU?FER PTR :
TPDU TYPE) :

6UrfEI(PT i;;
SE:QUENCE TYPF: ;
?CIJ KlfJD7
:::>ooie: ,Jn

':"? >~AC i~ r.,•~~ ,
::::; =:-,;,c := r,1 ,, , :

7? :-· . ..-\C:~i~~:-:,
~;s-:-1--,cr. INS) ~

:-? ~: . .-,c:: .::;;2.
~5=!·!..-\CHIN~ >,

BUFFER PTR;
SEQUENCE TYPE :
POU KIND;
DATA TYPE) ;

FUNCTION Same_naddr(naddrl, naddr2 : NADDR TYPE

PROCEDURE Store(VAR buffer
data
seqno
kind

FUNCTION SEQ ADD

BUFFER PTR;
DATA TYPE. ;
SEQUENCE TYPE ;
POU KIND) ;

S£QUENCE: T'iP!::;

PRIMITIVE;

) ; PRIMITIVE ;

PRIMITIVE:

PRIMITIVE;

PRIMITIVE: ;

PRIMITIVE;

PRIMITIVE;

PRIMITIVE :

PRIMITIVE;

boolean ; PRIMITIVE;

PRIMITIVE;

scql, seq2
e :-:~\~nded t>oolec1n) SE()U:2NCS TY~£; PRIMITIVE :

FUNCTION SEQ_MINUS scql, seq2
extended

PROCEDURE Uncode (VAR pdu
ndata
extended

SEQUENCE T':'PE;
boo l ean) SEQUENCE TYPE. ; PRIMITIVE ;

TPOU TYPE;
NOATA TYPE;
boolean l ; PRIMITIVE;

(••········ .. ··········--·· ~ ... ,, ""
FUNCTION Acceptable_CC(qos

srer
pdu

OEGIN

Accept~bl c cc := TRUE;

QOS TYPE;
Rf.f"t:RENCE T'/P~; ,
TPDU_ TYPE

if pdu.vcc:lion
pdu . dat.a.dlen
pdu.maxsz

thCll

< > VERSION) or
oc > MAX CRCC SZ

0 -)

boo l •:?dn:

51

: = FALSE:.

!:· pdu.qoJ class<> qos.class) and l µdl:.0..:l.~ <:-- qos.1..":l,1:;;:,

then
.-\CC(!pl ,lbl('! _cc :-= FALSE;

NOT qo:,,mi:,c(Q NO :::<PE!)!Tf:l' :J,\T.~ '
pdu , qo:, . misc (Q--NO-E:,PED 1 TED -c>A'f A
NOT <j05.mi:,,:(Q-,::li':CK:;UM IN :J;ir.J
pt.Ju qos misc i:}-CH~.:C:'\SU:-1-IN·-~:.;::}
NOT qos .misc [t) -~JO ;·1.ow CON'fHOLJ
r>du . qos .misc (Q - NO- f"LOW- CONTROL I
NOT qos .misc (Q- EXTEND£0 FOR/-A_a.TJ
pdtt . <10s. misc (Q ~ £XTEND~:D= FORMAT I

Acccptable_CC := FALSE :

dlld

,lll<i

)

,1nd
)

•)I

Ol'

if pdu drcf <> sref then Acccptable_CC ·~ f"ALSE

r:tJll;

(• "' " •• ••••• • ••• ♦ t

~-lli~CT fC',U :\ccepL,1bl-~ CR (qos
pd u

Q MISC KIND ;

',. .. •:• .. ::· ·'·

0

QOS _TYPE ,
T?DU TYPF:

if I pdu.qos.class <> qos.class) and I pdu.~cls <> qos.class)
then

::rm;

Acceptable_CR := FALSE;

if NOT qos. misc(Q NO EXPEDITED DATA]
pdu , qos. misc[Q- NO- EXPEDITED- DATA]
NOT qos .misc[Q-CHECKSUM IN USE]
pdu.qos . misc(Q-CHECKSUM-IN-USE]
NOT qos -misc[Q- NO FLOW CONTROL]
pdu.qos . misc(Q- NO- FLOW- CONTROL]
NOT qos . misc[Q- £XTENDED FORMAT]
~du . qos . misc[Q- £XTENDED- FORMAT]

th,:,~ - -

Acr.cptable_CR cALSE

and
)

and
)

and
)

and
)

or

or

or

(.........................)
FUNCTION Choose CldSS(qos . oos TYPE
OEGIN - -

Choose_ class qos . class
END;

(••···*·• 1

PROCEDURE Construct addc(VAR transport addc
suffix -

!::ND .

t c ..in:; p<>r t ddd 1 • :, u ff ix
transport : addc.prefix

nt.?t adl.i r

suffix;
net_ add r

ADDR TY?E;
'.;Uf"FIX TYPE;
N.I\DDR _ ';' ypf;) ;

, ..)

FUNCTION Get _ ncep(nc NS TABLE;

51

VAR

EN!J;

nid
notdone

notdone
nid

I nil<.lrlr, f naddr

NCEP ID TYPE;
bo'">le"cn"'?

· = T!{UE ;
I;

N,\l>OK TYl'i:. 1

whi l1.."? notdv1,, .- .1nd (n .i..d ..: -= ~-!.-\'.•: NC:•:P !O) do
bt~q i :1

if Same naddr (f _ na<.ldr, nc: fnidl . f _ net_ add1·
then bcgtn

notdone f~LSE :
Get ncep - ~ nid

end -
else

nid
end:

n id : = l;

nid •

(•A new network connect1or1 is required •1

while notdone and (nic ~- ~AX NCEP 10 do
begin

1f nc (nid). stat~ = NID!...2
then beq:n

not done =ALSS;
G~?t ncep n iC

<2nd
-~ l SC

;i ic :-: .:.n -

FUNCTION Get_suffix(transport_addr : ADDR_TYPE
BEGIN

SUcFIX_TYPE;

Get_ suffix transport_addr.suffix
END;

FUNCTION Min(m, n
BEGIN

integer)

END;

if rn :-. n
then Min = n
else Min m

FUNCTION Ne multiplexed(np
BEGIN -

ENO;

if np. linlt > l
then Ne multiplexed
else Ne=multiplexed

integer;

NS_MACHINE

TRUE
f"ALSE

: boolean :

(................ " ,,)
FUNCTION New_nc_required(nc

laddr, faddr
VAR

BEGIN

nid
notdone

notdone

NCEP ID TYPE ;
boolean;

TRUE;

NS TABLE;
ADDR_ TYPF. boolean;

53

END;

n :d • l;

while not.done and (n1d -:~ ~-~:,_NCEP_ID) dn
begin

if (nc(nid) .:ILH, <> 11,DLE) <lllC

end;

SrJme nc1ddrl nl.: . ~l1dl f ~~r cHldr, f,lddr pt••IL
then beqin

not.done
New nc required

end - -
el,;e

nid nid • I

= F:\l.SE:
FALSE

if not.done then Ncw_ nc_ r-:equire,i := TRUE

FUNCTION Size(data
BEGIN

OAT.II TYPE integer ,

Si7.e data.dlen
END;

(• Initialization •)

INITIALIZE
BEGIN

END;

begin
tc[tic!] . stat-:,
tc ftiC} nc0r., .:.~
tc [tic) , :;re· rce:
tc[tid] .dst-cet

tc(ciC] . s~d_upp~:_~~~~
tc [ti.d] , snc! sec
tc [tic!] , snd-una:
tc[tidJ . snd: nxt

tc (t id). i:cv nxt
tc[tid) .i:cv=uppec_edge

tc(tid] .x seq
tc [tidJ . x - n>ct
tc(tid] .xsnd nxt.
tc[tid] .x_una

C~OSLD; -. •J'

~NO~F:~ED Rr~~o~,·r~-
U~~E?INEl) - ~EFER~:;c~.

- C .
0 :

• 0.
= o.

: = 0;
· = DEF BUFFER M;

. ., O:
·• O;
·- 0;
• a O;

foe qkind : • Q NO EX?EOITED DATA to Q EXTENDED FORMAT do
tc(tid] . qual_Qf_se~vice.miscjqkind) :=- FALSE;

tc[t1dJ .qual of secv:ce cl~ss · • CLASS _ TWO ,

tc[tidl. reason

tc[tidl . max TPDU s1ee
tc(tid) . DT_ maxlen

tc(tidl . sbuf
tcftid l . i:buf
tc[tid l . xbuf

end;

NIL;
NIL;
NIL

· • NORf'IJ\ L;

DEF TPDU SZ;
· = 0£f=TPDU= SZ - NOR_ o·r_ H£J\OE~~- 5Z:

foe nid : = l to MAX_ tJCF.P IO do
begin

nc(nidl .state
nc[nid] . link
nc (nidl . nqos
nc(nidJ . sbuf
nc[nid) . i:buf

end

(• Initialization•)

N IDL::;
0;
CLASS TWO ;
NIL; -
flIL

(• 'f [l !l :~ if_ l ,,n :; • I

(..)

TRP.NS

TRANS

•.~IIF:N TCEP(tidJ _T CONtJECT request. (' Transition l '!
!'! \OV!DED ((~::lc.idJ . stal,_' = CLOSED .ind

(N~~.., n c: requ1.rcd(nc, F~,"":n trctn~;port ,1ddL,
- To t. rdllS;or~ dddr f) :!~~G

Choose class(Qual of ser~ice-, = CLASS TWO> 3~d
Siec(fs_user_data-1 ~- MAX_CRCC_SZ -) l

ill:G[N
Lr. (t iii). c,tatc : -· CALLING ;

tc It id) . loca 1 addr
tc(tid) . remote_addr

·= From transport addr;
To_ transport_addr;

tc(tid] .1 suffix
tc(tid] .f= suffix

Get suffix(From transport a ddr I :
Get=suffix(To_transport_add r) ;

Get net addr(tc(tid]. l net addr, From transport addr) :
Get= net :=addr(tc[tid) . f=net=addr, To transporc._adt1r l .

nid : = Get_ ncep(nc, c.c{tid).l_net addr, tc[tid] . f net a<::::: l ,

tc/tid) .ncep_id : = nid;

tc(tid) .qual_o£_service : = Qual_ of_ser•Jice;

Store (tc [tid]. s=>uf, TS user_data, 0, 0) :

· = tJ\~AITING,
= tc{tid) .l nee addr;

c.c(tidi .f-net. - ar.!dc ;
: = l; -

ncfnid) . state
nc{nid) . 1 net add•
nc[nid) f-net : ·::de
nc(nid) . link
nc[nid) . nc;os : = Q~.~1 of se:v:ce.cl2~s :

OUT NSAP{nid) . N CONNECT resucs: nc (n d) ~ 1 r: et addr,
nc(n di . f-net-adr.!r ,
nc(n d].nqos)

WHEN NSAP(nid) . N CONNECT confirm
PROVIDED nc[nid].state-a NWAITING

BE:GIN
nc{nid) . state :- NOPE:N ;

for tid : ~ 1 to MAX TSAP ID do
begin - -

if (tc(tid] . ncep id= nidl and
(tc{tid] . state = CALLING) (• Transition 2 •1

end
END;

then begin
tc(tid) .stac.e · • CR_ SE:NT;

tc(tid) . src ref Alloc ref ;
Retrieve(tc(tidl .sbuf. 0, 0, temp);
Release(tc(c.id) . sbuf, 0, 0, TRUE);

Consc.ruct _CR(dat.d, tc{tid) . rev upper edge,
tc(tid). s rc- re f, -
tc(tid) .1 s uf f ix,
tc(tid] . f - su f fix,
tc(tid} . rnax TPDU size,
tc(tidJ . qua T of service,
temp I; - -

Concatenate 2 NSDU (nc[nid), data)
end (• if-CALLING ')

t· for loop')

WHEN TCEP(tid) . T CONNE:CT request (" Transition 3 ')
PROVIOE:D ((tc(tid} .state• CLOSE:D and

(NOT New_nc_required(nc, From transport addr,
To_ transport addr I) and

55

(' ')

(' ')

Choose...:: .,:;:(:_)u.1t_,_'\! _:;•":'J!.C·_ ...) ·. Ll.:\:-i::. r'610) ~nd
Size (TS u:;r,r data) ~• ~c>.:< C?.CC SZ))

OEGiN

: ; 1'.1<.ll locc1l .:itkic
~-::It id I :-emote d(~d:

.. :>In_:.:.. lo::opl": :_.H ... L.!::;
~ , t:: H!:ipoc:. .~ ... --:ti::

! • It icl I
t.: [t. ,cl I

!,tiff i :-;
.'.;U ff l :<

i• · r :;i i f f ix (": · r om t r ,l n s po rt. (l dd r } :
,,)r. :>11 i ~ i :{ C To_ t ~-1n~,po rt _ .. !Jd L) •

G,it net. addr(tc):_; ;11
(;,it : nct: _ adctr (tc Ir. Ld I

·• • .t· ,Hidr, r·rom transport .. 1c!dr) ,
: - ''""-~-1d1.lr, To _ _L.r.lnsport_.lddr) :

nid , ~ Get_ ncep(nc, tc[:id].l _ net _ ,lddr, tc(tid).(net addr);

tc[t.id) . ncep id

nc)nitJJ link :i ,: I n id l . l ink + l ;

Lc)Lid) . src ref ! Joe ~c•f :

Construct CR(daL,, . 1~1 . rcv_uiJper_2dg~,
"-!d) , src ref.,

id) . l sUfr1x,
:-: · - idl . : -:3 uf~i:-:,
·_ - • l cJ I , ma:< T [' DU 5 i Z e,
- - - l d I , 'lu, l _ of_sec·.- ~ce,
-· . : :·'.i •:~ ;. j -~ ;: ,1) ;

wr..::N ~;s_:.._;>!:--:i<..: J .'~ ':)_: .. --: .7-._ -~:::.::~::..0n
?ROVl!)S~ nc I :1.!.d) st~:~ = :.~:?SN

BEGIN
nsdu len := 0;

while (nsdu len < NS use~_data.dlen) do
beg.i11

Extract TPDU(NS user data, data, nsdu len);
tid := Deterrnine=TC(tc, data, pdu);

if t id <> 0
then begin

Uncode(pdu,data,tc!~ici] . qual_of_service . misc(Q_EXTENDED_fORMAT]) :

if pdu.kind = C::\ (• CR TPDU ')
th n begin

f t c I t id J s: ., c. -~ = ;: LOS £D
hen b'2gin

if Accept3b~ -~ C?(
then begin

(' transition q " I
i:C It. u"! I . qua~ of S~!r-·,1 ice, pdu)

tc ltidl. s.:,1t~ ,= CR_RCVO;

OUT SAPN)n;d) .Timer_ cancel(INCOMING_ NC, 0, TRUE) ;

tc(tid) .f suffix
tc[tid) 1: suffi:,

tc[tidl . f net addr
t.c(tidl . l-net-addr
tc(tid) . n c .?p 1d

; = pdu . lsuL
pdu . fsuf;

· = nc(nid) .f net addr;
nc(nid]. l - net - addr;
nid; - -

Co nst~uc t _ .,dd r(t.C[tid) . loc al a,jdr ,
tc(tid) l su(fiK,
tc I tid I . 1: net. addr I .

Construct _ addr(tc(tid) . remote addr,
tc[tid) . f suffix,
tc(tid) , c: net_ addr);

(..)

tc (tidJ . qual of service
tc(tid) . ma x_TPDU_size

tc(tid) ,!st ref
tc (tid) snd:upper_edge

pdu.qos;
Min(pdu.maxsz,

tc(tid) . max_TPDU _sizc) .

::: pdu ~srcf :
pdu . t;dL;

OUT TCEP(tid) .T_CONNECT_indication(tc(tidl. remote Jtidr,
t.c(tidl. local _a c!dr,
pdu . qo :;,
pdu . dJt: .1

end 1• Acceptable CR ')
else begin

tc(tid) .dst ref
tc(tid) .reason

(' transition 5 ')
pdu. sref ;
NEGOTIATION_rAILED;

Empty data(temp);

Construct ORI data, tc (t id) . dst ref, 0,
tc[tidJ . rea s on, temp) .

Concatenate 2 NSOU(nc[nid], data)
end (' NOT Acceptable CR -•)

end ('CLOSED•)
end; (' CR TPDU ')

if pdu.kind = CC (• CC TPDU ")
then begin

if tc f tid) .state = CR SENT (• Transitio~ o ")
then begin -

if Acceptable CC(tc(tid) cual o(servscc ,
tc(tid) . src ref~
pdu) -

then be g ~:,
tc(tid) . state ESTABLISi-iEO ;

tc (tid) . dst ref
tc[tid) . snd- upper edge
tc[tid] . qua! of service
tc [tid] . max_ TPDU_ size

?du . s!'.er;
pdu . cct;

• s pdu . qos:
pdu . maxsz;

OUT TCEP[tid].T CONNECT confirm(
end - -

pdu . qos, pdu.data)

el se begin
tc (t i d] .state CLOSING;

· = pdu.sref~-

(* Acceptable CC *)
(* Transition 7 *>

tc [tid] .dst ref

tc{tid] . reason

Empty_dacal temp);

·• NEGOTIATION_FAILEO ;

OUT TCEP(tid) .T_DISCONNECT_indication(tc(tid) .reaJon,
temr,) ;

Construct_DR(data, tc[tid] .dst ref, tc[tidJ . src_ref,
tc[tidl .reason, temp);

Concatenate 2 NSDU(nc(nid], data J
end (" NOT Acc eptable CC "I

end I• CR SENT "l
end; (• CC- TPDU 'l

if pdu.kind • !JT (* OT TPDU *)

then begin
if tc(tid) . state• ESTABLISHED (' Transition 8 •)
then begin

i! (pdu. seqno = tc (tidJ. rcv_nxt l and
(pdu.seqno < tc(tid] . rev upper edge

then beg in - -
Merge(tc(tid).rbuf, pdu);

tc[tid).rcv_nxt :• SEQ_ADD(tc(tid).rcv_nxt, 1,
tc/tid).qual_of_service.misc(O_EXTENDED_FORHATJ);

if pdu.eflag (' a complete TSOU in the bu((er ")
then begin

Extract TSOU(tcltid).rbuf, dat.1, n);
Rel,,.,se(tc(tid) r:,uf, tc(tid) , ,cv _n ►:t, L>T, c'.l.L$,: l:

tc(tid) . rcv upper edge : = SSO ,\00(: .~(tid).rcv upp•~t· -~dg<', n,
tCrtidJ~qur1l _ _1)[_s•• t.;ic.:(.' i~1..;c((' _:-::,T!~NnEfl_~-.-s:~:M.•\T: J ;

OUT TCEP[tid).T_ DIITll_ indicdtion(dilt.i);

(' compute the current buffer space ')
n := SEQ MINUS(tc[tid].rcv upper edge, tc(tid) . rcv :nt,

tc It id) .qual_of_service .misc (O_EXTENDED_f'"ORM:<:::- J l:

Construct AK(data, n, tc(tid] .dst ref, tc[tid) .rev :-.:-:t
tc[tid) ~qual _ of _ se rvi. ce .c.1i:;c(Q_ SXTf.NDF:D :'ORM/IT! -

Concatenate_ 2_ NSDU(ncfnidl, data) ;

if n = 0 then
OUT SAPT[tid) Timer reque~t(\·i[:-JDOI-J, \·!N_ :,NC , ill

else
OUT SAPT(tid) . Timer cancel(WINDOW,

end (• pdu . erlag ·)
end (" receivable ~7 ')
else bec;1n (• Transition

r.c It ici). reason INV:'\LID T?DU;

:c: tic.;
::: It ic;

Concatenate 2 NSDU(~c[nidl,
end (" NOT ~ e~eivable ~T •1

end (• ESTABLISHSD •)
end: (' DT TPDU ')

if pdu . kind a AK
then begin

or

')

) :

if ((tc(tid) .state - ESTABLISHED
(tc(tid] .state• CLOSING)) and (• Transition 10 "l

(pdu.seqno >• tc(tidl . snd una
then begin -

tc(tid] .snd una ·• pdu . seqno;
tc(tid] .snd=upper_edge ·• SEQ_ADD(tc(tid) .snd_u?per_ed~~.

pdu.cdt, tc (tid) .qual_of_service .misc (Q_ EXTENcl:'.D_ fOR!':.0.,; 1 .

Re lease(tc(tid] . sbuf, tc(tidl . snd u~a. DT, F~ ~3 S):

Resume data(tc(tid), nc(nid] J
and 7• SSTA3LISHED and AK o , "I

end ; c· AK TPDU •)

if pdu . kind = XPD
then begin

if tc(tid] .state E ESTABLISHED
then begin

if pdu . seqno z tc(tid) . ~_ nxt
then begin

OUT TCEP(tid) .T_XPD_indication(
c• Transi~ion

pdu.data);
l l • l

Construct XAK(data, tc(tid] .dst c..:?f, tc(Lid) . :< n >< t,
tc(tidJ .qual of_serv1ce . :n1sc(Q_EXTl::NDED f•'.: !'.'1/\TJ) :

Concatenate_ 2_ NSDU(nc(nid], data I ;

tc(tid] . x nxt : • SEQ ADD(tc(tid] . x nxt, 1,

end
tc(t id) .qual_of_secvice . misc(Q_EXTENOED_fORHATI

else begin
tc(tid) . reason · • lNVALlO_ TPDU;

Construct. ::RR(d,1td, tc(tid) dst ref, tc(ti.J) . c•~J:•
pdu.data); -

Cnncatcn.ir.:? 2 '.ISOIJ(nc[nidl, data)
end

end (" ~;:'!,i)t.;"SIIE.D t1nd UK-)
end;

if pd11 . k. i nci /·.:'\
then bc:t.7111

it ((lC{!. t, Ji ;;("-·· E:;T.-\lll.I:;;1r:n ,1r
(tc[tid) .:Hdt•~ CLOSiNG)) .:ind

(pdu. 5C'l'"' ' u: (t id I . :-: un ,1)
then begin (4 Transitior1 !2 •>

tc(tid) .x una := tcltid) .xsnd_nxt:

Resum-e xddL-3(tcitidl, nc{nid)) ;
Resume-d,:it. .1 (tcltid), nclnid))

end
end:

if pdu.kind = ~ RH
then l:,egin

if (tc:lt i ... ~j S(dt•;'

t.c[t 1 ... ~] .s~=:(!
tc[t i,o) stat.,,
tc (c. .:....:: j s~ :.1 c..c
tc(t :.~~J St:.Cl~C

then bet:;:.n

CALLING or
CR SENT or
CR-RCVl)) or
f:STAl3LISHED or
CLOS ING l)

tcltid) c.::.,tc - CLOS!NG.

==:npt y _,:..~ t:. -~ (:-:::.::) :
!:"ea son . = ?~(Y:-G:'.::.:•L s;~:~OG.

(' Transition 1 1 'l

OUT SA?:!.::.::; -:-:::--.-.:,r_c.ancel(ALL_ TI;1ER , 0, TRUE) ;

Construe._ D~(c.sca, t c[tid) . dst ref, tc(::i c:!) .src r-:;:,
reason, temp):

Concatenate 2 NSDU(nc(nidJ, data
end (• active connection *)

end; (• ERR TPDU •)

if pdu.kind % DR
then begin

if ((tc(tid] . state
(tcttid) .state
(tc(tidJ . state

then begin

CR RCVD) or
- CR-SENT) or

ESTAOLISHED)

(• Transition 14 •)

OUT TCEP!tid) . T _ DISCONNECT indication(pdu.ceason,
pdu.data);

Construc~_DC(c,na, tc(tid).d,;t. re!, tc{tid) .s cc re:.) ;

Concatenate 2 NSDU(nc{nid], data);

OUT SAPT(tid) .Timer_cancel(ALL_TIMER, 0, TRUE);

if Ne multiplex~d(nc(nid)
then begin

tc(tid).state : • CLOSED;

Release al 1 C tc ltid), nc lnid)
end (" Nc_ multiplexed •)
else

tc[tid) . st~te DISCON _ WAIT

end
end;

(' CR SENT, CH_RCVD, ESTABLISHED•)
(' DR-TPDU ')

if tc(tid).state - CLOSING
then begin

if (I pdu . kind •DR) or (pdu.kind •DC)

TRANS

TRANS

then begin
tc[tid) . state : = CLOSED;

OUT SAPT[tid) . Timer_ cancel(ALL_ TIMSR, 0, TRUE:) ;

if NOT Ne mult1ulc:<ed(nc[nid)) t!:,~:1
OUT NS~Plnid~ .N_DISCONNECT_reques~ ;

Rclr.,,1,;~ ,•111(tc(tid), nc[nid]
,~nd (-;- LJH TL'l)lJ, DC TL'DlJ •)

..:!nd
end
else begin

(' CI.OS!fH; •)
(• t id < > 0 • l

if (pdu.srcf <> UNDEFINED REFERENCE) dnd
(pdu . kind <> DR) and (pdu.kind <> DC)

then begin
Empty_data(temp);

Con s truct DH(da t a, pdu . sref, 0, pdu . ::-e,1 s on, temp) .
Con c atenate 2 NSDU(nc(nid), data l

end - -
end

end
END ;

(' wh1l,~ ioop ')

~ll!EN NSAPlnid] .N CONtJEC T cndication
PROVIDED nc l ni a] . stat ~ - = NIDLE

9EGIN
r1clnid} .st~te . ,, Nors~i.

;.c lnid) . 1 i'!et -:!<::•.::­
,, c I n id l . f- n er_ - .s c ,i c
c,clnidl , lTn ►.

':'a networ-k add:-;
'Z" ::::-Om ~:etwo~k a(;Cr :

OUT NSAP(nid) N CONNEC7 ~esponse;
CU'!' SAPN [nid) , TT:r1~::- _ :-:·.::-::-s~ (1:-;coM!NG_fJC, ~::::- ~-JAl'T, .)

END;

WHEN NSAP[nidJ .N DISCONNECT indication
PROVIDED (nc[nid) .state~ NOPEN)

BEGIN
nc(nid).state :• NIDLE;

if nc(nid] . link > 0
then begin

for tid :~ 1 to MAX_ TSAP_ ID do
begin

if tc(tid] . ncep id• nid
then begin -

if ((tc(tid].stat<e
(tcltid) .st.,Jte
(tcltidl state

th •~ n begin
tc [tid) .scat-~

Empty_data(data);

CR RCVD) or
CR-SENT l or
!::STI\BLISHED l

CLOSED;

OUT TCEP(tidl .T_DISCONNECT_indication(

(* Transition 11 *l

(• Transition 18 •)

LOSS OF NETWORK_CONNECTION,
data - ,, -

ou·r SAP'!"(tid) .Timer cancel(ALL Tll'lt::R, o. TRUE) ;
Release all(tc(tid), nc(nidJ ,-

end; (' CR_RCVD, CR SENT, ESTADl,15:iED 'I

if tc(tid) . stc1t0
then begin

tc(tid) .st,He

CALLING

Empty_data(data) ;

("" °rtJt1!litio11 19 •)

CLOSED :

OUT TCEP(tid) . T_ OISCONNECT_ indication(
NETWORI< CONNECT FAILED,
data,,- -

TRANS

OUT SAPTlticJ).Timer cancel(.>.LL TIMER, 0, TRU~;) .
Release dll (tc(tid], nc(nid) l-

end; c7 CALLING ')

if tc (t id I . :;t,H.<.' • c:..OSING
then beqi:i

tc[tid) . state CL~SED ;

if Ht~,l: t,>n ..-: :- NURt-L·\L
t. t1<~11 b·• : : l\

Empty d ,,ta (t.it1tJ.) ;

c• Tr-r1n:Jition 20 '>

OUT T~~~(tid) .T_DISCONNECT indicaLion(.
LOSS Of NETWOHK_CONNECTIO;J,
ddtd -)

end;
Release all (tc(tidl, nc(nid}

end; (•CLOSING*)

if tc[tid) . state
then begin

tc It id) stdte

DISCON WAIT

:= CLOSED;

Rele.-,se dl!t tc/tid) , nctnid))
end (~ DISCON WAIT 1)

(• Transition ;~l •,

end (' matching transport connection ")
end (• for loop •)

e n d (' link > 0 ')
else

OU, SAPN/nid) .T,rr,er cancel(HJCOM!NG_NC, 0, TRUE)
2ND;

WHEN TCEP l tic:J ':'_CO~JNECT_res;,onse (• Transition 22 ' J
PRO'IIDED (t tc[cid) .Stdte = CR RCVD) and

C~oos-: class (Qual-o: s ;~c·.·ice = CLASS nJO I and
Size (Ts L!Se!'_dc t a) <= :--L:!..:, c~c: sz >)

BEGIN
tc[tid) . state := ESTABLISHED;

tc(tid] .src ref
tc(tid) .qual_of_service

Allee ref;
Qual_of_.service;

Construct_ CC(data, tc[tidJ.rcv upper edge,
tc(tidJ . .src-ref, -
tc I tid} .dst - ref,
tc(tidJ.l suffix,
tc(tid] .f- suffix,
tc[tid} .max TPDU size,
tc[tidJ .quaI of service,
TS _ user data-) ;

nid : = tclc.icJ .ncep id:
Concacendte 2 NSDU (nc/nid), datd

END ; - -

WHEN TCEP(tid] .T DISCONNECT request
PROVIDED tc[tidJ . state a CR RCVD

BEGIN -
tc [t id J . state : = DISCON _WAIT;

tc(tid] . src ref
tc [tid]. reason

Construct_ DR(dat.a,

Allee ref;
CONN_ REJECT;

tc(tid] .dst ref,
tc(tidl .sec-ref,
tc(tidJ .reason,
TS user_ data l ;

nid :c tc(tid].ncep id ;
Concatenate_ 2 _ NSDU (nc(nid], data);

Release_ all(tc(tid), nc(nid]

(• Transition 23 •)

TRI\NS

TRANS

TRI\NS

TRANS

!':ND ;

!'ROVIDED

:JEGIN

t c [t id] . s r_ .1 t e
t C { :-. i .. ! J ::it l ~.t':

C::~ :)r.Ni) v:·
:-:s·f.:-.. n!...; .;:-::::!··

END ,

t.c ltidl .:;tate

tc It id I . ,e,15on

·.c!: -. ~j !:,r. :,1(,

tc It cl) :;re :·et,
r.c It d]. ,e.:i:-i,rn,
TS 1is1~r_d~1ta) ;

Store(tc[tid) .sbuf, data, 0, DR);

nid := tc[tid] .ncep id;
Resume data(tc[tid], nc[nid]);
OUT SAPT{tid] .Timer _ c.rncel(ALL ...:TIMEh, -. T!'I.UF:)

WHEN TCEP [t id) . T DAT.'\ cec::-::st
PROVIDED tcltid] stic~ ·= ESTl\8LISHED

BEGIN
Add _ request (tc [tidj, TS_u:ser_d,1ta I.

nid · = tc{t1d] nccp :~;
Re.3ume data(t.cf~:..dJ,--;;c(;.iC)

END: -

,,

WHEtJ TCEP[tid] , T X?D =ecw~sr f· :~ans~:i0~1 ~~ ~,
?ROIJ!D!':!J (tc [tid)-sca·c<:? = !':ST.',BLISnED I -··-

(Size(TS_user_caca I <= I"'-'·X_:,::.::;:J "'-
BEGIN

Consc.rucc._XPD(data, cc [tid].dst ref, cc::i.c].:-: 3-:·~.
tc(tid] . qual of service . misc(Q EXTENDED :OPJ-<.AT),
TS_user_daca-);- - -

tc(tid] .x_ seq : = SEQ ADD(tc(tid] .x seq, l,
tc(tid].qual_of_service.misc(Q_EXTENOED_FORl".AT] J;

Store(tc(tid) . xbuf, data, te(tid) . xsnd_nxc, XPD) ;

nid := tc[tid). ncep id;
Resume xdata(tc[tid], ne[nid)

ENO; -

WHEN SAPN{nid) .Timer =esoonse
?ROVIDED (Name= lNCOMING_NC I and

(nc[nid) . state = NOPEN I
BEGIN

nc{nidJ .state :~ lHDLE;

OUT NSAP(nid] . N_ DISCONNECT_ request
END;

WHEN SAPT(tid] .Timer response
PROVIDED (Nam~= WINDOW l and

(tc{tid] .state• ESTABLISHED
BEGIN

(" Tran :>ition 21 •1

c• Transition 28 'I

n :r SEQ_ MINUS(te(tid) .rev upper edge, ·_;;{tid) .rev n:<t,
te(tid) .qual_o!_serviee ~i~c(Q_EXTENDED_FORMAT));

if n > 0 then
begin

Construct AK(data, n, te(tid) .dst ref, te(tid).rev nxt,
- te(tid) .qual_of_service.misc(Q_£XT£N0£D=FORMAT) I :

nid te(tid) .ncep_id:

Conca~enace 2 NSDU(nctnidl, ~dtJ I

OUT SAPTttid) .Timer cancel(WINDOW, 0, T~UE J
~no
•.'! Ls•:!

OUT _;,;PT It irl I ? -::.m .. ~:: :::esucst (~iIN()O',·:, ~~N_.;·:·~c. 0 l
:.110:

<· ~ror,tAnen1Js tr~t,sition -- Send the netwo~k ddta anyway•)

?ROVIOED THUE
UEc; l ~J

f n r n ic! t > MA:\ NCEP :o c1o
b~gin

if nc [nid) .sbu(<> NIL
then begin

Extract NSOU(nc[nid) .sbuf, ndata J;
OUT NS/IP triid] . N_D/\T,\ :,;,quest (ndata)

end
end

F.ND;

(* ... "' * "' " • • •••••• t •••)

:::tJD ~S modul2:

PROCESS RS p::oces5

QUEUED NCS?;

VAR
rs id
local, ,emoce
qos
reason
d.3ta

'lS ir.ce:-:

:.nc.ege:::
NADDR TYPE:;
NQOS TYPE:;
REASON TYPE;
NDATA_TYPE;

(• Primitive functions and procedures *)

FUNCTION Net_ accept(rs id
VAR local, remote
VAR qos

integer;
NAODR TYPE;
NQOS_ TYPE)

PROCEDURE Net close(rs id integer);

boolean;PRIMITIVE;

PRIMITIVE;

FUNCTION Net_confirm(

PROCEDURE Nec._connect(

rs id

rs id
local
remote
qos

cnteger

integer ;
NADDR TYPE;
NAODR- TYPE;
NOOS _TYPE:) ;

boolean ;

FUNCTION Net_disconnect(rs_id integer ;
REASON_TYPE VAR reason

FUNCTION Net recv(rs id

PRIMI'flVC:;

PRIMITIVE: ;

boolean ; PRIMITIVE;

VAR data
integer;
NDATA TYPE boolean : PRIMITIVE :

PROCEDURE Net send(rs id
data

JNITIALIZF.
BEGIN

r5 id : ~ RS index
ENO; (• Initialization ')

TRANS

integer;
NDATA T':'PE) ; PRIMITIVE ;

TRANS

TRANS

TRANS

TR..=..Ns

TRANS

TRANS

w11u; ;,cr.P N_Cori.-::::cT_requcst
8£(; l N

! ,):: ,1 !
~-~rnot_e

li0'.'\

fro~ n~ twork ~ddr:
To n:1:.·-,ork ;, d dr:

- ()OS;

N(•' ·:unn•::-c~. (
END;

WIIEN NCf.P . N DAT/I =equest
BEGIN

dat.J
Net

ENLl;

::: ~JS us-2r data;
3P-nd(;s i~~ data

WH£N tJ(-~1: tl DISCO~JNECT request
BEGIN -

Net _close(r:3 :~

C:110;

PROV!DO:::~ N 1:!\.. acc-.::;:-t (=s_1d, loc.Jl, ~·3!T',Ct0, 1,,.;u.>
BEGUJ

OUT :1c==.;; -~1..... •••• :...._._i.nl'!iccJtic..:1{ :-:::~.o::.!. ;~)c,?:, •~0~
S:Jr:>;

OUT ~JC£? ~; cc:~:.~-::- ::ont'ir:7t
~t;D;

PROVIDED Net reco (=s id, data l
BEGIN

OUT NCEP.N_ DATA_indication(data
END;

PROVIDED Net disconnect(rs id, reason l
BEGIN - -

OUT NCE:P . N_ DISCONNECT_ indicationl reason
END;

END RS process :

f 41 4 • • • ill • • • " • • • • • • • • • ., • • • • • • • • • • • • • • • fl, • • • • • • • • • • • • • • • • • • • ~ • • ._)

Ul: TS user module with 7S user process(,!;
U2: TS-user-module with TS=user=process(2);

ATP: ATP_module with ATP_?rocess ;

Sl: System module with System process(l);
S2 : System-module with Svstem-process(2);
S3 : System-module with Systemycocess(3);
S4 : System=module with System_pcocess(4);

RSl:
RS2:

RS module with RS orocess(ll:
RS=module with RS=-~~ocess(2);

(.. ,
CONNECT

Ul.TSAP TO ATP.TCEP(l);
U2.TSAP TO ATP.TCEP[2);

.-\TP . NSi\f' I l I TO R'.;\ . NCU' ;
,\TP NSAP{2) TO RS2.NCF:P:

,\T!'. SAPT { l I TO S1 SF.:!';
.-\TP ~SAPTf,;: TO S2 . SF.:P:
.:\'!'? SAPN { 1 J TO :)J . .:;r.-:P;
ATP.SAPN{2) TO s~ SEP;

Appendix C

System Initialization and Scheduler
- For Semi-Automatic
Implementation

66

!dtut1l.c - ~yst~m_init, sc:1edul0

= ~:,:-:!.ud~ <~>ys, typ;~ 3. h>
.= :.:>.:: lul~'~ < ;y:3/Joc;:-)r_ . n:-.
i i.:H.: tu<~•? <ny~;/uio h>
~ inc lud,:- <svs/t imeb . h>
iinclude <s~s/time.h>
iinclude <s ys/un .h>
=include <netinet/in.h>
#include <netdb.h>
~include <ecrno . h >
#include <signal.Ii>
Jinclude <stdio.h>
#include <strings.h>

#include" .. /inet/inet , h"
!include " listdefs h"
#include "defs.h"
#include "tpdefs.h"
lincl6de • .. /tsp/tsp.h"

/A Define the outecmost refin~~enc ~Jme •;
#define REF NAME LOTransport ref

e x tern int signal pending;
e x tecn strt1ct oro~ess block ·~~~lock .
e:<tern NCONN · conn IT;

s~~uc~ process_~lock •sys~em_~~::(l
i

strucc process block •ptr # ·pr -:,ce ss !is::-., ·~-e:-:;o· ? ~e,1t;,.:-:-() :
struct channel-block •cot=:
struct itimerval value;
int i, j;

/* user included dcl •/
struct process_block •R£F_NAME();

process_list = remove_headerCREF_NAME(NULL));

for (ptr ~ process_list; pt= != NULL: per~ ptr->next)
I

if (strcmp(ptr->p_ident , "TS_user_process") • = Ol
I

i = ptr->lvacs . s TS use= process.us~r id - L:
uprocess[il = per; - - -

if (strcmp(ptr->p ident:, "Systcm_process") r • 0)
t -

i = ptr->lvars.s Svstem process.svs id - l;
sprocess{i] = ptr; - - - -

if (strcmp(ptr->p ide~~. "R5_process") ~~ 0)
I -

i c ptr->lvars.s ~S 1>roc~s3.:s id - 1 ;
rproccss(i) = ;1ti: - -

for (c_ptr 2 ptr->clian_list.; c_ptr != NULi.; ·; ptr
I

if le pcr->targeL channel =~ NULL)
I - -

/• oops a dangling connection•;

fprintf(stderr,-\nSYSTEH INITIALIZATION ERROR: danqling");

lr>rint[(:;td,~r :.- , " channt.?l in .1n tnst.1:1.~t..,, ., f \·•4;s\ .. . "
;.:>tr--;"p idcnt) :

f p rintf(5tt1err,"channel number \d, ind Id\n" , c p~r-:•r : ,
c _ pt c->i!'ldes _'.iuml;

/' join th e ends of the process list into a loop'/

tor (ptr = process list; ;:,tr->next != NULL: ptr = ptr->next);

process_list;

/•---------------------------------- ---------- -------------- -------------
• Establishing connection to the system environment

•---
I • (ire up a c lock • /
value . it incecval.t v sec
value . it interva l.tv_usec

valu~ . it valuc.t~ sec
value . it-valu~.tv-us~c

LL
0 l;

setitimer(ITIMER VIRTUAL, ivalue, (strllct itimcrval ')0) ;
.signal (SIGVTALRM·,- c loc k) :

/•setup timer lists '/
for (i = 0: i < NTIMER; ion tirr.cdin(i)

/
1 ooen a netwo:k lister:e: ~;

if (
0

(i = N_ opcn(&conn!OJ, NSN;...MC:)) '= N~:T m ; J

fpr1nt.: (s~(i•.2r:-, .. >>> >:_:i?•~:"". p!"ob:em :,,:: 1n", i) .
e:-:i t t:..} ,

net.mask.
nc i:1use ();

for (i = 0: ~ < MAX NCE? ::i: ,~-)
I

netpool(i].fill = fALSC:;
netreason(i) = NET OK;
net_ status [i] NET-NORl".AL;

/• open a UNIX listen socket•/
if ((usock(OJ = TS open(TSNAM£)) < 0)

I -

NULL.

fprintf(stderr,">>> TS_open problem \d\n",usock(OJ);
exit(l);

t~ estdblish th ~ inter-o:ocess connections •t
for (usermask = 0, i = 1°: i <= MAX_TS/IP ID: i++)

I
strucc sockJddr un f~om .
int len = sizeof(struct sockaddr un) ;

j s i - l ;
userpool[jl .fill~ fALS£ :
errclose[jl • rALSE :

usock(il 2 accept(usock[O!, (struct sockaddr •)&from, ,ten):
if (usock[i] < 0)

I
perror("UN[X domain
cxi t (l);

accept");

uscrm,1sk I= (l << usock(i));

I
close(usock{OJ) ; /' close the listener•;

return(process_list);

/ •------- ------ ----- ---------- -- ----------------- ---- --- -- ----
This is the main drivi11Q routine .

·------------------------ -------------------------------- ---------- •/
9chedule(proccss list)
~t1·uct proces :;_biock •pr~c~ss_tist:
I

extern int signal_pcnCing;
extern struct process_block •p_block :

struct channel block
struct signal block
struct process block
struct timer block
struct timeval

•c pt r ;
•s=ptr, •ge t signal() :
ip_ptr, •p ptr2;
•tptrl, •tptr2 ;
ti:neout ;

int i..- j, n, mask,, notdonoe :

p_ptr = p ptr2 = process list :
c ptr = p-ptr->chan list;
signal_pending = 0;

while ((usock(l] != -1) I I (usock[2) '= -1) l /• while there is ,1 u :,,a,
I

if (signal pend1ng > (J)

I
s ptr = get signal (&c ptr, &p ptr) :
signal penc"ng--. -

/• sall the ~~a~s~~:on routine ~1
p __ block = p pt c ;

(., (p_ptr->p:::..c_~:.=l) <c_:=,t.:, s __ p c:-);

/• ~ove on :J =~~ ~ext :han~~~ fa~ : ~~ st~:: ?f ~ha~:-~
if (c o::.:->:-:-e . · : ' .c ~!~;~:..)

else
c_pt:

? pc.r
c_ptr

::, ::: ~ :- >:-:2:-: L ;
?=?~~->c~an list ;

/* internal input signal pending • /

/• spontaneous transitions are handled belo~

/• TS user process •/
mask~ usermask;
timeout . tv_sec c 0:
timeout.tv_ usec s 501;

if (select (16, &mask, 0 , 0, &timeout) < 0l
(

perror("UNIX dc:na1n
exit(2);

select");

for (i = l; (maslc > 0) ,& (i <= KAX _TSAP_ ID) ; i++)
(

if ((usoclc(i] != -ll u
(mask, (1 << usoclc(i)lll /• Incoming request*/

j : i - l:
if ((n = TD_ i npi,t (usock Ii], use rpoo l (j J . datum, TS_ MAX _ LC:NGTH +~))

>= siz~of(stcuct data_hdrll

usecpocl(j] . fill= TRUE;
userpool(J] . l,1n n :

else
(

errclose{j) = TRUE :
I

p block• uprocess(j);
(*(p_block->proc_ptr)) (NULL, NULL) :

1• RS ,>rocess
.~J s k ~ r.etmitsk :
· i.nu.~O\lt..:. ·.: s e~

imr. O l!t : ·1 'JSC'C

• I

' 0;
501 ;

if (selecc.(16, f,rn.:isk, 0, v, .,:;icr,~..iut) < Ol
I

perro!:"("INET domain : ,;.1lec::"l :
exit(~);

if ((mask :- 0) && (nc_ i :1use < ,1,0.:-: NCEP ID)) i• network channel <1v,,il,1l>L,! •;
I
if (m;isJ.: & (1 << conn(O)->socketl)

I
for (n o t.done = TRUE:, i '" MAX NCEP ID; not.done && (i > 0); i--)

(

if (conn{il == ~J U!..~)
{

J=i-1;
if ((conn(i]

(mask &

not.done= FALSE:;
j • i - l ;
1 f (N cccepr ('..<,:::,nn { i), conn {O]->socket)

net_ status!j) = NET NEWCOMER;
nc 1nuse+ ... :
net~as.-: I"" (l << (conn[ij-:-.socket)) .

7~~t:~,:o: /~;~~~:;~ ~/; ('.iU :,L , NU!,L) ;
/· :. : .=.cc::.=;.:-~a=-:c':! i.:, o~: ·.:

NET_ OK)

'= NULL) &&
(l << conn(i]->socket))l

/• c.he network channel is
/• Incoming request•/

in use ~ /

if ((n = N receive(conn(i], netpool(j).datwn, NET_OATA_SIZE)l
>=-NET_OK)

else
{

netpool(j).fill TRUE .
netpool(j].len = n;

p_bloc k = rpr0~~s s {j J.
(. (p - bloc k - >,>: :,c - '°~ :· I l ! :JULL, NlJi,Ll ;

if ((netreason[j] i~ NE:T_OKl ti (net_status[j) == NET_CONf'IRMll
I

p_block • rprocess(j);
(• (p_block->proc_;::itr) l (NULL. NULL);

I
/• ~::>r i-loop '/

/• ATP ~rocess •/
if (5trc:np(p_ptr2->p_i.-!cnt.."ATP_[HOC<!S5") -= 0)

I
p !.>lock ; p pt.r2:
(' (p _pt. c 2->proc _ _.rr. c)) (NULL, NIJLL) ;

p_ptr2 • p_ptr2->nexc ;

/• System process •t
for (i = 0; i < NTIMER; i++)

70

r lme 1 l 1 .~

tll

p hll)t.:k , ; 11 .h: ,: ,,
1-;-< l} t,L ,1..:k -:- p, .-11 : ;-, • 11 1m: 1, ;., :11 ::.: .1,
/ • L°7m ... n ,: :. • /

I · •rn r.h ti111~, · /
I / • •! •' rl I Lim 1- I l ~: I • I

/ · , •,u : h ;;y •il 1•m pru,~l ~~ !.1 • /
1· : nr\:v• : 1)01')p · /

71

Appendix D

System Initialization and Scheduler
- For Manual Implementation

72

1•-------------------------------

• I

TS initsys
TS-schedule

~::1::lJde <sy~/typcs.h·
~include <sys/sock1?l - ~1 -·
•include <~ys/uio.h>
linclude <sys/timc.h ~
#include <svs/un.h>
linclude <netinct/in h>
#include <errno.h>
linclude <signal h>
tinclude <stdio.h>
linclude '" .. /inet/inct.h"
iinclude '"tpdefs.h"
#include '"tp . h"
#include'" .. /tsp/tsp.h"
!include '" tpvac.h"

(;:>ri va-:"°)
(priv.3teJ

/ ·----------------------------- ----- ------- -- ------- -- ----------- ---- -------
TS initsys
Transport Stat ion i.,: ti a li .:,it LOO (GLOi3,"\L

l. Handling the SIGI:-1T i SIGC:;LD :,i"n?.ls
2. Initialize TS, T? anC ~JP queu-c-s
3 . Open TS l1st2ner .

Open NP !is:~ne~

time.it in=erval . tv se~ ~ =:~~.!~ va~~e.:~ se~
time.it= interval . tv:usec = time . it value.t·J_usec • 01 :

setitimer(ITIMER VIRTUAL, &time, (struct itimerval *)0);
signal(SIGVTALRM~ TM_clock);

/*
Open a NSNAME server listening to the NP providers .

if ((n = N_open(&(nplisc.nconn), NSNAME)) !K NET_OK)
{

I •

• I

fprintf(stderr,">~> N_open problem \d\n",n);
e:-:i t (l) ;

Open a ·rsNAMi:. ser·.·e:: l1sceninq to chc TS user=.;.

if ((tslist..tsap = TS_open(TSNAME)) < 0)
I

fprintf(stderr,">>> TS_open problem \d\n",tslist.tsap) :
exit(l);

Initialize th~ qlot,al queu~s -

tslist.prcv tslist . next
tplist . prev tplist n~xt
nplist.prev • nplist.next

&ts list ;
, tp l i :; t ;

1.nplist :

/• ---- -------------- ---------------- ------- --------------------------- --
TS schedule (privace)
This is the scheduler of the interactions

3!:. ~1~ !. C

-r:; _:;chP.Ciu 1-~ ()

I

struc:t timeval time ;
struct sockaddc un from;
int. n, flen, - maJk, sock;
chnr datum!TS_ MAX_ ~ENGTH+2J, ndatum!NET_ DATA_SIZEJ ;

TSCONN tsp, tspnext;
TPCONN tp, tpnext;
NPCONN np, npnext;
NDATA PTR nptr;
NCONN- nconn ;

for (:: I
I

/ ' Transporl service usecs ·/
milsk = TS bu i le.mask ();
time.tv sec 0;
ti me . t ·,=use c = SO O l ;

i f ((fl = select (16, &;;i2sk,
(err-no •~ EINTR.)

0, 0, &tim<:)) < 0)
TS _errorshutdow:1 () :

! len sizeo:' (st:cuc:: sockadd.r un);
if ((sock= .,cceot((t.slist.tsao), (scruct sockaddr •)&frora,

· &flen)) < ;))

else
I

I

TS errocsjucdown();

if (TS newuser(sock) •• NULL)
(

shutdown(sock, 2J;
close (sock);

/• new TS user*/

for (tsp = ts list .next; tsp !a &tslist: tsp • tspnext)
I

tspnext c tsµ->next;
if (mask & (l << tsp->tsap))

I
if ((n • TD_ input (tsp->tsap, c.atum, TS HAX LENGTH+2) l

< sizeof (struct data hdrl) -
TS disconnect(tsp, UNKNOWN ERROR) ;

else - -
(void)TS_input(tsp, datum, n);

I
/• foe tslist •/

/'n>O•/

/* Send the filled network outgoing buffers'/
for (np s nplist.next; np !• &nplist; op• npnext)

I
npncxt = np->nexc;
if (np->sbuf 1 = NULL)

I
nptr = np->sbuf->data;

if (N send(np->nconn, nptr->datum, nptr->dlen) !• NET_OK>
NP close(np);

else -
NP release(,(np->sbuf), FALSE);

71

/ • I K~ twork prov i rt <1 z:: "'/
m,1sk = NP h11 i ldmask (I ;
tlmc.tv s~c 0:
timc.tv= u s cc = ~001 ;

if ((n = select (16, &mask, 0, 0, &time) l < 0)
if (errno ! ~ ~: INTR) TS_cr r o rshut <iown () ;

i((n > 0)

I
ir (musk & (l" << (npli s t . nc onn- > sockc t)))

l
if (N accept(&nconn, nplist . ncon n ->so c k e l) ! n- Nl•:·r_ OK)

TS_ crrorshutdown() ;
elsr,

l

I

if (NP accept(nconn) '= NET_OKI
N_ close(nconn);

!• new TS user•/

fo r (np = nplist.next; np != &nplist: np c np nc xl)
I

npncxt = np->next;
if (mask & (1 << np->nconn->socket))

I

I

if ((n = N receive (n;,->nco11n, ndatum, NET_D/ITll__:,IU~) I
< NET OK)

K? close(np);
else -

N? _ input(np, ndatu~, n) .

/• fo r nplist •/
/• n > 0 '/

I ' timers • /
for (tp = tplist . next; tp ! = &tplist; tp

I
tpne :-: t)

tpnext = tp->next :

if ((tp->timp !• NULL) && (tp->timp->time •• 0))
TP_expired(tp);

for (np = nplist.next; np !• &nplist; np = npnex t)
I

I

npnext = np->next ;

if ((np- >,t imp '= NULL) && (np->t imp- > t imc ~ O))
NP _ e:-:pi red (np);

/' forever loop •/

75

