PRODUCTIVE SETS AND CONSTRUCTIVELY NONPARTIAL-RECURSIVE FUNCTIONS

by

Akira Kanda Technical Report 86-15

August 1986

Revised November 1986

Productive Sets and Constructively Nonpartial-recursive Functions

by Akira Kanda Department of Computer Science University of British Columbia Vancouver, B.C. V6T 1W5 Canada

Horowitz [1] called a partial function $f: \mathbb{N} \to \mathbb{N}$ constructively nonpartialrecursive if for some recursive function $h: \mathbb{N} \to \mathbb{N}$, $f(h(n)) \notin \phi_n(h(n))$ where \cong is equality for partial functions. He related this concept to the productiveness of the domain of such functions. His main result is as follows:

Proposition 1. (Horowitz)

- (1) If the domain $\mathbf{D}f$ of a partial recursive function $f: \mathbf{N} \to \mathbf{N}$ is productive, then f is constructively nonpartial-recursive.
- (2) If $f: N \to N$ is constructively nonpartial-recursive via $h: N \to N$ such that $\phi_x(h(x))$ is defined implies f(h(x)) undefined, then Df is productive.

In this short note, we characterize productive sets in terms of constructively nonpartial-recursive functions. Hence we further the study of the intimate connection between the theory of constructively nonpartial-recursive functions and that of productive sets.

A constructively nonpartial-recursive function f is strongly constructively nonpartial-recursive if there is a recursive function $e:N \rightarrow N$ such that f(h(n))defined implies e(n)=f(h(n)). Let $<_,_>$ be a standard pairing function with the inverse witnessed by π_1 and π_2 . For any partial function $f:N\rightarrow N$, Gf denotes the graph of f, more precisely,

$$Gf = \{ \langle m, n \rangle | f(m) = n \}$$

There are recursive functions $g: N \rightarrow N$ and $a: N \rightarrow N$ satisfying

- $\mathbf{G}\phi_n = W_{g(n)}$
- If W_n is single valued then $W_n = \mathbf{G}\phi_{a(n)}$.

Theorem 2.

(1) Gf is productive only if f is constructively nonpartial-recursive.

(2) Gf is productive if f is strongly constructively nonpartial-recursive.

Proof. (only if) Assume that Gf is completely productive via a recursive function $h: N \to N$. If $h(g(n)) \in Gf$ where g is as above, then $h(g(n)) \notin W_{g(n)}$. Thus, $\phi_n(\pi_1 \cdot h \cdot g(n))$ is undefined. But $f(\pi_1 \cdot h \cdot g(n))$ is defined. If $h(g(n)) \notin Gf$, then $h(g(n)) \in W_{g(n)}$. Thus $\phi_n(\pi_1 \cdot h \cdot g(n)) = \pi_2 \cdot h \cdot g(n)$. But $f(\pi_1 \cdot h \cdot g(n))$ is either undefined or not equal to $\pi_2 \cdot h \cdot g(n)$. Therefore, f is constructively nonpartial-recursive via $\pi_1 \cdot h \cdot g$.

(if) Assume that f is strongly constructively nonpartial-recursive. Let $W_n \subseteq Gf$. Then $W_n = G\phi_{a(n)}$. If $\langle h(a(n)), m \rangle \in Gf$ for some m then $\langle h(a(n)), m \rangle \notin W_n$. If $\langle h(a(n)), k \rangle \notin Gf$ for all k, then $\langle h(a(n)), k \rangle \in W_n$ for some k. Then $\langle h(a(n)), k \rangle \in Gf$. This is a contradiction. Therefore Gf

is productive via $h: \mathbb{N} \to \mathbb{N}$ such that

 $h(n) = \langle h(a(n)), m \rangle$.

Let $i_A: N \to N$ be the following partial function:

$$i_A(x) = x$$
 if $x \in A$
undefined otherwise.

Theorem 3. (The Characterization Theorem)

A is productive iff i_A is constructively nonpartial recursive.

Proof. (only if) If A is productive then Di_A is productive. Thus i_A is constructively nonpartial-recursive.

(if) If i_A is constructively nonpartial-recursive then it is strongly constructively nonpartial recursive thus $Gi_A = \{\langle x, x \rangle | x \in A\}$ is productive. But $Gi_A \leq_m A$ via

> $f(z) = \pi_1(z) \quad if \ \pi_1(z) = \pi_2(z)$ $e \notin A \quad otherwise$

Thus A is productive.

Acknowledgement

The author thanks D. Spreene for finding an error in the earlier version of this paper.

References

 Horowitz, B.M., 'Constructively Nonpartial Recursive Functions', Notre Dame Journal of Formal Logic, Vol. XXI, Number 2, 1980.