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Abstract 

Formal Description Techniques (FDTs) for specifying communication protocols, and the 

adopted FDT standards such as Estelle have opened a new door for the possibility of automating 

the implementation of a complex communication protocol directly from its specification. After 

a brief overview of Estelle FDT, we present the basic ideas and the encountered problems in 

developing a C-written Estelle compiler, which accepts an Estelle specification of protocols and 

produces a protocol implementation in C. The practicality of this tool - the Estelle compiler -

has been examined via a semi-automatic implementation of the ISO class 2 Transport Protocol 

using the tool. A manual implementation in C/UNIX 4.2bsd of this protocol is also performed 

and compared with the semi-automatic implementation. We find the semi-automatic approach 

to protocol implementation offers several advantages over the conventional manual one. These 

advantages include correctness and modularity in protocol implementation code and reduction 

in implementation development time. In this thesis, we discuss our experience on using the 

semi-automatic approach in implementing the ISO class 2 Transport Protocol. 
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Chapter 1 

Introduction 

1.1 Motivations 

Formal Description Techniques (FDTs) [Boch80] for specifying protocols and services have 

opened a new door for the possibility of automating the implementation of a complex com­

munication protocol directly from its specification. These FDTs are advance enough that 

they are becoming standards such as [CCITT85], [Estelle85] and [Lotos84] and their compil­

ers, [Ansart83], [Bria86], [Ford85], [Gerber83] and [Hans84], are also being developed to make 

themselves usable in the design and implementation of real-life protocols. 

This new approach to protocol implementation is superior than the traditional approach 

in that communication protocols are implemented semi-automatically in a systematic manner 

rather than manually in an ad hoc manner. It avoids different interpretation of the specification 

and various implementation errors, hence, provides confidence in conformance to the specifi­

cation. As a large portion of the protocol implementation is generated by the compiler in a 

standard target language, the implementation is highly portable. Furthermore, the generated 

code is well-constructed, and system-dependent features can be easily located in a few routines. 

Thus, the implementation is easier to maintain. 
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CHAPTER 1. INTRODUCTION 2 

The motivation of this thesis is to verify the usefulness of the semi-automatic approach to 

protocol implementation. An Estelle compiler is chosen to implement a fairly complex ISO 

class 2 Transport Protocol [CCITT85,ISO82b]. A manual implementation of this protocol is 

also performed and compared with the semi-automatic implementation. 

1.2 Scope and Contributions 

The chosen compiler is developed by Daniel Ford in the language C on a VAX 11/7501 

running UNIX 4.2bsd2 • The compiler accepts an Estelle specification for communication pro­

tocols and produces C code. The generated code is then incorporated with pre-written generic 

and implementation-dependent routines to implement the specified protocol. 

The original C-written Estelle compiler8 is erroneous and insufficiently tested. Its per­

formance has been greatly enhanced by transforming BNF grammars into LALR grammars 

which best fit the YACC compiler [John75] for generating the parser of the C-Estelle compiler. 

The grammar rules were also rewritten so that the compiler supports complex data structures 

such as variant record and pointer which are commonly used in complex protocol specifications. 

Furthermore, the translation routines were modified to produce optimized and better-organized 

code. 

The enhanced compiler was examined by using it to implement protocols such as hot 

potato, alternating bit, and ISO class 2 Transport Protocol. It was also ported to several 

SUN Workstations" and the protocol implementations are successfully running among the 

VAX 11/750 and SUN Workstations. 

1VAX is a trademark of Digital Equipment Corporation 
2 UNIX is a trademark of AT&T Bell Laboratories. 
8 For brevity we shall often use the terms C-F.stelle compiler in place of C-written F.stelle compiler 

'SUN Workstation is a trademark of Sun Microsystems. 
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1.3 Thesis Outline 

After an overview of Estelle in Chapter 2, the development of the automatic tool, C­

Estelle compiler is described. Chapter 3 explains the implementation strategy used in the tool, 

and Chapter 4 discusses the problems encountered. An extensive application of the tool is 

described in Chapter 5. The real-life ISO class 2 Transport protocol is implemented both semi­

automatically by using the tool and manually in an ad hoc manner. After a presentation of 

their designs and implementations, experience learned from the implementations is discussed. 

The last chapter summarizes the thesis and offers suggestions for future work. 

Since the implementations of the C-Estelle compiler and the protocol were written in the 

language C, all coding examples presented are C-like. In addition, implementations run on the 

UNIX 4.2bsd operating system. Thus, reader are assumed to have a basic understanding of the 

language C and the UNIX 4.2bsd operating system. 



Chapter 2 

Estelle 

Estelle (Extended State Transition Language) is a formal description technique developed 

by the International Standard Organization (ISO) TC 97 /SC 16/WG 1 - FDT, Subgroup B 

[Estelle85,ISO84]. Based upon an extended finite state transition model and the Pascal prer 

gramming language, Estelle is used for the specification of communication protocols and ser-

vices. 

The framework of an Estelle specification is a set of c<roperating entities, each described as 

a module, interacting with each other by exchanging information through channels. The actual 

behaviour of a module is specified as either an integrated behaviour of a set of interacting 

submodules oi at the innermost level, an extended finite state automaton. 

2.1 Channel and Interaction Primitive 

A channel is a twerway simultaneous pipe which transmits information between two con­

nected modules. A channel-type definition specifies a set of interaction primitives which is 

grouped under two· different roles. These roles are used to distinguish the two sides of the 

channel, and hence, the two connected modules. Primitives grouped under one role can only 

be initiated by the module instance which plays that role in respect to the channel; and they 

4 



CHAPTER 2. ESTELLE 5 

are received by the module instance which plays the other role. Information is transmitted 

between module instances via the parameters of interaction primitives. As an example, fig­

ure 2.1 shows a definition of a channel-type TS..primitives. There are ten possible Transport 

CHANNEL TS_primitives ( TS_user, TS_provider }; 

BY TS_user: 

T _CONNECT ..request 

T _CONNECT ..response 

T ..DATA..request 
T .XPD..request 
T ..DISCONNECT ..request 

BY TS_provider: 

T _CONNECT Jndication 

T _CONNECT _confirm 

T ..DATAJndication 
T .XPDJndication 
T ..DISCONNECT Jndication 

END TS_primitives; 

( From..transport_addr: ADDR_TYPE; 
To_transport...addr : ADDR_TYPE; 
Qual....of...service : QOS_TYPE; 
TS_user_data : DATA._TYPE }; 

( QuaLof.Bervice : QOS_TYPE; 
TS _user_data : DATA._TYPE ); 

( TS_user_data : DATA._TYPE ); 
( TS_user_data : DATA._TYPE ); 
( TS_user..data : DATA._TYPE ); 

( From_transport...addr : ADDR_TYPE; 
To_transport...addr : ADDR_TYPE; 
Qual....of...service : QOS_TYPE; 
TS_user_data : DATA_TYPE ); 

( QuaLof..service : QOS_TYPE; 
TS_user_data : DATA_TYPE ); 

{ TS_user_data : DATA_TYPE ); 
( TS_user_data : DATA_TYPE ); 
( Reason : REASON_TYPE; 

TS_user_data : DATA_TYPE ); 

Figure 2.1: An Example of Channel Specification 

service interaction primitives which can be used by a Transport service user to interact with 

the service provider. Five of them, namely T_CONNECT..request, T_CONNECT..response, 

T ..DATA..request, T .XPD..request and T ..DISCONNECT ..request, can be initiated by a module 
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instance which plays a role of TS_user in respect to the channel. The parameters of the inter­

action primitives, such as TS_user_data, carry the given information from a TS_user module 

instance to a receiving TS_provider module instance. 

2.2 Module and Interaction Point 

A module is the basic component of an Estelle specification and represents an entity of 

the specification. A module-type definition is a list of interaction points at which the module 

interacts with its environment. Each interaction point, (also called port), is an abstract interface 

of a module used to interact with the connected modules. For each interaction point, a role 

of its associated channel-type is specified. An interaction is then identified by the name of the 

interaction point at which it occurs and the name of the interaction. In addition, the interaction 

has to be one of the defined interaction primitives in the corresponding channel-type definition. 

The actual behaviour of a module is defined as either an integrated behaviour of a set of 

interacting submodules or an extended finite state automaton. For a given module-type, one 

or many module instances (i.e. protocol instances) can be obtained. An example of a module 

specification is given in Figure 2.2. All possible interactions of a Transport service user with a 

MODULE TS_user..module; 

TSAP : TS_primitives ( TS_user ); 

END TS_user .module; 

Figure 2.2: An Example of Module Specification 

Transport service provider is then through an interaction point TSAP. The interaction point 

is associated with a TS_primitives channel, and the module plays a role of TS_user. Thus, at 

this interaction point, the module can initiate the interaction primitives T _CONNECT ..request, 
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T _CONNECT ..response, T ..DATA_request, T _xi>D..request and T ..DISCONNECT ..request. It 

is also allowed to receive other interaction primitives defined only for the TS_primitives channel. 

2.3 Refinement and Process 

In Estelle, the actual behaviour of a module is specified either indirectly as a Refinement 

or directly as a Process. If a module is not a complete self-contained entity, it is decomposed 

into a set of co-operating submodules, each of which may be further decomposed. The behaviour 

of the module is the integrated behaviour of the submodules and hence it is called a refinement. 

A module can also be specified as a process which describes the corresponding finite state 

transition model of the module. 

An Estelle refinement specification includes definitions of internal channel-types, submodule­

types, and specifications of the corresponding processes and refinements. After the definition of 

the internal structures, module instances are created and connected accordingly. If necessary, 

interaction points of internal module-types may be replaced by those of their parent module­

type. 

A typical refinement of a Transport system is depicted in Figure 2.3. According to this 

refinement, a Transport...system module is refined as a Transport_ref refinement, which is de­

composed into two TS_user modules, one ATP module, two RS modules, and four System 

modules. The corresponding Estelle specification is shown in Figure 2.4. After defining the 

internal structures, module instances are declared. Module instances are then connected pro­

vided that they play the different role of a channel through which they interact with each other. 

There are no replacement because Transport...system module is a closed system. 

An Estelle process definition specifies the queueing discipline associated with each interac-
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Transport Service users 
r--------. 

u I u2 

ATP 
► (Abstract Transport Protocol ) 

Transport_system 

AS I AS2 

Network Service Providers 

Transport_ref 

Figure 2.3: Typical Refinement of a Transport System 

S I 

S2 

S3 

S4 

System 
Service 
Providers 
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CHAPTER 2. ESTELLE 

REFINEMENT Transport..ref FOR Transport.system; 

(* Constant and Type Definitions *) 

(* Channel Definitions *) 

(* Module and Process/Refinement Declarations *) 

(* Module Instances *) 

UI : TS_userJnodule WITH TS_user_process(I); 
U2 : TS_userJnodule WITH TS_user_process(2); 

ATP : ATP .module 

SI : SystemJnodule 
S2 : System_module 
S3 : System.module 
S4 : System_module 

RSI : RS_module 
RSI : RSJnodule 

WITH ATP ..process; 

WITH System_process(I); 
WITH System_process(2); 
WITH System_process(3); 
WITH System_process( 4); 

WITH RS_process(I); 
WITH RS_process(2); 

(* Connection Establishments *) 

CONNECT 

Ul.TSAP 
U2.TSAP 

TO ATP.TCEP[I]; 
TO ATP.TCEP[2]; 

ATP.NSAP[I] TO RSl.NCEP; 
ATP.NSAP[2] TO RS2.NCEP; 

ATP.SAPT[I] TO SI.SEP; 
ATP.SAPT[2] TO S2.SEP; 
ATP.SAPN[I) TO S3.SEP; 
ATP.SAPN[2) TO S4.SEP; 

END Transport..ref; 

Figure 2.4: An Example of Refinement Specification 

9 



CHAPTER 2. ESTELLE 10 

tion point, the initial condition and all possible transitions of the corresponding extended finite 

state machine. For each interaction point of a module, an individual queue is reserved for the 

queueing of incoming interactions from the peer module before these interactions are considered 

as input by the module. These queues are on a first-come-first-serve basis and their lengths 

are either infinite or zero. If the queue length is zero, an output interaction is not queued but 

consumed immediately as an input by the rendezvous recipient module. 

A process specification of a TS_user module is presented in Figure 2.5. The queueing 

discipline of its interaction point TSAP, local variables, primitive functions and procedures are 

first declared. The local variables are then initialized as the initial state of the corresponding 

extended finite state machine. The remaining specification is a list of transition definitions. 

2.4 Extended Finite State Machine 

The operation of a process is modeled as an extended finite state machine which is a 

finite state automaton extended with the addition of variables to the states, parameters to the 

interactions, time constraints and priorities to the transitions. The state space of a module 

is specified by a set of variables. One distinct variable, state, if defined, is used to represent 

the state of a finite state machine upon which the module is based. This major state variable, 

together with other context variables, determines a state of the module. 

The general idea to express a transition, is that WHEN an interaction arrives, a transition 

has to be performed, FROM the current major state TO a new major state PROVIDED a 

condition is satisfied, through an action. The associated action of a transition is specified in 

terms of Pascal statements, and may include the initiation of output interactions with its peer 

modules. 
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PROCESS TS_user_process ( TSjndex: integer) FOR TS_user..module; 

QUEUED TSAP; 

(* Type and Variables Declarations *) 

(* Primitive function and procedure Declarations *) 

INITIALIZE 
BEGIN 

END; 

userjd := TSJndex; 
state := IDLE; 

for qkind := Q_NO_EXPEDITED..DATA to Q_EXTENDED..FORMAT do 
quaLof..service.misc[qkind] := FALSE; 

quaLof..service.class := CLASS_TWO; 
sndcnt := O; xsndcnt := O; 
rcvcnt := O; xrcvcnt := O; 

(* Transition Definitions *) 

END TS_user_process; 

Figure 2.5: An Example of Process Specification 

11 



CHAPTER 2. ESTELLE 12 

Transitions are classified into input and spontaneous transitions, depending on the pres­

ence of an input interaction (i.e. WHEN clause). An input transition occurs whenever there 

is an input interaction at a specified interaction point. A spontaneous transition lacks such a 

WHEN clause and may be executed regardless of any input interactions. 

The Estelle state machine is non-deterministic in the sense that in a given major state 

and at a given time, several different transitions may occur. As mentioned in the ISO FDT 

document, an Estelle specification must not depend on non-deterministic choices. In order to 

handle the non-deterministic situation, an ANY clause is used to select a random value of the 

specified enumerated-type variable(s). Such an ANY clause can only be used in spontaneous 

transitions. 

Figure 2.6 lists some transition types, which occur in a TS.user module. Transition one is 

an input interaction which is initiated by the Transport data arrival. The data arrival causes a 

cyclic transition from the major state Alive to itself, and an execution of procedure Store_data 

to store the data in a buffer pool. Transition two inherits the WHEN clause of transition one. 

When data arrives and the current major state is Receiving, counter rcvcnt is incremented 

and procedure TS_output is executed to notify the Transport service user the data arrival. 

The current major state is also changed into Alive as a result of the transition. Transition 

three is a spontaneous transition that is performed whenever the Transport service user has a 

request. Whenever the user wants to initiate a Transport connection and the present major 

state is Idle, it first sets up the parameters of the interaction primitive T .CONNECT ..request. 

The request is then sent over the TS.primitives channel at interaction point TSAP and the 

major state of the module is changed to Waiting. 
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TRANS 

TRANS 

WHEN TSAP.T..DATAJndication 
FROM Alive TO Same 
BEGIN 

Store_data ( pool, TS_user_data) 
END; 

FROM Receiving TO Alive 
BEGIN 

rcvcnt := rcvcnt + 1; 

TS_output ( userJd, response); 
END; 

PROVIDED TSJnput ( userJd, request ) 
BEGIN 

case request.kind of 
T_CONNECT: 

if state = Idle then begin 
state := Waiting; 

(* Transition One *) 

(* Transition Two*) 

(* Transition Three *) 

OUT TSAP.T_CONNECT..request ( local...addr, 
remote...addr, 
quaLof..service, 
request.data) 

end; 

END; 

Figure 2.6: An Example of Transition Specification 

13 



Chapter 3 

The Implementation Strategy 

In automatic implementation of protocols, a generic structure and organization of the imple­

mentation must be adopted. The implementation strategy adopted for our C-Estelle compiler 

is similar to the one used by G. Gerber in his Pascal-written Estelle compiler [Gerber83]. This 

approach makes use of data structures to represent module instances, interaction points, and 

interactions among module instances. A set of pre-written generic functions is used to allo­

cate, initialize, and link data structures according to an Estelle specification. The pre-written 

functions also dispatch an output interaction to a recipient module, select the next available 

interaction, and make non-deterministic choice. Since different systems have different global 

environments and scheduling schemes, two special functions, namely systemJnit and sched­

ule have to be tailored according to each specification. Figure 3.1 depicts the procedure of the 

semi-automatic implementation. 

3.1 Data Structures 

There are three major data structures which represent module instances, interaction points 

and interactions between module instances. When linked appropriately, these data structures 

can represent an arbitrarily complex Estelle specification in a simple manner. 

14 



CHAPTER 3. THE IMPLEMENTATION STRATEGY 15 

Primitives 
Estelle _____r7__.__ + Generic _F7__ Executable 

Specification----U---Generated+Functions~Code 
Code 

C-Estelle C 
Compiler Compiler 

Figure 3.1: Procedure of the Semi-Automatic Implementation 

In Figure 3.2, data structure signal....block represents an interaction (i.e a signal) and is 

struct signaLblock { 

} ; 

int signaUd; 
struct signaLblock *next; 
union { 

} !vars; 

Figure 3.2: Data Structure of an Interaction 

comprised of three attributes, namely signaLid, next, and lvars. For convenience, interaction 

primitives, specified in channel-type definitions, are numbered. These numbers are used in 

signaLid to identify an interaction. The attribute next links data structures to implement the 

queueing of incoming interactions at an interaction point. The values of the parameters of 

an interaction a.re stored as a single attribute lvars in the data structure. A simple scheme is 

applied to avoid the name conflict of having identical parameter names in different interaction 

primitives and identical interaction names in different channel-types. Interaction primitives 
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under the same channel-type are grouped in a dummy structure which then appears as the only 

attribute of a variant of lvars. Similarly, parameters of an interaction primitive are grouped in 

a dummy structure which works as the only attribute of a variant of the interaction primitive. 

Representing a module instance, data structure process_block (Figure 3.3) consists of 

struct process_block { 
struct process_block *next; 
char pjdent[MAXJDENT..LENGTH+l]; 
struct channeLblock *chanJist; 
struct process_block *refinement; 
int (*proc_ptr)(); 
union { 

} lvars; 
}; 

Figure 3.3: Data Structure of a Module Instance 

six attributes, namely next, p.ident, chanJist, refinement, proc_ptr, and lvars. Similar to 

signaLblock structure, a variant is added to attribute lvars of the structure in each module 

type definition. Local variables are grouped in a dummy structure as a single attribute in each 

variant. The attribute proc_ptr is an entry point to a transition function which implements the 

transition process of the corresponding protocol machine. The remaining attributes are used 

to identify the corresponding transition function, and to build and link various data structures 

modeling the specified system. 

Representing an interaction point, data structure channeLblock (Figure 3.4) contains the 

following attributes : target_proc, and target_channel are entry p9ints to data structures which 

represent peer module instance and its corresponding interaction point; signaUist points to a list 

of incoming interaction; queued is a boolean flag that indicates the queueing discipline ( queued 
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struct channeLblock { 
struct channeLblock *next; 
int *signalJist; 
int *target_proc; 
struct channeLblock *target_channel; 
int queued; 
int cjd; 
int index.num; 

}; 

Figure 3.4: Data Structure of an Interaction Point 

or rendezvous) of the interaction point; cJd identifies the interaction point and additional 

indexJ1um is used in case of multiplexing channel; finally next links all interaction points of a 

module-type. 

3.2 Interactions 

AB mentioned in Chapter 2, interactions can be classified into queued and rendezvous 

types. Output queued interactions from a module are queued in the recipient module. They 

are considered by the global scheduler as input interactions to the recipient module in due time. 

On the other hand, output rendezvous interactions are sent to and consumed by the recipient 

module immediately. If the recipient module is not in a state which the incoming interaction 

can initiate a transition, the interaction is added to the awaiting incoming interaction queue 

and will be considered immediately for execution in due time by the global scheduler. 

3.3 Transitions 

In a given global system state, a number of different transitions belonging to different 

module instances is possible. The selection of the next available transition to be performed 
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is made by a global scheduler, which is not part of the Estelle specification but part of the 

run-time support for the implementation. A simple round-robin scheduler is applied to choose 

the next available transition. 

For a given input interaction and a given major state of a module instance, several different 

input transitions may occur. Similarly, several spontaneous transitions can exist for a given 

major state of a module instance. For simplicity, the first possible transition in the same order 

as defined in the specification is selected to be performed. Hence, for each cycle, in addition 

to which module instance, the global scheduler selects the next input transition only based 

on the interaction point and the input interaction, or just determines whether a spontaneous 

transition to be taken next. 

3.4 System Interfaces 

For each implementation, the protocol implementors will have to manually look after the 

system-dependent portion of the implementation, i.e. interactions between the specified proto­

col machine and its working environment. For instance, interactions with the operating system 

usually cause an undesirable blocking of the protocol machine and the solution to avoid such 

blocking varies largely on different machines and different operating systems. However, working 

environment such as the operating system is always known and its interfaces with the specified 

system can be well defined. This a.priori knowledge can be used to simplify the system interac­

tions. In our implementations, UNIX 4.2 socket primitive select is used to preview the socket 

so that the blocking is avoided when reading a socket. Thus, output to the environment can 

be implemented by invoking a set of system-dependent routines, while input from the environ­

ment by including spontaneous transitions which invoke the same set of routines. The global 
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scheduler is fully aware of when and which spontaneous transition should be performed. 



Chapter 4 

The C-Estelle Compiler 

In order to support the implementation strategy described in Chapter 3, a C-Estelle com­

piler was developed by D. Ford [Ford85] who rewrote G. Gerber's [Gerber83] Pascal-written 

Estelle compiler in the language C on a VAX 11/750 running UNIX 4.2bsd. The compiler was 

then modified by K. Chan, adding the capability of recognizing the additional scope of tran­

sition group. The previous version of the C-Estelle compiler was erroneous and insufficiently 

tested. In order to make it useful, the performance of the compiler has been greatly enhanced 

by transforming the BNF grammars into LALR grammars which best fit the Y AOC compiler 

for generating the parser of the C-Estelle compiler. The grammar rules were also rewritten so 

that the compiler supports complex data structures such as variant record and pointer which 

are commonly used in real-life protocol specifications. Furthermore, the translation routines 

were modified to produce optimized and better-organized code. During the test period, many 

minor problems, such as incorrect translation of Pascal for statement, have also been fixed. 

The enhanced compiler was later ported to several SUN Workstations and protocol implemen­

tations such as hot potato, alternating bit and ISO class 2 Transport Protocol are successfully 

running among the VAX 11/750 and SUN Workstations. 

20 
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The enhanced C-Estelle compiler reads Estelle protocol specifications and produces C code. 

The generated C code is then incorporated with sets of system-dependent and pre-written 

generic routines into a C program which implements the specified communication protocol. This 

semi-automatic construction of protocol implementation is the main purpose of the development 

of the C-Estelle compiler. 

4.1 The Structure 

Similar to many other compilers [Aho78], the C-Estelle compiler is partitioned into several 

phases as shown in Figure 4.1. Both lexical analyzer and parser were generated by the UNIX 

standard utilities LEX [Lesk75) and YACC [John75) respectively. Error handling, table man­

agement and code generation were embedded in the YACC grammar input file. Currently, the 

compiler does not optimize the generated C code. It completes the translation in a single pass 

of the source specification. 

A large number of semantic analysis is left untouched to the C compiler which compiles 

the generated C code into executable ma.chine code. The C-Estelle compiler only verifies the 

semantic conditions that would not be detected by the subsequent C compilation. For instance, 

the C-Estelle compiler ensures, for each connection, that the two connected module instances 

play the different roles of the same channel-type. On the other hand, the C-Estelle compiler 

does not verify that arguments are of types which are legal for an application of an assignment. 

4.2 Translation Issues 

4.2.1 Pascal to C Problems 

Since Estelle is a. Pascal-based language, translating Pascal code into C code is a primary 

issue addressed during the implementation of the C-Estelle compiler. Although both Pascal and 
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Care high-level programming languages which have similar control flow constructions and basic 

data types, they have enough differences which makes the direct translation a very difficult task. 

The following discussion has a great impact on the performance and the use of the C-Estelle 

compiler. 

First of all, both languages have very different approaches in defining the scope of objects. In 

Pascal, procedures and functions can be nested, and identifiers have no storage class attributes. 

The scope of an identifier is the block in which it is declared and every sub-block in which the 

identifier is not declared again. Whereas in C, only external functions are supported; function 

nesting is not allowed, and identifiers have a special storage class attribute. The scope of an 

identifier within a source file is basically the same as the one in Pascal. In addition, identifier 

which is not declared in any block, can be accessed within any blocks that is lexically after its 

declaration. Furthermore, the scope of externals, identifiers whose storage class are extern, 

may be defined in another source file. Two proposed solutions are to use multiple output files 

and to make all identifiers distinct and external. Both solutions are not straight-forward and 

very cumbersome to implement. For simplicity, the use of Pascal's scoping rules and nested 

routines is disallowed. Thus, when using the C-Estelle compiler, both global variables and 

nested routines are not allowed. 

Secondly, self-referential data structures are declared in different sequences. Due to the 

syntax of Pascal type declaration, self-referential data structure is defined in a way that a self­

referential pointer to an object can be exceptionally defined before the object is defined. C 

does not have this syntax problem and an object must be defined before its reference pointer 

is defined. Hence, direct translation is not possible. The solution employed in the C-Estelle 

compiler is to define all objects first and then pointers. 
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Thirdly, the formats of input/output statements are very different. Directly translation 

is so difficult that only Pascal's output statements, i.e. write and wrlteln statements, are 

supported and translated into equivalent C printf statements. Other forms of input/output 

statements can be embedded in primitive routines. 

Furthermore, Pascal's unique WITH statements and SET operations cannot be translated 

directly into any equivalent C statements. Additional statements and pre-written functions are 

required to make the translation. These Pascal features are currently not supported. 

4.2.2 Estelle to C Considerations 

In addition to the above-mentioned difficulties of translating Pascal into C, there are certain 

aspects of Estelle which are very hard to handle. These are the additional Estelle scoping rules 

introduced by the enabling conditions of a transition type and the additional variables used by 

the run-time supporting routines. Some restrictions have been imposed in or.der to overcome 

these problems. 

First of all, the parameters of an input interaction, which are declared in the corresponding 

channel-type definition, are accessible within the scope of a WHEN clause. To avoid the name 

conflict, the parameter names cannot be used for local variables for any module-types which the 

interaction may occur. Secondly, if the interaction point identifier in a WHEN clause is indexed, 

the index identifier(s) must be declared as local variable(s) of the corresponding module-type. 

Thirdly, since an ANY clause introduces additional variable(s) within the scope of the clause, 

a block is used to hide the new variable( s) from other transitions. The value of the variable 

is randomly selected from its specified domain by a pre-written function. Furthermore, addi­

tional identifiers are generated by the C-Estelle compiler and used by the run-time supporting 

functions. These identifiers should never be in conflict with other identifiers of the specification 
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which are still present in the generated C code. 



Chapter 5 

Implementation Example - The ISO 
Transport Protocol 

In order to evaluate the usefulness of the C-Estelle compiler, a fairly complex ISO class 

2 Transport Protocol has been implemented both semi-automatically by using the C-Estelle 

compiler and manually in an ad hoc manner. Both implementations run on a VAX 11/750 and 

several SUN Workstations under the UNIX 4.2bsd operating system. After an overview of the 

protocol, the design of its implementation is presented. The two implementation approaches 

and the experience learned from the implementations are discussed, followed by a tentative 

comparison of these implementations. 

The state diagram of the protocol is depicted in Appendix A and the Estelle specification 

of the protocol in Appendix B. The system initializer and scheduler of the semi-automatic 

implementation is listed in Appendix C and those of the manual one in Appendix D. 

5.1 Overview of The ISO Class 2 Transport Protocol 

The ISO Transport Protocol !CCITT85,1SO82b] is a connection-oriented, end-to-end pro­

tocol, providing a reliable and efficient mechanism for the exchange of data between processes 

26 
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in different computer systems. The class 2 protocol assumes a highly reliable network service, 

such as X.25, and has the ability to multiplex multiple Transport connections onto a single 

network connection. It also uses a credit allocation scheme to provide an explicit flow control 

because a single network connection flow control is insufficient to handle individual flow control 

of multiplexed Transport connections. 

Since Transport layer provides end-to-end data transfer independent of the nature of the 

underlying network, the Transport service is the same for all classes. The ten Transport service 

primitives have been listed in Figure 2.1 and Figure 5.1 displays the sequence in which these 

primitives are used. In order to communicate over a Transport connection, nine types of 

Transport protocol data units (TPDUs) are used. These TPDUs, shown in Figure 5.2, carry 

parameters which play an important role in the protocol mechanism. 

Each TPDU conveys a destination reference which uniquely identifies the Transport con­

nection within the receiving Transport entity. Thus, multiplexing is allowed. After a Transport 

connection is established by exchanging CR/CC TPDUs, each data TPDU (DT/ED TPDU) 

is sequentially numbered. This sequence number is used for the flow control. A Transport 

connection is released whenever the Transport entity has sent or received a DR TPDU. The 

entity will then ignore any incoming TPDUs except DC/DR TPDUs. This explicit termina­

tion mechanism allows that a Transport connection is released independently of the underlying 

network connection. 
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5.2 Design of the Implementation 

5.2.1 Structure 

The overall structure of an Estelle specified Transport entity ha.s already given in Figure 2.3. 

There are four different module types : TS_user, ATP, System and RS. Module instances of 

these four module types are incorporated with each other to represent a Transport entity. 

A TS_user module is a sub-layer which converts a Transport service user request into a 

well-defined Transport service primitive or changes the module state according to the request. 

A user task in the working environment can bind with one or more than one TS_user modules, 

and hence one or more than one Transport connections. An ATP module is an abstract Trans­

port entity that establishes Transport connections, transfers data, and releases connections. A 

System module simulates a system timer for an incoming network connection or the flow control 

of a Transport connection. Finally, a RS module converts the network service primitives into 

system calls. It also sets flag and stores data whenever an incoming network event occurs. 

5.2.2 Implementation Issues 

Since there are many unspecified properties in the protocol specification, these proper­

ties have to be determined for each particular implementation such that the resulting imple­

mentation best fits the working environment. Unspecified properties can be classified into 

implementation-defined and implementation-dependent. 

Implementation-defined properties are left unspecified and their definitions can vary from 

one implementation to another. For instance, in the TS_primitives channel definition, data 

type ADDR_TYPE is implementation-defined. Type ADDR_TYPE represents Transport ad­

dress which may be implemented differently by different implementors. Similarly, the buffer 
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management and data exchanged by TS_users and a TS_provider are all implementation-defined. 

Their definitions and implementations are left untouched to the implementor. 

On the other hand, some properties are defined in the specification but their implementation 

is left unspecified. Examples of such properties are functions constructing Transport protocol 

data units. The format of a Transport protocol data unit is specified but how to construct such 

a TPDU is unspecified. 

5.2.3 Scheduler Design 

A simple round-robin scheduler is employed to select the next available input interaction. 

This scheduler scans queues associated with each interaction point of module instances for the 

existence of any input interactions. The first available interaction is chosen and passed together 

with the information of the associated interaction point to the module instance which executes 

a transition. 

As mentioned in Section 3.3, for a given input interaction and a given module state, a 

number of transitions may be possible. Which possible transition is chosen to execute depends 

on the priority and the order it is defined in the specification. Generally, the chosen transition 

is the one has the highest priority and the first one which enabling condition is satisfied. 

At a regular time interval, a module instance which has spontaneous transitions is attempted 

to execute one of its spontaneous transitions. The first possible spontaneous transition which 

enabling condition is satisfied will be performed. This simple scheme works fine provided 

that the enabling conditions of the spontaneous transitions are all distinct, and spontaneous 

transitions are defined in a well-defined order. 

The above consideration of spontaneous transitions does not work satisfactorily for those 

initiated by the working environment. A module instance require to execute such a transition 
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immediately whenever the working environment notifies the module an external event occurred. 

The global scheduler is fully aware of the external events, and invokes the module instance to 

perform an action immediately whenever such event comes up. 

5.3 Semi-Automatic Implementation 

The protocol was first specified in Estelle from the description in the ISO document 

[CCITT85,IS082b] and by adapting many other specification attempts [IS084,NBS83]. The 

Estelle specification was then compiled by the C-Estelle compiler to generate parts of the 

protocol implementation. After this automatic process, the generated code was incorporated 

with the pre-written generic routines and the system-dependent functions into a C program to 

implement the protocol in question. 

5.3.1 The Generated Code 

The generated code can be classified into three types. The first type is the deftype and 

structure declarations which represent module instance, interaction, type and variable defini­

tions. These definitions are required by the run-time executives to store the state information 

of the protocol machines. The second type is a set of functions which creates, initializes and 

constructs data structures in the specified fashion. The last type is another set of functions 

which implements the transition processes of the protocol machines. 

Most data structures are self-explanatory and the special data structures have been discussed 

in Chapter 3. They are the wheels of the protocol machines which are initialized and constructed 

by the generated functions to implement the specified protocol. 

Initialization functions can be further subdivided into two types, depending on their corre­

sponding Estelle specifications. A function which corresponds to an Estelle Process definition 

,. 
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creates and initializes a process_block data structure. This process_block represents one of 

the protocol machine instances in the specified system. Other type function corresponds to 

an Estelle Refinement definition. It creates the sub-module instances and links the instances 

according to the Estelle CONNECT and REPLACE definitions. Both type functions use a set 

of pre-written generic function to perform the creation, initialization, and integration of the 

specified system components. 

Transition functions are simply a series of conditional expressions and statement blocks. 

Expressions evaluate the enabling conditions of a possible transition type and block performs 

the associated action. Unless priority is set, input transition types are always generated ahead 

of spontaneous transition types. Only the first transition type, which enabling condition is 

satisfied, will be performed at a given time. 

Each transition type is generated in the same pattern. For an input transition, the operation 

is preceded by tests on the identity (signaLid) of the received interaction and those (cjd and 

index..num) of the interaction point at which it came. Additional tests, which correspond to 

PROVIDED clause and/or TO clause, may also preceded the operation. At the end of each 

transition type, a goto dispose statement passes control to the signal data structure dispose 

code. For a spontaneous transition, the pattern is the same except that no tests on the identities 

of the input interaction and the interaction point. For an ANY clause, which requires to make 

a non-deterministic choice, a sub-block is created. The specified variable(s) is declared within 

the sub-block and its value is randomly selected from its defined domain by the pre-written 

function random..select. 

Creation and destruction of signal structures which represent interactions between module 

instances are implemented completely within the generated transition functions .. The output 
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statement OUT is implemented as follows. First, a signal structure is created and initialized 

with the given parameters. The signal structure is then passed to a generic function out together 

with the information of the interaction point at which the module instance interacts with the 

peer. If the interaction is a queued type, the signal structure is placed in the reception queue 

of the peer module instance. Control returns to the initiating module instance immediately. If 

the interaction is a rendezvous type, the transition function corresponding to the peer module 

is invoked directly at this point. The destruction of the signal structure is handled by the 

recipient module instance. 

5.3.2 Integration Process 

For convenience, deftype and structure definitions of the generated code were first extracted 

into a well-known header file defs.h. Two run-time supporting functions, system..init and 

schedule, was then modified to suite the specified system. Finally, the generated code was 

incorporated with the system-dependent primitives and the run-time supporting functions into 

a C program to implement the protocol in question. 

Besides defs.h, there is another global header file listdefs.h included in all files. File 

listdefs.h contains macro definitions and specification-independent cbanneLblock structure 

declaration. This structure is used to represent an interaction point of a module. Another 

important header file fdtglobal.h, which is required to be modified for every different specifi­

cation, contains the declaration of all global variables and external functions. This fdtglobal.h 

file is included only in the main routine file. There a.re two key global variables : p_block and 

signaLpending. During execution, pointer p_block is an entry to the current machine in­

stance, and signaLpending is a counter of interactions which have been initiated and are 

waiting for execution. 
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To execute, function system..init first builds and interconnects the specified machine in­

stances. The working environment is also set up so that the upcoming scheduler can be fully 

aware of any interested external events. Function schedule is then invoked to repeatedly scan 

all interaction queues associated with channels and to activate the module instances. Module 

instances which contain spontaneous transitions are tried at a regular time interval. Further­

more, whenever an external event occurs, the scheduler will activate a proper module instance 

to perform a special-designed spontaneous transition. 

5.4 Manual Implementation 

Based on the same specification and the semi-automatic implementation, the protocol was 

re-implemented manually in an ad hoc manner. Most principles discussed in Chapter 3 and 

previous Section 5.2 were followed. The overall structure is similar to that of the semi-automatic 

implementation. The Transport entity is implemented as a single task in the operating system. 

It communicates with user tasks and the network service provider through operating system 

primitives (i.e. system calls). The major difference to the semi-automatic approach is the 

implementation of scheduling interactions which are initiated either by a module instance or 

the working environment. 

Instead of using a single data structure process_block, three different data structures, 

TS.MACHINE, TP .MACHINE and NP .MACHINE, are designed to store the state information 

of a Transport service user, a Transport connection and a network service provider respectively. 

Three global variables, tslist, tplist and nplist, are declared as head pointers of the three 

different control queues. 

The interactions between the Transport entity task and the working environment, user tasks 
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and the network service provider, are based on the inter-process communication primitives 

provided by the operating system, i.e. UNIX 4.2bsd socket primitives. Spontaneous transitions 

initiated by the working environment were handled in an ad hoc manner similar to that in the 

semi-automatic implementation. Whenever an external event occurs, the corresponding module 

instance is activated to perform a proper transition. A series of input transitions, initiated after 

this spontaneous transition, is then performed until all module instances are in a steady state. 

As a result of this transformation, the global scheduler is simply a loop which performs the 

processing for the incoming external events one after the other. 

5.5 Results 

The size of different parts of the resulting implementations are shown in Table 5.1. Both 

implementations used the same INET primitives to interact with the network service provider. 

This network service provider is usually a daemon process in the operating system. INET 

primitives provide an uniform access scheme which can be easily modified to suite different 

network service access schemes in different systems. Similarly, TSP primitives were used for 

the interactions between Transport service user tasks and the Transport entity task. 

Both implementations spent a large amount of code in TPDU encoding/decoding and buffer 

management. However, they were not very difficult to implement because of the powerfulness 

of the C language. The encoding/decoding of TPDUs were implemented almost the same in 

both implementations. Both implementations shared the same header file pdu.h and differed 

only in the passing parameters when decoding a TPDU. Since the buffer management was 

implemented intermixed with other code in the manual implementation, no separate entry for 

its code is in the table. 
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PART OF 
Number of Number of Program size 

PROGRAM 
Functions and Source Lines (in bytes) 
Macros 
(A) (B) (A) (B) (A) (8) 

INET 
PRIMITIVES 9 509 10969 

TSP 
PRIMITIVES 

I 2 7 4 I 17073 

ESTELLE 
SPECIFICATION - 20 - 19 10 - 46351 

GENERATED 
CODE 

20 1447 9 I 4 2 I 

RUN-TIME 
SUPPORTING 

76 I 6 3420 770 78821 2 IO 5 4 

ROUTINES 

PRIMITIVE 
ROUTINES 

82 3049 71340 

(A) --- Manual Implementation 

(B) --- Semi-Auotmatic Implementation 

Table 5.1: Sizes of Different Parts of Implementations 
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Forty two additional functions were used in the semi-automatic implementation. Sixteen of 

them were pre-written run-time supporting functions and the rest were specially designed for 

the global scheduler to activate the specific modules. 

During the semi-automatic implementation, the most difficult task was integrating the gen­

erated code with the working environment. Both the implementation scheme using by the 

C-Estelle compiler and the behaviour of the working environment must be thoroughly under­

stood in order to design the specific spontaneous transitions and to modify the two special 

run-time supporting functions : systemJnit and schedule. 

The weakness of Estelle forced the static allocation of data structure process_block which 

represents a module instance. The number of Transport service users and network connections 

must be pre-defined in the specification. The pre-definition was then used by the C-Estelle 

compiler to generate code that the corresponding process_block structures must be allocated 

in the global initialization phase. To execute, a pre-defined number of Transport service user 

tasks must be executed so that the implemented system went through the global initialization 

stage. 

The advantages of the semi-automatic approach came from the well-constructed generated 

code. Since the code was generated directly from a formal specification, the conformation was 

almost guaranteed. The well-constructed code also localized hazards and system dependent 

properties in a. few routines, and hence, maintenance was much easier. 

On the other hand, the most difficult task of the manual implementation was to design 

the interfaces with the operating system for interactions with the user tasks and the network 

service provider. Interactions initiated by the working environment intermixed with other input 

interactions. The layer structure was less clear in the resulting code. A longer debugging period 
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was spent and more exceptional cases were required to be handled. 

Although the manual implementation was based on the same specification, no restriction 

on static allocation was imposed in the global initialization phase. Any number of Transport 

service user tasks can interact with the Transport entity. The Transport entity required no 

static connections to go through its initialization phase. Furthermore, any number of network 

connections can be established during the execution. 

The manual implementation is tied closer with the working environment. An interaction 

was implemented as simply a function call. It was always faster than the semi-automatic imple­

mentation because of the reduction of a large amount of generated code which had additional 

swapping overhead for module interactions. 

It took approximately one year to study and implement the ISO class 2 Transport Protocol 

manually in an ad hoc manner without an Estelle specification. The protocol was subsequently 

specified in Estelle, and re-implemented semi-automatically in about two months. After this 

~ 

exercise, we gained a profound experience on protocol implementation and a good insight 

to the ISO class 2 Transport Protocol. Therefore, in our last attempt, it took us only one 

month to re-implement the protocol manually. From our experience, we think it saves protocol 

development times and it is good practice to start with the semi-automatic approach to protocol 

implementation, assuming one is familiar with the FDT compiler. The code produced this way 

is well structured and easy to maintain. Even if the code is not efficient enough, we can always 

attempt a manual implementation subsequently. Protocol implementations generally require a 

lot of time on the development of the interfaces with the working environment. The manual 

approach required additional time to implement module interactions. It also required more 

debugging time than the semi-automatic approach. 



Chapter 6 

Conclusions 

6.1 Thesis Summary 

This thesis has discussed a semi-automatic approach to implement a protocol. The protocol 

is first specified in the Estelle FDT, and translated into C code by using an automatic tool, 

C-Estelle compiler. The generated code is then incorporated with system-dependent primitives 

and run-time supporting functions into a C program which implements the protocol in question. 

Despite the fact that the semi-automatic implementation tends to be slow and an initial 

effort is required to learn the Estelle FDT and the automatic tool C-Estelle compiler, the new 

approach has the following benefits : 

1. Easy maintenance because the generated code was constructed in a simple and easy-to­
read pattern. 

2. Good conformance because the specification was directly (automatically) translated into 
C code. 

3. High portability because large amount of code was generated in standard C language and 
system-dependent properties were easily located and modified. 

4. Less development time because large amount of code was translated directly from the 
specification. 

Experience on implementing the ISO class 2 Transport Protocol has verified the usefulness 
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of the C-Estelle compiler and the semi-automatic approach to protocol implementation. From 

our experience, it is a good practice to approach a protocol implementation in the following 

sequence: 

1. Implement the protocol semi-automatically using the C-Estelle compiler. 

2. Optimize the semi-automatic implementation, especially the generated code. 

3. Re-implement the protocol manually (if high performance is required.) 

6.2 Future Work 

Further study on the semi-automatic implementation would be useful, in that a protocol 

can be implemented by two completely independent teams, one using the traditional ad hoc 

approach and the other, the new semi-automatic approach. This way, more concrete and 

objective comparisons can be made on the performance and usefulness of the new approach. 

Further testing of the C-Estelle compiler on complex protocols such as ISO class 4 Transport 

Protocol is a natural extension of our thesis. Such experiment would further demonstrate the 

usefulness of the compiler . Several enhancements to this technique and the compiler are under 

consideration. 

In order to enhance the C-Estelle compiler, some of the high-level code for interactions 

of the specified system with its working environment should be generated by the compiler. 

Dynamic structure, such as Process allocation should be supported by the Estelle, and hence 

the compiler. Since global variables, WITH statements and SET operations are very useful 

features, the compiler is also required to support them. 

To be realistic, the compiler should be modified to support a general multi-process struc­

ture instead of the procedure-oriented structure. Since UNIX 4.2bsd is a procedure-oriented 
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operating system, a better working environment, such as V-system and Team Shoshin which 

are process-oriented , may be chosen. 

To overcome the Pascal-to-C problem, a C-oriented FDT would be desirable for protocol 

implementors who are working in C/UNIX oriented environment. However, the apparently 

irreversible decision by the ISO standard committee (ISO TC 97 /SC 16/WG 1 - FDT Subgroup 

B) has been made to keep Estelle Pascal-oriented. Whenever the final Estelle standard becomes 

available, the compiler will have to be adapted to that ( our implementation of the C-Estelle 

compiler is based on [ISO84], not the latest [Estelle85J). 

AP, the last comment, the compiler can be well used as a simulation tool, and could be 

incorporated with some validation, testing and performance evaluation facilities so that we 

can have a complete automatic system for the design, validation, implementation, testing and 

performance evaluation of the communication system. 
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MOOUL£ Transport system; 
END Transport_system; 

il.£,IN£M£NT Transport ref fOR Transport_system : 

( ............... .... ......................... .. ...... .. .... ..... .. ... . . 
Tran3port Protocol machine Module 

(• Constant and Type Definitions 'l 

(• Channel Definitions•) 

CHANNEL TS_primitives TS user, TS_provider ) 

BY T.S user : 

T_ CONNECT_ request 

T_ CONNECT_ response 

T_ DATA request 

T XPD_ rcc-.;.:,st 

3Y TS_provide·: 

T CONNSC7 1nd1cacion 

T CONNECT confirm 

T DATA indication 

T XPD_ indication 

T DISCONNECT indication 

END TS primitives: 

from transp<>rt adr1: 
To transport addr 
Qual of serv1ce 
TS us er- ddta 

Qual of s~r•Jice 
TS user=data 

TS user c ~~ t:.J 

~=om t=anspo=: ace= 
To transoort acer 
Qual of ~er·✓Ice 
TS user- data 

Qual of service 
TS user- data 

TS user data 

TS_ user_ data 

;>.ea son 
TS user data 

CHANNEL NS_primitives 

BY NS user : 

tlS user, NS_prov1dec ) ; 

N_CONN£CT_request 

N _ CONNECT respons•~; 

N_DIITA_request 

N DlSCONNECT request. 

DY N!:i_pcovidcc : 

N CONNECT indication 

From network addr 
To network. addr 
QOS -

NS user dat;i 

from network addr 
To network addr 
oos -

/',OOH TY~"> S , 
,\DD:\ - TY?E , 
QOS T'fPS ; 
Dl,·:- A i·:-~):: 

QOS '!"Y?~: : 
DAT". ·:·,;,,: ) ; 

.:._r::i)il. TYP S ; 
QOS TYPE; 
DATA TYPE ) ; 

QOS TYPE; 
DATA TYPE I; 

DATA TYPE ) ; 

DAT.-\ TYPE J ; 

RE.>.SOt-1 TY ? C:: 
D;..•~-~- _T°7?E 

NADDR TYPC: ; 
NADDR- TY?C:; 
NQOS TYPS J , 

NDATJ\ TYr-S ) . 

NADDR TY?E; 
NADDR- 'fYPS; 
NOOS_TYPE l; 



N CONNF.CT __ confinn; 

N DATA indication 

N DISCONNECT inrlicdtion 

NS user da t., 

Redson 

NDATJ\_ TYPE ); 

RF.ASON_TYPE ); 

S user, S_provider 

Timer _ reque:.;t N,1me TIMl::H - TY!'E; 
Time integer ; 
Seqno SEQUf.NCf. TYPE ) : 

Timer cancel Name TIMEH TYPE.-
Seqno SEQUENCE TYPE ; 
Allseq: boolCdll 

OY S_ pcovider 

Timer_ response Name TIMER TYPE; 
Seqno SEQUENCE TYPE ) ; 

END System_pr1m1tives; 

MODI/Li: TS u,;c: _::iodule; 

inte<;er :c?, TS -..;s~: _ rnodul~ ; 

END TS_use~_p~ocess; 

MODULE System_module; 

SEP System_primitives S_provider ); 

END System_modu l e; 

PROCESS System_process 

SND Systern process. 

Sys_index integer) :OR System_module : 

( ........................................................... ) 
MODULE ATP_module; 

TCEP 
NSAP 
SAPT 
SAPN 

1::ND ATP_module; 

ARR.AY(TSAP TYPE) Oc TS primitives ( TS_provider ) ; 
ARRAY{NCEP-TYPEJ Oc NSyrimi tives ( NS user); 
ARRAY(TSAP-TYPE) OF System__primitives ( S user); 
ARRJ\Y{NCEP=TYPE) Oc System_primitives I S=user I; 

PROCESS ATP_proces:; cOR ATP_module; 

QUEUED TCF.P, NSAP; 

(* Variable declarations•) 

VAR 
tc 
nc 

TP TABLE; 
NS=TABLE; 



,.idta, temp 
ndat.a 
pdu 
: id 
"id 
·ik ind 

" reason 
nsdu len 

D/\T.'I TYPE: 
NDATA TYPE: 

1 TPDU _TYPE; 
TS,\P fO TYPF:; 
tJCf..i" - 1D- TYPS; 
CJ ML)..::: :'. [~JD; 

SE:QUENCE TYPE : 
REASON_ TYPE; 
1nt~'Jer: 

(• Primitive functions and procedures•) 

PROCEDURE Add_request( V/\H tc 
data 

TP MACHINE; 
DATA TYPE) ; 

FUNCTION Alloc ref : RE:FERENCE: TYPE; 

PROCEDURE Concatenate 2 N~DU ( VAR nc 
data 

PROCEDURE Const:ruct AK( VAR packet 
cclt 
da,f 
seqno 
e:,tenced 

PROCEDURE Cnnstrucl CC! VAP ~a~kc~ 

?ROCEDURE Constr~c: CR(~~~ ~ac~~: 
::,uf :il 

s ref 
lsuf 
fsuf 
maxsz 
qos 
data 

PROCEDURE Construct:_ DC( VAR packet 
dref 
s ref 

PROCEDURE Const r11ct Di, ( 'lt\P. ::i.ackc: 
:.:=~i 
s re t 
:,eJ$0Jl 

d.ata 

PROCEDURE Construct OT( VAR packet 
dref 
eflag 
seqno 
extended 
data 

PROCEDURE Construct ERR( VAR packet: 
dref 
reason 
data 

PROCEDURE Construct XAK( V/\R p<lCkt?t. 
dref 
xseqno 
extended 

PROCEDURE Construct - XPD( VAR packet 

NS MAC:-l!N,: ; 
DAT/\ T':'l'E I ; 

D/\T/1 TYPE; 
Sf:QUENCE: TYP 
REfER!::NCS T':' c-. 

SE:QUE:NCE TYP 
boolean - ) , 

D,\'!'A T':'PS; 
SEOU~t-:CS ,·:?C:; 
P.E: :.,-,c.,JC~ .. : =:.. ; 

R£r~:=.~NC":: :-·:·:~~: . 
SUF?" ::,: T':' f :.; 
s:i::~:•: '!':'?::: 

(}US 7·~·?::: 
or.~ :-: -:-·:?~ 

D:\T.; :'":'?~; 
SEQU:::NCE ,·:?:::.­
R£r"£?£NC~ 7':?S: 
SUFFIX TY?E: 
SUFFIX- TYPi::; 
integer; 
QOS TYPE; 
DATA TYPE: 

DATA TYPE; 
REFERENCE TYPE; 
REFERENCE-T~PE 1 

DAT,~. TYPE; 
REFE.:~:.NCC: "!'~·p;-:: 
REFE?.SNC:: TY!.':':. 
REASON T~?S. 
0/\TA TYPE 

DATA TYPE; 
REFERENCE TYP!::; 
boolean; -
SEQUENCE TYPE; 
boolean; -
DATA TYPE 

DATA TYPE: 
REFERENCE TYPE: 
REASOIJ TYPE; 
DATA TYPE 

D/\T/1 TYPE; 
r!EFERENCE TYPE : 
SEQUENCE TYPE; 
boolean - l , 

D/\TA TYPE : 

PRIMITIVE; 

PRIMITIVE:; 

l'HIM!TIVE ; 

l'IUMITIVE , 

PRIMITIVE; 

PRIMITIVE; 

PHIMITTVE ; 

PRIMITIVE; 

PRIMIT!VE : 

PRIMITIVE; 

so 



PROCEU\JIH'. £x.L 1 '1l:t NSO\J ( -

dr~f 
xseqno 
extended 
data 

REFl::RENCE TYPI::; 
SEQUENCE TYPE ; 
boolean; 
DATA TYPE. I ; 

dat., 
VAR pdu 

TP TAB1,;; ; 
DATA TYPE; 
TPDU =TYPE I : TSJ\P ID TYPE; 

V/\H nbu I' fe r NUUFFER PTR : 

PRIMITIVE: 

PRIMITIVE : 

V/\11 nd <-1ta NDATA TYPf. ) ; PRIMITIVE ; -
PROCED\JHE Ext f<lCt TPDU ( nsd.Jta NDJ\TA TYPE ; 

V/\H tpdata DAT/\ T YPE: 
V/\R nslen integer I : 

PROCEDURE Extract TSOU( buff c r BUftl::R TYPE ; - VAR tsdu 
v11n count. 

PROCEDURE Get net _ addr( VIIR naddr 
taddr 

PROCEDUR E Merqc( VAR buffer 
pdu 

PROCEDURE Release( VAR bu[~cr 
scqno 
kin-:.: 
u11s•:!q 

PROCSDU~2 ~eSL!~l~ ~J~<l( VAR ~c 
v;;?{ nc 

PROCEDURE Retrieve( buffer 
seqno 
kind 
VAA data 

DAT/\ TYPE; 
SEQUENCE TYPE 

11,\DDR TYPE; 
ADDH _T YPE I 

BU?FER PTR : 
TPDU TYPE ) : 

6UrfEI( PT i;; 
SE:QUENCE TYPF: ; 
?CIJ KlfJD7 
:::>ooie: ,Jn 

':"? >~AC i~ r.,•~~ , 
::::; =:-,;,c := r,1 ,, , : 

7? :-· . ..-\C:~i~~:-:, 
~;s-:-1--,cr. INS ) ~ 

:-? ~: . .-,c:: .::;;2. 
~5=!·!..-\CHIN~ >, 

BUFFER PTR; 
SEQUENCE TYPE : 
POU KIND; 
DATA TYPE ) ; 

FUNCTION Same_naddr( naddrl, naddr2 : NADDR TYPE 

PROCEDURE Store( VAR buffer 
data 
seqno 
kind 

FUNCTION SEQ ADD 

BUFFER PTR; 
DATA TYPE. ; 
SEQUENCE TYPE ; 
POU KIND ) ; 

S£QUENCE: T'iP!::; 

PRIMITIVE; 

) ; PRIMITIVE ; 

PRIMITIVE: 

PRIMITIVE; 

PRIMITIVE: ; 

PRIMITIVE; 

PRIMITIVE; 

PRIMITIVE : 

PRIMITIVE; 

boolean ; PRIMITIVE; 

PRIMITIVE; 

scql, seq2 
e :-:~\~nded t>oolec1n) SE()U:2NCS TY~£; PRIMITIVE : 

FUNCTION SEQ_MINUS scql, seq2 
extended 

PROCEDURE Uncode ( VAR pdu 
ndata 
extended 

SEQUENCE T':'PE; 
boo l ean) SEQUENCE TYPE. ; PRIMITIVE ; 

TPOU TYPE; 
NOATA TYPE; 
boolean l ; PRIMITIVE; 

(••········ .. ··········--·· ...... .. ~ ... ,, .... ................................. "" ..... . 
FUNCTION Acceptable_CC( qos 

srer 
pdu 

OEGIN 

Accept~bl c cc := TRUE; 

QOS TYPE; 
Rf.f"t:RENCE T'/P~; , 
TPDU_ TYPE 

if pdu.vcc:lion 
pdu . dat.a.dlen 
pdu.maxsz 

thCll 

< > VERSION) or 
oc > MAX CRCC SZ 

0 - ) 

boo l •:?dn: 
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: = FALSE:. 

!:· pdu.qoJ class<> qos.class) and l µdl:.0..:l.~ <:-- qos.1..":l,1:;;:, 

then 
.-\CC(!pl ,lbl('! _cc :-= FALSE; 

NOT qo:,,mi:,c(Q NO :::<PE!)!Tf:l' :J,\T.~ ' 
pdu , qo:, . misc ( Q--NO-E:,PED 1 TED -c>A'f A 
NOT <j05.mi:,,:(Q-,::li':CK:;UM IN :J;ir.J 
pt.Ju qos misc i:}-CH~.:C:'\SU:-1-IN·-~:.;::} 
NOT qos .misc [t) -~JO ;·1.ow CON'fHOLJ 
r>du . qos .misc (Q - NO- f"LOW- CONTROL I 
NOT qos .misc (Q- EXTEND£0 FOR/-A_a.TJ 
pdtt . <10s. misc ( Q ~ £XTEND~:D= FORMAT I 

Acccptable_CC := FALSE : 

dlld 

,lll<i 

) 

,1nd 
) 

•)I 

Ol' 

if pdu drcf <> sref then Acccptable_CC ·~ f"ALSE 

r:tJll; 

(• .... "' ... .. .... .. .. " •• ••••• • ••• ♦ .......... .. .... . .. . . . ... . .... . ... . . . . . . . t 

~-lli~CT fC',U :\ccepL,1bl-~ CR ( qos 
pd u 

Q MISC KIND ; 

',. .. •:• .. ::· ·'· 

0 

QOS _TYPE , 
T?DU TYPF: 

if I pdu.qos.class <> qos.class) and I pdu.~cls <> qos.class) 
then 

::rm; 

Acceptable_CR := FALSE; 

if NOT qos. misc(Q NO EXPEDITED DATA] 
pdu , qos. misc[Q- NO- EXPEDITED- DATA] 
NOT qos .misc[Q-CHECKSUM IN USE] 
pdu.qos . misc(Q-CHECKSUM-IN-USE] 
NOT qos -misc[Q- NO FLOW CONTROL] 
pdu.qos . misc(Q- NO- FLOW- CONTROL] 
NOT qos . misc[Q- £XTENDED FORMAT] 
~du . qos . misc[Q- £XTENDED- FORMAT] 

th,:,~ - -

Acr.cptable_CR cALSE 

and 
) 

and 
) 

and 
) 

and 
) 

or 

or 

or 

( ......................... ... . ... ... .. ... . ... .. .. .... .... ... .. .. . ... . ) 
FUNCTION Choose CldSS( qos . oos TYPE 
OEGIN - -

Choose_ class qos . class 
END; 

(••···*·• ..................................................................... .. ....................... . ............ 1 

PROCEDURE Construct addc( VAR transport addc 
suffix -

!::ND . 

t c ..in:; p<>r t ddd 1 • :, u ff ix 
transport : addc.prefix 

nt.?t adl.i r 

suffix; 
net_ add r 

ADDR TY?E; 
'.;Uf"FIX TYPE; 
N.I\DDR _ ';' ypf;) ; 

, .................................................................................................................................... ) 

FUNCTION Get _ ncep( nc NS TABLE; 
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VAR 

EN!J; 

nid 
notdone 

notdone 
nid 

I nil<.lrlr, f naddr 

NCEP ID TYPE; 
bo'">le"cn"'? 

· = T!{UE ; 
I; 

N,\l>OK TYl'i:. 1 

whi l1.."? notdv1,, .- .1nd ( n .i..d ..: -= ~-!.-\'.•: NC:•:P !O ) do 
bt~q i :1 

if Same naddr ( f _ na<.ldr, nc: fnidl . f _ net_ add1· 
then bcgtn 

notdone f~LSE : 
Get ncep - ~ nid 

end -
else 

nid 
end: 

n id : = l; 

nid • 

(•A new network connect1or1 is required •1 

while notdone and ( nic ~- ~AX NCEP 10 do 
begin 

1f nc (nid). stat~ = NID!...2 
then beq:n 

not done =ALSS; 
G~?t ncep n iC 

<2nd 
-~ l SC 

;i ic :-: .:.n -

FUNCTION Get_suffix( transport_addr : ADDR_TYPE 
BEGIN 

SUcFIX_TYPE; 

Get_ suffix transport_addr.suffix 
END; 

FUNCTION Min( m, n 
BEGIN 

integer ) 

END; 

if rn :-. n 
then Min = n 
else Min m 

FUNCTION Ne multiplexed( np 
BEGIN -

ENO; 

if np. linlt > l 
then Ne multiplexed 
else Ne=multiplexed 

integer; 

NS_MACHINE 

TRUE 
f"ALSE 

: boolean : 

( ................ " ................ ,, .................................... ) 
FUNCTION New_nc_required( nc 

laddr, faddr 
VAR 

BEGIN 

nid 
notdone 

notdone 

NCEP ID TYPE ; 
boolean; 

TRUE; 

NS TABLE; 
ADDR_ TYPF. boolean; 
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END; 

n :d • l; 

while not.done and ( n1d -:~ ~-~:,_NCEP_ID ) dn 
begin 

if ( nc(nid) .:ILH, <> 11,DLE ) <lllC 

end; 

SrJme nc1ddrl nl.: . ~l1dl f ~~r cHldr, f,lddr pt••IL 
then beqin 

not.done 
New nc required 

end - -
el,;e 

nid nid • I 

= F:\l.SE: 
FALSE 

if not.done then Ncw_ nc_ r-:equire,i := TRUE 

FUNCTION Size( data 
BEGIN 

OAT.II TYPE integer , 

Si7.e data.dlen 
END; 

(• Initialization •) 

INITIALIZE 
BEGIN 

END; 

begin 
tc[tic!] . stat-:, 
tc ftiC} nc0r., .:.~ 
tc [tic) , :;re· rce: 
tc[tid] .dst-cet 

tc(ciC] . s~d_upp~:_~~~~ 
tc [ ti.d] , snc! sec 
tc [tic!] , snd-una: 
tc[tidJ . snd: nxt 

tc (t id). i:cv nxt 
tc[tid) .i:cv=uppec_edge 

tc(tid] .x seq 
tc [tidJ . x - n>ct 
tc(tid] .xsnd nxt. 
tc[tid] .x_una 

C~OSLD; -. •J' 

~NO~F:~ED Rr~~o~,·r~-
U~~E?INEl) - ~EFER~:;c~. 

- C . 
0 : 

• 0. 
= o. 

: = 0; 
· = DEF BUFFER M; 

. ., O: 
·• O; 
·- 0; 
• a O; 

foe qkind : • Q NO EX?EOITED DATA to Q EXTENDED FORMAT do 
tc(tid] . qual_Qf_se~vice.miscjqkind) :=- FALSE; 

tc[t1dJ .qual of secv:ce cl~ss · • CLASS _ TWO , 

tc[tidl. reason 

tc[tidl . max TPDU s1ee 
tc(tid ) . DT_ maxlen 

tc(tidl . sbuf 
tcftid l . i:buf 
tc[tid l . xbuf 

end; 

NIL; 
NIL; 
NIL 

· • NORf'IJ\ L; 

DEF TPDU SZ; 
· = 0£f=TPDU= SZ - NOR_ o·r_ H£J\OE~~- 5Z: 

foe nid : = l to MAX_ tJCF.P IO do 
begin 

nc(nidl .state 
nc[nid] . link 
nc (nidl . nqos 
nc(nidJ . sbuf 
nc[nid) . i:buf 

end 

(• Initialization•) 

N IDL::; 
0; 
CLASS TWO ; 
NIL; -
flIL 



( • 'f [ l !l :~ if_ l ,,n :; • I 

( .. ) 

TRP.NS 

TRANS 

•.~IIF:N TCEP(tidJ _T CONtJECT request. (' Transition l '! 
!'! \OV!DED ( ( ~::lc.idJ . stal,_' = CLOSED .ind 

( N~~.., n c: requ1.rcd( nc, F~,"":n trctn~;port ,1ddL, 
- To t. rdllS;or~ dddr f ) :!~~G 

Choose class( Qual of ser~ice-, = CLASS TWO> 3~d 
Siec( fs_user_data-1 ~- MAX_CRCC_SZ - ) l 

ill:G[N 
Lr. ( t iii). c,tatc : -· CALLING ; 

tc It id) . loca 1 addr 
tc(tid) . remote_addr 

·= From transport addr; 
To_ transport_addr; 

tc(tid] .1 suffix 
tc(tid] .f= suffix 

Get suffix( From transport a ddr I : 
Get=suffix( To_transport_add r ) ; 

Get net addr( tc(tid]. l net addr, From transport addr ) : 
Get= net :=addr( tc[tid) . f=net=addr, To transporc._adt1r l . 

nid : = Get_ ncep( nc, c.c{tid).l_net addr, tc[tid] . f net a<::::: l , 

tc/tid) .ncep_id : = nid; 

tc(tid) .qual_o£_service : = Qual_ of_ser•Jice; 

Store (tc [tid]. s=>uf, TS user_data, 0, 0) : 

· = tJ\~AITING, 
= tc{tid) .l nee addr; 

c.c(tidi .f-net. - ar.!dc ; 
: = l; -

ncfnid) . state 
nc{nid) . 1 net add• 
nc[nid) f-net : ·::de 
nc(nid) . link 
nc[nid) . nc;os : = Q~.~1 of se:v:ce.cl2~s : 

OUT NSAP{nid) . N CONNECT resucs: nc (n d) ~ 1 r: et addr, 
nc(n di . f-net-adr.!r , 
nc(n d].nqos ) 

WHEN NSAP(nid) . N CONNECT confirm 
PROVIDED nc[nid].state-a NWAITING 

BE:GIN 
nc{nid) . state :- NOPE:N ; 

for tid : ~ 1 to MAX TSAP ID do 
begin - -

if (tc(tid] . ncep id= nidl and 
(tc{tid] . state = CALLING) (• Transition 2 •1 

end 
END; 

then begin 
tc(tid) .stac.e · • CR_ SE:NT; 

tc(tid) . src ref Alloc ref ; 
Retrieve(tc(tidl .sbuf. 0, 0, temp); 
Release(tc(c.id) . sbuf, 0, 0, TRUE); 

Consc.ruct _CR( dat.d, tc{tid) . rev upper edge, 
tc(tid). s rc- re f, -
tc(tid) .1 s uf f ix, 
tc(tid] . f - su f fix, 
tc(tid} . rnax TPDU size, 
tc(tidJ . qua T of service, 
temp I; - -

Concatenate 2 NSDU ( nc[nid), data) 
end (• if-CALLING ') 

t· for loop') 

WHEN TCEP(tid) . T CONNE:CT request (" Transition 3 ') 
PROVIOE:D ( ( tc(tid} .state• CLOSE:D and 

( NOT New_nc_required( nc, From transport addr, 
To_ transport addr I) and 
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(' ') 

(' ') 

Choose...:: .,:;:( :_)u.1t_,_'\! _:;•":'J!.C·_ ... ) ·. Ll.:\:-i::. r'610) ~nd 
Size ( TS u:;r,r data ) ~• ~c>.:< C?.CC SZ ) ) 

OEGiN 

: ; 1'.1<.ll locc1l .:itkic 
~-::It id I :-emote d(~d: 

.. :>In_:.:.. lo::opl": :_.H ... L.!::; 
~ , t:: H!:ipoc:. .~ ... --:ti:: 

! • It icl I 
t.: [t. ,cl I 

!,tiff i :-; 
.'.;U ff l :< 

i• · r :;i i f f ix ( ": · r om t r ,l n s po rt. (l dd r } : 
,,)r. :>11 i ~ i :{ C To_ t ~-1n~,po rt _ .. !Jd L ) • 

G,it net. addr( tc):_; ;11 
(;,it : nct: _ adctr ( tc Ir. Ld I 

·• • .t· ,Hidr, r·rom transport .. 1c!dr ) , 
: - ''""-~-1d1.lr, To _ _L.r.lnsport_.lddr ) : 

nid , ~ Get_ ncep( nc, tc[:id].l _ net _ ,lddr, tc(tid).( net addr ); 

tc[t.id) . ncep id 

nc)nitJJ link :i ,: I n id l . l ink + l ; 

Lc)Lid) . src ref ! Joe ~c•f : 

Construct CR( daL,, . 1~1 . rcv_uiJper_2dg~, 
"-!d) , src ref., 

id) . l sUfr1x, 
:-: · - idl . : -:3 uf~i:-:, 
·_ - • l cJ I , ma:< T [' DU 5 i Z e, 
- - - l d I , 'lu, l _ of_sec·.- ~ce, 
-· . : :·'.i •:~ ;. j -~ ;: ,1 ) ; 

wr..::N ~;s_:.._;>!:--:i<..: J .'~ ':)_: .. --: .7-._ -~:::.::~::..0n 
?ROVl!)S~ nc I :1.!.d) st~:~ = :.~:?SN 

BEGIN 
nsdu len := 0; 

while ( nsdu len < NS use~_data.dlen ) do 
beg.i11 

Extract TPDU( NS user data, data, nsdu len ); 
tid := Deterrnine=TC( tc, data, pdu ); 

if t id <> 0 
then begin 

Uncode(pdu,data,tc!~ici] . qual_of_service . misc(Q_EXTENDED_fORMAT]) : 

if pdu.kind = C::\ (• CR TPDU ') 
th n begin 

f t c I t id J s: ., c. -~ = ;: LOS £D 
hen b'2gin 

if Accept3b~ -~ C?( 
then begin 

(' transition q " I 
i:C It. u"! I . qua~ of S~!r-·,1 ice, pdu ) 

tc ltidl. s.:,1t~ ,= CR_RCVO; 

OUT SAPN)n;d) .Timer_ cancel( INCOMING_ NC, 0, TRUE) ; 

tc(tid) .f suffix 
tc[tid) 1: suffi:, 

tc[tidl . f net addr 
t.c(tidl . l-net-addr 
tc(tid) . n c .?p 1d 

; = pdu . lsuL 
pdu . fsuf; 

· = nc(nid) .f net addr; 
nc(nid]. l - net - addr; 
nid; - -

Co nst~uc t _ .,dd r( t.C[tid) . loc al a,jdr , 
tc(tid) l su(fiK, 
tc I tid I . 1: net. addr I . 

Construct _ addr( tc(tid) . remote addr, 
tc[tid) . f suffix, 
tc(tid) , c: net_ addr ); 



( .. ) 

tc ( tidJ . qual of service 
tc(tid ) . ma x_TPDU_size 

tc(tid) ,!st ref 
tc ( tid) snd:upper_edge 

pdu.qos; 
Min( pdu.maxsz, 

tc(tid) . max_TPDU _sizc) . 

::: pdu ~srcf : 
pdu . t;dL; 

OUT TCEP(tid) .T_CONNECT_indication( tc(tidl. remote Jtidr, 
t.c(tidl. local _a c!dr, 
pdu . qo :;, 
pdu . dJt: .1 

end 1• Acceptable CR ') 
else begin 

tc(tid) .dst ref 
tc(tid) .reason 

(' transition 5 ') 
pdu. sref ; 
NEGOTIATION_rAILED; 

Empty data( temp); 

Construct ORI data, tc (t id) . dst ref, 0, 
tc[tidJ . rea s on, temp) . 

Concatenate 2 NSOU( nc[nid], data) 
end (' NOT Acceptable CR -•) 

end ('CLOSED•) 
end; (' CR TPDU ') 

if pdu.kind = CC (• CC TPDU " ) 
then begin 

if tc f tid) .state = CR SENT (• Transitio~ o ") 
then begin -

if Acceptable CC( tc(tid) cual o( servscc , 
tc(tid) . src ref~ 
pdu ) -

then be g ~:, 
tc(tid ) . state ESTABLISi-iEO ; 

tc (tid) . dst ref 
tc[tid) . snd- upper edge 
tc[tid] . qua! of service 
tc [tid] . max_ TPDU_ size 

?du . s!'.er; 
pdu . cct; 

• s pdu . qos: 
pdu . maxsz; 

OUT TCEP[tid].T CONNECT confirm( 
end - -

pdu . qos, pdu.data) 

el se begin 
tc (t i d] .state CLOSING; 

· = pdu.sref~-

(* Acceptable CC *) 
(* Transition 7 *> 

tc [tid] .dst ref 

tc{tid] . reason 

Empty_dacal temp); 

·• NEGOTIATION_FAILEO ; 

OUT TCEP(tid) .T_DISCONNECT_indication( tc(tid) .reaJon, 
temr,) ; 

Construct_DR( data, tc[tid] .dst ref, tc[tidJ . src_ref, 
tc[tidl .reason, temp); 

Concatenate 2 NSDU( nc(nid], data J 
end (" NOT Acc eptable CC "I 

end I• CR SENT "l 
end; ( • CC- TPDU 'l 

if pdu.kind • !JT (* OT TPDU *) 

then begin 
if tc(tid) . state• ESTABLISHED (' Transition 8 •) 
then begin 

i! ( pdu. seqno = tc (tidJ. rcv_nxt l and 
( pdu.seqno < tc(tid] . rev upper edge 

then beg in - -
Merge( tc(tid).rbuf, pdu ); 

tc[tid).rcv_nxt :• SEQ_ADD( tc(tid).rcv_nxt, 1, 
tc/tid).qual_of_service.misc(O_EXTENDED_FORHATJ ); 



if pdu.eflag (' a complete TSOU in the bu((er ") 
then begin 

Extract TSOU( tcltid).rbuf, dat.1, n ); 
Rel,,.,se( tc(tid) r:,uf, tc(tid) , ,cv _n ►:t, L>T, c'.l.L$,: l: 

tc(tid) . rcv upper edge : = SSO ,\00(: .~(tid).rcv upp•~t· -~dg<', n, 
tCrtidJ~qur1l _ _1)[ _s•• t.;ic.:(.' i~1..;c((' _:-::,T!~NnEfl_~-.-s:~:M.•\T: J ; 

OUT TCEP[tid).T_ DIITll_ indicdtion( dilt.i ); 

(' compute the current buffer space ') 
n := SEQ MINUS( tc[tid].rcv upper edge, tc(tid) . rcv :nt, 

tc It id) .qual_of_service .misc (O_EXTENDED_f'"ORM:<:::- J l: 

Construct AK( data, n, tc(tid] .dst ref, tc[tid) .rev :-.:-:t 
tc[tid) ~qual _ of _ se rvi. ce .c.1i:;c(Q_ SXTf.NDF:D :'ORM/IT! -

Concatenate_ 2_ NSDU( ncfnidl, data ) ; 

if n = 0 then 
OUT SAPT[tid) Timer reque~t( \·i[:-JDOI-J, \·!N_ :,NC , ill 

else 
OUT SAPT(tid) . Timer cancel( WINDOW, 

end ( • pdu . erlag ·) 
end (" receivable ~7 ') 
else bec;1n (• Transition 

r.c It ici). reason INV:'\LID T?DU; 

:c: tic.; 
::: It ic; 

Concatenate 2 NSDU( ~c[nidl, 
end (" NOT ~ e~eivable ~T •1 

end (• ESTABLISHSD •) 
end: (' DT TPDU ') 

if pdu . kind a AK 
then begin 

or 

') 

) : 

if (( tc(tid) .state - ESTABLISHED 
( tc(tid] .state• CLOSING)) and (• Transition 10 "l 

( pdu.seqno >• tc(tidl . snd una 
then begin -

tc(tid] .snd una ·• pdu . seqno; 
tc(tid] .snd=upper_edge ·• SEQ_ADD( tc(tid) .snd_u?per_ed~~. 

pdu.cdt, tc (tid) .qual_of_service .misc (Q_ EXTENcl:'.D_ fOR!':.0.,; 1 . 

Re lease( tc(tid] . sbuf, tc(tidl . snd u~a. DT, F~ ~3 S ): 

Resume data( tc(tid), nc(nid ] J 
and 7• SSTA3LISHED and AK o , "I 

end ; c· AK TPDU •) 

if pdu . kind = XPD 
then begin 

if tc(tid] .state E ESTABLISHED 
then begin 

if pdu . seqno z tc(tid) . ~_ nxt 
then begin 

OUT TCEP(tid) .T_XPD_indication( 
c• Transi~ion 

pdu.data ); 
l l • l 

Construct XAK( data, tc(tid] .dst c..:?f, tc(Lid) . :< n >< t, 
tc(tidJ .qual of_serv1ce . :n1sc(Q_EXTl::NDED f•'.: !'.'1/\TJ ) : 

Concatenate_ 2_ NSDU( nc(nid], data I ; 

tc(tid] . x nxt : • SEQ ADD( tc(tid] . x nxt, 1, 

end 
tc( t id) .qual_of_secvice . misc(Q_EXTENOED_fORHATI 

else begin 
tc(tid) . reason · • lNVALlO_ TPDU; 



Construct. ::RR( d,1td, tc(tid) dst ref, tc(ti.J) . c•~J:• 
pdu.data ); -

Cnncatcn.ir.:? 2 '.ISOIJ( nc[nidl, data ) 
end 

end (" ~;:'!,i)t.;"SIIE.D t1nd UK-) 
end; 

if pd11 . k. i nci /·.:'\ 
then bc:t.7111 

it (( lC{!. t, Ji ;;( "-·· E:;T.-\lll.I:;;1r:n ,1r 
( tc[tid) .:Hdt•~ CLOSiNG)) .:ind 

( pdu. 5C'l'"' ' u: ( t id I . :-: un ,1 ) 
then begin ( 4 Transitior1 !2 •> 

tc(tid) .x una := tcltid) .xsnd_nxt: 

Resum-e xddL-3( tcitidl, nc{nid) ) ; 
Resume-d,:it. .1 ( tcltid), nclnid)) 

end 
end: 

if pdu.kind = ~ RH 
then l:,egin 

if ( tc:lt i ... ~j S(dt•;' 

t.c[t 1 ... ~] .s~=:(! 
tc[t i,o) stat.,, 
tc ( c. .:....:: j s~ :.1 c..c 
tc(t :.~~J St:.Cl~C 

then bet:;:.n 

CALLING or 
CR SENT or 
CR-RCVl) ) or 
f:STAl3LISHED or 
CLOS ING l ) 

tcltid) c.::.,tc - CLOS!NG. 

==:npt y _,:..~ t:. -~ ( :-:::.:: ) : 
!:"ea son . = ?~(Y:-G:'.::.:•L s;~:~OG. 

(' Transition 1 1 'l 

OUT SA?:!.::.::; -:-:::--.-.:,r_c.ancel( ALL_ TI;1ER , 0, TRUE ) ; 

Construe._ D~( c.sca, t c[tid) . dst ref, tc(::i c:! ) .src r-:;:, 
reason, temp): 

Concatenate 2 NSDU( nc(nidJ, data 
end (• active connection *) 

end; ( • ERR TPDU •) 

if pdu.kind % DR 
then begin 

if ( ( tc(tid] . state 
( tcttid) .state 
( tc(tidJ . state 

then begin 

CR RCVD) or 
- CR-SENT) or 

ESTAOLISHED) 

(• Transition 14 •) 

OUT TCEP!tid) . T _ DISCONNECT indication( pdu.ceason, 
pdu.data ); 

Construc~_DC( c,na, tc(tid).d,;t. re!, tc{tid) .s cc re:.) ; 

Concatenate 2 NSDU( nc{nid], data); 

OUT SAPT(tid) .Timer_cancel( ALL_TIMER, 0, TRUE); 

if Ne multiplex~d( nc(nid) 
then begin 

tc(tid).state : • CLOSED; 

Release al 1 C tc ltid), nc lnid) 
end (" Nc_ multiplexed •) 
else 

tc[tid) . st~te DISCON _ WAIT 

end 
end; 

(' CR SENT, CH_RCVD, ESTABLISHED•) 
(' DR-TPDU ') 

if tc(tid).state - CLOSING 
then begin 

if ( I pdu . kind •DR) or ( pdu.kind •DC) 



TRANS 

TRANS 

then begin 
tc[tid) . state : = CLOSED; 

OUT SAPT[tid) . Timer_ cancel( ALL_ TIMSR, 0, TRUE:) ; 

if NOT Ne mult1ulc:<ed( nc[nid) ) t!:,~:1 
OUT NS~Plnid~ .N_DISCONNECT_reques~ ; 

Rclr.,,1,;~ ,•111( tc(tid), nc[nid] 
,~nd ( -;- LJH TL'l)lJ, DC TL'DlJ •) 

..:!nd 
end 
else begin 

(' CI.OS!fH; •) 
( • t id < > 0 • l 

if (pdu.srcf <> UNDEFINED REFERENCE) dnd 
(pdu . kind <> DR) and (pdu.kind <> DC) 

then begin 
Empty_data( temp); 

Con s truct DH( da t a, pdu . sref, 0, pdu . ::-e,1 s on, temp) . 
Con c atenate 2 NSDU( nc(nid), data l 

end - -
end 

end 
END ; 

(' wh1l,~ ioop ') 

~ll!EN NSAPlnid] .N CONtJEC T cndication 
PROVIDED nc l ni a ] . stat ~ - = NIDLE 

9EGIN 
r1clnid} .st~te . ,, Nors~i. 

;.c lnid) . 1 i'!et -:!<::•.::­
,, c I n id l . f- n er_ - .s c ,i c 
c,clnidl , lTn ►. 

':'a networ-k add:-; 
'Z" ::::-Om ~:etwo~k a(;Cr : 

OUT NSAP(nid) N CONNEC7 ~esponse; 
CU'!' SAPN [nid) , TT:r1~::- _ :-:·.::-::-s~ ( 1:-;coM!NG_fJC, ~::::- ~-JAl'T, .) 

END; 

WHEN NSAP[nidJ .N DISCONNECT indication 
PROVIDED ( nc[nid) .state~ NOPEN) 

BEGIN 
nc(nid).state :• NIDLE; 

if nc(nid] . link > 0 
then begin 

for tid :~ 1 to MAX_ TSAP_ ID do 
begin 

if tc(tid] . ncep id• nid 
then begin -

if ( ( tc(tid].stat<e 
( tcltid) .st.,Jte 
( tcltidl state 

th •~ n begin 
tc [tid) .scat-~ 

Empty_data( data); 

CR RCVD ) or 
CR-SENT l or 
!::STI\BLISHED l 

CLOSED; 

OUT TCEP(tidl .T_DISCONNECT_indication( 

(* Transition 11 *l 

( • Transition 18 •) 

LOSS OF NETWORK_CONNECTION, 
data - ,, -

ou·r SAP'!"(tid) .Timer cancel( ALL Tll'lt::R, o. TRUE ) ; 
Release all( tc(tid), nc(nidJ ,-

end; (' CR_RCVD, CR SENT, ESTADl,15:iED 'I 

if tc(tid) . stc1t0 
then begin 

tc(tid) .st,He 

CALLING 

Empty_data( data ) ; 

("" °rtJt1!litio11 19 •) 

CLOSED : 

OUT TCEP(tid) . T_ OISCONNECT_ indication( 
NETWORI< CONNECT FAILED, 
data,,- -



TRANS 

OUT SAPTlticJ).Timer cancel( .>.LL TIMER, 0, TRU~; ) . 
Release dll ( tc(tid], nc(nid) l-

end; c7 CALLING ') 

if tc (t id I . :;t,H.<.' • c:..OSING 
then beqi:i 

tc[tid) . state CL~SED ; 

if Ht~,l: t,>n ..-: :- NURt-L·\L 
t. t1<~11 b·• : : l\ 

Empty d ,,ta ( t.it1tJ. ) ; 

c• Tr-r1n:Jition 20 '> 

OUT T~~~(tid) .T_DISCONNECT indicaLion( . 
LOSS Of NETWOHK_CONNECTIO;J, 
ddtd -) 

end; 
Release all ( tc(tidl, nc(nid} 

end; (•CLOSING*) 

if tc[tid) . state 
then begin 

tc It id) stdte 

DISCON WAIT 

:= CLOSED; 

Rele.-,se dl!t tc/tid) , nctnid)) 
end (~ DISCON WAIT 1 ) 

(• Transition ;~l •, 

end (' matching transport connection ") 
end ( • for loop • ) 

e n d ( ' link > 0 ' ) 
else 

OU, SAPN/nid) .T,rr,er cancel( HJCOM!NG_NC, 0, TRUE) 
2ND; 

WHEN TCEP l tic:J ':'_CO~JNECT_res;,onse (• Transition 22 ' J 
PRO'IIDED ( t tc[cid) .Stdte = CR RCVD ) and 

C~oos-: class ( Qual-o: s ;~c·.·ice = CLASS nJO I and 
Size ( Ts L!Se!'_dc t a ) <= :--L:!..:, c~c: sz > ) 

BEGIN 
tc[tid) . state := ESTABLISHED; 

tc(tid] .src ref 
tc(tid) .qual_of_service 

Allee ref; 
Qual_of_.service; 

Construct_ CC( data, tc[tidJ.rcv upper edge, 
tc(tidJ . .src-ref, -
tc I tid} .dst - ref, 
tc(tidJ.l suffix, 
tc(tid] .f- suffix, 
tc[tid} .max TPDU size, 
tc[tidJ .quaI of service, 
TS _ user data- ) ; 

nid : = tclc.icJ .ncep id: 
Concacendte 2 NSDU ( nc/nid), datd 

END ; - -

WHEN TCEP(tid] .T DISCONNECT request 
PROVIDED tc[tidJ . state a CR RCVD 

BEGIN -
tc [ t id J . state : = DISCON _WAIT; 

tc(tid] . src ref 
tc [tid]. reason 

Construct_ DR( dat.a, 

Allee ref; 
CONN_ REJECT; 

tc(tid] .dst ref, 
tc(tidl .sec-ref, 
tc(tidJ .reason, 
TS user_ data l ; 

nid :c tc(tid].ncep id ; 
Concatenate_ 2 _ NSDU ( nc(nid], data); 

Release_ all( tc(tid), nc(nid] 

( • Transition 23 •) 



TRI\NS 

TRANS 

TRI\NS 

TRANS 

!':ND ; 

!'ROVIDED 

:JEGIN 

t c [ t id] . s r_ .1 t e 
t C { :-. i .. ! J ::it l ~.t': 

C::~ :)r.Ni ) v:· 
:-:s·f.:-.. n!...; .;:-::::!·· 

END , 

t.c ltidl .:;tate 

tc It id I . ,e,15on 

·.c!: -. ~j !:,r. :,1(, 

tc It cl) :;re :·et, 
r.c It d]. ,e.:i:-i,rn, 
TS 1is1~r_d~1ta ) ; 

Store( tc[tid) .sbuf, data, 0, DR); 

nid := tc[tid] .ncep id; 
Resume data( tc[tid], nc[nid] ); 
OUT SAPT{tid] .Timer _ c.rncel( ALL ...:TIMEh, -. T!'I.UF: ) 

WHEN TCEP [ t id) . T DAT.'\ cec::-::st 
PROVIDED tcltid] stic~ ·= ESTl\8LISHED 

BEGIN 
Add _ request ( tc [tidj, TS_u:ser_d,1ta I. 

nid · = tc{t1d] nccp :~; 
Re.3ume data( t.cf~:..dJ,--;;c(;.iC) 

END: -

,, 

WHEtJ TCEP[tid] , T X?D =ecw~sr f· :~ans~:i0~1 ~~ ~, 
?ROIJ!D!':!J ( tc [tid)-sca·c<:? = !':ST.',BLISnED I -··-

( Size( TS_user_caca I <= I"'-'·X_:,::.::;:J "'-
BEGIN 

Consc.rucc._XPD( data, cc [tid].dst ref, cc::i.c].:-: 3-:·~. 
tc(tid] . qual of service . misc(Q EXTENDED :OPJ-<.AT), 
TS_user_daca-);- - -

tc(tid] .x_ seq : = SEQ ADD( tc(tid] .x seq, l, 
tc(tid].qual_of_service.misc(Q_EXTENOED_FORl".AT] J; 

Store( tc(tid) . xbuf, data, te(tid) . xsnd_nxc, XPD ) ; 

nid := tc[tid). ncep id; 
Resume xdata( tc[tid], ne[nid) 

ENO; -

WHEN SAPN{nid) .Timer =esoonse 
?ROVIDED (Name= lNCOMING_NC I and 

( nc[nid) . state = NOPEN I 
BEGIN 

nc{nidJ .state :~ lHDLE; 

OUT NSAP(nid] . N_ DISCONNECT_ request 
END; 

WHEN SAPT(tid] .Timer response 
PROVIDED (Nam~= WINDOW l and 

( tc{tid] .state• ESTABLISHED 
BEGIN 

(" Tran :>ition 21 •1 

c• Transition 28 'I 

n :r SEQ_ MINUS( te(tid) .rev upper edge, ·_;;{tid) .rev n:<t, 
te(tid) .qual_o!_serviee ~i~c(Q_EXTENDED_FORMAT) ); 

if n > 0 then 
begin 

Construct AK( data, n, te(tid) .dst ref, te(tid).rev nxt, 
- te(tid) .qual_of_service.misc(Q_£XT£N0£D=FORMAT) I : 

nid te(tid) .ncep_id: 



Conca~enace 2 NSDU( nctnidl, ~dtJ I 

OUT SAPTttid) .Timer cancel( WINDOW, 0, T~UE J 
~no 
•.'! Ls•:! 

OUT _;,;PT It irl I ? -::.m .. ~:: :::esucst ( ~iIN()O',·:, ~~N_.;·:·~c. 0 l 
:.110: 

<· ~ror,tAnen1Js tr~t,sition -- Send the netwo~k ddta anyway•) 

?ROVIOED THUE 
UEc; l ~J 

f n r n ic! t > MA:\ NCEP :o c1o 
b~gin 

if nc [nid) .sbu( <> NIL 
then begin 

Extract NSOU( nc[nid) .sbuf, ndata J; 
OUT NS/IP triid] . N_D/\T,\ :,;,quest ( ndata ) 

end 
end 

F.ND; 

( * ... "' ..... * .................... "' ...... .................. " • • •••••• t ••• ) 

:::tJD ~S modul2: 

PROCESS RS p::oces5 

QUEUED NCS?; 

VAR 
rs id 
local, ,emoce 
qos 
reason 
d.3ta 

'lS ir.ce:-: 

:.nc.ege::: 
NADDR TYPE:; 
NQOS TYPE:; 
REASON TYPE; 
NDATA_TYPE; 

(• Primitive functions and procedures *) 

FUNCTION Net_ accept( rs id 
VAR local, remote 
VAR qos 

integer; 
NAODR TYPE; 
NQOS_ TYPE ) 

PROCEDURE Net close( rs id integer ); 

boolean;PRIMITIVE; 

PRIMITIVE; 

FUNCTION Net_confirm( 

PROCEDURE Nec._connect( 

rs id 

rs id 
local 
remote 
qos 

cnteger 

integer ; 
NADDR TYPE; 
NAODR- TYPE; 
NOOS _TYPE: ) ; 

boolean ; 

FUNCTION Net_disconnect( rs_id integer ; 
REASON_TYPE VAR reason 

FUNCTION Net recv( rs id 

PRIMI'flVC:; 

PRIMITIVE: ; 

boolean ; PRIMITIVE; 

VAR data 
integer; 
NDATA TYPE boolean : PRIMITIVE : 

PROCEDURE Net send( rs id 
data 

JNITIALIZF. 
BEGIN 

r5 id : ~ RS index 
ENO; (• Initialization ') 

TRANS 

integer; 
NDATA T':'PE ) ; PRIMITIVE ; 



TRANS 

TRANS 

TRANS 

TR..=..Ns 

TRANS 

TRANS 

w11u; ;,cr.P N_Cori.-::::cT_requcst 
8£(; l N 

! ,):: ,1 ! 
~-~rnot_e 

li0'.'\ 

fro~ n~ twork ~ddr: 
To n:1:.·-,ork ;, d dr: 

- ()OS; 

N( •' ·:unn•::-c~. ( 
END; 

WIIEN NCf.P . N DAT/I =equest 
BEGIN 

dat.J 
Net 

ENLl; 

::: ~JS us-2r data; 
3P-nd( ;s i~~ data 

WH£N tJ(-~1: tl DISCO~JNECT request 
BEGIN -

Net _close( r:3 :~ 

C:110; 

PROV!DO:::~ N 1:!\.. acc-.::;:-t ( =s_1d, loc.Jl, ~·3!T',Ct0, 1,,.;u.> 
BEGUJ 

OUT :1c==.;; -~1..... •••• :...._._i.nl'!iccJtic..:1{ :-:::~.o::.!. ;~)c,?:, •~0~ 
S:Jr:>; 

OUT ~JC£? ~; cc:~:.~-::- ::ont'ir:7t 
~t;D; 

PROVIDED Net reco ( =s id, data l 
BEGIN 

OUT NCEP.N_ DATA_indication( data 
END; 

PROVIDED Net disconnect( rs id, reason l 
BEGIN - -

OUT NCE:P . N_ DISCONNECT_ indicationl reason 
END; 

END RS process : 

f 41 4 • • • ill • • • " • • • • • • • • • ., • • • • • • • • • • • • • • • fl, • • • • • • • • • • • • • • • • • • • ~ • • ._) 

Ul: TS user module with 7S user process(,!; 
U2: TS-user-module with TS=user=process(2); 

ATP: ATP_module with ATP_?rocess ; 

Sl: System module with System process(l); 
S2 : System-module with Svstem-process(2); 
S3 : System-module with Systemycocess(3); 
S4 : System=module with System_pcocess(4); 

RSl: 
RS2: 

RS module with RS orocess(ll: 
RS=module with RS=-~~ocess(2); 

( ............................................................................................ , 
CONNECT 

Ul.TSAP TO ATP.TCEP(l); 
U2.TSAP TO ATP.TCEP[2); 



.-\TP . NSi\f' I l I TO R'.;\ . NCU' ; 
,\TP NSAP{2) TO RS2.NCF:P: 

,\T!'. SAPT { l I TO S1 SF.:!'; 
.-\TP ~SAPTf,;: TO S2 . SF.:P: 
.:\'!'? SAPN { 1 J TO :)J . .:;r.-:P; 
ATP.SAPN{2) TO s~ SEP; 
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!dtut1l.c - ~yst~m_init, sc:1edul0 

= ~:,:-:!.ud~ <~>ys, typ;~ 3. h> 
.= :.:>.:: lul~'~ < ;y:3/Joc;:-)r_ . n:-. 
i i.:H.: tu<~•? <ny~;/uio h> 
~ inc lud,:- <svs/t imeb . h> 
iinclude <s~s/time.h> 
iinclude <s ys/un .h> 
=include <netinet/in.h> 
#include <netdb.h> 
~include <ecrno . h > 
#include <signal.Ii> 
Jinclude <stdio.h> 
#include <strings.h> 

#include" .. /inet/inet , h" 
!include " listdefs h" 
#include "defs.h" 
#include "tpdefs.h" 
lincl6de • .. /tsp/tsp.h" 

/A Define the outecmost refin~~enc ~Jme •; 
#define REF NAME LOTransport ref 

e x tern int signal pending; 
e x tecn strt1ct oro~ess block ·~~~lock . 
e:<tern NCONN · conn IT; 

s~~uc~ process_~lock •sys~em_~~::(l 
i 

strucc process block •ptr # ·pr -:,ce ss !is::-., ·~-e:-:;o· ..... ? ~e,1t;,.:-:-() : 
struct channel-block •cot=: 
struct itimerval value; 
int i, j; 

/* user included dcl •/ 
struct process_block •R£F_NAME(); 

process_list = remove_headerCREF_NAME(NULL)); 

for (ptr ~ process_list; pt= != NULL: per~ ptr->next) 
I 

if (strcmp(ptr->p_ident , "TS_user_process") • = Ol 
I 

i = ptr->lvacs . s TS use= process.us~r id - L: 
uprocess[il = per; - - -

if (strcmp(ptr->p ident:, "Systcm_process") r • 0) 
t -

i = ptr->lvars.s Svstem process.svs id - l; 
sprocess{i] = ptr; - - - -

if (strcmp(ptr->p ide~~. "R5_process") ~~ 0) 
I -

i c ptr->lvars.s ~S 1>roc~s3.:s id - 1 ; 
rproccss(i) = ;1ti: - -

for (c_ptr 2 ptr->clian_list.; c_ptr != NULi.; ·; ptr 
I 

if le pcr->targeL channel =~ NULL) 
I - -

/• oops a dangling connection•; 

fprintf(stderr,-\nSYSTEH INITIALIZATION ERROR: danqling"); 



lr>rint[(:;td,~r :.- , " channt.?l in .1n tnst.1:1.~t..,, ., f \·•4;s\ .. . " 
;.:>tr--;"p idcnt) : 

f p rintf(5tt1err,"channel number \d, ind Id\n" , c p~r-:•r : , 
c _ pt c->i!'ldes _'.iuml; 

/' join th e ends of the process list into a loop'/ 

tor (ptr = process list; ;:,tr->next != NULL: ptr = ptr->next); 

process_list; 

/•---------------------------------- ---------- -------------- -------------
• Establishing connection to the system environment 

•---------------------------------------------------------------------------
I • (ire up a c lock • / 
value . it incecval.t v sec 
value . it interva l.tv_usec 

valu~ . it valuc.t~ sec 
value . it-valu~.tv-us~c 

LL 
0 l; 

setitimer(ITIMER VIRTUAL, ivalue, (strllct itimcrval ')0) ; 
.signal (SIGVTALRM·,- c loc k) : 

/•setup timer lists '/ 
for (i = 0: i < NTIMER; ion tirr.cdin(i) 

/
1 ooen a netwo:k lister:e: ~; 

if (
0

(i = N_ opcn(&conn!OJ, NSN;...MC:)) '= N~:T m ; J 

fpr1nt.: (s~(i•.2r:-, .. >>> >:_:i?•~:"". p!"ob:em :,,:: 1n", i) . 
e:-:i t t:..} , 

net.mask. 
nc i:1use (); 

for (i = 0: ~ < MAX NCE? ::i: ,~-) 
I 

netpool(i].fill = fALSC:; 
netreason(i) = NET OK; 
net_ status [ i] NET-NORl".AL; 

/• open a UNIX listen socket•/ 
if ((usock(OJ = TS open(TSNAM£)) < 0) 

I -

NULL. 

fprintf(stderr,">>> TS_open problem \d\n",usock(OJ); 
exit(l); 

t~ estdblish th ~ inter-o:ocess connections •t 
for (usermask = 0, i = 1°: i <= MAX_TS/IP ID: i++) 

I 
strucc sockJddr un f~om . 
int len = sizeof(struct sockaddr un) ; 

j s i - l ; 
userpool[jl .fill~ fALS£ : 
errclose[jl • rALSE : 

usock(il 2 accept(usock[O!, (struct sockaddr •)&from, ,ten): 
if (usock[i] < 0) 

I 
perror("UN[X domain 
cxi t ( l); 

accept"); 

uscrm,1sk I= (l << usock(i)); 

I 
close(usock{OJ) ; /' close the listener•; 

return(process_list); 



/ •------- ------ ----- ---------- -- ----------------- ---- --- -- ----
This is the main drivi11Q routine . 

·------------------------ -------------------------------- ---------- •/ 
9chedule(proccss list) 
~t1·uct proces :;_biock •pr~c~ss_tist: 
I 

extern int signal_pcnCing; 
extern struct process_block •p_block : 

struct channel block 
struct signal block 
struct process block 
struct timer block 
struct timeval 

•c pt r ; 
•s=ptr, •ge t signal() : 
ip_ptr, •p ptr2; 
•tptrl, •tptr2 ; 
ti:neout ; 

int i..- j, n, mask,, notdonoe : 

p_ptr = p ptr2 = process list : 
c ptr = p-ptr->chan list; 
signal_pending = 0; 

while ( (usock(l] != -1) I I (usock[2) '= -1) l /• while there is ,1 u :,,a, 
I 

if (signal pend1ng > (J) 

I 
s ptr = get signal (&c ptr, &p ptr) : 
signal penc"ng--. -

/• sall the ~~a~s~~:on routine ~1 
p __ block = p pt c ; 

(., (p_ptr->p:::..c_~:.=l) <c_:=,t.:, s __ p c:-); 

/• ~ove on :J =~~ ~ext :han~~~ fa~ : ~~ st~:: ?f ~ha~:-~ 
if (c o::.:->:-:-e . · : ' .c ~!~;~:..) 

else 
c_pt: 

? pc.r 
c_ptr 

::, ::: ~ :- >:-:2:-: L ; 
?=?~~->c~an list ; 

/* internal input signal pending • / 

/• spontaneous transitions are handled belo~ 

/• TS user process •/ 
mask~ usermask; 
timeout . tv_sec c 0: 
timeout.tv_ usec s 501; 

if (select (16, &mask, 0 , 0, &timeout) < 0l 
( 

perror("UNIX dc:na1n 
exit(2); 

select"); 

for (i = l; (maslc > 0) ,& (i <= KAX _TSAP_ ID) ; i++) 
( 

if ((usoclc(i] != -ll u 
(mask, (1 << usoclc(i)lll /• Incoming request*/ 

j : i - l: 
if ( ( n = TD_ i npi,t (usock Ii], use rpoo l ( j J . datum, TS_ MAX _ LC:NGTH +~) ) 

>= siz~of(stcuct data_hdrll 

usecpocl(j] . fill= TRUE; 
userpool(J] . l,1n n : 

else 
( 

errclose{j) = TRUE : 
I 

p block• uprocess(j); 
(*(p_block->proc_ptr)) (NULL, NULL) : 



1• RS ,>rocess 
.~J s k ~ r.etmitsk : 
· i.nu.~O\lt..:. ·.: s e~ 

imr. O l!t : ·1 'JSC'C 

• I 

' 0; 
501 ; 

if (selecc.(16, f,rn.:isk, 0, v, .,:;icr,~..iut) < Ol 
I 

perro!:"("INET domain : ,;.1lec::"l : 
exit(~); 

if ( (mask :- 0) && (nc_ i :1use < ,1,0.:-: NCEP ID)) i• network channel <1v,,il,1l>L,! •; 
I 
if (m;isJ.: & (1 << conn(O)->socketl) 

I 
for (n o t.done = TRUE:, i '" MAX NCEP ID; not.done && (i > 0); i--) 

( 

if (conn{il == ~J U!..~) 
{ 

J=i-1; 
if ( (conn(i] 

(mask & 

not.done= FALSE:; 
j • i - l ; 
1 f (N cccepr ('..<,:::,nn { i), conn {O]->socket) 

net_ status!j) = NET NEWCOMER; 
nc 1nuse+ ... : 
net~as.-: I"" (l << (conn[ij-:-.socket)) . 

7~~t:~,:o: /~;~~~:;~ ~/; ('.iU :,L , NU!,L) ; 
/· :. : .=.cc::.=;.:-~a=-:c':! i.:, o~: ·.: 

NET_ OK) 

'= NULL) && 
(l << conn(i]->socket))l 

/• c.he network channel is 
/• Incoming request•/ 

in use ~ / 

if ((n = N receive(conn(i], netpool(j).datwn, NET_OATA_SIZE)l 
>=-NET_OK) 

else 
{ 

netpool(j).fill TRUE . 
netpool(j].len = n; 

p_bloc k = rpr0~~s s {j J. 
(. (p - bloc k - >,>: :,c - '°~ :· I l ! :JULL, NlJi,Ll ; 

if ((netreason[j] i~ NE:T_OKl ti (net_status[j) == NET_CONf'IRMll 
I 

p_block • rprocess(j); 
(• (p_block->proc_;::itr) l (NULL. NULL); 

I 
/• ~::>r i-loop '/ 

/• ATP ~rocess •/ 
if (5trc:np(p_ptr2->p_i.-!cnt.."ATP_[HOC<!S5") -= 0) 

I 
p !.>lock ; p pt.r2: 
(' (p _pt. c 2->proc _ _.rr. c) ) (NULL, NIJLL) ; 

p_ptr2 • p_ptr2->nexc ; 

/• System process •t 
for (i = 0; i < NTIMER; i++) 

70 



r lme 1 l 1 .~ 

tll 

p hll)t.:k , ; 11 .h: ,: ,, 
1-;-< l} t,L ,1..:k -:- p, .-11 : ;-, • 11 1m: 1, ;., :11 ::.: .1, 
/ • L°7m ... n ,: :. • / 

I · •rn r.h ti111~, · / 
I / • •! •' rl I Lim 1- I l ~: I • I 

/ · , •,u : h ;;y •il 1•m pru,~l ~~ !.1 • / 
1· : nr\:v• : 1 )01')p · / 

71 



Appendix D 

System Initialization and Scheduler 
- For Manual Implementation 
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1•-------------------------------

• I 

TS initsys 
TS-schedule 

~::1::lJde <sy~/typcs.h· 
~include <sys/sock1?l - ~1 -· 
•include <~ys/uio.h> 
linclude <sys/timc.h ~ 
#include <svs/un.h> 
linclude <netinct/in h> 
#include <errno.h> 
linclude <signal h> 
tinclude <stdio.h> 
linclude '" .. /inet/inct.h" 
iinclude '"tpdefs.h" 
#include '"tp . h" 
#include'" .. /tsp/tsp.h" 
!include '" tpvac.h" 

(;:>ri va-:"°) 
(priv.3teJ 

/ ·----------------------------- ----- ------- -- ------- -- ----------- ---- -------
TS initsys 
Transport Stat ion i.,: ti a li .:,it LOO ( GLOi3,"\L 

l. Handling the SIGI:-1T i SIGC:;LD :,i"n?.ls 
2. Initialize TS, T? anC ~JP queu-c-s 
3 . Open TS l1st2ner . 

Open NP !is:~ne~ 

time.it in=erval . tv se~ ~ =:~~.!~ va~~e.:~ se~ 
time.it= interval . tv:usec = time . it value.t·J_usec • 01 : 

setitimer(ITIMER VIRTUAL, &time, (struct itimerval *)0); 
signal(SIGVTALRM~ TM_clock); 

/* 
Open a NSNAME server listening to the NP providers . 

if ((n = N_open(&(nplisc.nconn), NSNAME)) !K NET_OK) 
{ 

I • 

• I 

fprintf(stderr,">~> N_open problem \d\n",n); 
e:-:i t ( l) ; 

Open a ·rsNAMi:. ser·.·e:: l1sceninq to chc TS user=.;. 

if ((tslist..tsap = TS_open(TSNAME)) < 0) 
I 

fprintf(stderr,">>> TS_open problem \d\n",tslist.tsap) : 
exit(l); 

Initialize th~ qlot,al queu~s -

tslist.prcv tslist . next 
tplist . prev tplist n~xt 
nplist.prev • nplist.next 

&ts list ; 
, tp l i :; t ; 

1.nplist : 



/• ---- -------------- ---------------- ------- --------------------------- --
TS schedule (privace) 
This is the scheduler of the interactions 

3!:. ~1~ !. C 

-r:; _:;chP.Ciu 1-~ () 

I 

struc:t timeval time ; 
struct sockaddc un from; 
int. n, flen, - maJk, sock; 
chnr datum!TS_ MAX_ ~ENGTH+2J, ndatum!NET_ DATA_SIZEJ ; 

TSCONN tsp, tspnext; 
TPCONN tp, tpnext; 
NPCONN np, npnext; 
NDATA PTR nptr; 
NCONN- nconn ; 

for ( :: I 
I 

/ ' Transporl service usecs ·/ 
milsk = TS bu i le.mask (); 
time.tv sec 0; 
ti me . t ·,=use c = SO O l ; 

i f ( ( fl = select (16, &;;i2sk, 
(err-no •~ EINTR.) 

0, 0, &tim<:)) < 0) 
TS _errorshutdow:1 () : 

! len sizeo:' (st:cuc:: sockadd.r un); 
if ((sock= .,cceot((t.slist.tsao), (scruct sockaddr •)&frora, 

· &flen)) < ;)) 

else 
I 

I 

TS errocsjucdown(); 

if (TS newuser(sock) •• NULL) 
( 

shutdown(sock, 2J; 
close (sock); 

/• new TS user*/ 

for (tsp = ts list .next; tsp !a &tslist: tsp • tspnext) 
I 

tspnext c tsµ->next; 
if (mask & ( l << tsp->tsap)) 

I 
if ( (n • TD_ input (tsp->tsap, c.atum, TS HAX LENGTH+2) l 

< sizeof (struct data hdrl) -
TS disconnect(tsp, UNKNOWN ERROR) ; 

else - -
(void)TS_input(tsp, datum, n); 

I 
/• foe tslist •/ 

/'n>O•/ 

/* Send the filled network outgoing buffers'/ 
for (np s nplist.next; np !• &nplist; op• npnext) 

I 
npncxt = np->nexc; 
if (np->sbuf 1 = NULL) 

I 
nptr = np->sbuf->data; 

if (N send(np->nconn, nptr->datum, nptr->dlen) !• NET_OK> 
NP close(np); 

else -
NP release(,(np->sbuf), FALSE); 
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/ • I K~ twork prov i rt <1 z:: "'/ 
m,1sk = NP h11 i ldmask ( I ; 
tlmc.tv s~c 0: 
timc.tv= u s cc = ~001 ; 

if ( (n = select ( 16, &mask, 0, 0, &time) l < 0) 
if (errno ! ~ ~: INTR) TS_cr r o rshut <iown () ; 

i( (n > 0) 

I 
ir (musk & (l" << (npli s t . nc onn- > sockc t ))) 

l 
if (N accept(&nconn, nplist . ncon n ->so c k e l) ! n- Nl•:·r_ OK) 

TS_ crrorshutdown() ; 
elsr, 

l 

I 

if (NP accept(nconn) '= NET_OKI 
N_ close(nconn); 

!• new TS user•/ 

fo r (np = nplist.next; np != &nplist: np c np nc xl) 
I 

npncxt = np->next; 
if (mask & (1 << np->nconn->socket)) 

I 

I 

if ( (n = N receive (n;,->nco11n, ndatum, NET_D/ITll__:,IU~) I 
< NET OK) 

K? close(np); 
else -

N? _ input(np, ndatu~, n) . 

/• fo r nplist •/ 
/• n > 0 '/ 

I ' timers • / 
for (tp = tplist . next; tp ! = &tplist; tp 

I 
tpne :-: t) 

tpnext = tp->next : 

if ((tp->timp !• NULL) && (tp->timp->time •• 0)) 
TP_expired(tp); 

for (np = nplist.next; np !• &nplist; np = npnex t) 
I 

I 

npnext = np->next ; 

if ( ( np- >,t imp '= NULL) && (np->t imp- > t imc ~ O) ) 
NP _ e:-:pi red (np); 

/' forever loop •/ 
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