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Abstract 

This paper describes a nonlinear optimization model for the placement of 
rectangular blocks with some wire connections among them in the Euclid
ian plane, such that the total wire length is minimized. Such a placement 
algorithm is useful as a CAD tool for VLSI and PCB layout designs. 

The mathematical model presented here ensures that the blocks will not 
overlap and minimizes the sum of the distances of the interconnections of 
the blocks with respect to their orientation as well as their position. We 
also present mechanisms for solving more restrictive placement problems, 
including one in which there is a set of equally spaced, discrete angles to be 
used in the placement. The mathematical model is based on the Lennard
Jones 6-12 potential equation, on a sine wave shaped penalty function, and 
on minimizing the sum of the squares of the Euclidian distances of the block 
interconnections. We also present some experimental results which show 
that good placements are achieved with our techniques. 

The research of the first author was supported in part under an NSERC 
(Canada) postgraduate scholarship. The second author was supported in 
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1 Introduction 

In this work we consider the placement problem for rectangular blocks of 

various dimensions and orientations in the plane. Each block has a set of 

terminals (or ports) which are fixed points on the boundary of the block. 

As part of the input we also get a list of pairs of terminals that are to 

be connected to each other. At times additional restrictions are placed on 

the choice of orientation or position of the blocks. The objective of our 

optimization is to place the blocks such that the total sum of the lengths 

of the interconnections is minimized without having any two blocks overlap 

and p088ibly satisfying additional orientation and location constraints. 

Two common applications where some variations of this placement prob

lem arise are Printed Circuit Boards(PCB) (35,12,6] and Very Large Scale 

Integration(VLSI) layouts [7,8,20,11,13]. Instances also occur in operations 

research location/allocation problems [12,15], as well as in office layout prob

lems [9]. 

Generally, many factors are involved in producing a good placement. 

These include, for example, the total wire length, wire crossings, heat dis

sipation and total circuit area [17,27,30]. Note that while total wire length 

does not represent all of these design goals exactly, it is reasonable to assume 

that overall shorter wires lead to smaller circuit area, less resistance, and 

fewer wire crossings. We have adopted the total wire length measure, as 

most placement algorithms do [13,11,22,17], since it also gives a reasonable 

indication as to how expensive it is to construct the detailed routing of the 
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wires after the blocks have been placed. 

Even after choosing the objective function to be the total wire length, 

placement problems are still computationally hard [5,17,12]. Mathemati

cally, we obtain a nonlinear optimization problem with some of the variables 

possibly restricted to have integer values only. AB a result of the difficulty of 

the placement problem and the heuristic meaning of "best" placement, most 

_of the work on the subject is concentrated on getting only a "good" place

ment. By a "good" placement we mean that the blocks are placed in good 

topological relation to each other but are not necessarily separated exactly 

by the required distances between them. Thus, we accept certain subopti

mal solutions, and even allow the constraint of separation of the blocks to 

be slightly violated. This is an approximate solution of the optimization 

problem, solving a reasonable relaxation of it since the exact distance sep

arating the blocks is not known until the routing phase which follows the 

placement. 

M08t of the placement techniques reported in the literature have con

centrated on placing a large (say > 50) number of blocks, ignoring their 

size, orientation and p08ition of terminals (30,32,33]. Placement techniques 

can be roughly classified as discrete or continuous. A discrete placement 

technique assumes a set of discrete locations (usually on a grid lattice) on 

which the blocks are to be located. Continuous placement techniques as

sume placement in the Euclidian plane (or a bounded part of it). The choice 

between continuous and discrete techniques varies with the specific place-
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ment model at hand. PCB placements, for example, are naturally modeled 

as discrete, while VLSI placements are naturally continuous or mixed. The 

computational difficulties associated with each technique are also an impor

tant factor. Discrete techniques offer more exact representations but are 

usually less tractable than continuous ones. 

Discrete placement is usually performed by a two phase algorithm. An 

initial constructive placement phase is followed by an iterative improvement 

or refinement phase. The iterative improvement phase is a crucial one, 

and usually involves choosing two blocks and interchanging their position if 

this reduces the total wire length [17,18,19]. Alternatively a discrete model 

can be used to formulate an integer programming problem (25] or can be 

solved via branch and bound methods [29,12,2,28] or via statistical annealing 

methods (36]. 

Other placement techniques use a continuous model, usually drawing 

on physical phenomena as a model for placement; These include Hooks 

law force directed models [30] and Resistive network optimization [7]. Also 

available are various hybrid models, usually uaing a continuous algorithm 

for getting an approximate placement and a discrete algorithm for mapping 

the result onto grid locations. 

We have choeen a continuous model for placement: that of the potential 

energy between particles [1,31]. We use smooth nonlinear penalty functions 

to represent the constraints of the model and show how to effectively solve 

the nonlinear unconstrained optimization problem which results from our 

3 



formulation. The problem is modeled in more detail than has been previ

ously done by taking into account the size and orientation of the blocks, 

as well as the positions of the terminals on the blocks' edges. As a result, 

our mathematical problem is computationally more involved. This is not 

necessarily a severe limitation since our procedure can be used interactively 

to aid a human designer, or in a hierarchical design where the number of 

blocks in each level of the hierarchy is limited. 

In the following sections we introduce our nonlinear model for the place

ment problem (§2). We then describe how to restate the model as an uncon

strained nonlinear optimization problem by replacing the constraints with 

penalty functions (§3). A solution strategy for the resulting optimization 

problem is discussed in §4 and some experiments with it are reported in §5. 

Some conclusions are offered in §6. 

2 The Mathematical Model 

We start by formulating the mathematical entities involved. Let B 

{1, 2, ... , n} be an index aet of the blocks to be placed. For each i E B 

we have the following variables: 

x; = the X coordinate of the center of block i 
r/i = the Y coordinate of the center of block i 
Ii = the rotation angle of the center of block i 

and the following constants: 

w; = half of the width of block i 
I, = half of the length of block i 
T' = { Tf, ... , ~} = the set of terminals for block i 
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For each Tj E Ti we have Tj = (.6.z,;, .6.i,,;), where 

.6.zi; = the X displacement of terminal j from the center of block i 
D.!Ji; = the Y displacement of terminal j from the center of block i. 

We are also given a set of pairs 

where each pair < Tj, ~le >E I designates two interconnected terminals. 

For each such pair we are also given a constant 0,;1c1 representing the weight 

or relative importance of the connection. For example, a sixteen bit bus 

connection between two components may have sixteen times the weight of 

a single control line. Note that connections between more than two termi

nals, say m, can be represented by m(~-l) pairs of connections or by m 

connections to the center of gravity of the m terminals [34]. 

Finally let distance(Tj, Tl) be the distance between terminal Tj and ter

minal Tl, and distance(Block,, Block;) be the distance between the centers 

of blocks i and j, where we define the function 

i.e., it is the usual Euclidian distance. 

We consider three variations of the placement problem, denoted Pl, P2, 

and P3. The model of Pl assumes no restriction on the orientation or lo

cation of the blocks but includes the restriction that blocks cannot overlap. 

The models P2 and P3 are formed by adding orientation and location con

straints to Pl. In all three problems the optimization aim is to find the 
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values of the variables Xi, 1/i, 6i for i = 1, ... , n which minimize the total 

wire length. We write the placement problem Pl as follows 

Pl: MINIMIZE D = Li,j,k,l=l Cijkl distance(Tj,T/) 2 

Zi,!li,6i 

such that 

distance(Blocki, Block;)2 ?: u;; i ¥ j 

where 

C-. _ { given weight if < Tj, T,t >E I 
''"

1 
- O if < T~ T,1r, >d. I J' I 'ii" 

<ri; = minimum separation between blocks i and j . 

We calculate the objective function Das follows. Let 

D = L~l Lk=i+l D.1r, 

(1) 

= L?,;"f Lt=i+I (L<Tj,Tf >EI Oi;,c1distance(Tj, Tl)2
) (2) 

= L'/~11 Lk=i+1(L<Tj,Tf>eI Ci;1r,1((zi; - z1r,1)2 + (Vi; - V1r,1)2
)) 

where 

and (z1:1, P°A:1) are defined similarly with respect to the variables of block 

k. Note that (~1;, Yi;) are the coordinates of the terminal Tj calculated by 

rotating the point (.6.x1;, .6.tli;) (the displacement of Tj) around the origin 

(0, 0) by an angle e, and then translating the resulting rotated point by 

(:r1, 111) (the center coordinates of block i). The result of this formulation is 

holding the terminal in a fixed distance from the center of the block. Figure 

1 illustrates this formulation graphically. 

6 



A X 1 j 

◄ ► 

(x , y ) 
1 1 

Block i 

(X y ) 
ij ij 

Block k 

Figure 1: Terminal coordinates 
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Figure 2: Calculating blocks separation 

Jt 

The minimum distance, "i;, separating blocks i, j is determined from the 

radii of the circles containing the blocks plus a minimum required separation, 

a, as 

{4) 

Figure 2 illustrates the calculation of "i;. However this "i; may be an over

estimation of the required separation and may not represent the placement 

correctly if, for some blocks, wi << Ii or Ii >> wi, since such narrow and 

long blocks would repel other blocks from their narrow aide u the containing 

circle will be far from the block edge. A simple remedy is to subdivide such 

blocks into a number of blocks with aspect ratio approaching 1, and link 

these together via very strong connections. To avoid having these strong 
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connections dominate the optimization we start with an initial educated 

placement which ensures that the subblocks are close together and in the 

proper topology. Although no statistics are available, we assume that long 

and narrow blocks do not often arise in PCB or VLSI layouts so few new 

blocks will have to be generated. 

In many applications the blocks are not free to assume any orientation. 

For these applications we assume that the allowed angles are equally spaced. 

More formally, we allow placed blocks to be oriented in angles 2!i," for k = 
O, ... , m - 1. If m = 4, for example, only horizontally or vertically placed 

blocks are allowed, i.e., 0, j, ,r, ¥, are the only allowed angles. For these cases 

we add the n constraints to Pl, obtaining a more restricted optimization 

problem P2 

9i E {t/>o, ... ,'Pm-1} 1 :5 i :5 n 

for a given set of angles (e.g. t/>1c = 2!"). 

(5) 

In applications such as Printed Circuit Boards Placement {PCB's) one 

may want to consider a set of discrete slots into which the blocks are to 

be placed. Here we are given a set S = { < zf, ut >, · · ·, < :r!n, u!n >} of 

locations such that m ~ n and < Z:, 11! > are the coordinates of the ,-th slot. 

Such a restriction gives rise to the following constraints, which we add to 

P2 to get our third model P3 

(zi, !Ii) E { < zt, yf >, · · ·, < x:n, !l:n >} 1 :5 i :5 n, (6) 

for a given set of m grid locations (m ~ n). The constraint in (1) ensures 

that two blocks will not be assigned to the same grid location. 
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Occasionally it is useful to fix some of the block positions and/ or orien

tations before applying the placement algorithms. This may be done both in 

order to speed up the convergence of the placement algorithm and in order 

to incorporate additional constraints. An example of such an application is 

a case where the placement has to fit into a given bounded area. By fixing 

small blocks around the perimeter of the designated area we can ensure that 

other blocks will not "jump outside" the boundary. This is easily handled 

in this model by changing the indexing of the variables. In the next section 

we show how to replace the constraints by penalty functions. 

3 Our Penalty Function Approach 

To handle the constraints (1) we use a penalty function approach and re

formulate the placement problem as follows: find z;, 11;, e; for i = 1, ... , n 

such that 

Z = D + >.1V (7) 

is minimized. Here D is the sum of the squares of the interconnection lengths 

as before; V is a penalty function term designed to ensure that blocks do 

not overlap each other; and >.1 is a parameter, or weight used to define the 

relative importance of the penalty term at different stages in the aolution 

process. 

Sometimes the penalty function 

V=). EV.; (8) 
i,jEB 
i-h 
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where 

(9) 

and 

di;= distance(Block,, Block;) (10) 

is used in the literature [34]. Thus½; > 0 and½; is sensitive to the amount 

of violation of the 13· - th constraint, as long as that constraint is violated. 

Moreover, ½; = 0 as soon as the constraint is satisfied, no matter how much 

larger d;; is than u,;. An advantage of this is that when constraint set (1) 

is satisfied, 

D = D+~1V (11) 

which means that the original problem Pl is indeed solved. A disadvantage 

is tha.t a. sequence of problems has to be solved in a continuation cha.in and a 

certain ill-conditioning is introduced because it is necessary to successively 

increase ~ such that ~ - oo in order to ensure feasiblity. 

Instead we use a variation of the barrier potential function 

(12) 

Observing Figure 3 we note that equation (12) has the properties of both 

smoothness and rapid increase of the penalty when d;; < u,;. Also note that 

this penalty function automatically eliminates far-away inactive constraints, 

that it is bounded from below, and· that the optimum of (7) is slightly 

shifted from the boundary and into the interior of the feasibility region of 
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V (d \ ., ., 

Figure 3: Graph of V;; of (12) 

D. Furthermore, as we will see in the next section, it usually suffices to use 

only a few continuation steps. 

A price paid for using (12) instead of (9) is that the objective function 

is nonconvex away from the optimum. The optimization problem is also 

relaxed, i.e., at optimum equation (11) does not hold, and we are not guar

anteed that an optimum of Pl is achieved, unless A1 = 0. Still, the solution 

is good because the minimum of (12) is at d;; = V2ui; which is not far 

from the feasibility edge d,; = ui;• Note that since our block separation a 

is defined heuristically (since we do not know how much space is needed for 

routing), there is no need to insist on the exact solution to Pl. Note also 

that one can relax the problem using (9) as well by bounding A. 

The physical analogy to potential energy is made when we note that 

equation (12) is a variation on the Lennard-Jones 6-12 potential equation 

[31]. If we think of the blocks i and i as "charged particles" then V;; is a 

measure of the potential energy between the particles, which is very high 

when the particles are very close together and almost zero when they are far 

apart. Observing the graph of V;; in Figure 3, we note that the (negative) 
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minimum is achieved at di; = ../2ui; and that¼; grows rapidly when di; 

is below tTi; and Vi; -+ +oo as d.; approaches 0. If we now take ui; to be 

as in equation ( 4} we practically ensure that those blocks do not overlap. 

This type of penalty function is sometimes called a barrier function [24]. Of 

course a very large number of interconnections may result with overlaps, 

but this is easily taken care of by changing equation ( 4) to read 

(13) 

for some Oi; > 1, say O;; ~ }:~,l=l Oi;/cl proportional to the total weight of 

interconnections between block i and block j. 

Note that the 4E in equation (12) can be grouped with A1- Alternatively 

we can also make £ = Ei; a parameter such that at its minimum point 

¼; = £;;. We can, therefore, adjust Eij to reflect the importance of having 

any two blocks being near each other. 

To formulate an equality constraint like (5) there are two approaches, 

discrete and continuous. The discrete approach would yield a mixed (non

linear) integer programming problem and a branch and bound algorithm 

could be used for its solution, where on each leaf of the aearch tree a prob

lem like the original Pl (but smaller) is solved. This is not very efficient and 

we again resort to a continuous formulation. To obtain an unconstrained 

problem we again use a penalty function, R, and minimize 

(14) 
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where 

R = E,eB ~ 
= E,es -COS(m8,). 

We note that the function ~ = -COS(m8,) achieves minimum value at 

each angle 9i = 2!t for k = O, ... , m - 1. With a large enough weight 

>.2, we can make Bi for i = 1, ... , n arbitrarily close to the allowed angles. 

The choice of a smooth penalty function with moderate slopes is commen

surate with the use of the algorithm to find approximate solutions within 

an interactive design process. For m -+ oo the problem becomes "closer" 

to continuous. Note that in contrast to the constraints (1), the constraints 

(5) are not in direct competition with the objective of minimizing the wire 

length. This suggests that different penalty functions (loss functions) should 

be used for the different constraints. We may have to fix the angles 8, so 

obtained exactly afterward, but this should not offer any practical difficulty. 

Unfortunately we cannot use the same methodology of continuous formu

lation and penalty functions for the constraints (6). While it is clear that in 

equation {14) we could enforce feasibility by making >.1 and >.2 large enough, 

this is not the case for a penalty function representing (6). The problem 

here is that the constraint sets (1) and (6) may be in direct competition. If, 

for example, a grid point falls near the center of gravity of a subset of the 

blocks, all these blocks will be "attracted" to this grid point while they still 

repel one another. We have chosen to use a discrete approximation which 

will map the placement resulting from minimizing equation (14) onto grid 

locations, as described in [11,30]. 
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H we use the model given by problem P2 then by this mapping we may 

loee the good orientations which were achieved in the continuous optimiza

tion. We can now fix all the variables {z;, Yi, 1 ~ i ~ n} to their assigned 

grid points and optimize P2 again only over the variables {9;, 1 $ i $ n}. 

To get a rough measure of the computational complexity of the method 

we may consider the cost of function evaluations. Note that for n blocks 

with a total of m interconnections the complexity of evaluating the objec

tive function is O(n2 + m). Evaluating the first partial derivatives in each 

iteration can also be seen to cost O(n2 + m) operations, which results in a 

complexity of 0( n 2 + m) for each iteration. Since the number of iterations is 

independent of n (the quasi-Newton method converges sufficiently fast)and 

m = O(n2), we get an overall complexity of O(n2) for our placement al

gorithm. From the construction of D, V, R note the poesibility of applying 

n(y1> parallel processors for calculating the Di; and Vt; terms in constant 

time and applying n parallel processors for calculating the R. terms. 

4 The Solution Strategy 

The unconstrained minimization problem with which we have ended up is 

still nontrivial. Particularly difficult is finding a global minimum for Pl, P2 

or P3. For the solution process we use continuation. The question we are 

faced with now is how to choose two sequences of values ~}, ~f, ... , ~i" and 
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>.½,>.I, ... , >.r such that minimizing the sequence of problems 

Z1 = D+>.}V+>.½R 
Z2 = D + ).~V + >.IR 

Zm = D + >.i"V + >.f R 

(15) 

where the placement resulting from minimizing Zi is the starting point for 

minimizing Zi+l, will result in identifying a local minimum which is as close 

as possible to the global minimum. 

We are looking for effective values for >.1 and >.2. We note that for any 

).1 > 0 the term >.1 ½; will act as a penalty function allowing the blocks i 

and ;' to come arbitrarily close to each other as >.1 -+ 0 but not to slide over 

each other since ½; -+ oo as ~; -+ 0. Setting >.1 > O, therefore, will not 

result in a significant change in the topology of the placement. We control 

the scaling of the parameters by insisting that the placement be done in a 

unit square. This means that wire length, for example, cannot exceed J2" 

and D ~ J2°m where m is the total number of interconnecting nets. We 

then try >.i E {O, l} only. 

Looking for possible discrete values for the >.' parameters, we first note 

that the R functions are bounded, namely -n ~ R ~ n, which means that 

the penalty term is scaled as ->.~n ~ >.~R ~ >.~n. If>.~ is large enough such 

that 

{16) 

holds, then the blocks would tend to get fixed in the nearest allowed angle, 

since the >.~ R term assumes more importance in the minimization ( which 

does not necessarily coincide with the best allowed orientation). The value 
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Figure 4a: Initial 

p 
!\---:;, 1r._2_i 

Figure 4b: Final 

Figure 4: 3 block placement using ,\r = ,\r = 1 

for which this happens depends on the length of the interconnections, and 

was, for the problems we have tried, roughly ,\i F::I 1.0. We therefore used 

).~ values in the interval [O, l]. 

One simple strategy in minimizing Z is to let m = 1 and >.f' = ,\r = 1. 

Then we minimize 

Zm = Z = D + V + R. (17) 

As the penalty function V is turned on, blocks are not allowed to slide over 

one another. AB the penalty function R is also turned on, blocks tend to get 

fixed in the nearest allowed orientation. The improvement over the initial 

placement, therefore, may not be significant and depends strongly on the 

initial placement of the blocks. Figure 4 presents a simple 3 block placement 

problem and the result of optimizing with .-\f' = >.f = 1 and multiples of j 

as the allowed angles. This is clearly far from the global minimum. 
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A far better strategy is to use the following minimization sequence: 

Z1 = D 
Z2 = D + V + E1R 

Zs= D + V +E2R (18) 

Zm= D+V+R 

with O < E1 < E:2 < ... < Em-2 < 1. Note that the elimination of the penalty 

terms in Z1 of (18) allows the blocks to slide over one another, therefore 

resulting in overlaps among the blocks, but also in a much better topological 

placement. This is really solving the "relaxed" problem which occurs when 

we solve for the original objective of Pl ignoring all the constraints. Note 

also that in contrast to other placement methods (18,30), since blocks occupy 

area and are not reduced to points ( D is measured from the terminals and 

not from the centers) the event of collapsing all blocks into a single point 

is very unlikely. Finally note that since Z1 of (18) is convex,, its global 

minimum can be solved for. 

In minimizing Z1, ... , Zn in sequence we increment ~2 from O to 1, first 

giving the blocks full freedom of rotation and then restricting them to the 

allowed angles only. Figure 5 presents the sequence of solution steps for 

the simple 3 block placement problem of Figure 4 starting from the initial 

placement of Figure 4a, and the result of optimizing using this strategey with 

multiples of y as the allowed angles. This is clearly a global minimum for this 

problem. Note that block 3 has been rotated into its optimal orientation, 

and that the two blocks 2 and 3 have slid over each other into their optimal 

positions. 
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Figure Sa: >.1 = >.2 = 0.0 

o::J 

Figure Sb: >.1 = 1, >.2 = 0.001 Figure 5c: >.1 = 1, >.2 = 1 

Figure 5: 3 block placement using improved strategy 

We note that a more gradual continuation sequence in >.~ than in >.{ is 

sometimes needed. An example is provided in Table 4.1 and Figure 4.3 of 

[1]. Unfortunately, we do not know of any automated way to produce the 

optimal sequence of values for>.~. Various heuristics can be employed here, 

such as applying binary search to >.2, or incrementing it with a fixed small 

value. However we have found experimentally that only few iterations with 

>.i = 10>.~-l are usually sufficient for good placements. 

As the experimental results of the next section indicate, our strategy 

proves useful, and in particular minimizing Z = D gives an excellent first 

step. This is reasonable since the problem with Z = D is convex [1]. 
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PROBLEM FIGURE #FUNCTIONS 
Z1 =D 6b 114 

Z2 = D + V + 0.001R 6c 79 
Zs= D+V+0.01R 6d 33 
Z4 = D + V + 1.0R 6e 37 

Table 1: Continuation sequence for Figure 6 

5 Experimental Results 

We have implemented an experimental program on a SUN workstation run

ning UNIX. In our program we calculate D, V and R and the gradient vector 

for the variables. We use a canned routine, FNMIN, which implements the 

Variable Metric Method based on the quasi-Newton approach for the un

constrained minimization of nonlinear functions [10]. 

Various placement problems were tested. Figure 6 presents a 6 block 

placement problem ( allowed angles which are multiples of j) solved in stages 

with the continuation sequence of Table 1. A measure of computational com

plexity is #FU NOT IONS which is the number of Zi function evaluations 

before convergence is reached. Note that for this example .\' = 0.01 was 

already large enough to fix the blocks, so there is no noticeable difference 

between Figure 6d and Figure 6e. Figure 7 presents the final result when 

angles which are multiples of 7 are allowed. The number of function evalu

ations was roughly the same as in Table 1. We found that for all the block 

configurations tested the continuation sequence .\' = 0.0, 0.001, 0.01, 0.1, 1.0 

was sufficient to achieve good orientation in a placement problem with a 
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I 

-·····r±i 
Figure 6a: Initial 

Figure 6c: Figure 6d: 
>.1 = 1.0, >.2 = 0.001 >.1 = 1.0, >.2 = 0.01 

Figure 6: 6 block placement 

fixed set of allowed angles. 

® . 
2 

5 

Figure 6e: 
>.1 == 1.0, >.2 = 1.0 

Figure 8 presents a 10 block placement problem (allowed angles which 

are multiples off) solved in stages with the same strategy as above, resulting 

in the optimization sequence of Table 2. Note that although Figures 8d and 

Se are almost identical there is a computational effort involved in solving 

z,. This is the result of additional degrees of freedom which cause the final 

convergence to be at a slower rate. One way to overcome this problem 

is to fix the placement of some blocks before the optimization is done. Of 

course such an arbitrary fixing of some blocks may result in a leas favourable 

placement than is otherwise possible. 

To further support the claim for good placement achievable by this strat-

egy, we have applied it to the above 6 and 10 blocks placement problems 
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Figure 7: 6 block placement with 45° angles 

PROBLEM FIGURE #FUNCTIONS 
Z1 =D 8b 73 

Z2 = D + V + 0.00lR Be 129 
Zs = D + V + 0.0lR 8d 53 
Z,.=D+V+l.0R Se 61 

Table 2: Continuation sequence for figure 8 

with 10 random starts generated for each problem. The random starts were 

generated by randomly setting Xi, Yi, 6i for i = 1, ... , n at the initial place

ment before optimizing Z1, In both problems we have found that all 10 trial 

starts have converged to the same minimum. We have also noticed that 

the convergence to the same placement occurred very early in the sequence, 

after minimizing Z1 = D. Unfortunately, this "globally convergent" quality 

of the algorithm does not always work. Figure 9 presents a simple example 

of such a case. The difficulty illustrated here is that the blocks may not be 

able to slide over each other at the first stage when optimizing Z1 = D, if 

they have reached the minimum in such an orientation that their centers 

are still placed on the "wrong" sides. Figures 9d-9f show how a different 

21 



Figure Sa: Initial 

Figure 8b:),i = >.2 = 0.0 Figure 8c:>.1 = 1.0, >.2 = 0.001 

Figure 8d: >.1 = 1.0, >.2 = 0.01 Figure Se: >.1 = >.2 = 1.0 

Figure 8: 10 block placement 
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Figure 9a: Initial Figure 9b: 
Z1 =D 

Figure 9d: Initial 
Figure 9e: 

Z1 =D 

Figure 9c: Final 

8G] 

D-GJ 
Figure 9f: Final 

Figure 9: Placement problem where initial placement is important 

starting position leads to an optimal placement. 

We have also experimented with the fixed slots problem. Figures 10a-f 

present the result of fixing the final placement of Figure 8 into the given 

slots, using the continuation optimization sequence of Table 3. Figure 10c 

shows the result of letting the 10 blocks rotate freely again and then fixing 

their angles using the above sequence. Note that block 5 was rotated from 

its initial position after fixing the blocks into a better fixed orientation. 

Figure 11 presents our best result on the Steinberg problem. This prob

lem consists of placing 34 blocks with a total number of 2,620 connections on 

a 4 by 9 grid. The original specification of the problem, including the con

nectivity matrix, can be found in [35]. Distances are measured as one unit 

between neighboring grid points. Other researchers [15,12,14,2,16,6,7] have 
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PROBLEM FIGURE #FUNCTIONS 
Z1 =D 10c 25 

Z2 = D + 0.OOlR 10d 22 
Zs= D +0.0lR lOe 29 
Z4=D+l.0R 10/ 23 

Table 3: Continuation sequence for Figure 10 

. JlQ;, 
! . 5 .:[~ .. -f.! J 

cf{ e -m····· . 
Figure 10a: Initial Figure 10b: In Slots 

~ 
El0·0 · 

Figure 10c: .\2 = 0.0 Figure 10d: .\2 = 0.001 

Figure lOe: .\2 = 0.01 Figure lOf: Final 

Figure 10: 10 Block placement into fixed slots 
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Figure 11: Steinberg example 

used the Manhattan norm 11 , the Euclidian norm 12 and the Euclidian norm 

squared Ii to measure the wire length. Since we represent the placement 

problem in more detail, we had to change the problem by adding terminals 

to the blocks and routing the connections through the terminals. We have 

arbitrarily added four terminals to each block and connected the wires to 

one of the terminals. Steinberg's best placement results are summarized in 

Table 4 under the row labeled "Steinberg". 

Our best results are better than any previously known in all norms. 

Table 4 presents two of our best placements and Figure 11 gives the resulting 

placement for the first of the two. We note that experimenting with various 

initial configurations, 4 by 9 grid spacing and fixed blocks, we were able to 

find many placement configurations with values near our minimum. 

We have found that although fixing some of the variables may speed up 

the convergence of the optimization routines, it may also result in subopti-
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Author '1 12 If 
Carter & Breuer N.A. 5575 N.A. 

Hillier & Connors N.A. 4821.7 10929.9 
Grave & W hinston N.A. 4490 11909 

Gilmore(n• algorithm) N.A. 4547.5 10656 
Gilmore(n6 algorithm) N.A. 4680.3 11929 

Steinberg N.A. 4894.5 11875 
Bazaraa N.A. 4800 N.A. 

Hall 5139 4419.1 9699 
Cheng - Kuh 5316 4358.4 8596 

Ours(l) 5016 4271.8 8552 
Ours(2) 5225 4296.2 8475 

Table 4: Steinberg example 

mal placements. Regarding run time we have found that small placement 

problems (n ~ 15) can be solved interactively on a SUN workstation (with

out floating point hardware). We expect much larger problems (n F;:j 100) 

to be solvable efficiently on a mainframe computer. 

6 Conclusions 

Our nonlinear model for the placement problem bu proven auccemul in 

overcoming two of the limitations of previous force directed models. The 

potential function ensures that blocks do not overlap, and the calculation of 

distances from the terminals instead of from the centers, forces the blocks to 

rotate, resulting in a better placement. Our model allows for the handling 

of fixed and movable blocks, and for convenient control over the separa

tion between blocks via the parameter <Ti; in the potential function. The 
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quasi-Newton method used in the penalty approach, being superlinearly 

convergent, ensures reasonable running times. 

We have also implemented the penalty functions and transformations 

described, allowing restrictive forms of the placement problem to be solved 

in our system. Our experience with the minimization sequence has resulted 

in good placements. We further conclude that our optimization procedure 

is robust, being fairly independent of the initial placement. 

We have conducted some simple experiments and a larger one and our 

results compare favourably with previous results. 
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