PRODUCTIVE SETS AND CONSTRUCTIVELY NONPARTIAL-RECURSIVE FUNCTIONS
by
Akira Kanda
Technical Report 86-15
August 1986
Revised November 1986

# Productive Sets and Constructively Nonpartial-recursive Functions 

by
Akira Kanda
Department of Computer Science
University of British Columbia
Vancouver, B.C. V6T 1W5
Canada

Horowitz [1] called a partial function $f: N \rightarrow \mathbf{N}$ constructively nonpartialrecursive if for some recursive function $h: \mathbf{N} \rightarrow \mathbf{N}, f(h(n)) \neq \phi_{n}(h(n))$ where $\cong$ is equality for partial functions. He related this concept to the productiveness of the domain of such functions. His main result is as follows:

Proposition 1. (Horowitz)
(1) If the domain $\mathbf{D} f$ of a partial recursive function $f: N \rightarrow \mathbf{N}$ is productive, then $f$ is constructively nonpartial-recursive.
(2) If $f: N \rightarrow \mathbf{N}$ is constructively nonpartial-recursive via $h: N \rightarrow \mathbf{N}$ such that $\phi_{x}(h(x))$ is defined implies $f(h(x))$ undefined, then $\mathbf{D} f$ is productive.

In this short note, we characterize productive sets in terms of constructively nonpartial-recursive functions. Hence we further the study of the intimate connection between the theory of constructively nonpartial-recursive functions and that of productive sets.

A constructively nonpartial-recursive function $f$ is strongly constructively nonpartial-recursive if there is a recursive function $e: N \rightarrow N$ such that $f(h(n))$ defined implies $e(n)=f(h(n))$.

Let <_,_> be a standard pairing function with the inverse witnessed by $\pi_{1}$ and $\pi_{2}$. For any partial function $f: \mathbf{N} \rightarrow \mathbf{N}, \mathbf{G} f$ denotes the graph of $f$, more precisely,

$$
\mathbf{G} f=\{<m, n>\mid f(m)=n\}
$$

There are recursive functions $g: \mathbf{N} \rightarrow \mathbf{N}$ and $a: \mathbf{N} \rightarrow \mathbf{N}$ satisfying

- $\mathbf{G} \phi_{n}=W_{g(n)}$
- If $W_{n}$ is single valued then $W_{n}=\mathbf{G} \phi_{a(n)}$.


## Theorem 2.

(1) Gf is productive only if $f$ is constructively nonpartial-recursive.
(2) Gf is productive if $f$ is strongly constructively nonpartial-recursive.

Proof. (only if) Assume that Gf is completely productive via a recursive function $h: \mathbf{N} \rightarrow \mathbf{N}$. If $h(g(n)) \in \mathbf{G} f$ where $g$ is as above, then $h(g(n)) \notin W_{g(n)}$. Thus, $\phi_{n}\left(\pi_{1} \cdot h \cdot g(n)\right)$ is undefined. But $f\left(\pi_{1} \cdot h \cdot g(n)\right)$ is defined. If $h(g(n)) \notin \mathbf{G} f$, then $h(g(n)) \in W_{g(n)}$. Thus $\phi_{n}\left(\pi_{1} \cdot h \cdot g(n)\right)=\pi_{2} \cdot h \cdot g(n)$. But $f\left(\pi_{1} \cdot h \cdot g(n)\right)$ is either undefined or not equal to $\pi_{2} \cdot h \cdot g(n)$. Therefore, $f$ is constructively nonpartial-recursive via $\pi_{1} \cdot h \cdot g$.
(if) Assume that $f$ is strongly constructively nonpartial-recursive. Let $W_{n} \subseteq \mathbf{G} f$. Then $W_{n}=\mathbf{G} \phi_{a(n)}$. If $<h(a(n)), m>\in \mathbf{G} f$ for some $m$ then $<h(a(n)), m>\notin W_{n}$. If $<h(a(n)), k>\notin G f$ for all $k$, then $<h(a(n)), k>\in W_{n}$ for some $k$. Then $<h(a(n)), k>\in G f$. This is a contradiction. Therefore $\mathbf{G} f$
is productive via $h: \mathbf{N} \rightarrow \mathbf{N}$ such that

$$
h(n)=<h(a(n)), m>.
$$

Let $i_{A}: \mathbf{N} \rightarrow \mathbf{N}$ be the following partial function:

$$
\begin{array}{rlr}
i_{A}(x)= & x & \text { if } \\
& \text { undefined } & \text { otherwise. }
\end{array}
$$

Theorem 3. (The Characterization Theorem)
$A$ is productive iff $i_{A}$ is constructively nonpartial recursive.

Proof. (only if) If $A$ is productive then $D i_{A}$ is productive. Thus $i_{A}$ is constructively nonpartial-recursive.
(if) If $i_{A}$ is constructively nonpartial-recurisve then it is strongly constructively nonpartial recursive thus $\mathbf{G} i_{A}=\{\langle x, x\rangle \mid x \in A\}$ is productive. But $G i_{A} \leq{ }_{m} A$ via

$$
\begin{aligned}
f(z)= & \pi_{1}(z) \quad \text { if } \pi_{1}(z)=\pi_{2}(z) \\
& e \notin A \text { otherwise }
\end{aligned}
$$

Thus $A$ is productive.

## Acknowledgement

The author thanks D. Spreene for finding an error in the earlier version of this paper.

## References

# [1] Horowitz, B.M., 'Constructively Nonpartial Recursive Functions', Notre Dame Journal of Formal Logic, Vol. XXI, Number 2, 1980. 

