A SEMI-AUTOMATIC APPROACH TO PROTOCOL
IMPLEMENTATION - THE ISO CLASS 2 TRANSPORT
PROTOCOL AS AN EXAMPLE

by
Allen Chakming Lau

Technical Report 86-20

November, 1986

A SEMI-AUTOMATIC APPROACH TO PROTOCOL IMPLEMENTATION -
THE ISO CLASS 2 TRANSPORT PROTOCOL AS AN EXAMPLE
By
ALLEN CHAKMING LAU

B.Sc, Simon Fraser University, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

e HE

[L
4

.}1 Y —

......... L L R T
1
\a

THE UNIVERSITY OF BRITISH COLUMBIA
July 1986

© Allen Chakming Lau, 1986

Abstract

Formal Description Techniques (FDTs) for specifying communication protocols, and the
adopted FDT standards such as Estelle have opened a new door for the possibility of automating
the implementation of a complex communication protocol directly from its specification. After
a brief overview of FEstelle FDT, we present the basic ideas and the encountered problems in
developing a C-written Estelle compiler, which accepts an Estelle specification of protocols and
produces a protocol implementation in C. The practicality of this tool — the Estelle compiler —
has been examined via a semi-automatic implementation of the ISO class 2 Transport Protocol
using the tool. A manual implementation in C/UNIX 4.2bsd of this protocol is also performed
and compared with the semi-automatic implementation. We find the semi-automatic approach
to protocol implementation offers several advantages over the conventional manual one. These
advantages include correctness and modularity in protocol implementation code and reduction
in implementation development time. In this thesis, we discuss our experience on using the

semi-automatic approach in implementing the ISO class 2 Transport Protocol.

ii

Contents

Abstract
Contents

List of Figures
List of Tables
Acknowledgement

1 Introduction
T3 Mobivationd v s b o o s aeid o 0 S %0 6 ¥ BRI @4 05 .8 89 s o @%a 5 Wi b e
1.2 Scopeand ContriDULIONS . & v v o coiw o » s e o o & & o o 6 s w i s s e x
18 Thesig QUllie: - ¢ o v s a o8 e &y 0 AT @55 8 9 e b S5 5 i

2 Estelle
2.1 Channel and Interaction Primitive ¢« « c v v s vv v i e s 60 s oo
2.2 Module and Interaction Point v v v it e e e e e e
23 Relinemént'aDd Process , « o v w5 i ¢ 0w i 64 a5 o 006 & e s @ 0 8 8 s
2.4 Extended Finite State Machine i i

3 The Implementation Strategy
370 O 5SS kG G IS Sy g S S S R T
32 INteractions - ¢ s « wiwn % s s 4 BE T S T CWE R P LA A e § e
S REAOSIEIONE o o v 5 B B /S @ e T s B A S B e R S
34 System Interfaces’s < v 5 5 vai o5 wvan ks Whre ¢ #E0E § 5 SUE & ¥ &0 ¢ 6 G0 e s

4 The C-Estelle Compiler
4.1 TheSERUcture ; « 4 v o 6 e 655 T o 55 5 I F G # 6 XL 54 Bw o a8 89§ %
43 Translation TeBmes . . o o 4 5. e e 0 e 0 s mm o 8 @ w o SEEw S G n e e s
421 Pascalto O Problems . . : o vsovmsssamwosssssonsioiossis
4.2.2 Estelle to C Considerations« + v v v v v v v v v v v e e e e

iii

iii

5 Implementation Example - The ISO Transport Protocol 26

5.1 Overview of The ISO Class 2 Transport Protocol 26
52 Design of the Implementation « .« « & o5 v v % v s 5 5% o ss 9% 5 5 w% ¥ 9w 5 30
D21 BEruchure: o5 b i i 5 5 3065 5 0 w0 R 2 Eee b B e S e bR A 30

Bi22 Dplementation TEHEH o .0 55 wo p o x % W3 Bl E e a8 8% ¥ w2 30

5:2:3 SchedulerDesign « : i ¢ 35 &l %% % 5w 53 @n 85 50 55 5 3w B ae 31

5.3 Semi-Automatic Implementation o s v s v m s v i e s s e i e s 32
531 TheGenerated Code -z i 5 v is 3 @5 8 3Fm a8 8005 50 008 a3 ke © 54 32

532 INtepratiohi. PIrocess . . « » v v 5 woes o %ied & 6066 0 @ 908 w & %% § @ 34

54 Mannallmplementation . i ii e v iss i va Fe s e @ s es em s s e s A s 35
Bl RESUIE. o v o o v v e 9 5 i b @ i § 5 Goe 5 % AE F OOV BN R ¥ T AP RS N 8B Y 36

6 Conclusions 40
61 “Thesis SUMBTEIYE &« w w0 w0 w5 mpm o @ Sob b6 6 08 & & %5 56 %6 6 o 6 an 5§ @ o 40
62 Futire Work i s mon s e d s b e s win s s o v & psisde @605 e 8 s 41
Bibliography 43
A The ISO Class 2 Transport Protocol — State Diagram 45
B The ISO Class 2 Transport Protocol — Estelle Specification 47

C System Initialization and Scheduler — For Semi-Automatic Implementation 66

D System Initialization and Scheduler — For Manual Implementation 72

iv

List of Figures

2.1 An Example of Channel Specification. 5
2.2 An Example of Module Specification e B
2.3 Typical Refinement of a Transport System 8
2.4 An Example of Refinement Specification 9
2.5 An Example of Process Specification 11
2.6 An Example of Transition Specification 13
3.1 Procedure of the Semi-Automatic Implementation 15
3.2 Data Structureof anInteraction . . . « ¢ ¢ i e v v e v e s v s on oo s 0w 15
3.3 Data Structure of a ModuleInstance 16
3.4 Data Structure of an Interaction Point 17
4.1 The Structure of the C-Estelle Compiler 22
5.1 Transport Service — PrimitiveSequenceot v v 28
5.2 Transport Protocol Data Unit Fixed Header Formats 29
A.1 Transport Protocol State Diagram . . . « w ¢ s 46 vs s v o s 5 6@ o5 95 s 5% 46

List of Tables

5.1 Sizes of Different Parts of Implementations

vi

Acknowledgement

I would like to thank my supervisor, Dr. Son Vuong, for his guidance throughout the course
of this thesis and Dr. Harvey Abramson for his comments and careful reading of the thesis.

Many thanks are due to Susan Chan and Helen See for their helpful comments and their
fine editing skills.

Finally, I wish to thank Frances Liu for her patience and love.

vii

Chapter 1

Introduction

1.1 Motivations

Formal Description Techniques (FDTs) [Boch80] for specifying protocols and services have
opened a new door for the possibility of automating the implementation of a complex com-
munication protocol directly from its specification. These FDTs are advance enough that
they are becoming standards such as [CCITT85|, [Estelle85] and [Lotos84] and their compil-
ers, [Ansart83], [Bria86], [Ford85], [Gerber83] and [Hans84], are also being developed to make
themselves usable in the design and implementation of real-life protocols.

This new approach to protocol implementation is superior than the traditional approach
in that communication protocols are implemented semi-automatically in a systematic manner
rather than manually in an ad hoc manner. It avoids different interpretation of the specification
and various implementation errors, hence, provides confidence in conformance to the specifi-
cation. As a large portion of the protocol implementation is generated by the compiler in a
standard target language, the implementation is highly portable. Furthermore, the generated
code is well-constructed, and system-dependent features can be easily located in a few routines.

Thus, the implementation is easier to maintain.

CHAPTER 1. INTRODUCTION 2

The motivation of this thesis is to verify the usefulness of the semi-automatic approach to
protocol implementation. An Estelle compiler is chosen to implement a fairly complex ISO
class 2 Transport Protocol [CCITT85,ISO82b]. A manual implementation of this protocol is

also performed and compared with the semi-automatic implementation.

1.2 Scope and Contributions

The chosen compiler is developed by Daniel Ford in the language C on a VAX 11/750
running UNIX 4.2bsd?. The compiler accepts an Estelle specification for communication pro-
tocols and produces C code. The generated code is then incorporated with pre-written generic
and implementation-dependent routines to implement the specified protocol.

The original C-written Estelle compiler® is erroneous and insufficiently tested. Its per-
formance has been greatly enhanced by transforming BNF grammars into LALR grammars
which best fit the YACC compiler [John75] for generating the parser of the C-Estelle compiler.
The grammar rules were also rewritten so that the compiler supports complex data structures
such as variant record and pointer which are commonly used in complex protocol specifications.
Furthermore, the translation routines were modified to produce optimized and better-organized
code.

The enhanced compiler was examined by using it to implement protocols such as hot
potato, alternating bit, and ISO class 2 Transport Protocol. It was also ported to several

SUN Workstations* and the protocol implementations are successfully running among the

VAX 11/750 and SUN Workstations.

!VAX is a trademark of Digital Equipment Corporation
?UNIX is a trademark of AT&T Bell Laboratories.
SFor brevity we shall often use the terms C-Estelle compiler in place of C-written Estelle compiler

“SUN Workstation is a trademark of Sun Microsystems.

CHAPTER 1. INTRODUCTION 3

1.3 Thesis Outline

After an overview of Estelle in Chapter 2, the development of the automatic tool, C-
Estelle compiler is described. Chapter 3 explains the implementation strategy used in the tool,
and Chapter 4 discusses the problems encountered. An extensive application of the tool is
described in Chapter 5. The real-life ISO class 2 Transport protocol is implemented both semi-
automatically by using the tool and manually in an ad hoc manner. After a presentation of
their designs and implementations, experience learned from the implementations is discussed.
The last chapter summarizes the thesis and offers suggestions for future work.

Since the implementations of the C-Estelle compiler and the protocol were written in the
language C, all coding examples presented are C-like. In addition, implementations run on the
UNIX 4.2bsd operating system. Thus, reader are assumed to have a basic understanding of the

language C and the UNIX 4.2bsd operating system.

Chapter 2

Estelle

Estelle (Extended State Transition Language) is a formal description technique developed
by the International Standard Organization (ISO) TC 97/SC 16/WG 1 — FDT, Subgroup B
[Estelle85,]SO84]. Based upon an extended finite state transition model and the Pascal pro-
gramming language, Estelle is used for the specification of communication protocols and ser-
vices.

The framework of an Estelle specification is a set of co-operating entities, each described as
a module, interacting with each other by exchanging information through channels. The actual
behaviour of a module is specified as either an integrated behaviour of a set of interacting

submodules or at the innermost level, an extended finite state automaton.

2.1 Channel and Interaction Primitive

A channel is a two-way simultaneous pipe which transmits information between two con-
nected modules. A channel-type definition specifies a set of interaction primitives which is
grouped under two different roles. These roles are used to distinguish the two sides of the
channel, and hence, the two connected modules. Primitives grouped under one role can only

be initiated by the module instance which plays that role in respect to the channel; and they

CHAPTER 2. ESTELLE 5

are received by the module instance which plays the other role. Information is transmitted
between module instances via the parameters of interaction primitives. As an example, fig-

ure 2.1 shows a definition of a channel-type TS _primitives. There are ten possible Transport

CHANNEL TS_primitives (TS_user, TS_provider);

BY TS_user :
T_CONNECT _request (From_transport_addr : ADDR_TYPE;
To_transport.addr : ADDR_TYPE,;
Qual_of _service : QOS_TYPE;
TS _user_data : DATA_TYPE);
T_.CONNECT _response (Qual_of service : QOS_TYPE;
TS user_data : DATA_TYPE);
T _DATA _request (TS_user_data : DATA_TYPE);
T_XPD_request (TS_user.data : DATA_TYPE);
T_DISCONNECT _request (TS_user.data : DATA_TYPE);
BY TS _provider :
T_CONNECT _indication (From_transport.addr : ADDR_TYPE;
To_transport.addr : ADDR_TYPE;
Qual of_service : QOS_TYPE;
TS_user_data : DATA_TYPE);
T_CONNECT _confirm (Qual_of service : QOS_TYPE;
TS_user.data : DATA_TYPE);
T_DATA _indication (TS_user_data : DATA_TYPE);
T XPD._indication (TS_user_data : DATA_TYPE);
T _DISCONNECT .indication (Reason : REASON_TYPE;
TS_user_data : DATA_TYPE);

END TS_primitives;
Figure 2.1: An Example of Channel Specification

service interaction primitives which can be used by a Transport service user to interact with
the service provider. Five of them, namely T.CONNECT request, T_CONNECT _response,

T.DATA request, T_XPD request and T_.DISCONNECT _request, can be initiated by a module

CHAPTER 2. ESTELLE 6

instance which plays a role of TS _user in respect to the channel. The parameters of the inter-
action primitives, such as TS_user_data, carry the given information from a TS_user module

instance to a receiving TS_provider module instance.

2.2 Module and Interaction Point

A module is the basic component of an Estelle specification and represents an entity of
the specification. A module-type definition is a list of interaction points at which the module
interacts with its environment. Each interaction point, (also called port), is an abstract interface
of a module used to interact with the connected modules. For each interaction point, a role
of its associated channel-type is specified. An interaction is then identified by the name of the
interaction point at which it occurs and the name of the interaction. In addition, the interaction
has to be one of the defined interaction primitives in the corresponding channel-type definition.

The actual behaviour of a module is defined as either an integrated behaviour of a set of
interacting submodules or an extended finite state automaton. For a given module-type, one
or many module instances (i.e. protocol instances) can be obtained. An example of a module

specification is given in Figure 2.2. All possible interactions of a Transport service user with a

MODULE TS_user_module;
TSAP : TS_primitives (TS_user);
END TS_user_.module;

Figure 2.2: An Example of Module Specification

Transport service provider is then through an interaction point TSAP. The interaction point
is associated with a TS_primitives channel, and the module plays a role of TS_user. Thus, at

this interaction point, the module can initiate the interaction primitives T_CONNECT _request,

CHAPTER 2. ESTELLE 7

T_.CONNECT _response, T_DATA request, T_XPD_request and T_DISCONNECT request. It

is also allowed to receive other interaction primitives defined only for the TS_primitives channel.
2.3 Refinement and Process

In Estelle, the actual behaviour of a module is specified either indirectly as a Refinement
or directly as a Process. If a module is not a complete self-contained entity, it is decomposed
into a set of co-operating submodules, each of which may be further decomposed. The behaviour
of the module is the integrated behaviour of the submodules and hence it is called a refinement.
A module can also be specified as a process which describes the corresponding finite state
transition model of the module.

An Estelle refinement specification includes definitions of internal channel-types, submodule-
types, and specifications of the corresponding processes and refinements. After the definition of
the internal structures, module instances are created and connected accordingly. If necessary,
interaction points of internal module-types may be replaced by those of their parent module-
type.

A typical refinement of a Transport system is depicted in Figure 2.3. According to this
refinement, a Transport_system module is refined as a Transport_ref refinement, which is de-
composed into two TS_user modules, one ATP module, two RS modules, and four System
modules. The corresponding Estelle specification is shown in Figure 2.4. After defining the
internal structures, module instances are declared. Module instances are then connected pro-
vided that they play the different role of a channel through which they interact with each other.
There are no replacement because Transport._system module is a closed system.

An Estelle process definition specifies the queueing discipline associated with each interac-

CHAPTER 2. ESTELLE

Transport_system

Transport Service users

Network Service Providers

ul u?
S
/ §2
RTP
(Rbstract Transport Protocol)
p F\ 3
$4
RS 1 RS2
System
Service
Providers

Transport_ref

Figure 2.3: Typical Refinement of a Transport System

CHAPTER 2. ESTELLE

REFINEMENT Transport_ref FOR Transport_system;
(* Constant and Type Definitions *)

(* Channel Definitions *)

(* Module and Process/Refinement Declarations *)

(* Module Instances *)

Ul: TS_user_module WITH TS_user_process(1);
U2 : TS_user_module WITH TS_user_process(2);

ATP : ATP_module @ WITH ATP _process;

S1: System_module WITH System_process(1);
S2: System_module WITH System_process(2);
S3 : System_module WITH System_process(3);
S4: System_module WITH System_process(4);

RS1 : RS_module WITH RS_process(1);
RS1: RS_module WITH RS_process(2);

(* Connection Establishments *)
CONNECT

Ul.TSAP TO ATP.TCEP[1];
U2.TSAP TO ATP.TCEP[2);

ATP.NSAP(1] TO RS1.NCEP;
ATP.NSAP[2] TO RS2.NCEP;

ATP.SAPT[1] TO S1.SEP;
ATP.SAPT[2] TO S2.SEP;
ATP.SAPNJ[1] TO S3.SEP;
ATP.SAPN[2] TO S4.SEP;

END Transport_ref;

Figure 2.4: An Example of Refinement Specification

CHAPTER 2. ESTELLE 10

tion point, the initial condition and all possible transitions of the corresponding extended finite
state machine. For each interaction point of a module, an individual queue is reserved for the
queueing of incoming interactions from the peer module before these interactions are considered
as input by the module. These queues are on a first-come-first-serve basis and their lengths
are either infinite or zero. If the queue length is zero, an output interaction is not queued but
consumed immediately as an input by the rendezvous recipient module.

A process specification of a TS_user module is presented in Figure 2.5. The queueing
discipline of its interaction point TSAP, local variables, primitive functions and proaadufes are
first declared. The local variables are then initialized as the initial state of the corresponding

extended finite state machine. The remaining specification is a list of transition definitions.
2.4 Extended Finite State Machine

The operation of a process is modeled as an extended finite state machine which is a
finite state automaton extended with the addition of variables to the states, parameters to the
interactions, time constraints and priorities to the transitions. The state space of a module
is specified by a set of variables. One distinct variable, state, if defined, is used to represent
the state of a finite state machine upon which the module is based. This major state variable,
together with other context variables, determines a state of the module.

The general idea to express a transition, is that WHEN an interaction arrives, a transition
has to be performed, FROM the current major state TO a new major state PROVIDED a
condition is satisfied, through an action. The associated action of a transition is specified in
terms of Pascal statements, and may include the initiation of output interactions with its peer

modules.

CHAPTER 2. ESTELLE

PROCESS TS_user_process (TS_index : integer) FOR TS_user_module;

QUEUED TSAP;

(* Type and Variables Declarations *)

(* Primitive function and procedure Declarations *)

INITIALIZE

BEGIN
user_id := TS_index;
state := IDLE;

for gkind := Q_NO_EXPEDITED DATA to Q EXTENDED FORMAT do
qual_of_service.misc[gkind] := FALSE;

qual_of service.class := CLASS_ TWO;
sndcnt ;= 0; xsndent 1= 0;
rcvent := 0; xrevent := 0;

END;

(* Transition Definitions *)

.....

END TS_user_process;

Figure 2.5: An Example of Process Specification

11

CHAPTER 2. ESTELLE 12

Transitions are classified into input and spontaneous transitions, depending on the pres-
ence of an input interaction (i.e. WHEN clause). An input transition occurs whenever there
is an input interaction at a specified interaction point. A spontaneous transition lacks such a
WHEN clause and may be executed regardless of any input interactions.

The Estelle state machine is non-deterministic in the sense that in a given major state
and at a given time, several different transitions may occur. As mentioned in the ISO FDT
document, an Estelle specification must not depend on non-deterministic choices. In order to
handle the non-deterministic situation, an ANY clause is used to select a random value of the
specified enumerated-type variable(s). Such an ANY clause can only be used in spontaneous
transitions.

Figure 2.6 lists some transition types, which occur in a TS_user module. Transition one is
an input interaction which is initiated by the Transport data arrival. The data arrival causes a
cyclic transition from the major state Alive to itself, and an execution of procedure Store_data
to store the data in a buffer pool. Transition two inherits the WHEN clause of transition one.
When data arrives and the current major state is Receiving, counter rcvent is incremented
and procedure TS_output is executed to notify the Transport service user the data arrival.
The current major state is also changed into Alive as a result of the transition. Transition
three is a spontaneous transition that is performed whenever the Transport service user has a
request. Whenever the user wants to initiate a Transport connection and the present major
state is Idle, it first sets up the parameters of the interaction primitive T_CONNECT _request.
The request is then sent over the TS_primitives channel at interaction point TSAP and the

major state of the module is changed to Waiting.

CHAPTER 2. ESTELLE

TRANS
WHEN TSAP.T_DATA _indication
FROM Alive TO Same (* Transition One *)
BEGIN
Store_data (pool, TS_user_data)
END;
FROM Receiving TO Alive (* Transition Two *)
BEGIN
rcvent i= revent + 1;
TS _output (user.id, response);
END;
TRANS
PROVIDED TS_input (user_id, request) (* Transition Three *)
BEGIN
case request.kind of
T_CONNECT :
if state = Idle then begin

state := Waiting;

OUT TSAP.T_CONNECT request (local.addr,
remote_addr,
qual_of_service,
request.data)

end;
END;

Figure 2.6: An Example of Transition Specification

13

Chapter 3

The Implementation Strategy

In automatic implementation of protocols, a generic structure and organization of the imple-
mentation must be adopted. The implementation strategy adopted for our C-Estelle compiler
is similar to the one used by G. Gerber in his Pascal-written Estelle compiler [Gerber83]. This
approach makes use of data structures to represent module instances, interaction points, and
interactions among module instances. A set of pre-written generic functions is used to allo-
cate, initialize, and link data structures according to an Estelle specification. The pre-written
functions also dispatch an output interaction to a recipient module, select the next available
interaction, and make non-deterministic choice. Since different systems have different global
environments and scheduling schemes, two special functions, namely system_init and sched-
ule have to be tailored according to each specification. Figure 3.1 depicts the procedure of the

semi-automatic implementation.

3.1 Data Structures

There are three major data structures which represent module instances, interaction points
and interactions between module instances. When linked appropriately, these data structures

can represent an arbitrarily complex Estelle specification in a simple manner.

14

CHAPTER 3. THE IMPLEMENTATION STRATEGY 15

Primitives
Estelle + Generic Executable
. —» >
Specification_' ~ Generated T Functions Code
Code
C-Estelle C
Compiler Compiler

Figure 3.1: Procedure of the Semi-Automatic Implementation

In Figure 3.2, data structure signal block represents an interaction (i.e a signal) and is

struct signal_block {

int signal_id;
struct signal_block *next;
union {

} lvars;

Figure 3.2: Data Structure of an Interaction

comprised of three attributes, namely signal_id, next, and Ivars. For convenience, interaction
primitives, specified in channel-type definitions, are numbered. These numbers are used in
signal_id to identify an interaction. The attribute next links data structures to implement the
queueing of incoming interactions at an interaction point. The values of the parameters of
an interaction are stored as a single attribute Ivars in the data structure. A simple scheme is
applied to avoid the name conflict of having identical parameter names in different interaction

primitives and identical interaction names in different channel-types. Interaction primitives

CHAPTER 3. THE IMPLEMENTATION STRATEGY 16

under the same channel-type are grouped in a dummy structure which then appears as the only
attribute of a variant of lvars. Similarly, parameters of an interaction primitive are grouped in
a dummy structure which works as the only attribute of a variant of the interaction primitive.
Representing a module instance, data structure process_block (Figure 3.3) consists of
struct process_block {
struct process_block *next;
char p-identMAX_IDENT_LENGTH+1];

struct channel block *chan.list;
struct process_block *refinement;

int (*proc_ptr)();

h

Figure 3.3: Data Structure of a Module Instance

six attributes, namely next, p_ident, chan_list, refinement, proc_ptr, and Ivars. Similar to
signal_block structure, a variant is added to attribute Ivars of the structure in each module
type definition. Local variables are grouped in a dummy structure as a single attribute in each
variant. The attribute proc_ptr is an entry point to a transition function which implements the
transition process of the corresponding protocol machine. The remaining attributes are used
to identify the corresponding transition function, and to build and link various data structures
modeling the specified system.

Representing an interaction point, data structure channel block (Figure 3.4) contains the
following attributes : target_proc, and target_channel are entry points to data structures which
represent peer module instance and its corresponding interaction point; signal_list points to a list

of incoming interaction; queued is a boolean flag that indicates the queueing discipline (queued

CHAPTER 3. THE IMPLEMENTATION STRATEGY 17

struct channel_block {
struct channel block *next;

int *signal list;

int *target_proc;
struct channel_block *target_channel;
int queued;

int c.id;

int index_num;

h

Figure 3.4: Data Structure of an Interaction Point
or rendezvous) of the interaction point; c_id identifies the interaction point and additional
index_num is used in case of multiplexing channel; finally next links all interaction points of a

module-type.
3.2 Interactions

As mentioned in Chapter 2, interactions can be classified into queued and rendezvous
types. Output queued interactions from a module are queued in the recipient module. They
are considered by the global scheduler as input interactions to the recipient module in due time.
On the other hand, output rendezvous interactions are sent to and consumed by the recipient
module immediately. If the recipient module is not in a state which the incoming interaction
can initiate a transition, the interaction is added to the awaiting incoming interaction queue

and will be considered immediately for execution in due time by the global scheduler.
3.3 Transitions

In a given global system state, a number of different transitions belonging to different

module instances is possible. The selection of the next available transition to be performed

CHAPTER 3. THE IMPLEMENTATION STRATEGY 18

is made by a global scheduler, which is not part of the Estelle specification but part of the
run-time support for the implementation. A simple round-robin scheduler is applied to choose
the next available transition.

For a given input interaction and a given major state of a module instance, several different
input transitions may occur. Similarly, several spontaneous transitions can exist for a given
major state of a module instance. For simplicity, the first possible transition in the same order
as defined in the specification is selected to be performed. Hence, for each cycle, in addition
to which module instance, the global scheduler selects the next input transition only based
on the interaction point and the input interaction, or just determines whether a spontaneous

transition to be taken next.
3.4 System Interfaces

For each implementation, the protocol implementors will have to manually look after the
system-dependent portion of the implementation, i.e. interactions between the specified proto-
col machine and its working environment. For instance, interactions with the operating system
usually cause an undesirable blocking of the protocol machine and the solution to avoid such
blocking varies largely on different machines and different operating systems. However, working
environment such as the operating system is always known and its interfaces with the specified
system can be well defined. This apriori knowledge can be used to simplify the system interac-
tions. In our implementations, UNIX 4.2 socket primitive select is used to preview the socket
so that the blocking is avoided when reading a socket. Thus, output to the environment can
be implemented by invoking a set of system-dependent routines, while input from the environ-

ment by including spontaneous transitions which invoke the same set of routines. The global

CHAPTER 3. THE IMPLEMENTATION STRATEGY

scheduler is fully aware of when and which spontaneous transition should be performed.

19

Chapter 4

The C-Estelle Compiler

In order to support the implementation strategy described in Chapter 3, a C-Estelle com-
piler was developed by D. Ford [Ford85] who rewrote G. Gerber’s [Gerber83] Pascal-written
Estelle compiler in the language C on a VAX 11/750 running UNIX 4.2bsd. The compiler was
then modified by K. Chan, adding the capability of recognizing the additional scope of tran-
sition group. The previous version of the C-Estelle compiler was erroneous and insufficiently
tested. In order to make it useful, the performance of the compiler has been greatly enhanced
by transforming the BNF grammars into LALR grammars which best fit the YACC compiler
for generating the parser of the C-Estelle compiler. The grammar rules were also rewritten so
that the compiler supports complex data structures such as variant record and pointer which
are commonly used in real-life protocol specifications. Furthermore, the translation routines
were modified to produce optimized and better-organized code. During the test period, many
minor problems, such as incorrect translation of Pascal for statement, have also been fixed.
The enhanced compiler was later ported to several SUN Workstations and protocol implemen-
tations such as hot potato, alternating bit and ISO class 2 Transport Protocol are successfully

running among the VAX 11/750 and SUN Workstations.

20

CHAPTER 4. THE C-ESTELLE COMPILER 21

The enhanced C-Estelle compiler reads Estelle protocol specifications and produces C code.
The generated C code is then incorporated with sets of system-dependent and pre-written
generic routines into a C program which implements the specified communication protocol. This
semi-automatic construction of protocol implementation is the main purpose of the development

of the C-Estelle compiler.

4.1 The Structure

Similar to many other compilers [Aho78|, the C-Estelle compiler is partitioned into several
phases as shown in Figure 4.1. Both lexical analyzer and parser were generated by the UNIX
standard utilities LEX [Lesk75] and YACC [John75] respectively. Error handling, table man-
agement and code generation were embedded in the YACC grammar input file. Currently, the
compiler does not optimize the generated C code. It completes the translation in a single pass
of the source specification.

A large number of semantic analysis is left untouched to the C compiler which compiles
the generated C code into executable machine code. The C-Estelle compiler only verifies the
semantic conditions that would not be detected by the subsequent C compilation. For instance,
the C-Estelle compiler ensures, for each connection, that the two connected module instances
play the different roles of the same channel-type. On the other hand, the C-Estelle compiler

does not verify that arguments are of types which are legal for an application of an assignment.

4.2 Translation Issues

4.2.1 Pascal to C Problems

Since Estelle is a Pascal-based language, translating Pascal code into C code is a primary

issue addressed during the implementation of the C-Estelle compiler. Although both Pascal and

CHAPTER 4. THE C-ESTELLE COMPILER

Table
Management

INPUT

v

Lexical Analysis

v

Parser

v

Intermediate

22

Code generation

v

Code Optimization

v

Figure 4.1:

Code Generation

v

OUTPUT

The Structure of the C-Estelle Compiler

Error
Handling

CHAPTER 4. THE C-ESTELLE COMPILER 23

C are high-level programming languages which have similar control flow constructions and basic
data types, they have enough differences which makes the direct translation a very difficult task.
The following discussion has a great impact on the performance and the use of the C-Estelle
compiler.

First of all, both languages have very different approaches in defining the scope of objects. In
Pascal, procedures and functions can be nested, and identifiers have no storage class attributes.
The scope of an identifier is the block in which it is declared and every sub-block in which the
identifier is not declared again. Whereas in C, only external functions are supported; function
nesting is not allowed, and identifiers have a special storage class attribute. The scope of an
identifier within a source file is basically the same as the one in Pascal. In addition, identifier
which is not declared in any block, can be accessed within any blocks that is lexically after its
declaration. Furthermore, the scope of externals, identifiers whose storage class are extern,
may be defined in another source file. Two proposed solutions are to use multiple output files
and to make all identifiers distinct and external. Both solutions are not straight-forward and
very cumbersome to implement. For simplicity, the use of Pascal’s scoping rules and nested
routines is disallowed. Thus, when using the C-Estelle compiler, both global variables and
nested routines are not allowed.

Secondly, self-referential data structures are declared in different sequences. Due to the
syntax of Pascal type declaration, self-referential data structure is defined in a way that a self-
referential pointer to an object can be exceptionally defined before the object is defined. C
does not have this syntax problem and an object must be defined before its reference pointer
is defined. Hence, direct translation is not possible. The solution employed in the C-Estelle

compiler is to define all objects first and then pointers.

CHAPTER 4. THE C-ESTELLE COMPILER 24

Thirdly, the formats of input/output statements are very different. Directly translation
is so difficult that only Pascal’s output statements, i.e. write and writeln statements, are
supported and translated into equivalent C printf statements. Other forms of input/output
statements can be embedded in primitive routines.

Furthermore, Pascal’s unique WITH statements and SET operations cannot be translated
directly into any equivalent C statements. Additional statements and pre-written functions are

required to make the translation. These Pascal features are currently not supported.

4.2.2 Estelle to C Considerations

In addition to the above-mentioned difficulties of translating Pascal into C, there are certain
aspects of Estelle which are very hard to handle. These are the additional Estelle scoping rules
introduced by the enabling conditions of a transition type and the additional variables used by
the run-time supporting routines. Some restrictions have been imposed in order to overcome
these problems.

First of all, the parameters of an input interaction, which are declared in the corresponding
channel-type definition, are accessible within the scope of a WHEN clause. To avoid the name
conflict, the parameter names cannot be used for local variables for any module-types which the
interaction may occur. Secondly, if the interaction point identifier in a WHEN clause is indexed,
the index identifier(s) must be declared as local variable(s) of the corresponding module-type.
Thirdly, since an ANY clause introduces additional variable(s) within the scope of the clause,
a block is used to hide the new variable(s) from other transitions. The value of the variable
is randomly selected from its specified domain by a pre-written function. Furthermore, addi-
tional identifiers are generated by the C-Estelle compiler and used by the run-time supporting

functions. These identifiers should never be in conflict with other identifiers of the specification

CHAPTER 4. THE C-ESTELLE COMPILER

which are still present in the generated C code.

25

Chapter 5

Implementation Example - The ISO
Transport Protocol

In order to evaluate the usefulness of the C-Estelle compiler, a fairly complex ISO class
2 Transport Protocol has been implemented both semi-automatically by using the C-Estelle
compiler and manually in an ad hoc manner. Both implementations run on a VAX 11/750 and
several SUN Workstations under the UNIX 4.2bsd operating system. After an overview of the
protocol, the design of its implementation is presented. The two implementation approaches
and the experience learned from the implementations are discussed, followed by a tentative
comparison of these implementations.

The state diagram of the protocol is depicted in Appendix A and the Estelle specification
of the protocol in Appendix B. The system initializer and scheduler of the semi-automatic

implementation is listed in Appendix C and those of the manual one in Appendix D.
5.1 Overview of The ISO Class 2 Transport Protocol

The ISO Transport Protocol [CCITT85,ISO82b] is a connection-oriented, end-to-end pro-

tocol, providing a reliable and efficient mechanism for the exchange of data between processes

26

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 27

in different computer systems. The class 2 protocol assumes a highly reliable network service,
such as X.25, and has the ability to multiplex multiple Transport connections onto a single
network connection. It also uses a credit allocation scheme to provide an explicit flow control
because a single network connection flow control is insufficient to handle individual flow control
of multiplexed Transport connections.

Since Transport layer provides end-to-end data transfer independent of the nature of the
underlying network, the Transport service is the same for all classes. The ten Transport service
primitives have been listed in Figure 2.1 and Figure 5.1 displays the sequence in which these
primitives are used. In order to communicate over a Transport connection, nine types of
Transport protocol data units (TPDUs) are used. These TPDUs, shown in Figure 5.2, carry
parameters which play an important role in the protocol mechanism.

Each TPDU conveys a destination reference which uniquely identifies the Transport con-
nection within the receiving Transport entity. Thus, multiplexing is allowed. After a Transport
connection is established by exchanging CR/CC TPDUs, each data TPDU (DT/ED TPDU)
is sequentially numbered. This sequence number is used for the flow control. A Transport
connection is released whenever the Transport entity has sent or received a DR TPDU. The
entity will then ignore any incoming TPDUs except DC/DR TPDUs. This explicit termina-
tion mechanism allows that a Transport connection is released independently of the underlying

network connection.

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 28

T_CONN T_CONN T_CONN
request request request
<a, J-CONN T_CONN
',,| indication ", | indication \ﬂ
I SC
T CONN T _DISC T_DI
confiem Jv'[T-CONN ‘ingdication ... ‘/T_D!SC indicatiof
» response ’ request /
Successful Rejection Rejection
Establishment by TS user by TS provider
T _DATA T EXPD T_DISC
request request request
A " \‘r \.‘
™A ™A
_T_DATA T _EXPD T_DISC
indication indication indication
Normal Expedited Rel
Data Transfer Data Transfer gieaso
by TS user
T_DISC T_DISC
request request T_DISC
reguest
el = N A
T_CONN « T_CONN = A
request indication 1_DISC
indication
Release by Ralasis Release by
both users aae user & provider
by provider

Figure 5.1: Transport Service — Primitive Sequence

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 29

LI CR | CDT —_ Source Reference Cls|Opt
LI CC | CDT|[Destination Reference | Source Reference Cls{Opt
LI DR | — [Destination Reference | Source Reference Reason
LI DC | — [Destination Reference | Source Reference

LI DT | — [Destination Reference fTPDU-NH

LI ED | — [Destination Reference EED;&EDU'

LI AK | CDT{Destination Reference | YR-TU-NR

LI EA | — [Destination Reference YR'EI%TU‘

LI ERR| — [Destination Reference | Cause

Figure 5.2: Transport Protocol Data Unit Fixed Header Formats

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 30

5.2 Design of the Implementation

65.2.1 Structure

The overall structure of an Estelle specified Transport entity has already given in Figure 2.3.
There are four different module types : TS_user, ATP, System and RS. Module instances of
these four module types are incorporated with each other to represent a Transport entity.

A TS_user module is a sub-layer which converts a Transport service user request into a
well-defined Transport service primitive or changes the module state according to the request.
A user task in the working environment can bind with one or more than one TS_user modules,
and hence one or more than one Transport connections. An ATP module is an abstract Trans-
port entity that establishes Transport connections, transfers data, and releases connections. A
System module simulates a system timer for an incoming network connection or the flow control
of a Transport connection. Finally, a RS module converts the network service primitives into

system calls. It also sets flag and stores data whenever an incoming network event occurs.

5.2.2 Implementation Issues

Since there are many unspecified properties in the protocol specification, these proper-
ties have to be determined for each particular implementation such that the resulting imple-
mentation best fits the working environment. Unspecified properties can be classified into
implementation-defined and implementation-dependent.

Implementation-defined properties are left unspecified and their definitions can vary from
one implementation to another. For instance, in the TS_primitives channel definition, data
type ADDR_TYPE is implementation-defined. Type ADDR_TYPE represents Transport ad-

dress which may be implemented differently by different implementors. Similarly, the buffer

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 31

management and data exchanged by T'S _users and a TS _provider are all implementation-defined.
Their definitions and implementations are left untouched to the implementor.

On the other hand, some properties are defined in the specification but their implementation
is left unspecified. Examples of such properties are functions constructing Transport protocol
data units. The format of a Transport protocol data unit is specified but how to construct such

a TPDU is unspecified.

5.2.3 Scheduler Design

A simple round-robin scheduler is employed to select the next available input interaction.
This scheduler scans queues associated with each interaction point of module instances for the
existence of any input interactions. The first available interaction is chosen and passed together
with the information of the associated interaction point to the module instance which executes
a transition.

As mentioned in Section 3.3, for a given input interaction and a given module state, a
number of transitions may be possible. Which possible transition is chosen to execute depends
on the priority and the order it is defined in the specification. Generally, the chosen transition
is the one has the highest priority and the first one which enabling condition is satisfied.

At a regular time interval, a module instance which has spontaneous transitions is attempted
to execute one of its spontaneous transitions. The first possible spontaneous transition which
enabling condition is satisfied will be performed. This simple scheme works fine provided
that the enabling conditions of the spontaneous transitions are all distinct, and spontaneous
transitions are defined in a well-defined order.

The above consideration of spontaneous transitions does not work satisfactorily for those

initiated by the working environment. A module instance require to execute such a transition

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 32

immediately whenever the working environment notifies the module an external event occurred.
The global scheduler is fully aware of the external events, and invokes the module instance to

perform an action immediately whenever such event comes up.
5.3 Semi-Automatic Implementation

The protocol was first specified in Estelle from the description in the ISO document
[CCITT85,ISO82b] and by adapting many other specification attempts [ISO84,NBS83]. The
Estelle specification was then compiled by the C-Estelle compiler to generate parts of the
protocol implementation. After this automatic process, the generated code was incorporated
with the pre-written generic routines and the system-dependent functions into a C program to

implement the protocol in question.

5.3.1 The Generated Code

The generated code can be classified into three types. The first type is the deftype and
structure declarations which represent module instance, interaction, type and variable defini-
tions. These definitions are required by the run-time executives to store the state information
of the protocol machines. The second type is a set of functions which creates, initializes and
constructs data structures in the specified fashion. The last type is another set of functions
which implements the transition processes of the protocol machines.

Most data structures are self-explanatory and the special data structures have been discussed
in Chapter 3. They are the wheels of the protocol machines which are initialized and constructed
by the generated functions to implement the specified protocol.

Initialization functions can be further subdivided into two types, depending on their corre-

sponding Estelle specifications. A function which corresponds to an Estelle Process definition

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 33

creates and initializes a process_block data structure. This process_block represents one of
the protocol machine instances in the specified system. Other type function corresponds to
an Estelle Refinement definition. It creates the sub-module instances and links the instances
according to the Estelle CONNECT and REPLACE definitions. Both type functions use a set
of pre-written generic function to perform the creation, initialization, and integration of the
specified system components.

Transition functions are simply a series of conditional expressions and statement blocks.
Expressions evaluate the enabling conditions of a possible transition type and block performs
the associated action. Unless priority is set, input transition types are always generated ahead
of spontaneous transition types. Only the first transition type, which enabling condition is
satisfied, will be performed at a given time.

Each transition type is generated in the same pattern. For an input transition, the operation
is preceded by tests on the identity (signal_id) of the received interaction and those (c_id and
index_num) of the interaction point at which it came. Additional tests, which correspond to
PROVIDED clause and/or TO clause, may also preceded the operation. At the end of each
transition type, a goto dispose statement passes control to the signal data structure dispose
code. For a spontaneous transition, the pattern is the same except that no tests on the identities
of the input interaction and the interaction point. For an ANY clause, which requires to make
a non-deterministic choice, a sub-block is created. The specified variable(s) is declared within
the sub-block and its value is randomly selected from its defined domain by the pre-written
function random _select.

Creation and destruction of signal structures which represent interactions between module

instances are implemented completely within the generated transition functions. The output

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 34

statement OUT is implemented as follows. First, a signal structure is created and initialized
with the given parameters. The signal structure is then passed to a generic function out together
with the information of the interaction point at which the module instance interacts with the
peer. If the interaction is a queued type, the signal structure is placed in the reception queue
of the peer module instance. Control returns to the initiating module instance immediately. If
the interaction is a rendezvous type, the transition function corresponding to the peer module
is invoked directly at this point. The destruction of the signal structure is handled by the

recipient module instance.

5.3.2 Integration Process

For convenience, deftype and structure definitions of the generated code were first extracted
into a well-known header file defs.h. Two run-time supporting functions, system_init and
schedule, was then modified to suite the specified system. Finally, the generated code was
incorporated with the system-dependent primitives and the run-time supporting functions into
a C program to implement the protocol in question.

Besides defs.h, there is another global header file listdefs.h included in all files. File
listdefs.h contains macro definitions and specification-independent channel_block structure
declaration. This structure is used to represent an interaction point of a module. Another
important header file fdtglobal.h, which is required to be modified for every different specifi-
cation, contains the declaration of all global variables and external functions. This fdtglobal.h
file is included only in the main routine file. There are two key global variables : p_block and
signal_pending. During execution, pointer p_block is an entry to the current machine in-
stance, and signal_pending is a counter of interactions which have been initiated and are

waiting for execution.

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 35

To execute, function system_init first builds and interconnects the specified machine in-
stances. The working environment is also set up so that the upcoming scheduler can be fully
aware of any interested external events. Function schedule is then invoked to repeatedly scan
all interaction queues associated with channels and to activate the module instances. Module
instances which contain spontaneous transitions are tried at a regular time interval. Further-
more, whenever an external event occurs, the scheduler will activate a proper module instance

to perform a special-designed spontaneous transition.
5.4 Manual Implementation

Based on the same specification and the semi-automatic implementation, the protocol was
re-implemented manually in an ad hoc manner. Most principles discussed in Chapter 3 and
previous Section 5.2 were followed. The overall structure is similar to that of the semi-automatic
implementation. The Transport entity is implemented as a single task in the operating system.
It communicates with user tasks and the network service provider through operating system
primitives (i.e. system calls). The major difference to the semi-automatic approach is the
implementation of scheduling interactions which are initiated either by a module instance or
the working environment.

Instead of using a single data structure process_block, three different data structures,
TS_MACHINE, TP_MACHINE and NP_MACHINE, are designed to store the state information
of a Transport service user, a Transport connection and a network service provider respectively.
Three global variables, tslist, tplist and nplist, are declared as head pointers of the three
different control queues.

The interactions between the Transport entity task and the working environment, user tasks

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 36

and the network service provider, are based on the inter-process communication primitives
provided by the operating system, i.e. UNIX 4.2bsd socket primitives. Spontaneous transitions
initiated by the working environment were handled in an ad hoc manner similar to that in the
semi-automatic implementation. Whenever an external event occurs, the corresponding module
instance is activated to perform a proper transition. A series of input transitions, initiated after
this spontaneous transition, is then performed until all module instances are in a steady state.
As a result of this transformation, the global scheduler is simply a loop which performs the

processing for the incoming external events one after the other.

5.5 Results

The size of different parts of the resulting implementations are shown in Table 5.1. Both
implementations used the same INET primitives to interact with the network service provider.
This network service provider is usually a daemon process in the operating system. INET
primitives provide an uniform access scheme which can be easily modified to suite different
network service access schemes in different systems. Similarly, TSP primitives were used for
the interactions between Transport service user tasks and the Transport entity task.

Both implementations spent a large amount of code in TPDU encoding/decoding and buffer
management. However, they were not very difficult to implement because of the powerfulness
of the C language. The encoding/decoding of TPDUs were implemented almost the same in
both implementations. Both implementations shared the same header file pdu.h and differed
only in the passing parameters when decoding a TPDU. Since the buffer management was
implemented intermixed with other code in the manual implementation, no separate entry for

its code is in the table.

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 37

Number of Number of Program size
PART OF ; . ! ,

Functions and | Source Lines (in bytes)
PROGRAM Macros

(A) (B) | (A) (B) [(A) (B)
INET
PRIMITIVES 3 509 10969
TSP
PRIMITIVES 12 741 17073
ESTELLE
SPECIFICATION | 28 — | 1910 — | 46351
GENERATED
CODE 20 1447 gt1421
RUN-TIME
SUPPORTlNG 76 16 3420 770 78821 21054
ROUTINES
PRIMITIVE
ROUTINES 82 3049 71340

(A) --- Manual Implementation

(B) --- Semi-Auotmatic Implementation

Table 5.1: Sizes of Different Parts of Implementations

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 38

Forty two additional functions were used in the semi-automatic implementation. Sixteen of
them were pre-written run-time supporting functions and the rest were specially designed for
the global scheduler to activate the specific modules.

During the semi-automatic implementation, the most difficult task was integrating the gen-
erated code with the working environment. Both the implementation scheme using by the
C-Estelle compiler and the behaviour of the working environment must be thoroughly under-
stood in order to design the specific spontaneous transitions and to modify the two special
run-time supporting functions : system_init and schedule.

The weakness of Estelle forced the static allocation of data structure process_block which
represents a module instance. The number of Transport service users and network connections
must be pre-defined in the specification. The pre-definition was then used by the C-Estelle
compiler to generate code that the corresponding process_block structures must be allocated
in the global initialization phase. To execute, a pre-defined number of Transport service user
tasks must be executed so that the implemented system went through the global initialization
stage.

The advantages of the semi-automatic approach came from the well-constructed generated
code. Since the code was generated directly from a formal specification, the conformation was
almost guaranteed. The well-constructed code also localized hazards and system dependent
properties in a few routines, and hence, maintenance was much easier.

On the other hand, the most difficult task of the manual implementation was to design
the interfaces with the operating system for interactions with the user tasks and the network
service provider. Interactions initiated by the working environment intermixed with other input

interactions. The layer structure was less clear in the resulting code. A longer debugging period

CHAPTER 5. IMPLEMENTATION EXAMPLE - THE ISO TRANSPORT PROTOCOL 39

was spent and more exceptional cases were required to be handled.

Although the manual implementation was based on the same specification, no restriction
on static allocation was imposed in the global initialization phase. Any number of Transport
service user tasks can interact with the Transport entity. The Transport entity required no
static connections to go through its initialization phase. Furthermore, any number of network
connections can be established during the execution.

The manual implementation is tied closer with the working environment. An interaction
was implemented as simply a function call. It was always faster than the semi-automatic imple-
mentation because of the reduction of a large amount of generated code which had additional
swapping overhead for module interactions.

It took approximately one year to study and implement the ISO class 2 Transport Protocol
manually in an ad hoc manner without an Estelle specification. The protocol was subsequently
specified in Estelle, and re-implemented semi-automatically in about two months. After this
exercise, we gained a profound experience on protocol implementa.‘tion and a good insight
to the ISO class 2 Transport Protocol. Therefore, in our last attempt, it took us only one
month to re-implement the protocol manually. From our experience, we think it saves protocol
development times and it is good practice to start with the semi-automatic approach to protocol
implementation, assuming one is familiar with the FDT compiler. The code produced this way
is well structured and easy to maintain. Even if the code is not efficient enough, we can always
attempt a manual implementation subsequently. Protocol implementations generally require a
lot of time on the development of the interfaces with the working environment. The manual
approach required additional time to implement module interactions. It also required more

debugging time than the semi-automatic approach.

Chapter 6

Conclusions

6.1 Thesis Summary

This thesis has discussed a semi-automatic approach to implement a protocol. The protocol
is first specified in the Estelle FDT, and translated into C code by using an automatic tool,
C-Estelle compiler. The generated code is then incorporated with system-dependent primitives
and run-time supporting functions into a C program which implements the protocol in question.

Despite the fact that the semi-automatic implementation tends to be slow and an initial
effort is required to learn the Estelle FDT and the automatic tool C-Estelle compiler, the new

approach has the following benefits :

1. Easy maintenance because the generated code was constructed in a simple and easy-to-
read pattern.

2. Good conformance because the specification was directly (automatically) translated into
C code.

3. High portability because large amount of code was generated in standard C language and
system-dependent properties were easily located and modified.

4. Less development time because large amount of code was translated directly from the

specification.

Experience on implementing the ISO class 2 Transport Protocol has verified the usefulness

40

CHAPTER 6. CONCLUSIONS 41

of the C-Estelle compiler and the semi-automatic approach to protocol implementation. From
our experience, it is a good practice to approach a protocol implementation in the following
sequence :

1. Implement the protocol semi-automatically using the C-Estelle compiler.

2. Optimize the semi-automatic implementation, especially the generated code.

3. Re-implement the protocol manually (if high performance is required.)
6.2 Future Work

Further study on the semi-automatic implementation would be useful, in that a protocol
can be implemented by two completely independent teams, one using the traditional ad hoc
approach and the other, the new semi-automatic approach. This way, more concrete and
objective comparisons can be made on the performance and usefulness of the new approach.

Further testing of the C-Estelle compiler on complex protocols such as ISO class 4 Transport
Protocol is a natural extension of our thesis. Such experiment would further demonstrate the
usefulness of the compiler. Several enhancements to this technique and the compiler are under
consideration.

In order to enhance the C-Estelle compiler, some of the high-level code for interactions
of the specified system with its working environment should be generated by the compiler.
Dynamic structure, such as Process allocation should be supported by the Estelle, and hence
the compiler. Since global variables, WITH statements and SET operations are very useful
features, the compiler is also required to support them.

To be realistic, the compiler should be modified to support a general multi-process struc-

ture instead of the procedure-oriented structure. Since UNIX 4.2bsd is a procedure-oriented

CHAPTER 6. CONCLUSIONS 42

operating system, a better working environment, such as V-system and Team Shoshin which
are process-oriented , may be chosen.

To overcome the Pascal-to-C problem, a C-oriented FDT would be desirable for protocol
implementors who are working in C/UNIX oriented environment. However, the apparently
irreversible decision by the ISO standard committee (ISO T'C 97/SC 16/WG 1 - FDT Subgroup
B) has been made to keep Estelle Pascal-oriented. Whenever the final Estelle standard becomes
available, the compiler will have to be adapted to that (our implementation of the C-Estelle
compiler is based on [ISO84], not the latest [Estelle85]).

As the last comment, the compiler can be well used as a simulation tool, and could be
incorporated with some validation, testing and performance evaluation facilities so that we
can have a complete automatic system for the design, validation, implementation, testing and

performance evaluation of the communication system.

Bibliography

[Aho78]
[Ansart83]
[Blum82]
[Boch80)

[Boch84]

[Bria86]

[Brin85]

[CCITTS85]
[Estelle85]

[Ford85]
[Gerber83]

[Grog80]

Aho, A. and Ullman, J., “Principles of Compiler Design,” Addison-Wesley, 1978.

Ansart, J.P., Chari, V. and Simon, D., “From formal description to automated
implementation using PDIL,” Protocol Specification, Testing and Verification,
(IFIP/WG 6.1), H. Rudin and C. H. West, eds, North Holland (1983).

Blumer, T.P. and Tenny, R., “A formal specification technique and implementation
method for protocols,” Computer Networks, 6 (3), June 1982, pp. 201-217.

Bochmann, G.v. and Sunshine, C., “Formal Methods in communication Protocol
Design,” IEEE Trans. on communications, COM-28 (2), April 1980, pp. 624-631.

Bochmann, G.v., Gerber, G. and Serre, J.M., “Semi-automatic Implementation
of Communication Protocols,” TR 518, d’IRO,Universite de Montreal, Decem-
ber 1984.

Briand, J.P., Fehri, M.C., Logrippo, L. and Obaid, A., “Structure and Use of a
LOTUS Interpreter,” SIGCOMM 86, Symposium, Vermont, 1986.

Brinksma, E., “A Tutotial on LOTUS,” Protocol Specification, Testing and Veri-
fication V, (IFIP/WG 6.1), M. Diaz, eds, North Holland (1985).

CCITT, Recommendations X.200 to X.250, Red Book, Geneva, 1985.

ISO TC 7/SC 21/WG 1 - FDT, Subgroup B, “Estelle — a formal description
technique based on an extended state transition model,” Feb. 1985.

Ford, D.A., “Semi-Automatic Implementation of Network Protocols,” Master
Thesis, University of British Columbia, March 1985.

Gerber, G.W., “Une Methode D’Implantation Automatisq de Systemes Specifies
Formellement,” Master Thesis, University of Montreal, 1983.

Grogono, P., “Programming in Pascal,” Rev. ed., Addison—Wesley, 1980.

43

[Hans84]

[1S082a)]
(ISO82b)
1S084]

[John75]

[Kern78|
[Lesk75]

[Lotos84]
[NBS83]

[Rit78]

[Tanen81]
[Vuong86]

Hansson, H., “Aspie, A system for Automatic Implementation of Communication
Protocols,” Uptec 8486R, Uppsala Institute of Technology, Uppsala, 1984.

ISO TC 97/SC 16, DP 8073, “Transport Protocol specification,” June 1982.
ISO TC 97/SC 16, DP 8072, “Transport Service Definition,” June 1982.

ISO TC 97/SC 16/WG 1 — FDT, Subgroup B, “A Formal Description Technique
based on an extended state transition model,” Working Document, March 1984.

John, S.C., “YACC : Yet Another Compiler-Compiler,” CS TR 32, Bell Labora-
tories, NJ, 1975.

Kernighan, B.W. and Ritchie, D.M., “The C Programming Language,” Prentice-
Hall, 1978.

Lesk, M.K., “Lex—A Lexical Analysis Generator,” CS TR 39, Bell Laboratories,
NJ, 1975.

ISO TC 7/SC 16/WG 1 - FDT, Subgroup C, N 299, “Definition of the Temporal
Ordering Specification Language,” May 1984.

National Bureau of Standards, “Specification of a Transport Protocol for Com-
puter Communication,” ICST/HLNP 83-2, Feb. 1983.

Ritchie, D.M, and Thompson, K., “The UNIX time-sharing system,” Bell Sys.
Tech., 57(6), July 1978, pp. 1905-1929.

Tanenbaum, A.S., “Computer Networks,” Prentice~Hall, 1981.

Vuong, S.T., and Ford, D.A., “An Automatic Approach to Protocol Implementa-
tion,” TR draft, Dept. of Comp. Sci., University of British Columbia, 1986.

44

Appendix A

The ISO Class 2 Transport
Protocol — State Diagram

45

APPENDIX A. THE ISO CLASS 2 TRANSPORT PROTOCOL — STATE DIAGRAM 46

N_CONN_CONF/CR

T_CONN_REQ
/N_CONN_REQ

N_DISCON_IND
/ T_DISCON_IND

/T_DISCON_JHD _DISCON_REQ

/DR

cc
/ T_CONN_CONF

I T_DISCON_IN
DR

T_CONN_REQ)
DRC

T_DISCON_REQ
/ DR

ESTABLISHED

N_DISCON_INDIT_DISCON_IND /

DR/T_DISCON_IND,DR

N_DISCON_IND
Fiess

CR/C

CALLED CR-RCVD

T_DISCON_REQ
/DR

N_DISCON_INDY ---

(L/R) --- L Enabling Condition
R Output Interaction

Figure A.1: Transport Protocol State Diagram

Appendix B

The ISO Class 2 Transport
Protocol — Estelle Specification

47

MODULE Transport_system;
EZND Transport_system:

REF INEMENT Transport_ref FOR Transport_system!

[(*evernsersssarnadssssasasssesansesasslgarassnssseasastaccsrrnedrrns

.

¥ Transport Protocol
.

machine Module

R R R R R R L e]

(* Constant and Type Definitions *)

{* Channel Definitions *)

CHANNEL TS _primitives (TS_user, TS5_provider)

BY T5 wuser

T_CONNECT_reguest

T_CONNECT_response

T_DATA_reguest

T _4APD_recuest

8Y TS5 _provide:

T_CONNECT_indication

T_CONNECT_confirm

T_DATA indication

T_XPD_indication

T_DISCONNECT_indication ({

END TS _primitives:

From_transport_add:
To transport_addzs
Quzl_of_serujce

TS5 _user_data

Qual _of sercvice
TS_user_cata

{ from_transport_adar

To_transport_accr
Qual of service
TS_user_cata

(Qual _of service
TS_user_data

(TS_user data
{ TS_user_data

Reason
TS user data

CHANNEL NS _primitives (NS _user, NS _provider);

BY NS _user

N_CONNECT_request

N_CONNECT_response2;

N_DATA_request

N_DISCONNECT_ request:
BY NS provider :

N_CONNECT_indication

From network_addr
To_network_addr
Qos

N5 user data

{ From_network addr
To_network addr

QoS

AbDRY

ADDR
205

DATA

Q035

- TYPE:

e .

#DDR_TYPE,
QC3_TYPE;
DATA_TYPE

QOS_TYPE:
DATA_TYPE

DATA_TYPE),
DATA_TYPE J:

REASONM

Tr

NADDR_TY?Z:
NQOS_TYPEZ).

E Q%

NDATA_TY?

NADDR_TYPE;
NADDR_TYPE:
NQOS_TYPE) :

N CONNECT confirm;
N _DATA_indication { N5_user_data : NDATA_TYPE)./
N DISCONNECT indication (Reason * REASON_TYPE)
AND NE pranat buesg
CHANNEL System primitives (S_user, S_provider | ¢

aY 5 _usoer

Timer_reguast (Name TIMER_TYPE:
Time integer:
Seqno : SEQUENCE_TYPE ¥
Timer_cancel { Name TIMER_TYPE:
Seqno : SEQUENCE_TYPE:
Allseq: boolean)@

Y 5 provider

Timer response { Name TIMER_TYPE:
Segno SEQUENCE_TYPE ¥

END System _primitives;

[sradmsarratsrusdrrntantrsdrssrrahdobtirianbatasnbinataestnnay

MODULE TS_use:z _module:

END TS_user_process;
(""II*."..Iﬁl'l‘.l..'-i.'."...HI'I.‘Q.'..".Iﬁ!l'l"'..ﬁ}
MODULE System_module;

SEP : System primitives (S_provider);
END System_module:

PROCESS System_process (Sys_index : integer) FOR System _module:

END System _process.

I e R

MODULE ATP_module:
TCEP : ARRAY[TSAP_TYPE] OF TS_primitives (TS_provider);
NSAP : ARRAY(NCEP_TYPE]) OF NS_primitives (NS_user):
SAPT : ARRAY[TSAP_TYPE] OF System primitives (S_user):
SAPN . ARRAY[NCEZP_TYPE] OF System primitives (S_user);

END ATP_module:

PROCESS ATP_process FOR ATP_module;

QUEVUED TCEP, NSAP;

(* Variable declarations *)

VAR

tc
nc

TP_TABLE;
NS_TABLE;

Jata,
ndata
ndu
tid
nid
gkind
n
ceason
nsdu_len

temp

(* Primitive functions

PROCEDURE Add_ request (

FUNCTION Alloc_ref :

PROCEDURE Concatenarc 2

PROCEDURE Construct_ AK(

PROCEDURE Construct CCH

PROCEDURE Ceonstruc: CR(

PROCEDURE Construct DC(

NR(

PROCEDURE Construct

PROCEDURE Construct DT{

PROCEDURE

PROCEDURE

PROCEDURE

Construct XAK(VAR

¢ DATA _TYPE:

: NDATA_TYPE:

t TPDU_TYPE;

: TSAP D _TYPE:
HCET_ID_TYPE:;
Q_MIZC AIND:
SEQUENCE TYPE:
REASON_TYPE:
Lnteger:

and procedures *)

VAL tc
data

REFERENCE_TYPE:

VAR ac
data

_NBDU G

VAR packet
cot
dref
seqno
2xtencad
YAR mackos

o |4

3rE

VAR

vaR

4]

o
et

W
Lm0
W oo A

on

(Lo Wi
I
r

VAR packet
dref
eflag
seqno
extended
data

Construct_ERR(VAR packet

dref
rgason
data

packet
dref
Xxseqno
extended

Construct XPD(VAR packet

TP_MACHINE;
DATA_TYPE)

N5 MACHINE;
DATA_TYPE)i

DATA _TYPE:

SEQUENCE TYPE:
REFERENCE TYPS:
SEQUENCE_TYPE;
boolean ¥,

SUFFIX T
SUFFIX_TY
integer;

QOS_TYPE;
DATA_TYPE)

DATA_TYPE:
REFERENCE TYPE;
REFERENCE TY¥PE)

DATA TYPE:
REFZRENCE
REFEZRENCE
REASON TY?Z.
DATA_TYPE)

DATA TYPE:
REFERENCE_TYPE:
boolean;
SEQUENCE TYPE:
boolean;
DATA_TYPE |

DATA_TYPE:
REFERENCE_TYPE:
REASON_TYPE;
DATA TYPE)

DATA_TYPE:
REFERENCE_TYPE:
SEQUENCE_TYPE:
boolean ¥

DATA_TYPE:

50

PRIMITIVE;

PRIMITIVE;

PRIMITIVES

PRIMITIVE.

PRIMIT I

PRIMITIVE;

PRIMITIVE:

PRIMITIVE,

PRIMITIVE:

PRIMITIVE:

PRIMITIVE;

FUNCT PON Deteamine _TC(te

PROCEDURF

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURZ

PROCZDURZ

PROCZDURZ

PROCEDURE

FUNCTION

PROCEDURE

FUNCTION

FUNCTION

PROCEDURE

data

dref
xseqn
exten
data

VAR pdu

Extract NSDU(VAR nbutfec

VAR

Extract TPDUL
VAR
VAR

Extract TSDU(
VAR
VAR

Get _net_addr(VAR

Mecge{ VAR buffer
pdu

ndaca

nsdata
tpdata
nslen

buffer
tsdu
count

naddrc
taddr

Releasel VAR buller

segno

kind

allsac

ARuleags all(wan

Resume wara | VAR tc

Resume_=catal

Retrieve(buffer
seqno
kind
VAR data

Same_naddr(naddrl, naddc2 : NADDR_TYPE)

Store(VAR buffer
data
segno
kind

SEQ_ADD (segl, s«
extaenda

SEQ_MINUS (seql,

d

ql

seql

extended

Uncode (VAR pdu

ndata
extended

: REFERENCE_TYPE:
o : SEQUENCE_TYPE;
ded : boolean;

: DATA TYPE)&

TP_TABLE:
DATA_TYPE:
TPDU_TYPE)

MNUUFFER_PTR.
! NDATA_TYPE 1 IF

NDATA_TYPE:
DATA_ TYPE:
integer L

BUFFER_TYPE;
DATA_TYPE:

SEQUENCE_TYPE)5

MADOR_TYPE:
ADDR _TYPE |

BUTFER PTR:
TEDU_TYPE 1

BUFFENK_PTA:
SEQUENCE_TYPE:
20U_KIND;
osoolean -

Al i
ACHINZ),

BUFFER_PTR;
SEQUENCE_TYPE:
PDU_KIND:

DATA_TYPE)i

BUFFER_PTR:
DATA_TYPE:
SEQUENCE_TYPE;
PDU_KIND):

SZQUENCE _TYPE:
bonlean)

SEQUENCE_TYPE;
boolean)

TPDU_TYPE:
NDATA_TYPE;
boolean)

TSAP_ID_TYPE:

boolean:

SEQUENCE TYEE:

SEQUENCE_TYPE:

PRIMITIVE:

PRIMITIVE.

PRIMITIVE.

PRIMITIVE:

PRIMITIVE:

PRIMITIVE;

PRIMITIVE:

PRIMITIVE:

PRIMITIVE;

PRIMITIVE:

PRIMITIVE;

PRIMITIVE:

PRIMITIVE:

PRIMITIVE:

PRIMITIVE;

PRIMITIVE:

PRIMITIVE;

(S 4 et aasalatastsasdtaneenadstassssacsiassssissscrsacsnsnnsannsnnnans)

FUNCTION Accentable CC(qos

BEGIN

srer
pdu

Acceptable CC := TRUE:

if { pdu.version

<> VERSION

QOS_TYPE:
REFERENCE_TTPE,
TPDU_TYPE)

) or

{ pdu.data.dlen > MAX_CRCC_S5Z) or
{ pdu.maxsz = 0

then

boolzan;

1

acCeptable ¢C := FALSE.
17 (pdu.qos . class <> qos.class) and { odu.ocls <> gos.class)
then
Avceptabla CC := FALSE:
S5 NOT qos.misc [NO EXPEDITED _BATA it
pdu.gos.misc|{Q_ ‘MO EXPEDITED “DATA ! orv
(NOT qgos. m13||Q thCﬁaUH IN :5?} amd
pdu qos misain "‘t}.r:'\.,;l.l“l N U]) W
{ NOT gos.misc|Q NO_£LOW LONTROuI and
pdu.gos.misc (0 ‘NOFLOW CONTnOLf } ov
(NOT gos. mlaclo EXTENDED FOF\P‘\T] and
pdu . qos. m155|0 EXTENDED FOR“ATl)
then

Acceptable CC := FALSE!
if pdu dref <> sref then Acceptable_CC := FALSE
EHD;

{.-4-.-......--.-..-..-.-n-.---aa-co-.--cu-------looc--ucn-...anncco.)

FURCTICN Acceptabla CR(gos : QOS_TYPE,

pdu : TPDU_TYPE) :@: hacizan:
Vi
Shang o Q MISC_KIND:
. b A e
i . Z) o
if | pdu.gos.class <> gos.class) and ([pdu.zcls <> gos.class)
then
Acceptable CR := FALSE:
if (NOT gos.misc[Q_NO_EXPEDITED DATA]) and
pdu.qgos.misc[Q_NO_EXPEDITED DATA)) or
{ NOT gos.misc[Q_ CHECKSUM IN USE} and
pdu.gos.misc [Q_ CHECKSUM IN USE]) or
{ NOT gos. m;sc(Q NO_FLOW CONTROL] and
pdu.qos.misc|Q_NO_FLOW_CONTROL]) or
{ NOT gos. m:scIQ EXTENDED _FORMAT] and
pdu.gos. mxsu{Q ;AT'NDED FORMAT))
than
Acceptable CR = FALSE
N0

R R R R R R R e R I R R R R R R R |

FUNCTION Choose_class(gos : 20S_TYPE) : Q_CLAS3_TYPE:
BEGIN

Choose class := gos.class
END;

(R R R R R R R N R N

PROCEDURE Construct_addr (VAR transport_addr : ADDR_TYPE;

suffix SUFFIX_TYPE:
net addr NADDR_TYPE)
BEGIN
transport_addr .suflix = suffix;
transport addr.prefiz := net_addr
END.

(fetddnsadanaansssapaansnssanisisdbiotanssnnanssnvaddssnansinisnncsunes)

FUNCTION Get ncep(nc : NS_TABLE;

52

I naddr, f_naddr . NADDK_TYPE + @ NCEP _iD_TYPE;
VAR
nid : NCEP_ID_TYPE:
notdone : boalean:
BELTN
natdone := TRUE:
nid i 1.d
winile notdom: and (nid <= Rad NCEP_ID) do
begin
if Same_naddc(f_nadde, ncloid] £ _net_addr)
then beqgun
notdone :=* FALSE;
Get_ncep := nid
end
else
nid := nid + 1
end:
nid = 1;
(* A new network connection is required *)
while notdone and (nid <= MAZ NCEP_1D) do
begin
1f nclnid].stare = NIDLE
then beg:in
notdone i= FALSE:
Gel _ncep = nic
and
alse
ALG G Sin = E
2nd;
if notdone then Gat_ncep :=
oDy

R A R R R A AR N R A RS A RN S

FUNCTION Get_suffix(transport_addr : ADDR_TYPE) : SUFFIX_TYPE:
BEGIN

Get suffix := transport_addr.suffix
END;

{t..ttt‘l‘!*.'l!tlt-tnl‘tlulltt-.lllDQiﬁit*ltitttlittltttltﬂoﬂt'illltl

FUNCTION Min(m, n : integer) : integer;

BEGIN
if m>n
then Min = n
else Min = m
END;

(FadtusdamtdansasssasntsrntbtnnandanmtaaRasadmartanasnvantatanibnnunsn)

FUNCTION Nc_multiplexed(np : NS_MACHINE) : boolean:
BEGIN
if np.link > 1
then Nc_multiplexed := TRUE
else Nc_multiplexed := FALSE
END:

(*ttddrctnscsesssrssavrsarsssressrrnttftdacssadibodasanrvdsansnvninnnidy

FUNCTION New_nc_required(nc : NS_TABLE;
laddr, faddr : ADDR_TYPE) : boolean;
VAR
nid : NCEP_ID_TYPE:
notdone : boolean;
BEGIN

notdone := TRUE:

53

nid g

while notdone and { nid <= MAX NCEDP_ID) o
begin
if (nclnid).srats <> MIDLE)} and
Same naddr(nuc,md] . § net adde, faddr pueiiz)
then baeqgin

notdone = FALSE:
New nc_required = FALSE
end
else
nid := nid & 1

end;

if notdone then New nc regquired := TRUE
END:

‘A_&Qt-¢tltnlcllc.rn.ouoooatonq14tcut-t-qtcht-.taitn-olnoltnnblnl]

FUNCTION Size(data : DATA_TYPE) : integer:
BEGIN

Size := data.dlen
END.

(* Initialization *) '

INITIALIZE
BEGIN
for tid :=
begin
tecleid]
celeid}
tclcig
tclrid)

1% o3) w3y K
tcleid],
tcltid], : L
te(tid]).snd_nxt i

=]

DEF_BUFFER_M:

0:
0:
0:
0:

teftid] .rev_nxt :
tc(tid] .rcv_upper_edge %

tc(tid) .x_seq =
tec(tid]) .x_nxt =
tc(tid] .xsnd_nxt 1=
tc(tid).x_una t -

for gkind := O_NO_EK?EDITED_DATa to Q_EXTENDED_FORMAT do
tc(rid]).qual of_service.miscigkind] := FALSE:

tc(tid] .qual_of _sesv:ice.class := CLASS_TWO:
tc(rtid] . reason i= MORMAL:

tc(tid] .max_TPDU_size := DEF_TPDU_SZ;
tc(tid] .DT_maxlen := DEF_TPDU_SZ - NOR_DT_MEADESL _5Z;

tcltid].sbuf := NIL;

tceltid] . rbuf := NIL;

tc(tid) . xbuf ;= NIL
end;

for nid := 1 to MAX NCEP_ID do

begin
ncinid].state := NIDLE:
nc{nid] . link = 0;
nclnid] .ngos ;= CLASS TWO;
nc(nid] .sbuf = NTL:
ncinid] . cbuf = HNIL

end

END; (* Initialization *)

sitainns ¢

WHEN TCEP[tid]
PROVIDED ((

[Choose classi{ Qual of _secvice)
{ Sizel

GIn
te[rid] . svate -
tcleid]
tc(rid]

.1 suffix

tcleid] .1l _
.f_suffix

teftid]

Get_net_addr(tcltid]
Get net_addr(tc(tid]

nid 1=
tcitid) .ncep_id

tclbid}.

Storel(tc(tid].sbuf

X
ncinid} .state
nci{nid] .l _net_ac
ncinid] £ net_ 2.
nclnid].link
ncfnid) .ngos

cd
o

OUT NSAP[nid] .M _CONNEZCT_ recues:

END;

TRANS

.T_CONMECT_regquest
teleid] .
{ Now _ne_required(ac,

.local_ addr
.remote addr

Get _ncep(

qual_oi_service

o

35

(* Transition 1 *)
CLOSED) and

Fram transport
_addr)
= CLASS TWO)

<= MAX _CRCC_52 1)

scale =
adde,

} EH T

Te_transsorct
and

TS _user_data)

CALLING:

:= From_transport_addr:
:= To_transport_addr:

:= Get_suffix(From_transport_addr });
:= Get_suffix(To_transport_addr):

From_transport_addr):

.1l_net_addr,
To_transport_addc).

.f_net_addr,

nc, tcltid).l_net_addr, tcltid].f net_acz:),

;= nid;
:= Qual of serwvice;
0!

TS_user_data, 0y

NWAITING,
tclrid) . l_net
telrid]) . f_nec

nou

{ nci{nid].l_ret_addz,
ncin:d).f ner_addc,
nclnid].ngos)

WHEN NSAP (nid] .N_CONNECT_confirm
PROVIDED nclnid].state = NWAITING

BEGIN
nc[nid] .state

for tid
begin

if
then begin
tc{tid]

tc(tid).src_ref =
Retrieve(tc(tid)]
Release(tc(tid].sbuf,

Construct_CR{(

Concatenate_2_ NSDU

(*
("

end
end
END:

TRANS

WHEN TCEP[tid].T_CONNECT_request

(tc(tid] .ncep_id = nid)
(tcltid].state = CALLING)

.5tate

:= NOPEN;

:= 1 to MAX_TSAP_ID do

and
{* Transition 2 *)

:= CR_SENT;
Alloc_ref;

0, temp):
0, TRUE):

0,
0,

.sbuf,

tc(tid].rcv_upper_edge,
tcltid].sre ref,
te(tid).1l Sufilx,
tctid) . f su[flt,
tc(tid].max TPDU _size,
telcid). qual of seKVAce.

temp)

data,

- { nclnid], data }
if CALLING *)

for loop *)

(* Transition 3 *)

PROVIDED ((tcltid).state = CLOSED) and
(NOT New_nc :equaredt nc, From transport_addr,
To_transport_addr)) and

56

{ Chouvsa _clasi(Dual_nt seiwicd) - Chany Two) and
(Size(TS_user data) <= MY CRCC_52 10 3
BEGIN

talrid] o state (= CR SENT

toltidi.local _adar From ot ovaape s _adds;

Lulrid] . remote add:s ~ Toa_toawaport _aad:n

e kil o1l suElfix © her auifixd “rom transport_addr).

cafrad] L sutfix o suliix(To_tcansport_addr).

Got_net_addr(te|nid] 1oser _adde, From_transport_addr)i
Get _noet addre(Lc|rnad]

. _addr, To_transport_addr):

nid := Get_ncep{ nc, tc(zid].l _net_addr, tcltid] . {_net_addr);
tc(rid].ncep_id c=onad;
(Gl B
nelnid) link = aelnid]-link v 1
(")
Liftid] gqual of sarwizs v Dual of secrvico.
teefitid] . src_ref w Robens ook
Construct CR{ dava, .rev_upper_edge,
~sre_ref;
oL suffax;
f sufiix,
max_TPODU size,
qual_of service,
daga }
£ L5y ari)
TRANS

nsdu_len := 0:

while (nsdu_len < NS_user_data.dlen) do
begin
Extract TPDU(N5 _user_cata, data, nsdu_len);
tid := Determine TC(tc, data, pdu):

if rid <> 0
then begin
Uncode (pdu,data,tci{tid] .qual_of_service.misc[Q_EXTENDED_FORMAT]).

if pdu.kind = CR {* CR TPDU *}
then begin
if tcirvid} . szaz2 = JLOSED
then begin (* transition 4 *)
if Acceprabi.o C®{ teltid].qual_oi_service, pdu)
then begin
tcltid].szate 1= CR_RCVD;

OUT SAPN[nid).Timer cancel(INCOMING NC, 0, TRUE):

tcftid] . £ suffix t= pdu.lsuf;
tcltid] 1 _suffix := pdu. fsuf;

tcltid].f_net_addr := nclnid].f_net_addr:
tc(tid].l net_addr := ncinid].l net_addr;
tcfrid] .ncep_id = nid:

Construct_addr(tc(tid].local_ addr,
tcltid] . 1_suffix,
tcltid] .l _net _addr).

Construct_addr(tcltid]. remote addr,
teleid] . £_suffix,
teltid) .f_net_addr }:

teltid] . .qual of service = pidu.gos;

tcltid) .max_TeDU_size := Min(pdu.maxsz, ;
B tc(tid].max_TPDU_siza).

te(tid) dsc_ref := pdu.sret:
tc(tid]) . .snd_upper_edge 1= pdu.cdL;

QUT TCEP[tid).T_CONNECT_indication({ tc{tid].remote_addr,
tcltid].local_addr,

pdu . qus,
pdu.data l
end (* Acceptable CR *}
else begin {* transition 5 *)
tcltid].dst_cef i= pdu.sref;
tcltid).reason := NEGOTIATION FAILED;

Empty _data(temp }:

Construct DR(data, tcltid).dst_ref, 0,
tc{tid] .reason, temp).

Concatenate 2 NSDU({ nclnid], data)
end {* NOT Acceptable CR.*)
end (* CLOSED =)
end; {(* CR TPDU %)

if pdu.kind = CC (* CC TPDU *)
then begin

if tcltid).scate = CR_SENT [* Transiticn o *)
then began
if Accepraple CC(retid) .cual ol serv:ice,
i tclrid).sce raf,
pdu) B
then beg:in
tc{tid] .scate = ESTABLISHED;
tcltid].dst_ref ‘= pdu.srai;
tc(tid].snd_upper_edge := pdu.cdt:
tc(tid].qual_of service := pdu.qos:
tcltid] .max_TPDU size := pdu.maxsz;

OUT TCEP(tid).T_CONNECT confirm(pdu.qos, pdu.data)
end (* Acceptable CC =)
(* Transition 7 *)

else begin
tec(tid] .state ;= CLOSING:
te(tid].dst_ref := pdu.sref;
tc(tid).reason := NEGOTIATION_FAILED:

Empty_daca(ctemp):
OUT TCEP|(tid).T_DISCONNECT_ indication(tc{tid].reason,
temp)

Construct_DR(data, tc(tid].dst_ref, tcltid].src_ref,
tcltid)].reason, temp):

Concatenate_2 NSDU(nc(nid]. data)
end (* NOT Acceptable CC *)
end (* CR_SENT *)
end; (* CC TPDU *)

if pdu.kind = DT (* DT TPDU *)
then begin
if tc{rvid].state = ESTABLISHED (* Transition 8 *)
then begin
if (pdu.segno = tc(tid].rcv_nxt) and
(pdu.seqno < tc(tid].rcv_upper_edge |
then begin
[§L0 Merge(tc(tid].rbuf, pdu):

tc(tid].rcv_nxt := SEQ ADD(tc(tid].rcv_nxt, 1,
tc(tid) .qual_of_ service.misc[Q_EXTENDED_FORMAT)])

34

if pdu.eflag {* a complete TSDU in the butfer -)

then begin
Extract _TSDU(tcltid].cbuf, data, n):
Releasse{ to(tid) hif, telcid].cev _nxe, DT, FALSE):

{* update the upper =2dge of the receiving window *)

teltid].rcv_upper_adge := SEQ _ADD(:zzltid].rcv_upper_adge, n,
toltid] .qual ol service mise[Q HRTENDED EONMAT | I
OUT TCEP([tid).T_DATA indicaction(data):
(* compute the current buffer space *)
n := SEQ_MINUS(tcltid].rcv_upper_edge, tcitid).rcv_axc,
t.c:ltl.d:l .qual of service. misc[Q_EXTENDED FORM'-"‘] 5
Construct AK(data, n, tc(tid].dst_ref, tcitid].rcv_numr,
teftid] qual of service.misc|Q _EXTENDED TORMAT!
Concatenate_2 NSDU(nc(mid], data).
if n = 0 then
OUT SAPT(tid] Timer_reguest (WINDOW, wWn_IT¥NC, 0)
else
OUT SAPT[tid].Tim2r_cancel(WINDOW, 0, THUZ)
end {* pdu.aflag -}
end (* receivable DT *)
else begin (= Transition 2 *¢)
tcltic).ceason := INVALID_T?DU;
Constsuct ERR(Sata,

Concetenate_2 NSDU(rc(nid], daca)

end (* NOT receivabla DT *)
end {* ZSTABLISHED =)
end; {* DT TPDU ")
if pdu.kind = AK
then begin
if ((tc(tid).state = ESTABLISHED) or
(tel{tid).state = CLOSING)) and (* Transition 10 =)
(pdu.segno >= tc(tid].snd una)
then begin
tc(tid].snd_una := pdu.seqgno:

tcltid].snd | _upper_edge := SEQ_ADD(tc(tid].snd_upper_edcs
pdu.cdt, teltid] .qual_of service.misc|Q_ EXTENDZD FORFX“’ L}

Release(tcltid].sbuf, tcltidl.snd_una, DT, FaL3E);

Resume _data(tc(tid], nclnid])
end (* ESTABLISHED anc AK ox *)
end; (= AK TPDU *)

if pdu.kind = XPD ,
then begin
if tc(tid].state = ESTABLISHED
then begin
if pdu.seqno = tcltid].x_nxt
then begin (* Transizion 11 *)

OUT TCEP(tid].T_KPD_indication(pdu.data):

Construct XAK(data, tcfitid].dst_zef, tcltid!.z nzt,
teleidl. qual_of serv1ce.m\5c(0 EXTENDED FCRMATl):

Concatenate 2 NSDU{ nc[nid], data).
tcltid] .x_nxt := SEQ ADD(tcltid) .x_nxt, 1,

Lcltxdi .qual ef Servlce mnsc[O EXTENDED _FORMAT])

end

else begin
tcitid].reason := INVALID TPDU:

Construct ERR(data, tcltid] dst_ref, tcoftid].coas o,

pdu.data):
Concatenare 2 M5 nclnid), data)
end o
end (" YiTABLISHED and OK)
end:
if padn.kind = <aX
then beygin
20 O TR A 1] B T S (O B e ESTARLISGHED) or
(teltid].stat.2 = CLOSING)) and
{ pdu.sengno @ cetid].x una)
then begin ol (* Transition 1.} *)
tcel{tid].x_una := tcltid].xsnd_nxt:

Resume xdata(rcitid]|, ncinid]):
Resume_dara{ tefrid], nclnid])
end
end:
if pdu.kind = ZRR
then Legin B2
i€ U toltid] = CALLING)} or
t cottad] st = CR SENT)} or
(CR_RCVD) or
(ESTABLISHED) or
{ CLOSING))

Transition 17 *}

n

non

tclvid] . saia = CLOSING;

OUT TEE2!1:CF.T_DISCONNECT indicetion(z2ason; ITemt
OUT SAPT!z:d) Timer_cancell ALL_TIMER, 0, TRUE }:

Construci_DRI{ cata, tcltid)].dst_ref, tc(tid].src_
reason, temp).

Concatenate_2 NSDU({ nc(nid], data)
end (* active connection *)
end: (* ERR TPDU)

if pdu.kind = DR
then begin
if ((tclrid).state = CR_RCVD) or (* Transition 14 *)
(tcltid]).state = CR_SENT) or
(terid]).state = ESTABLISHED))

then begin
OUT TCEP!tid].T_DISCONNECT_indication{ pdu.reason,
ocdu.data);

Construct_DCI(c¢ata, tc(tid].dst_ref, tclrid).src_rel);
Concatenate_2 N53DU(nc(nid], data):
OUT SAPT[tid|.Timer_cancel(ALL_TIMER, 0, TRUE);
if Nc_mulciplexed(ncnid])
then begin
tc{tid).scace := CLOSED:

Release_all(tcltid], ncinid])

end (* Nc_multiplexed *)
else
tc(tid] .state := DISCON WAIT
end (* CR_SENT, CR_RCVD, ESTABLISHED °)
end; (* DR TPDU *)

if tc(tid].state =~ CLOSING
then begin
if ((pdu.kind = DR) or (pdu.kind = DC))

60

then begin (* transicion (3 ¥
tcltid].state := CLOSED:

OUT SAPT[tid].Timer_cancel(ALL_TIMER, 0, TRUE):

if NOT te _multiplexed(nc(nid]) then
OUT NSAP[nid).N _DISCONNECT request:

Release all(te(nid]), nclnid])

o (* DR TPLU, D oTEDD *)
and (* CLOSIMG: *)
end (* tid <> 0 %)

else begin
if (pdu.scref <> UNDEFINED REFERENCE) and
(pdu.kind <> DR) and (pdu.kind <> DC)
then begin
Empty data(temp)

Construct DR(data, pdu.scef, 0, pdu,reason, temp).
Concatenate_2 NSDU({ ncnid], data)

end
end
end (* while loop =)
END:
TRANS _—]
WHEN NSAP([nicd].N _CONHNECT :ncdicartion {* Transition iH *)
PROVIDED nc[nid].statae = NIDLE
BEGIN
nec{nid) .state = NCPEN,
nclnid] . 1_net _z2cids = To_network addr;
nclnid] .{_net_ada: = From_network addro:
ne[nid] . link = O
OUT NSAP[nid] asponse;
CUT SAPN|[nid] & : (INCOMING _NC, NIT_WAlT, 2
END:
TRANS

WHEN NSAP[nid].N“DISCONNBCT_indication
PROVIDED (nc(nid].state = NOPEN)
BEGIN
nc(nid] .state := NIDLE: (* Transition 17 *)

if nc(nid}.link > 0
then begin
for tid := 1 to MAX_TSAP_ID do
begin
if tctid).ncep_id = nid
then begin |* Transition 18 *)
if ((tc(tid).stare = CR_RCVD) or
{ telrid) . state = CR_SENT | or
({ tcltid| state = ESTABLISHED))
than begin
tcltid).scata := CLOSED;

Empty_data(daca):

ouT TCEP[tid]AT_DISCONNECT_indicatiOni
LOSS_OF NETWORK_CONNECTION,
data).
ouT SaP?Icid].Timezﬁcancel{ ALL_TIMER, 0, TRUE):
Release all(tcitid), ncinid])

end: (¥ CR_RCVD, CR_SENT, ESTABLISHID *)
if telrid].state = CALLING (* Transition 19 <)
then begin

tc(tid] .state := CLOSED:

Empty data(data }:

ouT TCEPltid].T_DISCONNECT_iudication(
NB?HORK_CDNNECT_FAILED.
data):

&1

OUT SAPT|tid]}.Timer_cancel(ALL TIMER, 0, TRUE).

Release all(tec(tid], nclnid])
end; (* CALLING *)
if refrid] . astane » CLOSING {* Transition 20 *)
then begin

tcltid].stace r= CLJISED:

if Reason <= MORMAL
thon bogin
Empty data(data);
OUT TCEP [z1id].T_DISCONNECT_ indication({
LOSS_OF _NETWORK_CONNECT IOHN,

data)
end:
Release all(tc(tid], ncinid])
end: {* CLOSING *)
if tcftid).scate = DISCON_WAIT {* Transition 21 *)
then begin
tcitid) stacs 1= CLOSED:
Release_alli(tcitid], nclnid] }
end (Y DISCON_WAIT *)
end (* matching rransport connection *)
a#nd (* for loop *)
end = link > 0 =)
e¢lse
OUT SAPN(Inicd).Tim2r_cancel(INCOMING NC, 0, TRUE)
END
TRANS
WHEN TCEP(rid].T CONNEICT response (= Transition 22 =)
PROVIDED ({ tcltic].state = CR_RCVD) and
t Choos=2_class(Qual of service) = CLASS TWO) and
(5ize(TS_user_data) <= MAX_CRCI_Sz =
BEGIN
tc(rid) .state := ESTABLISHED:
tc[tid].src_ref := Alloc ref:;
tc(tid).qual_of_service := Qual_of_ service;
Construct_CC(data, tcltid].rcv_upper_edge,

tc(tid].src_ref,
tc(tid).dst_ref,
tcltid).l_suffix,
tc{tid] . £_suffix,
tc(tid] .max_TPDU_size,
tc(tid).qual_of_service,
TS user_data Vi

nid 7= telvid) .ncep_id:
Concatenate 2 N5DU { nclnid]. data)

END; s

TRANS

WHEN TCEP|tid).T DISCONNECT request (* Transition 23 *)
PROVIDED tc[tid].state = CR_RCVD

BEGIN
tcl{tid].state := DISCON_WAIT:
tc(tid).src_ref := Alloc_ref;
tcltid] .reason := CONN_REJECT:

Construct DR(data, tc(tid] .dst_ret,
tc(tid] .src_ref,
tcltid).reason,

TS user_data)2

nid := tc(tid] .ncep_id:
Concatenate_2 NSDU (ncfnid), data);

Release all(tc(tid], nclnid])

TND:
PROVIDED ((teltid).svate = [Transitian
(- teltivd) . scane 4
3EGIN
teltid] cstate o DS IH

teltid] . rteason = NOBMAL:

ConsLruel DIRE dar s, il b e S0 | H
tcleid) . :
reloid].cteasan
TS _user_data)¢

Store(tclcid).sbuf, data, 0, DR):

nid := tec(tid].ncep_id:

Resume _data(tcltid], ncinid]):

OUT SAPT(tid].Timer_zancel(ALL_TIMER, S. TRUF)
END

TRANS

WHEN TCEP [tid].T_DATA_recusst ' (* Tzansition

PROVIDED tc|tid] stats = ISTABLISHED
BEGIN
Add_request (tcltid], TS user_data):

nid = tcitid] . .neop id:
Aesume _datal tcjtidi, nclnid) }
END:

TRANS
WHEN TCEP[tid].T_#PD_recuest poe
PROVIDED | tcltid].state = ESTABLISHZID) =

(Sizel TS5_user_cata |} <= MaX_=

BEGIN
Construct_XPDI data, ccltid].dst_ref, tc iicl.x_sag

3 %)

o i

ag,
tc(tid) .qual_of_service.misc(Q_EXTENDED_FORMATI,

TS _user_data);

tc(tid).x_seq := SEQ ADD(tc(tid].x_seq, 1,

tec(tid] .qual_of service.misc[Q_EXTENDED_FORMAT) |:

Store(tc(tid).xbuf, data, tc(tid].xsnd nxt, XPD):
nid := tcltid].ncep_id;
Resume xdatal(tc(tid]l, nclnid] 1

END:

TRANS

WHEN SAPN|[nid].Timer_rcesponse (* Transition

PROVIDED (Name = INCOMING _NC) and
{ ncinid].state = NOPEN |
BEGIN
ncinid].state := NIDLE:

OUT NSAP([nid).N _DISCONNECT_request
END;

TRANS

i N |

£

WHEN SAPT([tid).Timer_response (* Transition 28 *)

PROVIDED (Name = WINDOW) and
(tc{tid].state = ESTABLISHED)
BEGIN
n := SEQ MINUS({ tc(tid].rcv_upper_edge, =cltid).rcv_nxt,

tc|tid] .qual_of_service misc[Q_EXTENDED_FORMAT}):

if n > 0 then
begin
Construct AK(data, n, tcltid].dst_ref, tc(tid).rcv_nxt,

tc(tid] .qual_of_ service.misc(Q_EXTENDED_FORMAT]).

nid := tc(tid] .ncep_id:

42

Concatenate_2 NSDU(nclnid], daca).

CUT SAPT[tid].Timer_cancel(WINDOW, 0, TRUZ)
<na
alse
DUT GARTItid] ,Time: zecuest(WINDOW, WN_5¥NC, 0)
SHND.

{* spontanenus transition -- 3end the network data anyway *)

TRANS
PROVIDED TRUE
BEGIN
tor nid o |
begin
1f nclnid).sbuf <> NIL
then begin
Extract NSDU(nc(nid].sbuf, ndata):
OUT NSAP(ni1d] .N_DAT#_zequest (ndata)
end
end
END;

L2 MAR NCEP_:D do

EML ATP_procass,

R R R N R R R L R

MODULE RS_inodule

integer;
: NADDR_TYPE:
: NQOS TYPE:
REASON_TYPE;
NDATA TYPE:

remote

{* Primitive functions and procedures =

integer:
NADDR_TYPE:
NQOS_TYPE | -

rs_id
VAR local,
VAR gos

FUNCTION Net accept (
remote

PROCEDURE Net_close(rs_id : integer)

FUNCTION integer) : boolean:

Net confirm(rs_id 3
integer;

NADDR_TYPE:
NADDR TYPE:

NQOS_TYPE) :

PROCEDURE Net_connect(rs_id
local
remote

gos

integer:
REASON_TYPE) :

FUNCTION Net_disconnect { rs_id

VAR reason : boolean:
integec;
NDATA_TYPE)

FUNCTION rs_id

Net recwv (o
VAR data 2

boolean;

integer;
NDATA_TYPE):

PROCEDURE Net send(rs_id L.

data $

INITIALIZE
BEGIN
rs_id := RS_index

END; (* Initialization *)

TRANS

boolean:

PRIMITIVE:
PRIMITIVE;

PRIMITIVE:

PRIMITIVE:

PRIMITIVE:

PRIMITIVE:

PRIMITIVE,

WHEN HNUEP N_COMNRECT request
BEGIN -
Lowad '= From network addr:
tamatae = To ‘:‘.-_ﬂt.work_addr:
Gon = Q05

Neso. conpeen s id, local, zamota, 33)

END:
TRANG
WIEN HUEP 3 CONNEUT _response
DTN
(* Do nothing @ the Netwes: pramitives hamdlo
END
TRANS
WHEN NCEP.N_DATA_request
BEGIN
data := N5 _user data:
Met senc{ rs_id, data
END:
TRANS
WHEN NCEF N DISCOMMECT_ request
BEGIN
Net zlose(€3 _:2
END: .
TRANS
BROVIDZD Neiw_accent{ rs_ad, lesal, remcie, God)
BEGIN
ouT CONNECT Emlicaricnl semooe S Tot o5)
HD, - "
TRANS
PROVIDED Net_coniizmi rs_id)
BEGIM
OUT NCEI.N_COKNITT coniicm
ZHD: B
TRANS
PROVIDED Net_recw(zs_id, data)
BEGIN
OUT NCEP.N_DATA_indication(data)
END:
TRANS
PROVIDED Net disconnect(rs_id, reason)
BEGIN
OUT NCEP.N_DISCONNECT_indication(reason)
END:

END RS_process:

[RAdsmASaaNINERas s mTshendnEv AR RAssTAILERTINREVEd RN LENASEn]

Ul: TS user_module with T5_user_process(i};
U2: TS_user_module with TS_user process(2}:

ATP: ATP_module with ATP_srocess.

S1: System_module with System process(l):
§2: System_module with Svstem_process(2):
S§3: System_module with System_process(3):
S4: System mocule with System_process(4):

RS1: RS_module with RS_process(l):
RS2: RS_module with RS_orocess (2);

R R R R R R AR
CONNECT

UL.TSAP TO ATP.TCEP(1l]:
U2.TSAP TO ATP.TCEP(2]):

TO RS, NCER:

ATP. [1)
AP (2] TO RS2 NCER:

N
ATP.N

ATP.SAPTI[1] TO S1.SEP
ATP.SAPT [} TO SZ.5EP:
ATO SAPN{L] TO S53.58P;
ATP.SAPN[2] TO 54.5EP:

END Transportl_ref.

Appendix C

System Initialization and Scheduler
— For Semi-Automatic
Implementation

66

€7

2 fdtutil.¢ - system init, schedule

“uavs.typaes.n2
cludn <svs/socharL . nn
tnclude <aysfiuio. h>
finclude <sys/timeb.h>
finclude <sys/time.h>
#include <sys/un.h>
Finclude <netinet/in.h>
finclude <netdb.h>
Yinclude <errno h>
dinclude <signal.h>
finclude <stdio.h>
finclude <strings.h>

¢#include "../inet/inet h"
finclude “listdefs. h"
#include "defs.h"
#include "tpdefs.h"
#include "../tsp/tsp.h"

/% Define the outermost refinemant name */
fdefine REF_NAME ioTransport_ref

extern int signal pending:
extern struct process_block 'n_zlock,
extern NCONN connl]):

o i i S e A i

This soutine causes the gon

sTruct process_biock T"system_Iinii ()
i
struct process_block *pur, “process_list, Toemowa haadac ()
struct channel_block "c_pt=z:
struct itimerval value:
int e s

/* user included dcl */
struct process_block *REF_NAME () ;

process_list = remove_header (REF_NAME (NULL)) ;

for (ptr = process_list; ptr != NULL: ptr = ptr->next)
i
if (strcmp(ptr->p_icdent, “"TS_user_process”) == ()
|
i = ptr->lvars.s5_T75 _user_process.usac_id - 1.
uprocess[i] = ptr:
)

if (strcmp(ptr->p_identr, “"System_process") == ()
{
i = ptr->lvars.s_System_process.sys_id - l;
sprocess (i) = ptr;
!

if (strcmp(ptr->p_ident, "R5_procass™) == 0)
{

i = ptr->lvars.s_RS5_process.cs_id - 1!
tprocess(i) = ptro:
|

for (c_ptr = ptr->»chan_list: c_ptr != NULL: =< _ptr = ¢_ptr=isnext)
{
if (c_ptr->target_channel == NULL)

{
/* oops a dangling connection */

fprintf(stderr, "\nSYSTEM INITIALIZATION ERROR: danqling”):

{printf{stders,” channel in an instance af \"ss\". ".
str->p_ddent) !
forintf(stderr, "channel numoer id, ind dd\n",c_pic-»o

¢ ptr->indes num;

|

/* join the ends of the process list into a loop */
tor (ptr = process_list; ptr->next '= NULL; ptr = ptr->next);:

ptr->»next = process list:

/* fire up a clock */
value.it_interval.tv_sec
value.it interval.tv usec

value.it_wvalue.tv_sec = ll;
value.it _value.tv_usec = 01l:

L]

setitimer (ITIMER VIRTUAL, Svalue, (struct itimecval *)0):
signal (SIGVTALRM, clock):

/* set up timer lists *+/

for (i = 0: i < NTIMER: i-+) timezlisc|i) = NULL
/* open a netwosk listene- */
if ((i = M_open(éconn!0], NSNAME)) != NET 0X)
i
fpranci(scders,">2> N opan problem 3dia™, L)y
exat (1)
)
nermask = [} << conn!l;->sock=a2u);
rnc_inuse = Q!
Eor: (i = 0F I 'T MEX NCER IDy W<}

{
netpool|i).fill = FALSE:
netreason(i) = NET_OK:
net_status(i} = NET_NORMAL:

/* open a UNIX listen socket */
if ({usock[0] = TS_open(TSNAME}) < 0)
{
fprintf (stderr,">>> TS_open problem %d\n”,usock(0]):
exit(1l):
|

/* establish the inter-process connections */
for (usermask = 0,1 = 1: L <= MAX_TSAP_ID; i++)
!
struct sockaddr_un from.
int len = sizeof (struct sockaddr_un):

§ =i = 1
userpool([j).£fill = FALSE:;
errclose(j) = FALSE;

usock[i] = accept (usock(0], (struct sockaddr *}&from, &len):
if (usock[i) < O)
{
perror ("UNIX domain : accept”):

exit (1)
I
uscermask |= (1 << usocklil]):
1
close(usock(0]) ; /* close the listener */

return(process_list):

This 15 the main driving routine.

schedule (process_Llist)

St

i

tuct process _block *process _lisc:

extern int signal_pending;
extern struct process bdlock *p_block!

struct channel block *c_ptr:

struct signal_block *s_ptr, *get_signal():
struct process_block *p_ptr, *‘p_ptrd;

struct timer_block ‘tprrl, *tptr2;

struct timeval timeout:

int i, 3. n, mask, notdone;

p_ptr = p_ptr2 = process_list;
c_ptr = p_ptr->chan_list:
signal_pending = 0:

while ((usock|[l] != =-1) 11 (uscck[2]) '= -1)} /* while there

{
if (signal_pending >)
|
s_ptr = get_signal(éc_ptr, &p_ptr);
s51gnal_penc:ng--:

arsizion routine */

¢_ptr = p_pic->chan_list:

| /* internal input signal pending */

/* spontaneous transitions are handled below *r

/* TS_user_process =~/
mask = usermask;
timeout.tv_sec = 0;
timeout.tv_usec = 501;

if (selecti(l6, &mask, 0, 0, &timeout) < 0)
{
perror ("UNIX dema:rn select");
exitc(2):
1

for (i = 1:(mask > 0) && (i <= MAX_TSAP_ID): it++)
{
if ((usock[i) '= -1) &&
(mask & (1 << usock(il}))) /* Incoming request
{

=i - 1;

if ((n = TD_input (usock|i), userpocl|j].datum, TS_MAX_LENGTH+2})

>= sizeof (struct data_hdr))
I
userpocl(j).
userpool{;].i
i
else
|
errclose(j) = TRUE!
1
p_block = uprocess|j);
{*(p_block->proc_ptr)) (NULL, NULL):

fill = TRUE:
ian

1
i = 0l

L

|

f* R5_process “f
mosk = netmask;
Cimeout.tv_senc 2 0;

‘imeout .t _usec = 501;

if (selecc{lb, &Lmask, 0, U, &nimeout) <)
percor {"INET domain : :na2lect™):
exit(d):

|

if ((mask > 0) L& (nc_inuse < MAX _NCEP_ID)) /* network channel availabla ¢/
I if {(mask & (1 << conn|[0]->socket))

: for (notdone = TRUE, i = MAX_NCEP_ID; notdeone &6 (i > 0): i--)
: if (connfil == jUuLL

(&

notdone = FALS
y =i -1
L€ (N _sccept(iconn|i), connild]->socket) == NET OK)
|
net_stacusii] = NET_NEWCOMER:
nc_:nusc**,

(conniij->socket)).

ess|))
C_opto) i (NULL, NULL):
15 0% -7
ailania -
i ives *
fOr (1= Ty : <=
I
j=1i~-1:
if (tconn{i) != NULL) && /* the network channel is inusa */
(mask & (1 << conn(i]->socket))) /* lncoming request =/
{
if ((n = N_receive(conn(i), netpool(j].datum, NET_DATA_SIZE))
>= NET_OK]
{
netpool(j).fill = TRUE;
necpocl(j].len = o
|
else
|
netreason|jl = n:
1
p_block = rpreocessiij.
(*(p_block->proc_ziz)) (NULL, NULL):
i
if ((netreason(j] != NIT_OK) || (net_status(j) == NET_CONFIRM))
{
p_block = rprocess(j);
(*(p_block->proc_ptr)) (NULL, NULL);
|
) /* for i-loop */ ¢

/* ATP process */
if (stremp(p_pte2->p_ident, "ATP_process”) == 0)
{
p_block = p_prrd;
(*{p_ptr2->proc_ptr)) (NULL, NULL) ;
I

p_ptr2 = p ptr2->next;

/* System_process */
for (i = 0; i < NTIMER: i1++%)

|
MR
e

feprs?

I

fer

wch
RN SUETIEN

gamei] tar el e3 4= NULL. tptEl s tprr)-inexil)

(EHRE2 & pelLsl; sk sl e ML ooyl = gprol-dpest)

/-

g

83 5 1) (IERGL, ILGGE

P_block

(*(p_block
¥ Rapwycemn o
sach timer ./

adch timer lisr v/
aystem process 4/

taop sy

7!

Appendix D

System Initialization and Scheduler
— For Manual Implementation

72

iinslade
1iinclude
tinclude
{include
finclude
tinclude
#include
#include
#finclude
finclude
#include
finclude
#include
finclude

T ime

TS_initsys
TS_schedule

privaze)
{privace)

<sys/iypes.n>
<svs/socket . b
<sysfuio.h>
<sys/time.h>
<sys/un.h>
<netinet/in h>
<ercna.h>
<signal h>
<stdio.h>
"../inet/inet _h"
“tpdefs.h"
“tp.h"
“../esp/fesp.h”
“tpvaz.h"

TS_initsys

Transport Station initialication (CGLOBAL)
L. Handling the SIGINT & SIGCALD sianals

2. Initialize TS, T? and NP gueues

3. Open TS5 listener,

4. Open HP listanar

value.iv_Sa2c

+it_dnterval.tv_sec = z:ime.:iz

time.it_incterval.tv_usec = time.it_value.tv_usec = 0L:

seti
sign

I*
i
it
(
!

‘,‘.

* Open a THNAME serve:

if
(

I
ik

Y

timer (ITIMER _VIRTUAL, &time,
al (SIGVTALRM, TM_clock);

(struct itimerval *)0);:

Open a NSNAME server listening to the NP providers.

(n = N _open(é(nplist.nconn), NSNAME))

fprintf (stderc, ">>> N_open problem %d\n",n):
exit (1)

(tslist.tsap = TS_open(TSNAME)) < 0)

!= NET_OK)

listening to the TS users,

fprintf(stderrc,">>> TS_open problem id\n",tslist.tsap):
exit(l);

Initialize the global queues.

tslist.prev = tslist next = &tslist:

tpli

st prev = tplist next = étplisc.

nplist.prev = nplist.next = &nplist;

73

1%

B i 2 st g o S S, e e g, P e e S PR

5 TS_schedule (private)

» This is the scheduler of the interactions
Sragic
T3 schedula()

struct timeval rime:

struct sockaddr un trom:

int n, ftlen, mask, sock:

char datum[TS_HAX_LENGTB+2], ndatum{NET _DATA_SIZE];

TSCONN tsp, tspnext;
TPCONN tp, tpnext;
NPCONN np, npnext:
NDATA_PTR nptr:
NCONN nconn;

for (::)
|
/* Transport service users */
mask = TS buildmask(].:

time.tv sec = 0;
time.tv usec = 5001:
if ((n = select(l6, &mask, 0, 0, &time)) < Q)
i{ (errno '= EINTR}) TS_errorshutdown ()
N 6 LR R TR
e lmEsk B (Y €€ tmsligt. csap)))

flen = sizeoi(struct sockaddr_un):
if {(sock = accept({l{tsiist.tsap), (struct sockaddr *)&icon,
silen)) < 9)
TS_errorshucdown ()
else
{
if (TS_newuser (sock) == NULL)
{
shutdown (sock, 2):
close (sock) ;
!
|
! /* new TS user */

for (tsp = tslist.next; tsp '= gtslist; tsp = Lspnext)

Lspnext = tsp->next;
if (mask & (1 << rtsp->tsapl)
l
if ({n = TD_input (tsp->tsap, cdatum, TS _MAX_ LENGTH+2))
< sizeof (struct daca_hdr))
TS_disconnect (tsp, UNKNOWN_ERROR) :
else
(void) TS_input (tsp, datum, n);
|
1 /% for tslist */
| f*n >0 ¢/ ¥

/* Send the filled network outgoing buffers */
for (np = nplist.next; np '= &nplist; np = npnext)
|
npnext = np->next;
if (np->sbuf !'= NULL)
l
nptr = np->shbuf->data;

if (N_send(np->nconn, nptr->datum, nptr->dlen) '= NET_OK)
NP_close(np) .

else
NP _release (& (np->sbuf), FALSE):

/* network provider 4/
mask = NP_buildmask():
Lime.Lv_secc -0
Lime.tv_usec = 5001;

if ((n = select(l6, &mask, 0, 0, &time)) < 0)
if (errno '= EINTR) TS_ervrorshutdown ()
if (n > 0)
|
il (mask & (I << ({(nplist.nconn->socket)))
(
if (N_accept (&nconn, nplist.nconn->socket) !~ NET_OK)
TS _errorshutdown();
elsc
{
if (NP_accept (nconn) != NET_OK)
N_close(nconn):
)

| /* new TS user */
for (np = nplist.next; np '= &nplist; np = npnexl)

npnext = np->next;
if (mask & (1 << np->nconn->socket))
|
if ((n = N_receive(np->nconn, ndatus, NET_DATA 3I1ZE))
< NET_OK)
N2_close(np):
elsa
N2 _input (np, ndatum, n).
|
I /v for nplist */
| /* n >0 ¢/

/* timers */
for (tp = tplist.next; tp != &tplist; tp = tpnexc)
{
tpnext = tp->next;

if ((tp->timp != NULL) && (tp->timp->time == 0))
TP_expired(tp);
for (np = nplist.next: np '= &nplist; np = npnext)
npnext = np->next;
if ((np=->rimp '= NULL) && (np=>timp->time == 0))
NP_expired(np);

|
] /* forever loop */

