
SEMI-AUTOMATIC IMPLEMENTATION OF 
NETWORK PROTOCOLS 

by 

Daniel A. Ford 

Technical Report 86-6 

February 1986 





SE~1l-AUTOMATIC IMPLE~NTATION OF NETWORK PROTOCOLS 

By 

Daniel Alexander Ford 

B.Sc.(Hons.), Simon Fraser University, 1984 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in 

THE FACULTY OF GRADUATE STUDIES 

(Department of Computer Science) 

We accept this thesis as conforming 

to the required standard 

s; t 

THE UNIVERSITY OF BRITISH COLUMBIA 

March 1985 

© Daniel Alexander Ford, H>85 



.. 



Abstract 

A compiler which achieves automatic implementation or network protocols by 

transforming specifications written in FDT into C programs is presented. A brief introduction 

to the the fundamentals or FDT, a standard language developed by ISO/TC97 /SC 16/WG 1 

Subgroup B for specifying network protocols, is given. We then present an overview or the 

compiler and discuss the problem or PASCAL to C translation . Transformation or a FDT 

specification into code is explained and illustrated by two implementation examples. The first 

example illustrates the implementation strategy by tracing the processing or a simple proto

col. The second example demonstrates the validity or using automatically generated imple

mentations by showing bow a communication path was established between two hosts using 

code generated for the alternating bit protocol. 

,[Y¼1t/4 
I 

ii 



Acknowledgement 

I wish to acknowledge the assistance or my supervisor Son Vuong and the invaluable 

help or Jean-Marc Serre and also the financial assistance or the Natural Sciences and 

Engineering Research Council or Canada. 

iii 



iv 

Table of Contents 

Abstract . .. .. .. . .. .. .. .. .. . .. .. .. .. .. . .. .. ... .. .. .. ... .. . .. .... .. .. .. .. .. .. .. .. ........ ... .. .. .. .. .. .. . .. . .. .. .. ..... .. .. .. ... .. .. ii 

Acknowledgement ..... ... ...... .. ........... .. ... ... .. .... .. ........... .. .. ................... .. ...................... ....... iii 

Table or Contents .. . .. .. .. .. .. . .. .. .. ... .. .. .. .. .. . .. . . .... .. .. .... .. .. .. .. .. .. . .. .. . .. .. .. ... .. .. .. . .. .. .. .. .. . .. .. .. . .. .. .. IV 

Table or Figures ......... ......... .... .. ... .................... .......... .. ... ...... ...................... .. ...... ... '.. .. . .. .. VI 

Chapter 1: Introduction 1 

1.1 Motivations and Objectives ............................... .. ... ... .. .. ....... . .. ..... .. ............. ......... I 

1.2 Previous Research and Thesis Contribution ....... .. .. .. ......................... .... ............. .. 2 

1.3 Thesis Out.line ..... ......... ...................................... .... ............... .... ........... ......... .... ... 3 

Chapter 2: FDT -A Formal Description Technique or Protocols . .................. ..... .. .. .... .... . 4 

2.1 Overview . .. ... .. .. .. .. .. . .. .. ... .. .. . . . .. .. .. . .. .. .. .. .. . .. .. .. .. ... .. .. .. .. . .. ... . .. . .. ... . ... .. .. .. ... .. .. .. .. . .. .. 4 

2.2 Module ...... . .. ... .. ............................. ......... ...... .. .......... .. ...... ... ....... .... ..................... 5 

2.3 Channel ... .. ... .... ........... ....................... .................. ........... .. ... .... ............. .............. 5 

2.4 Process ... ...... ............................... .. .. .. ....... ..... ..... ................. ... ......... ...... . ....... .. ....... G 

2.5 Refinement .......................... .. ...... . ......... .. ........... ... .. ...... ........ .... .. ... .. ....... .. ......... .. 8 

Chapter 3: The FDT Compiler .. .. . .. ..... ... . .. .. ....... ....... ....... ..... .. ...... . .. .. ..... .... .... ... ...... ........ 10 

3.1 The Compiler ........................... ... .. .... .. ...... ... ............. ....... .. ................ .............. .. .. 10 

3.2 Pascal to C Translation .... ......... .. ....... .... .......... .... .. .. .. .. ... .. ......... .. .. ... .. ................ 10 

Chapter 4: Translating FDT Specifications into C Code .. .. .... .. ... . .. .......... .. .... .. ....... .. .... .. .. 13 

4.1 Overview . . . . . . . . . . . . .. . .. .. .. .. . .. .. .. ... . .. . .. .. . .. .. ..... . . .. ..... .... .. ... .. .. .. ........ . ... .. .. .. ..... ...... ... .. 13 

4.2 Data Structure .................. .... .... ... .... .................................. ... .... .. .... . ............. ....... 14 

4.3 Initialization Routines .... . .. .. . . ... .. .. .. ... .. .. .. ..... .... ..... ... .. ...... .. .... .. ...... ............. .. ... .... 15 



V 

4.4 Transition Routines ..... .. ..... .. .... ... .. ... .. ... ...... ........................ ..... ........... ....... . ........ 17 

Chapter 5: Illustrative Implementation Examples .. ... .... ..... ........................... ....... ......... ... 19 

5.1 Example 1-The Hot Potato Protocol ... .. .. ... .. ..... ..... .. .... ................... .. .............. ... 10 

5.1.1 Implementation Code ...... ............... ........... .................................................. 23 

5.1.2 Execution Description ...... ............................... ...... ........... ......... ................... 30 

5.1.3 Transition Processing ... ...... ........... ....... . .. .................... ... ............ ... ... ....... .. .. 34 

5.2 Example 2-The Alternating Bit Protocol .... ....... ..... .. ... .. ... .... ...... ..... .... ... ........... 34 

Chapter 6: Conclusion .. ...... ... .. ... ...... .. . ...... ...... .. .... ... . .. .. ... ......... ... . ...... .... . .. . .. .. . .. .. .. .. .. ..... 37 

6.1 Thesis Summary .............. .. ............. ... .............................. ... ............ ........ ... ......... . 37 

6.2 Future \Vork ...................... . .. ................... ...... .............................. .... .... .. .............. 38 

References .. .. ... . . . . . . . .... ......... .. .. ..... .. .. . .. .. .... ..... .... ........ ..... .. ... ............ ...... ............ .. .. .. .. . .. .. 39 

Appendix I: FDT Grammar .. .. ..... . .. .. .. .. .... .. .. .... ........... .... ........... .. .............. . ....... ............. 41 

Appendix II: Utility Routine Listings ........ ... .......... ......... ............ ... ............ ...... .. . ........... .. 49 

Appendix III: Listdefs .h .... ..... .... .... ... ..... ...... ... .... .. ...... .. ... .................................. ...... ........ 63 

Appendix IV: Alternating Bit Sp<>cification .. ........... ......... ... .... ............................ .. ... .. .... .. 64 

Appendix VI: Utility Routines for Altnnating Bit ........... ............... .. ............. .. ............... . 'i'3 

Appendix VI: Alternating Bit Implementation Code ........ ... ................ ........... ...... ............ 81 

Appendix VII : Running the Compiler .. ........ .. ............. .. .... .... .. ... ...................................... 92 



Table or Figures 

Figure 1: Example Module Specification ....................... ................... 5 

Figure Z: Example Channel Specification .... ..... .... ...................... ...... 6 

Figure 3: Example Process Specification ...................... ................ ... . 8 

Figure 4: Example Refinement Specification ...... ................ ... ... ..... ... 9 

Figure 5: Illustration or Hot Potato Protocol Machines .... ..... ......... .. 20 

Figure 6: FDT Specific:i.tion or Hot Potato Protocol .. ... ...... ... .. ........ . 21 

Figure 7: FDT Specification of Player Process ...... .... ..... ... ....... .. ... .... 22 

Figure 8: lmplement~tion Code for Hot Potato Protocol .................. 25 

Figure 9: Initialization Routine for hot_re! ... ... .......... .......... ..... ........ 26 

Figure 10: Jnitializat.ion Routine for tearn_ref ............. .... ... ..... ... ...... . 27 

Figure 11: Initia.lization Routine for pbyer_process ................. ......... 28 

Figure 12: Transition Routine for player_process .... ... .... ................... 29 

Figure 13: Representation Data Structures for Hot Potato Protocol .. 31 

V i 





Chapter 1 

Introduction 

1,1 Motlvatlona a.nd Objectives 

Network protocols have historically been specified in large informal documents 

prepared by the protocol designer. This imprecise method of specifying such a complex entity 

was potentially a source of problems when it came time to implement the protocol, particu

larly when done by someone other than its designer. The document might contain ambigui

ties or contradictions or it may simply be too vague. All or these inadequacies can impose 

implementation decisions which may or may not be compatible with decisions made for other 

implementations of the same protocol. Another problem of an informal specification is that it 

excludes the possibility of processing the protocol specification to automatically generate an 

implementation. 

In an effort to provide more precise specification techniques, various models for protocols 

have been proposed [Boch 80]. The two most useful or which have been finite state machine 

and Petri net models. In a finite state machine model the entities in the protocol (e.g. sender, 

receiver) are each described as state machines. In a Petri net model the entire protocol is 

described in terms or a Petri net. 

A practical formalism or the finite state machine model has been developed in the form 

or a PASCAL like language called Formal Description Technique (FDT) {ISO 84/. In addi

tion to providing unambiguous specifications, the programming language nature or FDT 

makes it particularly amenable to processing and the automatic generation or implementa

tions directly from their specifications. 

1 



2 

Developing such an automatic implementation capability would remove the errors intro

duced by manual interpretation and implementation. Furthermore, it would allow the 

widespread installation or the protocol on differing machines and operating systems, subject 

to the availability or a translation tool (compiler) for each environment. 

The motivation for this thesis is the production or such a translation tool. A tool which 

would correctly implement a protocol specification written in FDT and be as portable as pos

sible. Achieving this goal would let installers working in different environments use the same 

implementation tool, thereby enhancing the compatibility or their installations and providing 

absolute portability of protocols at the FD T source code level. 

A way of approaching this goal is to use a portable high level language as both the 

implementation and target languages of the compiler. At present, one of the most portable 

languages is C !Kern 78j. Consequently, the ultimate objective of this thesis is the , production 

or a FDT compiler written in C which also uses C as its target language. 

1.2 Previous Reeea.rch and Thesla Contrlbutlon 

There have been various attempts to produce compilers which process protocol 

specifications. Blum mer and Tenney !Blum 81 J describe one ror an early version of FD T. 

Hanssoa !Hansson 84j describes the design or an "an integrated design environment" which 

provides a number or tools to aid the protocol designer and which automatically produces an 

implementation. 

George Gerber, at the University of Montreal, has implemented a compiler in 

DEC PASCAL on a V AX-11 running VMS and which uses DEC PASCAL as its target 

language !Gerber 83]. Initial attempts by the author to port this compiler to Berkeley UNIX 

4.2 BSD were unsuccessful however due to incompatibilities between Berkeley PASCAL and 

DEC PASCAL. While it is possible to manually alter the FDT compiler's source code to con-



3 

form t-0 Berkeley PASCAL, such efforts are for naught since it would still produce relatively 

non-portable DEC PASCAL code which again would require manual processing before it 

could be compiled. 

This lack or success in porting the compiler underscores the need for a more portable 

tool. By using C as both the implementation and target language of an FDT compiler, it 

will be as portable as is presently possible. 

1.3 Thesis Outline 

Chapter 2 of the thesis gives an overview or the FD T language, Chapter 3 gives a short 

description or the compiler implemented and a discussion ol PASCAL to C translation, 

Chapter 4 describes the technique used to produce an implementation from a FDT 

specification, Chapter 5 presents two implementation examples which illustrate the techniques 

described in Chapter 4, and finally, Chapter 6 concludes the success or the implementation 

and offers suggestions for further enhancements. 



Chapter 2 

FDT-A Formal Description Technique of Protocols 

2.1 Overview 

FDT (Formal Description Technique) is a language developed by Bochmann and 

ISO/TC97 /SC16/WG1 subgroup B !ISO 84] ror specirying network protocols that is based on 

the PASCAL programming language !Jensen 74]. The underlying model used in the FDT 

approach is one of communicating finite state automatons called protocol machines which 

exchange signals with each other and with their system environment. Except ror intercom

munication, the protocol machines are totally independent and operating in parallel. 

FDT is really the melding of a state machine formalism and a PASCAL engine. 

This powerful combination allows the construction of extended state transition models. Such 

models use the variables of a programming language to augment the memory capabilities of a 

state machine. The net result is a powerful machine with a vastly smaller state space than 

would normal!)' be possible. 

In FD T the behaviour of a protocol machine can be specified in two ways. Either 

directly by a corresponding state machine described by a list of state transitions and associ

ated actions or indirectly, hy Rpecifying a subsystem or interconnected protocol machines. 

The subsystem would have appropriate connections between internal interaction points and 

those of the enclosing machine being defined. Note that internal protocol machines are no 

different from any other and may themselves be specified as a composition or other state 

machines. 

The non-procedural (i.e. noll-PASCAL) part of the language is concerned with the 

4 



5 

definition of the protocol machines and their interconnections. Four concepts are embodied in 

the language and are combined to produce a specification. A module corresponds to a type of 

protocol machine. A channel represents a communication path between two protocol machines 

(modules) . A process is a declaration or a finite state machine. And a refinement is 

specification or protocol machine instances and their interconnection. 

2.2 Module 

Conceptually, each module type specified in a FDT specification represents one particu

lar type of protocol machine. The actual behavior or which will be specified directly by a 

process or indirectly by a refinement. 

As it is used in the language a module is a precise specification or the types (i.e. channel 

types) of interaction points belonging to a protocol machine. A FDT module specification is 

simply a list of interaction points. Each or which is given an identifier and a channel type in 

a manner analogous to a variable declaration. 

The example shown in Figure 1 declares a module called team. This module has two 

interaction points called lossin and tossout, both are or channel type toss. The interaction 

point tossin plays the role of "catcher" and tossout plays the role or "thrower". 

2.3 Channel 

MODULE team; 

lol'sin: to11s(catcher); 

tossout: toss(thrower); 

end team; 

Figure 1. Example Module Specification 

In the model a channel is a communication path existing between two protocol 



6 

machines. 

In a FD T specification, a channel is a precise description of the signals that may be 

sent via a particular interaction point by the protocol machines on either side. A FDT chan

nel specification gives names to the roles played by the protocol machines (modules) on each 

side or the interaction point (e.g. provider/user, inputer/outputer etc.) which serve to distin

gui~h one side from the other, and lists the signals, with any optional data fields, that can be 

sent by each. 

In Figure 2 below is an example channel declaration for a channel type called toes. This 

channel type distinguishes the two sides or the interaction point as thrower and catcher. 

Where the ''thrower" side is allowed to send the message potato, which bas two integer data 

fields , and the "catcher" side is allowed to send the message thanks. 

2.4 Proceas 

CHANNEL tose {thrower, catcher); 

by thrower: 
potato (thrower_team, 

thrower_num : integer); 

by catcher: 
thanks; 

end toss: 

Figure 2. Example Channel Specification 

A process defines an (ext.ended) state machine and is the atomic specification or the 

behavior or a protocol machine. 

A FDT process specification is a list or the transitions or a state machine, a declaration 

of the queueing status or each interaction point declared in the associated module, local vari

able declarations for the extended state model and declaration or initial values for those Yari-

ables . 



7 

The queueing status or an interaction point states whether the signals sent via it are 

queued or not before being accepted by a protocol machine. When signals are not queued 

they are processed immediately upon arrival by the receiver ( rendez-vous), even if this means 

suspending the processing or the sender. 

Each transition listed in a process consists oC two parts, an enabling condition and an 

operation. An enabling condition is a specification oC: 

- the present state (FROM clause) 

- an input signal (WHEN clause) 

- an enabling predicate (PROVIDED clause) 

- a transition priority (PRIORITY clause) 

Note that not all or the aboYe need be present Cor every transition. In particular, if the 

input signal specification (WHEN clause) is absent the transition is spontaneous. There is 

also anotl1er clause, the ANY clause, which is to be used only in spontaneous transitions for 

selecting "random" values. 

The operation portion of each transition consists oC an optional specification of the next 

machine state (TO clause) and the action to be performed, usually a small fragment of a 

PA.SCA.L program. 

Figure 3 below contains a sample process declaration. It defines a process called 

playe.r_process for the module type player. The process has two integer parameters team_num 

and player_num which are used to pass values to be stored as part or the state information of 

the state machine. The first statement declares that the two interaction points left and right, 

of the module player are to queue their signals. The next two statements declare local vari

ables and give them initial values. The rest or the process is a list or three transition 

specifications. The first of which will occur whenever a potato signal is received via the left 



8 

interact.ion point, the second when a thankyou signal is received via the right interaction 

point, and the third occurs spontaneously . 

PROCESS player_process(team_num, player_num: integer) FOR player; 

QUEUED Ifft, right;(* queuing etatua *) 

VAR(* local variable declarations *) 
the_team, the_player : integer; 

INITIALIZE (*local variable initia//ization *_) 
begin 

the_team := team_num; 
the_player := player_num; 

end; 

TRANS(* potato message on left *) 
WHEN left.potato begin 

writeln('Player ',the_player,' of team ' 
the_team,' caught a potato from player ', 
thrower_num, 'of team ',lhrower_team); 

0 CT right.p otato(the_team,th e_player }; 
OUT /eft .thc.11b; 

end; 

TRANS (* thanks message on right *) 
WHEN right.thanks begin 

writeln('Player ', the_p/ayer,' of team ' 
the_tcam,' got a thanlryou t 

end; 

TRA NS (* spontaneous *) 
prol'idt d (llhe_player = 1) and (th e_team = 1)) 
begfo Ol 'T right.potato(the_team,tli e_player); end; 

end playrr_proces8; 

Figure 3. Example Process Specification 

2.5 Refinement 

The concept or a refinement is an indirect specification or the behaviour or one protocol 

machine in terms or the combined behaviour or a set or other protocol machines. 

A FDT refinement specification specifies the internal structure or a protocol machine. 

This includes the declaration or new, internal, channel and module types as well as processes 



g 

and other refinements. Internal refinements, in turn, can have their own internal declarations . 

The internal structure is defined by three sets of declarations; one for the protocol machine 

instances (i.e. a module and a process or a refinement), one for protocol machine interconnec

tion ( CONNECT) and one for the connections between internal interaction points and those 

or the enclosing machine being defiued (REPLACE}. 

In the sample refinement shown in figure 4, one sees the internal declaration of a state 

machine's interaction points (the module player) and transitions (the process player_process). 

Instances of this machine, Pl and P2, are declared and· then interconnected with the statment 

Pl.right to P2.left. The refinement's REPLACE section establishes equivalence (a connection) 

between the interaction points lossin and tossout declared in its associated module team and 

the internal interaction points Pl.left and P2.right. 

REFINEMENT team_ref(team_num: integer) FOR team; 
MODULE player; 

left : toss(calcher}; 

right: toss(thrower); 
end player; 

PROCESS p/ayer_process(team_num, 
p!ayer_num: integer) FOR player; 

(* declaration omited see figure S *) 
end player_process; 

(* instances *) 

Pl: player with p/ayer_process(team_num, 1}; 
Pf!: player with player_process(team_num, 2); 

CONNECT 

Pl.ri_qht to P2.left; 

REPLACE 

tosein by Pl.left; 
tossout by P2. right; 

end team_ref; 

Figure 4. Example Refinement Specification 



10 

Chapter 3 

The FDT Compiler 

3.1 The Complier 

The FDT compiler was developed on a VAX-11/750 running Berkeley UNIX 4.2 BSD. 

The implementation language used was C. Certain sections of the compiler were produced by 

program generators. The lexical analysis module was generat.ed by the LEX !Lesk 75j utility 

and the parser was generated by the YACC !John 75J LALR parser generator utility. Both 

are st.andardly a,·ailable in UNIX environments. 

Not including the automatically generated code, the compiler consists of some 8000 lines 

of C and approximately 200 modules. It is structured much like all compilers, having the 

standard lexical analysis, parser and symbol table modules. Processing uses no intermediate 

forms and is completed in one pass of the source specification. 

The following section discusses one of the main jobs of the compiler, the translation of 

PASCAL to C. 

3.2 Pascal to C Translation 

One of the primary issues addressed during the implementation of the compiler was the 

problem of translating programs and statements written in PASCAL to their equivalent 

representations in C. Translation between the two languages is almost straight textual sub

stitution, they being very similar in nature having almost identical control constructs and 

data types. However, enough differences remain to impose limitations on the ease with which 

the process can be performed. 



11 

Generally, generating a C program from a given PASCAL program does not require 

sophisticated processing . B egin/ end pairs are replaced by pairs of braces (i .e. { } ) and dat:1. 

types like reals translate to floats. All or the control constructs or PASCAL have direct 

equivalents in C, and some even have the same names (e.g. FOR, WHILE etc.). While it is 

tempting to think that a text editor is more suited to the job than a powerful compiler. The 

language differences however preclude this possibility. 

For example, the two languages have different formats for specifying 1/0. PASCAL 

adopts a style similar to that of FORTRAN or PL/ 1, while C uses its own considerably 

different. format. Direct translation between the two is difficult but not impossible, but cer

tainly beyond the power of even a sophisticated text substitution system. A simple solution 

to the problem is to produce one C output statment (i.e. print/J for each field in the PASCAL 

format list. 

PASCAL has a different mechanism from C Cor specifying a return value for a function. 

PASCAL uses an assignment to the function ident.ifier and C uses a return statement. A solu

tion to this problem is to declare a variable in the corresponding C function to hold the 

return value and then return it with a return statement. 

The main difference between the two languages and the hardest one to overcome is their 

different approaches to defining the scope of identifiers. PASCAL views identifier scope as a 

variable gradation between being global to the entire program and local to a particular rou

tine. C on the other hand, has only two levels of identifier !!cope (within one source file) , 

external (global) and internal (local). PASCAL for instance allows function and procedure 

definitions to be nested while C does not. Implementing a scheme for automatically translat

ing between the two views is not easy. 

Two solutions to the problem are to use multiple output files for the generated C code 

or make all identifiers external and systematically rename them to avoid conflicts. Both will 



12 

work but, particularly in the former case, would be somewhat cumbersome to implement. 

The solution adopted by this FDT compiler is to simply ignore the problem since the 

types or programs likely to be processed are unlikely to require extensive use or PASCAL's 

scoping rules. This approach does have implications for the user as it prohibits the use or 

shared identifiers and global data references but should not be too much or a problem. 

All in all, the problem or translating programs Crom PASCAL to C is not too difficult 

provided some restrictions on the types or programs processed can be imposed. 



Chapter 4 

Translating FDT Specifications into C Code 

4.1 Overview 

Generating a high level language program that implements a protocol specified in FDT 

is not a difficult task. The declarative part or FDT which specifies the protocol machines, 

their interconnection and the signals they pass, translates into simple conditional expressions, 

calls to predefined routines and structure (record) declarations. The PASCAL parts or the 

specification translate directly, requiring relatively little extra processing. 

The implementation strategy adopted is the same one used successfully by Gerber in his 

FDT compiler [Gerber 83]. This approach produces two sets of routines from a FDT 

specification . One set, the transition routines, implements the transition processing of the 

protocol machines , and the other, the initialization roulineB, is responsible for constructing a 

data structure that represents the machines and their interconnections. 

The transition routines are simply a series of conditional expressions and program 

blocks . The expressions evaluate the enabling conditions or state transitions and the pro

gram bloc:ks implement the associated operations. 

The initialization routines use a couple of predefined utilities to construct small parts of 

the data structure which are then joined "to produce the complete representation. 

The binding force between these two groups or routines is a couple of prewritten driver 

routines which use the initialization routines to create the necessary data structure and then 

the transition routines to process the transitions or the protocol machines. The driver rou

tines are an initialization routine (.•ystem_init) and a transition scheduler (schedule) which 

13 



14 

directs the processing of signals. 

4.2 Data Structure 

The data structure used to represent the protocol machines and their interconnections 

consists of a set of linked records. In all, (our record structures are used, to store state infor

mation (proces8 block), to represent an interaction point (channel block), to represent a signal 

and its data fields ( signal block) and finally, to store index information (or aggregate (array) 

interaction points (indez block). When linked appropriately, records or these four types can 

represent arbitrarily complex FD T structures in a simple manner. 

The representation of one protocol machine instance, and the storing or its state infor

mation, is performed by one instance of the process block record type. This record structure 

has fields for the major state variable (if there is one) and any local variables. It also stores 

the identifier of, and a pointer to, the instance's transition routine. 

Process block records also contain links to other process block records and to a list of 

channel block records representing the protocol machine's interaction points. 

Each interaction point of a protocol machine instance is represented by a channel block 

record. Actually a channel block record only represents half of an interaction point, the other 

half being represented by another channel block record belonging to the protocol machine on 

the other side of the interaction point. The channel blocks representing the interaction ponts 

of a particular machine instance are joined together to Corm a linked list attached to the pro

cess block of that instance. 

Each channel block record stores two numbers to identify it, the first is the number of 

the interaction point and the second is the index of the channel block record for an aggregate 

interaction point. In addition, each record also contains pointers to the channel and process 

blocks on the other side of the communication path. These pointers constitute the actual 



15 

connection between two protocol machines. 

The queue of signals which can exist at an interaction point is represented by a list of 

signal block records attached to a channel block record. 

Signal block record instances represent messages sent by a protocol machines. They 

contain fields to store an identifying number and optional transmitted data. Instances are 

not produced by the initialization routines but come from the execution or OUT statements 

in transition routines. 

Finally, those channel records belonging to aggregate interaction points store their index 

specified in the FDT source via a list of index block records. The index number stored in the 

channrl record is the ordinal of the interaction point in a row-major ordering of the array. 

Index block records simply contain a single number that is the value o( one dimension of an 

array. These values are required by the enabling conditions o( transitions to identify, and 

possibly test, the identity or an interaction point receiving a signal. 

4.3 lnltlalizatlon Routines 

The set or initialization routines contains two types, those that generate a representa

tion or a machine instance (i.e. a process block and its channel list) and those that combine 

the machine representations into larger structures. Each process specification in the FDT 

source produces one routine belonging to the first group, and each refinement specification 

produces one belonging to the second. Both groups make use of a series o( prewritten utilities 

to perform their (unctions. 

The process initialization routines are quite simple. Their only responsibility is to con

struct the part or the data structure needed to represent one machine instance. They merely 

allocate a process block record, attach a list of channel block records, perform any initializa

tion specified in the FD T source, and then add the process block record to a linked list. 



16 

The refinement initialization routines are a bit more complex as they must create a 

complete representation or the structures defined within them. Their task is simplified some

what by the use or initialization routines from both groups to construct the machine instance 

representations. Their main job then becomes the combining or these small sections into one 

larger one representing the internal structure. 

The operations performed by a refinement initialization routine can be divided into 

lour phases, three of which correspond to the instance, connection and replacement sections of 

a FDT refinement and the fourth to what could be termed a "clean up" phase. 

The instance section or a refinement defines the number and type or protocol machines 

in the internal structure. Each instance specification causes a call to the appropriate process 

or refinement routine to be generated, this call will simply add another machine instance on 

to a linked list . 

The connection section or a refinement specifies which interaction points or the protocol 

machine instances are joined together . Each interconnection generates one call to a prevait

ten utility called connect_ports which does the actual pointer manipulation to form the con

nection . 

The replacement section of a refinement specifies which internal interaction points are 

to be used for the external interaction points or the protocol machine being defined. The 

corresponding code in the refinement initialization routine first gener:i.tes what is termed a 

"refinement header", consisting of a process block record and a channel block record list, and 

which represents the external protocol machine and its interaction points. The list or process 

block records produced by the instance and connection phases and which is now termed the 

"refinement body" is linked to the refinement header. Each replacement specification in the 

FDT source generates a call to a prewritten utility replact_ports which makes connections 

between the channel block records in the refinement header and those in the refinement 



17 

body . 

The refinement header is really a place holder whose purpose is to mimic a process block 

and channel list produced by a process initialization routine. This uniformity in representa

tion allows protocol machine instances from both process and refinement initialization rou

tines to appear to be identical in the process block record list processed by the connection and 

replacement phases of a refinement initialization routine. This allows a consistent numbering 

scheme to be employed when specifying interconnections. The prewritten utilities 

connect_ports and replace_ports are smart enough to recognize connections to refinement 

headers and will make the actual connections to internal channel block records in the 

refinement bodies attached to the headers. 

The fourth phase of a refinement routine, the "clean up" phase, is where the 

refinement headers holding the place or a protocol machine representation in the refinement 

body are removed and replaced by their refinement bodies. This task is performed by the 

prewritten utility clean_up . 

4.4 Transition Routines 

The actual implementation of a specified protocol, as opposed to simply creating a data 

structure , is achieved by a section of the generated code known as the transition routines. 

These routines, together with the prewritten transition scheduler, completely embody the 

behaviour of the model described in the FD T source. 

The transition scheduler calls a transition routine whenever it decides that some pro

cessing should occur. The transition routine receives from the scheduler a process block 

record and possibly channel and signal block records. The process block record contains the 

state information of the machine instance needed to correctly process the state transitions. If 

the transition routine does receive channel and signal block records then the associated proto-



18 

col machine has received a signal at an interaction point (the one represented by the channel 

block record), if the signal does not cause a transition it is simply requeued. Ir the routine 

does not receive the records then the scheduler h~ decided that a spontaneous transition 

should be attempted by the transition routine. 

For their part the transition routines consist or a series or if statments, each or which 

corresponds to one transition in the FDT source. The boolean expression in the statement 

evaluates the truth value or the enabling condition and the body contains the associated 

action. 



Chapter 6 

Illustrative Implementation Examples 

This chapter presents two protocols and describes their implementation. The first pro

tocol is a simple one invented to illustrate the implementation process. The second is the 

alternating bit protocol. 

5.1 Example 1-The Hot Potato Protocol 

The simple protocol described below is an excellent vehicle for illustrating the imple

mentation process used by the compiler . This protocol models a system or two " t.eams" or 

two "players" which continuously pass a message (a bot potato) around in a circle. Its 

specification contains a good sampling or the features of contained in FD T. In addition to the 

standard specification of channels , modules, processes and refinements, it contains composite 

protocol machine definitions and argument passing to processes and refinements. 

The actions of each "player'' in the protocol are identical and specified by one process. 

When a player receives a "potato" message from the player on his left he prints a message 

identifying himself and the player who sent the message. He then sends a " thankyou" mes

sage to that player and a new pot:lto message to the player on his right. 

The teams are organized identically and specified by a single refinement. The players 

are conceptually side-by-side, with the right or one being connected to the left or the other. 

The teams are joined by connecting the two remaining sides of the players on one team 

to their opposite numbers on the other. Figure 5 shows the interconnection of the protocol 

machines involved . 

As part of his local state information each player stores two numbers, one identifies his 

19 



20 

team and the other is his player n1Jmber within the team . 

The complete FD T specification ror the protocol is 5hown in Figures 6 and 7 below. 

Player left tossin right Player 
1 tossou 2 

right left 

left right 

Player right tossout left Player 
2 tossin 1 

Team 1 Team 2 

Figure 5. Illustration or Hot Potato Protocol ~fachines 



MODULE hot_potato; end hot_potato; 

REFINEME.'VT hot_rcf FOR hot_potato; 

CHANNEL to~s (thrower, catcher); 
by thrower: potato (thrower_team, 

thrower_num: integer); 
by catcher: thanks; 

end toss; 

MODULE team; 
tossin: toss(catcher); 
tossout: toss(thrower); 

end team; 

REFINEMENT team_ref(team_num : integer) FOR team; 

MODULE player; 
left : toss( catcher); 
right: t oss(thrower ); 

end player; 

PROCESS player_process(team_num, 
playcr_num : integer) FOR player; 

(* see Figure 7 for definition *) 
end player_process; 

Pl: player w·ilh player_process(team_num, 1}; 
P2: player with player_process(team_num, 2}; 

CONNECT 
Pl.right to P2.left; 

REPLACE 
tossin by P 1.left; 
tossout by P2.right; 
end team_rtf; 

Tl: team with feam_rr./(1}; 
T2: team with team_rr./(2); 

CONNECT 
TJ.toesout to T2.tosein; 
T2.tossout to Tl.tossin; 

end hot_ref; 

Figure 6. FDT Specification of Hot Potato Protocol 

21 



PROCESS player_process(team_num, player_num : integer) 
FOR player; 

QUEUED left, right;(• queuing status•) 
VAR (• local variable declarations •) 

the_team, the_player : integer; 

INITIALIZE(• local variable initiallization •) 
begin 

the_team := team_num; 
the_player := player_num; 

end; 

TRANS(* potato message on left *) 
WHEN left.potato begin 

write.ln('Player ',the_player,' of team ', 
the_team,' caught a potato from player ', 
thrower_num, 'of team ',thrower_team); 

OUT right.potato(the_team, the_player); 
OUT left.thanks; 

end; 

TRA NS (* tha11ks message on right *) 
WHEN right.11, crnks begin 

writ eln( 'Plnyer ', th e_player,' of team ', 
lh e_team,' got ll lha nkyou '); 

rn d; 

TRANS (* epontaricous *) 
prot•ided ((th _player= 1} or d (tl1 e_team = 1)) 
begin OUT right .potato (th e_te.am, th e_player); end; 

end player_process; 

Figure 7. FDT Specification or Player Process 

22 

The overall structure or the system is contained by the top level refinement hot_ref 

which is specified for the empty, top level, module hot_potato. This refinement, directly or 

indirectly, contains all or the other declarations. The system structure is defined by the 

instance and connection specifications at the end of hot_ref. 



23 

The refinement team_re/ is similar to hot_ref except that it also ha.s a replace 

specification which defines which interaction points, internal to team_re/, are to be used for 

the interaction points tossin and tossoul of the refinement's module team. Note that hot_ref 

does not have a replace specification as its module hot_;,otato does not define any interaction 

points. 

In the instance specifications, both refinements pass arguments to the refinement or 

process used. In hot_ref one number identifying the team or the instance is given to the 

refinement team_ref, which passes it and a player number to the process player_;,rocess in 

its instance specification. Player_process stores the numbers it receives as part or the local 

state information or each machine instance. 

The actions of the players in the protocol are specified by playe.r_procese. It declares 

that the two interaction points, left and right, or its module player are to queue their signals, 

that the protocol machine bas two local variables, the_team and the_player, and that they 

are to be initiallized to the values of the two parameters passed. 

The first transition of player _process occurs whenever a potato message arrives vi:i. the 

left interact.ion point. It prints a message and transmits two more messages. 

The second transition occurs whenever a thanks message arrives via the right interac• 

tion point of the protocol machine, it also prints a message. 

The third transition will only occur for player one of team one when the transition 

scheduler detects that there are no messages enqueued and awaiting processing. For this pro

tocol that only occurs a the start or processing. 

5.1.l Implementation Code 

The implementation code produced by the compiler is placed into one output file. The 



24 

first entries in this file are a series or "#include's" whose purpose is to direct the C compiler 

to include files like the C standard input/output library (stdio.h). The next entries are the 

signal and process block declarations and then various initiallization, transition and user 

defined procedures which are in no particular order. The finally entry or the file is another 

"#include" which directs the C compiler to include (compile) the prewritten utility routines. 

The output file generated tor the example in Figures 6 and 7 is shown in Figure 8. The 

bodies or the procedures have been deleted for brevity and are show individually in later Fig-

ures. 



#includr < stdio.h> 
#include < strings.h> 
#include "listdefs.h" 

struct 8ignal_blo ck { 
int signal_id; 

}; 

struct signal_block *next; 
union { struct { struct { 

int thrower_team, thrower_num; 
} potato; 

} toss; 
} lvars; 

struct process_block { 

}; 

struct process_block 'next; 
char p_ident/MAX_IDENT_LENGTH+l}; 
struct channel_block *chnn_list; 
struct process_block *refinement; 
int (*proc_ptr)(}; 
union { struct { 

int the_team, the_player; 
} s_player _process; 

} lt.-ars; 

struct process_block *iohot_ref{p_block} 

struct process_block *ioteam_ref(p_block, tcam_num) 

struct r1rocesl:'_block *iop{ayer_process{process_list, team_,ium, 
player_num) 

p{ayfr _process() 

#include "Jdtutil.c''' 

Figure 8. Implementation Code for Hot Potato Protocol 

The signal block declaration contains two fields, thrower_team and thrower_num, which 

store the data values of a potato message. Ir there had been other channel declarations, at 

any level of nesting containing messages with data fields, they to would have appeared in the 

declaration. 

The process_block declaration h:is similar fields for the storage or variables for a proto-



26 

col machine instance. It also contains the identifier and a procedure pointer to the transition 

routine associated with the process_block instance. 

The initiallizat.ion and transition routines follow the two structure declarations. They 

use the same identifiers as their associated refinement or process in the the FDT source, with 

the exception that the initiallization routines also have a "io" prefix. This prefix is necessary 

to distinguish between the two routines, one initiallization and one transition, generated Cor 

each process specification. 

The initiallization routine generated for the refinement hot_ref is iohot_rcf and is shown 

m Figure 9. This procedure is called by the system initiallization utility to generate the 

entire representation data structure. 

struct process_block *iohot_ref(p_block) 

slrucl procns_block *p_block; 
{ 

} 

slruct process_block *ioleam_ref(}; 
slruct procees_block •ioteam_ref(}; 
slrucl channel_block •add_channel_block(}, •c_ptr; 
slruct process_b/ock *add_refinement_header(), 

*clean_up(}, *J}rocess_list; 
process_li81 = NULL; 
procfss_lisl = ioteam_ref(process_list, 1}; 
process_lisl = ioteam_ref(process_list, 2}; 

connect_ports(process_list, !!, !!, 0, 1, 1, 0}; 
connect_ports(proceN_list, 1, !!, 0, !!, 1, 0}; 

p_block = add_refinement_header(p_bfo ck, proc ess_tist); 
p_block-> re.fir1 11 menl = clean_up(p_ blo ck-> refin ement); 

return(p_block); 

Figure 9. Initiallization Routine tor hot_rer 

The initiallization routine generated for the refinement team_ref is shown in Figure 10. 

It is slightly more complex than iohot_ref as it must also add channel blocks to its refinement 



header (add_channel_block} and establish connections between them and internal interaction 

points (replace_ports}. 

The calls to connect_ports in Figures 9 and 10 contain a cryptic set or numbers as 

arguments to the routine. These numbers describe which two channel blocks are to be inter

connected to form the interaction point. For example, the set of t.hree numbers 2, 2, 0, tells 

connect_ports to look in the channel list of the second process block in the process list for a 

channel block containing the two numbers 2 and 0. Calls to rep/ace_ports contain similar 

sets or numbers except that the process block number for the first channel block is not 

required because the channel list is know to be in the refinement header and so is omitted. 

Note that the numbering or the process blocks in the list is the reverse of their creation since 

the initiallization routines place them at the front of the process block list . 

struct process_block *ioteam_ref(p_block, team_num} 
struct process_b/ock *p_block; 
int team_num; 
{ stru ct process_block *ioplay er_procees(}; 

stru ct prorees_bl ock :t'i.o player_pro cess(); 

} 

struct channel_block *add_channel_block(}, *c_ptr; 
slruct process_block *add_rcfinement_header(), 

*clean_up(), *process_list; 

process_lfrt = NULL; 
pro cess_/ist =io pl ayer _process( pro ccss_list, tea m_nu m, 1 ); 
process_list =ioplayer _procees(process_list, tram_11um, !2 ); 

connect_ports(procci:s_list, 2, !!, 0, 1, 1, O}; 

p_block = add_refinement_header(p_block, process_list}; 
p_block-> chan_/ist =add_channel_block{p_block-> chan_list, 

&c_ptr, FALSE, 1, O}; 
p_block-> chan_list=add_channel_block(p_b/ock-> chan_/ist, 

&c_ptr, FALSE, £, O}; 

rep/ace_port(p_block, 1, 0, !!, 1, O}; 
replace_port(p_block, £, 0, 1, !!, O}; 

p_block-> refinement = clean_up{p_block-> refinement}; 

return(p_block); 

Figure 10. Initialization Routine for team ref 



28 

The two declarations of iop/ayer_process in Figures 9 and 10 is not an error, simply a 

harmless idiosyncrasy of the compiler which was left in to ease the implementation of the 

compiler. The C compiler will not complain about multiple function definitions so long as 

they are consistent. 

The initiallization routine generated for the process player_process is shown in Figure 

11 and the transit.ion routine in figure 12. 

struct process_b/ock tioplayer_procees(process_list, 
team_num, player_num) 

.~trucl procesl!_l,/ock itproceee_lisl; 
int team_num, player_num; 
{ struct proccss_block *p_block, *add_proceee_block(); 

extern int player_proces.~{); 

} 

struct channe/_block *add_channd_block{), *c_ptr; 

p_block = add_procestt_block(process_list, 
player _process," player _process.,); 

p_blo ck-> chan_list = 
add_channcl_block{p_block-> chan_list, 

e:c_ptr, TRUE, 1, O}; 

p_block-> chan_iist = 
add_channel_,block(p_block- > chan_list, 

&c_ptr, TRUE, £, O}; 

p_block-> luars.s_player_process.the_team = 
team_num; 

p_block-> lvars.s_player_process.the_player = 
player _num; 

return(p_block); 

Figure 11. Initiallization Routine for player_process 



p/ayer_process(p_block, channel, signal} 
struct process_b/ock *p _ _/:iock; 
struct channe/_block '-channel; 
slruct signai_block '-'signal; 

{ struct signai_block *s_;1lr; 

t"f ((channel!= NULL)} 
if ((channei->c_id == 1) f1& (signal->Bignal_id == 0}} {{{ 

printf("Player "}; 
printf("%d" ,p_b/ock-> lvars.s_player _process.the_player }; 
print/(" of team"}; 
print/(' '%d" ,p_block-> lvare.tt_player _process.the_team}; 
print/(" caught a potato from player"}; 
printf("%d" ,signal-> lvare.toss.potato.thrower _num}; 
print/(" of team "); 
pri'.ntf(' '%d", signal-> /vars. toes.potato.thrower _team); 
print/("0}; 

s_ptr = ALLOCATE(signal_block}; s_plr->eignal_id = 0; 
s_ptr-> lvars.toss.potato.thrower_team = 

p_blo ck-> lvars.tt_player_process. the_t eam; 
s_ptr-> lvars.loss.potato.thrower_num = 

p_b/o ck-> /t,ars.s_player _process.the_p/ayer; 
out(p_block-> chan_list, s_ptr, e, 0}; 

e_ptr = ALLOCA.TE(signa/_block); e_ptr->signal_id = 1; 
out(p_b/ock-> chan_list, e_ptr, 1, 0}; 
} goto dispose; }} 

if ((channel I= NULL)} 
if ((channel->c_id == 2} f3fj (signal->signa/_id == 1)) {{{ 

printf("P/aycr "); 
print/(' '%a ,p_block- > lvars.s_player _process. the_player ); 
print!(" of team "}; 
print/(' 'r a ,p_blo ck-> lvars.s_player _process. the_team); 
print/(" got a lhankyou"); printf{"0}; 
} goto dispose; } } 

if (channel!= NULL) { requeue{channel, signal}; signal= NULL;} 

if (((((p_ blo ck-> lvare.eJlay er_pro cess.th e_play er = = 1)) EJ (J 

((p_blo ck->luars. s_player_process.the_t eam = = 1}}))} { { 
s_p lr = ALLOCATE(sigr1al_blo ck}; sJtr->signal_id = 0; 
s_ptr-> lvars.toss.potato .thrower_team = 

p_b/ock-> lvars.s_player_process.the_t eam; 
s_ptr-> lvars.toss.potato.thrower_num = 

p_blo ck-> lvars.e_player _procees.the_player; 
out(p_block-> chan_list, s_ptr, f, 0}; 
} goto dispose; } 

dispose: free(signal); 
} 

Figure 12. Transition Routine for player_process 

29 



30 

5.1.2 Execution Descrlptlon 

The creation of the data structure that represents the interconnected protocol m:ichines 

that implement the hot_potato protocol is initiated by a call to the initiallization routine 

iohot_ref by the prewritten utility system_init. The subsequent sequence or calls to the other 

initiallization routines and the construction or the data structure are described below. 

The first operation performed by iohot_rr.f is to call the routine ioteam_ref, which, in 

turn, calls the initiallization routine ioplayer_proceee twice to create two protocol machine 

instances . The structure returned by one or these calls is shown in part (a) of Figure 13. 

loteam_ref then calls connect_ports to connect together the interaction points of the 

two instances. The resulting structure is a refinement body and is shown in part (b) of Figure 

13. 

Next, ioleam_re/ creates a refinement header (add_refinement_header}, attaches the 

refinement body and calls replace_ports to make interconnections between the header and 

the body . Its job is then completed by calling the prewritten utility cleon_up which in this 

case has no work to do and then returning. The complete structure returned by ioteam_ref is 

shown in part (c) of Figure 13. 

/oho t_re/ now receives control and proceeds to call ioteom_ref a second time to gen

erate another machine representation. That structure is shown in part (d) or Figure 13 . 

With the construction of the two instances now complete iohot_ref calls connect_ports 

to interconnect them . Connect_ports will detect that it is making connections between 

refinement headers and will connect to the appropriate channel blocks in their refinement 

bodies instead . 

/ohot_ref then creates a refinement header (without channel blocks) for the refinement 

body (i.e . the two structures returned by ioleam_ref ). 



31 

The last operation or iohot_ref i3 to call the utility clean_up which repbces the 

refinement headers, in its refinement body, with t.heir bodit-5. The complete structure 

returned to system_init is shown in part (e) or Figure 13. 

'· 

(a) 

10-0" 
.0" 

( b) 

( C) 

)3 

r 

Figure 13. Representation Data Structures for Hot Potato Protocol 



32 

1 ola'I , _, 2 01.0'\.0" 
V/110 

l-0"1 Z WI .B'Z~ 
-.. 

' I i ~ 

1101.o/ 1 - \;; 010' p( 

121 l..0'1 
VJ 

' 

'~ w ! ,1 
110 Z :.1.2 O IZ rl 

l.e-1 ' ' I .f1 ' I .. '"' 

t I 
{;t:l 

IZf 

q; 

1 lo la' I ,2 O[Zl.8" 
VMJ I 

l.2'12" Wl .B' zw 
-

I .: 

1 I i ' I 
110 ~ I - '2 0 a- l.i:f • I 

121 ' I 12' I 

VJ 

• 

! 
110 -0" - 1 2 0 Zfe' 

l .0"1 f 
I lz , ..... r 

t l 

"' 0 

Figure 13. Representation Data Structurt>S for Hot Potato Protocol (continued) 



33 

( e). 

Figure 13. Representation Data Structures for Hot Potato Protocol (continued) 



34 

6.1.3 Tran&ltlon Proce1111lng 

When the initiallization routines have completed their task and built the representation 

data structure the transition scheduler receives control. 

The scheduler distributes enqueued messages and spontaneous transitions in a round 

robin manner. 

The identities or the spontaneous routines are hand coded into the scheduler by the user 

(not everything is automatic!). The user enters a &eries or string comparisons between the 

identifier stored in the process_block instances and the identifiers of the spontaneous transi

tion routines. These tests are OR'ed together and become the boolean expression or an if 

statement t.hat decides whether to call the transition routine to attempt a spontaneous transi

tion. 

In this example, when the scheduler first receives control it tests for the existence or 

enqueued signals. Discovering that none exist it proceeds to search the process block list for a 

process block that contains a transition routine identifier matching one or those known (hand 

coded) to contain a spontaneous transition. The first block tested just happens to contain 

(like the others) such an identifier (player_process} so the scheduler calls that routine. Once 

a signal does get enqueued by the spontaneous transition or the protocol machine of playtr 

one, team one, the scheduler st.ops searching for a spontaneous transition and goes about the 

job of dispatching signals. 

5.2 Example 2-The Alternating Bit Protocol 

The second example is an implementation or the alternating bit protocol which serves to 

illustrate the ability or the compiler to implement a real protocol. The specification of the 

protocol is taken Crom the ISO working document !ISO 84J and is shown in Appendix IV. 



35 

The specification contains one, top level, refinement ab_ref, and five module types 

ab_pc, Alternating_Bit, timer, network and user. It also has four different channel types and 

various messages. 

The specification models the typical situation or a protocol machine on a particular level 

of abstraction. It has the alternating bit protocol machine and a system entity (timer) on one 

level, as well as entities on the levels above (user) and below (network). 

This specification was used to create a communication path between two separate hosts. 

This required the modification of the system initialization routine BJIBtem_init, the system 

scheduler schedule and the the two signal transmission routines get_signal and out. A time out 

facility was also implemented. Code for these routines is given in Appendix V. 

The system initialization routine was modified to allow it to establish a network connec

tion betwe<'n the two hosts being used . The actual communication path was created using a 

set of locally developed network primitives which allow easy access to a local area network 

(ETJ-IER!\TET). 

The system schedul<'f was modified so that it tested the result of a call to get_signa/ 

before it called the destination routine. 

Gtl_signal was modified to detect when it was at the particular channel through which 

signals from the network are to arrive. When at the designated channel it called a non

blocking net.work reccit•e primitive in attempt to get a signal from the other host. 

The routine out was modified to detect the transmission of a signal over the channel 

designated to carry traffic to the other host. Instead of queueing the signal it places it in a 

buffer and calls a network send primitive. 

The time out facility was provided by a pair of C routines which schedule and test 

timers. These two routines are quite simple. The time out scheduler, schedu/e_time·oul, adds 

the timer duration to the present time and stores the value. The routine timer_e:rpfr€d 

checks to see if the system time is later than the stored time and returns the appropriate 



36 

truth value . 

The implementation code generated for this example can be found in Appendix VI. 



Chapter 6 

Conclusion 

G.l Thesis Summary 

The development of formal models for protocol specification bas opened the door to the 

possibility of automatically generating protocol implementations directly from their 

specification. The wide spread availability or implementation tools will allow protocol imple

mentors to produce compatible protocol implementations with ease. The compiler developed 

demonstrates the feasibility or producing such a tool. It generates virtually all or the code 

needed to implement a protocol (the only thing it does not produce are some simple declara

tions and tests in two utility routines). And both it and its output code are written in highly 

portable C. Despite or its large size, 8000 lines, it runs very quickly, processing the two 

examples in negligible time (less than a second). 

The restrict.ions placed on th(' structure or the PASCAL programs accepted by the com

piler, namely the elimination or nested routines and global rererences, could be a factor when 

more complex protocols are to be processed. However, at present the restrictions do not 

appear to be too severe. 

The success or the venture can be measured by contrasting automatic and manual pro

tocol implementation techniques. The compiler produces consistently well structured and 

easy to understand code. The quality or manually generated code varies considerably. Com

piler generated code is easy to maintain and modiry, a change in the input specification is all 

that is required. On the other hand, manually produced code requires a great deal or effort 

and expense to maintain. Perhaps the greatest difference between the two implementation 

methods is the respective confidence given to their generated implementations. Code pro

duced by a compiler can generally be assumed to be a correct representation or the 

37 



38 

specification, whereas manually produced code cannot. 

8.2 Enhancements 

Further testing of the compiler on real-life protocols such as the ISO transport protocol 

is desirable. Such a test would further demonstrate the usefulness or using such tools and 

perhaps spawn the development of production versions or the compiler. 

Enhancements to the compiler itself can also be made. The processing or the scope or 

transition enabling condition clauses is currently bandied clumsily and as a result the useful

ness of some or the short.hand clause specifications is restricted . PASCAL set types, were not 

implemented as they were not considered to be important enough to warrant the effort. The 

FD T DELAY clause which implements timer functions was not implemented as timers can be 

simulated with system calls. Adding the DELAY clause would enhance the compatibility of 

the compiler with the ISO standard. 

A major enhancement to the system would be the implementation or protocol machir.es 

as separate proctsses running under control or the host's operating system. This approach 

would be a closer representation or the model of independent protocol machines then the 

current one . 



References 

[Aho 78] 

Aho, A., Ullman, J., "Principles of Compiler Design", Addison-Wesly Publishing Com

pany, 1978. 

[Blum 81] 

Blumer, T. P ., Tenney, R. L., "An Automated Formal Specification Technique for Pro

tocols", Proceedings INWG/NPL workshop, May 1981, pp. 277-326. 

[Boch 80] 

Bochmann, B. V., Sunshine, C. A., "Formal Methods in Communication Protocol 

Design"', IEEE Transacations on Communications, Vol. Com-28, No. 4, April 1980, 

pp. 624-631. 

[Dant 80] 

Danthine, A. A. S. , "Protocol Representation with Finite-State Models"', IEEE Trans . 

Commun. vol. COM-28, pp. 632-643, April 1980. 

[Gerber 83] 

Gerber, G. W. , "Une Mcthode D 'Implantation Automatisee de Systeme.s Specifies For

mellement"', Publication #142, -De'partement D'Informatique et de Recherche 

Ope'rationnelle, Universite' de Montreal, A01it 1983. 

[Hansson 84] 

Hansson, H., •~spit, A system for Automatic Implementation of Communication Proto

cols", Uptec 8,186R, Uppsala Institute or Technology, Uppsala 1984. 

3g 



40 

11so 84] 

"A Formal Description Technique based on an e:itend;d state transition moder, ISO /TC 

97 /SC 16/WG 1 Subgroup B, Working document, March 1984. 

!Jensen 741 

Jensen, K., Wirth, N., "Pascal-User Manual and Report", Lecture Notes in Computer 

Science no. 18, Springer-Verlag. 1974. 

!John 75) 

Johnson, S. C., "Yacc: Yet Another Compiler-Compiler", Comp. Sci. Tech. Rep. No. 32, 

Bell Labratories, Murray Hill, New Jersy 1975 

jKern 78] 

Kernighan, B. W., Ritchie, D. M. , "The C Programming Language", Prentence-Hall, 

1978. 

jLesk 75] 

Lesk, M. E., "Lex-A lexical Analyzer Generator", Comp. Sci. Tech. Rep. No. 39, Bell 

Labratories, Murray Hill, New Jer!-y (October 1975) 

jSunsh 7'J] 

Sunshine, C. A. , "Formal Techniques for Protocol Specification and Verification", 

Computer, vol. 12, pp. 20-27, Sept. 1979. 

!Tanen 81) 

TANENBAUM, A. S. , "Computer Networks", Prentence-Hall, 1981. 



Appendix I 

FDT Grammar 

specification -> seqsect 

seqsect -> section ";" seqsect I /•empty•/ 

section -> channel I module I process I refinemt 

channel -> constd typed "channel" IDENT 

"(" rolelist ")" ";" byclause "end" IDENT 

rolelist -> !DENT seqident 

seqident -> "," rolclist I /•empty•/ 

byclause -> "by" rolelist ":" signal byclause I /•empty•/ 

signal -> !DENT signalpara ";" signal I /• empty •/ 

signalpara -> "(" parader ")" I /• empty • / 

seqparader -> ";" parader I /• empty •/ 

parader -> rolelist ":" basictype seqparader 

module -> "module" IDENT ";" portlist "end" IDENT 

portlist -> rolelist ":" array IDENT "(" IDENT ")" 

";" portlist I /• empty •/ 

41 



array -> "array" "{" indextype seqindext "}" "or 

I /• empty •/ 

indextype -> simpletype 

seqindext. -> "," indextype seqindext I /•empty•/ 

refinemt -> "refinement" IDENT signalpara "for" IDENT ";" 

refbody "end" IDENT 

refbody -> seqsect instance connect replace I /• empty •/ 

instance -> rolelist ":" IDENT "with" IDENT a.ctualpar ";" 

seqinst 

seqinst -> instance I /• empty •/ 

connect -> "connect" intconn I /• empty •/ 

intconn -> mport "to" mport ";" seqintconn 

seqintconn -> intconn I /• empty •/ 

replace -> "replace" extconn I /• empty •/ 

extconn -> port "by" mport ";" seqextconn 

seqextconn -> extconn I /• empty •/ 

port -> IDENT optindex 

optindex -> "{" constant liskonst "}" I /•empty•/ 

mport -> IDENT "." port 

42 



process -> "process" IDENT signalpara "for" IDENT ";" 

procbody "end" IDENT 

qchannel -> "queued" rolelist 11 
;" I /• empty • / 

procbody -> qchannel constd typed pvard procfuncd init trans 

I /• empty •/ 

pvard -> "var" procvar I /• empty •/ 

procvar -> IDENT ":" "(" rolelist ")" ";" seqvardecl I vardecl 

stateset -> IDENT I /• empty •/ 

init -> "initialize" stateset "begin" initstatmt 

seqstatmt "end" ";" I /• empty •/ 

initstatmt -> plainstatmt 

trans -> "trans" seqclause opttrans 

opttrans -> trans I /• empty •/ 

seqclause -> clause seqcl:rnse I opttag block ";" seqtrans 

clause -> "any" parade( "do" I "when" IDENT vparam "." IDENT 

"from" role list I "to" nextmstate 

"provided" expression- I "priority" idorint 

seqtrans -> seqclause I /• empty • / 

opttag •> IDENT ":" I /• empty • / 

vparam -> "{" rolelist "}" I /• empty •/ 

43 



listvariable-> "," variable I /• empty •/ 

nextmstate - > ID ENT ''same" 

idorint 

block 

-> ID ENT I INTEGER 

-> labeld constd typed vard procruncd "begin" 

statmt seqstatmt "end" 

labeld -> "label" INTEGER seqinteger ";" I /* empty •/ 

seqinteger -> "," INTEGER seqinteger I /* empty * / 

constd -> "const" defconst I /* empty •/ 

defconst -> IDENT "=" constant";" seqdefconst 

seqdefconst-> defconst I /* empty •/ 

constant -> opt.sign numconst I STRING 

optsign -> SIGN I /* empty •/ 

numconst -> INTEGER I REAL I IDENT 

typed -> "type" dert.ype I /•empty•/ 

deftype -> IDENT "=" type· ";" seqdeftype 

seqdeft.ype -> deftype I /• empty •/ 

type -> simpletype I optpack typstruct I "'" IDENT-

I "'" "boolean" I "'" "char" I "'" "integer" 

I "'" "real" 

44 



simpletype -> "(" rolelist ")" I SIGN numconst " .. " constant 

INTEGER " .. " constant I ID ENT opkonst 

"boolean" I "char" I "integer" I "real" 

optconst -> " .. " constant I /•empty•/ 

optpack -> "packed" I /• empty •/ 

typstruct -> "array" "{" simpletype seqsimplet "}" "or' type 

I "record" field "end" 

seqsimplet -> "," simpletype seqsimplet I /•empty•/ 

field -> fixedpart seqfield 

I "case" IDENT typselect "or variant 

fixedpart -> rolelist ":" type I /• empty •/ 

seqfield -> ";" field I /• empty •/ 

typselect. -> ":" basictype I /• empty •/ 

variant -> constant listconst ":" "(" field ")" seqvariant 

/• empty •/ 

seqvariant -> ";" variant I /• empty •/ 

listconst -> "," constant listconst I /• empty • / 

vard -> "var" vardecl I /• empty •/ 

vardecl -> rolelist " :" type";" seqvardecl 

seqvardecl -> vardecl I /•empty•/ 

45 



procfuncd -> procefuncd pfbeader ";" pfbody ";" I /• empty • / 

pfheader -> "procedure" IDENT !para I "predicate" IDENT !para 

I "function" IDENT lpara ":" basictype 

pfbody -> block I "extern" I "forward" I "primitive" 

!para -> "(" spara seqspara ")" I /• empty •/ 

seqspara -> ";" spara seqspara I /•empty•/ 

spar a -> role list ":" basict.ype 

factor 

I "var" rolelist ":" basictype 

-> REAL STRING I "nil" I INTEGER 

I "{" seqsetint "}"I"(" expression")" 

I "not" factor I IDENT seqfactid 

seqfactid -> lseqvaria I "(" index ")" 

index -> expression seqindex 

seqindex -> "," index I /•empty•/ 

lseqvaria -> "{" index"}" lseqvaria "." IDENT lseqvaria 

I "'" lseqvaria /• empty •/ 

seqsetint -> setint lseqset I /• empty •/ 

lseqset -> "," setin t lseqset I /• empty •/ 

setint -> expression seqxpset 

seqxpset -> " .. " expression I /* empty •/ 

46 



term -> term OPERMULT factor I factor 

simplexp -> simplexp OPERADD term I optsign term 

expression -> simplexp OPEREL simplexp I simplexp 

statmt -> INTEGER ":" plainstatmt I plainstatmt 

plainstatmt -> IDENT appendix 

I "out" IDENT seqindice "." IDENT _actualpar 

I "goto" INTEGER 

"begin" statmt seqst.atmt "end" 

"if" expression "then" statmt else 

"case" expression "of" case seqcase otberw "end" 

"repeat" statmt seqstatmt "until" expression 

"while" expression "do" statmt 

"for" IDENT ":=" expresi;ion 

direct.ion expression "do" statmt 

"write" iolist I "writeln" lniolist 

/* t'mpty •/ 

actualpar -> "(" index")" I /• empty •/ 

newmstate -> IDENT I "same" 

seqstatmt -> ";" statmt seqstatmt I /• empty •/ 

else -> "else" statmt I /• empty •/ 

seqcase -> ";" case seqcase I /• empty •/ 

case -> constant listconst ":" statmt I /• empty •/ 

4i 



48 

otherw -> "otherwise" statmt seqstatmt I /• empty •/ 

lniolist -> iolist I /• empty • / 

iolist -> "(" ioexp ")" 

ioexp -> ioident seqioident 

seqioident -> "," ioexp I /* empty •/ 

ioident -> expression ioextra. 

ioextra -> ":" simplexp I /• empty •/ 

direct.ion -> "to" I "downto" 

variable -> IDENT lseqvaria listvaria.ble 

appendix -> actualpar I lseqvaria ":=" expression 

seqindice -> "{" index"}" seqindice I /• empty •/ 

basic type -> ID ENT I "boolean" I "char" 

I "integer" I "real" 



APPENDIXll 

Utility Routine Listings 

int signal_pending; 

----•/ 

stru ct process_block •add_process_block(process_list,proc_ptr ,identifier) 

/• 
This function allocates a new process block, initializes it, and places 
it at the head of the process list passed to it. The pointer to the 
process_list is returned. 

*/ 

struct process_block 
int 

•process_list; 
(•proc_ptr)(); 

char •identifier; 

{ 

} 

struct process_block •ptr, •temp_ptr; 

ptr = ALLOCATE( process_block); 
ptr-> next = process_list; 

ptr->proc_ptr = proc_ptr; 
strcpy(ptr- > p _iden t , identifier); 
ptr->chan_Iist = NULL; 
ptr->refinement =NULL; 

return(ptr) ; 

!------------·--------•/ 

struct channel_block •add_channel_block(channel_list,c_ptr,queued_flag, 

49 



number,index) 

/• 
This function allocates a new ch an nel block, initializes it, and places 
it at the end or the channel list passed to it. It returns the channel 
list. 

•/ 

struct channel_block 
int 

•channel_list, • ( •c_ptr ); 
queued_ftag,number,index; 

{ 
struct channel_block 

} 

/• make a new channel block •/ 

ptr = ALLOCATE( channel_block); 
ptr->next = NULL; 
ptr->c_id = number; 
ptr->index_num = index; 
ptr->signal_list = NULL; 
ptr->queued = queued_ftag; 
ptr->target_proc = NULL; 
ptr->target_channel= NULL; 
ptr->index_list = NULL; 

•c_ptr = ptr; 

ir (channel_list != NULL) 
{ 
/• find the end or the channel list•/ 

for (temp_ptr = channel_list; temp_ptr->next != NULL; 
temp_ptr = temp_ptr->next); 

temp_ptr->next = ptr; 

return (channel_list ); 

} 
else 

return(ptr); 

!---·-------- --- ---•/ 

struct channel_block •find_channel(channel_list,id,index) 

/• 
This function returns a pointer to the first channel block with the 
passed id in the channel list. 

•/ 

50 



struct channel_block 
int 

*channel_list; 
id, index; 

{ 

} 

struct channel_block 

/* find the block * / 

for (ptr = cbannel_list; (ptr->c_id != id)ll(ptr->index_num != index); 
ptr = ptr->next); 

return(ptr) ; 

- ----------•/ 

struct process_block •add_refi nement_beader(process_list,ref_body) 

/• 
This function allocates a "refinement" type process header and places 
it at the head or the process list. The ref_body (also a process list) 
is then attached to the refinement header. 

*I 

struct process_block •process_list, •reC_body; 

{ 

} 

struct process_block •ptr, • add__process_block(); 

ptr ad d__process_bloc k (process_list,NULL," refinement"); 

ptr-> refinement= reC_body ; 

return(ptr); 

/*------ ------•/ 

connect__ports(process_list, instance_num 1, ch annel_num l,indexl, 
instance_num2, channel_num2,index2) 

I* 
This routine interconnects the specified channels. 

•/ 
•process_list; struct process_block 

int instance_numl, instance_num2, 
channel_numl, channel_num2, 

51 



{ 

indexl, index2; 

struct process_block •find_process(), •p_ptrl, •p_ptr2; 
struct channel_block •find_channel(), •c_ptrl, •c_ptr2; 

p_ptrl 
p_ptr2 

c_ptrl 

c_ptr2 

/• 

- fin d_process(process_list,instance_num 1); 
- find_process(process_list,instance_num2); 

= find_channel(p_ptrl->cban_list,channel_numl, 
indexl); 

- find_cbao11el(p_ptr2->chan_list,channel_num2, 
index2); 

Ir the chann el blocks are already connected to another chann 

} 

block then they mus1. be in the header or a refinement so take 
th eir targets as the ch a.noel blocks to connect to. 

•/ 

p_ptrl 

p_ptr2 

c_ptrl 

c_ptr2 

= (c_ptrl->target_proc == NULL) 
? p_ptrl 
: c_ptrl->target_proc; 

= (c_ptr2->target_proc == NULL) 
? p_ptr2 
: c_ptr2- > target_proc; 

= (c_ptrl->target_channel == NULL) 
? c_ptrl 
: c_ptrl-> target_channel; 

= (c_ptr2->target,_channel == r-.11.JLL) 
? c_ptr2 
: c_ptr2-> target_channel; 

/• make the connection */ 

c_ptrl->target_proc = 
c_ptrl- > target_channel 

p_ptr2; 
= c_ptr2; 

c_ptr2->target_proc = p_ptrl; 
c_ptr2->target_channel = c_ptrl; 

/•-----

52 



struct process_block •find_process(process_list, number) 

/• 
This runction returns a pointer to the number'tb element or the 
process list. 

•/ 

struct process_block 
int 

{ 
int ,. 

' 

•process_list; 
number; 

for (i = 1; i < number; i++) 
process_list = process_list-> next; 

return(process_list ); 
} 

/•--- ----•/ 

replace_port(rer...J>tr, port_num, port_index, instance, channel_num,index) 

/• 
This routine connects a port (channel) in a refinement header to a 
port in the refinement body. 

•/ 

struct process_block •ref_J>tr; 
int port_num, port_index, instance, 

{ 
struct 
struct 

p...J>tr 

c_pt.rl 

c_ptr2 

p_ptr 

c_ptr2 

channel_num, index; 

process_block 
channcl_block 

*p_ptr, • find_process(); 
•c_ptr 1, *c...J>tr2, •find_channel( ); 

find_J>rocess( rer_ptr- > refinement,instance ); 

find_channel( ref_ptr- > chan_list, 
port_num,port_index); 

fi nd_channel(p_ptr- >chan_list,chan nel_n um,index ); 

(c_ptr2->target_proc == NULL) 
? p_ptr 
: c_ptr2-> target_J>roc; 

- (c_ptr2->t:uget_channel == NULL) 
? c_ptr2 
: c_ptr2-> target_ch annel; 

53 



} 

c_ptr 1- > target_proc = 
c_ptrl-> target_channel 

c_ptr2->target_proc = 
c_ptr2- > target_channel 

p.J)tr; 
= c_ptr2; 

ref_ptr; 
= c_ptrl; 

----~---------•/ 

struct process_block •clean_up(process_list) 

/• 
This fu net.ion removes the refinement header in a process list. It 
returns a process list which is a concatenation of the refinement 
bodies 

•/ 

struct process_block •process_list; 

{ 
struct process_block •ptrl, •ptr2, •remove_header(); 

ir (process_list == NULL) 
{ 

return(.NULL); 
} 

else 
{ 

ptr I - process_list- > next; 
ptr2 - process_list; 

if (strcmp(process_list->p_ident,"refinement") == 0) 
{ 

} 

process_list = remove_header(process_list ); 

for (ptr2 = process_Iist; ptr2->next != NULL; 
ptr2 = ptr2->next); 

pt.r2->next = ptrl; 

while (ptrl != NULL) 
{ 
if (strcmp(ptrl->p_ident,"refinement") == 0) 

{ 

54 



} 
} 

ptrl = ptrl->next; 
ptr2->next = removc_header(ptr2->next); 

while (ptr2->next != NlJLL) 
{ 
ptr2 = ptr2- > next; 

} 

ptr2->next - ptrl; 
} 

else 
{ 

} 
} 

ptr2 - ptrl; 
ptrl - ptrl->next; 

retu rn(process_list ); 

!--- ------•/ 

struct process_block •remove_header(ref_ptr) 

/• 
This function removes the refinement header and its channel list and 
returns a pointer to the refinement body . 

•/ 
struct process_block •ref_ptr; 

{ 
struct 
struct 

process_block 
channel_block 

/• remove the channel list • / 

•p_ptr; 
•c_ptrl, •c_ptr2; 

for (c_ptrl = ref_ptr->chan_list; c_ptrl != NULL; 
c_ptr2 = c_ptr], c_ptrl = c_ptrl->next) 

{ 
free(c_ptr2); 

} 

/• remove the process block •/ 

p_ptr == ref_ptr->refinement; 
free( ref_ptr ); 

return( p_ptr ); 
} 

55 



/•------------- -----*/ 

out(channel_list,signal,chan_num ,index) 

I* 
This routine dispatches a signal on the indicated channel. 

•/ 

struct channel_block •channel_list; 
struct signal_block •signal; 
int chan_num, index; 

{ 
extern int signal_pending; 

struct channel_block •channel, •find_cbannel(); 

} 

channel = find_channel(channel_list,cban_num,index); 

if (channel->target_channel->queued) 
{ 

} 

signal_pending++; 

signal-> next = channel-> target_channel-> sign al_list; 

cbannel->target_channel-> signal_list = signal; 

else/• rendez-vous •/ 

{ 
(*(channel-> target_proc- > proc_ptr) )(channel-> target_proc, 

channcl,signal); 
} 

struct process_block •syst~m_init() 

/• 
This routi.ne causes the generation or the data structure and then checks 
for dangling channel connections. 

•/ 

{ 

56 



} 

struct process_block •ptr, •process_list, •remove_header(); 

struct channel_block •c_ptr; 

/ * user included dcl * / 

struct process_block •iobot_ref(); 

process_list = remove_header(iobot_ref(NULL)); 

for (pt.r = process_list; ptr != I\i'ULL; ptr = ptr->next) 
{ 

} 

for (c_ptr = ptr->chan_list; c_ptr != NULL; c_ptr = c_ptr->next) 
{ 

} 

if (c_ptr->target_channel == NULL) 
{ 

} 

/• oops a dangling connection•/ 

fprintf(stderr, "0YSTEM INITIALIZATION ERROR: dangling"); 
fprintf(stderr," channel in an instance of 

ptr->p_ident); 
fprintf(stderr,"channel number vd, index %d0,c_ptr->c_id, 

c_ptr-> index_num); 

/• join the ends of the process list into a loop • / 

for (ptr = process_list; ptr->next != NULL; ptr = ptr->next); 

ptr->next = process_list; 

return(process_list ); 

57 



/*--------------------•/ 

schedule(process_list) 

/• 
This is the main driving routine. 

•/ 

struct process_block •process_list; 

{ 
extern int sign al_pending; 

struct 
struct 
struct 

channel_block 
signal_block 
process_block 

•c_ptr; 
•s_ptr, •get_signaJ(); 
•p_ptr, •p_ptr2; 

p_ptr2 = process_list; 

p_ptr = process_list; 

c_ptr = p_ptr->chan_list; 

signal_pending == O; 

while (TRUE) 
{ 

if (signal_pending > 0) 
{ 
s_ptr = get_signal(&c_ptr, &p_ptr); 

signal_pending-; 

/• call the transition routine • / 

(*(p_ptr- > proc_ptr ))(p_ptr ,c_ptr ,s_ptr ); 

/• move on to the next channel for the 
start or the next search •/ 

if (c_ptr->next != NULL) 
c_ptr = c_ptr->next; 

else 

58 



} 
} 

} 

{ 
p_ptr = p_ptr->next; 
c_ptr = p_ptr->chan_list; 
} 

if ((strcmp(p_ptr2-> p_iden t, "player_process" ) == 0)) 
(•(p_p tr2->proc_ptr))(p_ptr2,NULL,NULL); 

p_ptr2 = p_ptr2->next; 

- --- •! 

struct signal_block •get_signal(c_ptr,p_ptr) 

/• 
This function finds a pending signal on a signal queue . 

*/ 

struct channel_block 
struc t process_bloc k 

•( •c_ptr ); 
•(•p_ptr); 

{ 
struct signal_block •s_ptr , •s_ptr2; 
int found= FALSE; 

for(; !found; (*p_ptr) = (•p_ptr}->next,(•c_ptr)=(*p_ptr}->chan_list) 
{ 

for(; (( •c_ptr) != NULL) && {!found); 
(•c_ptr)= (*c_ptr}->ncxt) 

{ 
if ((•c_ptr}->signal_list != NULL) 

{ 
found = TRUE; 
if ((*c_ptr)->signal_list->next != NULL){ 

for (s_ptr = (•c_ptr}->signal_list, 
s_ptr2 = s_ptr- > next; 

s_ptr2->next != NULL; 
s_ptr = s_ptr2, s_ptr2 = s_ptr2->next); 

s_ptr- > next = NULL; 
} 

else 
{ 

59 



s_ptr2 - (•c_ptr)->signal_list; 
(•c_ptr)->signal_list = NULL; 

} 
goto end; 

} 
} 

} 
end: 

return(s_ptr2); 

} 

add_index_block (channel, index) 

/• 
This routine appends an index block on to the channels index list . 

•/ 

struct channel_block 
int 

•channel; 
index; 

{ 

} 

struct index_block •ptr, •ptr2; 

ptr = ALLOCATE(index_block); 

ptr->next - NULL; 
ptr->num - index; 

if (channel->index_list == NULL) 
channel->index_list = ptr; 

else{ 
for (ptr2 = channel-> index_list; ptr2->next != NULL; 

ptr2 = ptr2->next); 

ptr2- > next = ptr; 
} 

/----

int get_index(channel, index_pos) 

I* 
This routine retrives the index value store in an index block 

60 



The index_pos is origin zero 

•/ 

struct channel_block 
int 

•channel; 
index_pos; 

{ 

} 

struct index_block •ptr; 

for (ptr = channel-> index_list; index_pos > O; 
ptr = ptr- > next,indl'.x_po&--); 

return(ptr->num); 

- - --- --•/ 

requeue(channel,signal) 

/* 
This routine puts the signal passed on to the head or the signal queue. 

•/ 

struct channel_block 
struct signal_block 

•channel ; 
•signal; 

{ 
struct signal_block 

extern int signal_pending; 

signal_pending++; 

if (channel->signal_list != NULL). 
{ 
for (ptr = channel->signal_list; ptr->next != NULL; ptr=ptr->next); 

ptr->next = signal; 
} 

else channel->signal_list = signal ; 

} 

61 



int random_select(Iow, high) 

I* 
This function returns a random integer between low and high, inclusive. 

•/ 
int low, high: 

{ 
long random(); 
float temp; 

temp = random(); 
temp = temp/0x7fffffff; 
return((low + ((high - low + 1) • temp))/1); 

} . 

62 



Appendix ID 

Listdefs.h 

#define MAX_IDENT _LENGTH 30 

#define TRUE 1 
# define FALSE 0 

#define ALLOCATE(A) (struct A •)malloc(sizeof(struct A)); 

st.ruct channel_block 
{ 

struct channel_block •next; 
struct signal_block •signal_list; 

struct process_block •ta.rget_proc; 
struct channel_block •target_channel; 
struct index_block •index_list; 

int queued; 
int c_id ; 
int index_num; 

}; 

!• •/ 

struct index_block 
{ 

struct index_block •next; 
int num; 

}; 

63 



Appdenix IV 

Appendix IV: Alternating Bit Specification 

module ab_pc; 
end ab_pc; 

refinement ab_ref for ab_pc; 

const 

type 

retran_time 

data_type -
seq_type -
id_type 

timer_type = 

ndata_type= 
record 

100; ( * retranstission time •) 

integer; 
0 .. 1; 
- (A_DATA,ACK); 

(retransmit); 

id : id~type; 
data : data_type; 
seq : seq_type; 

end; 
msg_type -

record 
msgdata: data_type; 
msgseq : seq_type; 

end; 

bufl'er_type= 

int_type 

record 
flag: boolean; 
msg: msg_type; 

end; 

integer; 

--------------*) 
(• channel definitions•) 

64 

r 
! 

I 
1·, 
/ · 
I 



channel U_receive_point(sender, recci\'cr); 

by sender: 
RECEIVE_request; 

by receiver: 
RECEIVE_response(UData: data_type); 

end U_receive_point; 

channel U_send_point(sender, receiver); 

by sender: 
SEND_request(UData : data_type); 

end U_send_point; 

(•---- -------•) 

type 
time_struct array[timer_typeJ or 

record 
flag : boolean ; 
secs : integer; 
millisecs : integer; 

end; 

channel S_access_point(User, Provider); 

by User: 
Timer_request(name: timer_type; 

time : integer); 

by Provider: 
Timer_response(Name: timer_type); 

end S_access_point; 

channel N_access_point(User, Provider); 

by User: 

--- ---•) 

Data_request(id :id_type; data: data_type; seq:seq_type); 

by Provider: 

65 



Data_response(id:id_type; data: d ata_type; seq:se(L _ _type ); 

end N_access_point; 

(• ---------- - - ----•} 
channel network_channel(sender ,receiver); 

by sender,receiver: 
packet(id:id_type; data: data_type; seq:seq_type); 

end network_cbannel; 

(• module definitions•) 

module Alternating_Bit; 

Us : U _send_poin t (receiv er); 
ur: ll_receive_point.(rec river); 
N : N_access_point(Use r) ; 
S : S_accrss_point(l ser ); 

end Alternating_Bit; 

process alternating_process for Alternating_Bit; 

QUEUED Us, Ur, N, S; 

var 
state: 
send_seq: 
recv _seq: 
send_buffer: 
recv _buffer: 
p,q: 

(ACK_WAIT, ESTAB); 
seq_type; 

seq_type; 
buffer_type; 
buffer_type; 
msg_type; 

fun ction Ack_OK(id: id_type; seq,send_seq: seq_type) : boolean; 
begin 

Ack_OK := (id = ACK) and (seq = send_seq) 

end; 

66 



initialize 
begin 

state 
send_seq 

:= ESTAB; 
:= O; 

recY_seq 
send_bu lier .flag 
recv _bu ff er .flag 

:= O; 
:= FALSE; 
:= FALSE; 

end; 

(* transistions *) 

trans 

t.rans 

trans 

from ESTAB (• transition 1 •) 
to ACK_WAIT 

when Us.SEND_request 
provided not send_bufler.flag 

begin 
send_bufler.flag .- true; 
send_buffer .msg.msgdata .
send_buffcr .msg.msgseq .-

UData; 
send_seq; 

out N.DAT A_request(A_DATA,Udata, send_seq); 

out S. TIJ\IBR_request(retransmit,retran_time) 
end; 

from ESTAB, ACK_WAIT (• transition 2 *) 
to SAME 

when Ur.RECEIVE_request 
provided recv _buffer.flag 

begin 

out Ur .RECEIVE_response(recv _buffer .msg.msgdata ); 
recv_buffer.flag := false; 

end; 

from ACK_ WAIT 
to ACK_WAIT 

(* transition 3 •) 

when S.TIMER_response 
provided Name = retransmit 

begin 

out N.DA T A_request(A_DATA,send_buffer .msg.msgdata, 
send_buffer.msg.msgseq); 

out S.TIMER_request(rctransmit,retran_time) 
end; 

67 



trans 

trans 

trans 

from ESTAB 
to EST AB 

(* transition 4 *) 

when S.TIMER_response 
provided Name = retransmit 

begin 
(• do nothing: the message that cause this timer to be 

sent has been acknowledged. *) 
state := state 

end; 

from ACK_WAIT 
to ESTAB 

when N.DATA_response 

(• transition 5 •) 

provided Ack_OK(id, seq, send_seq) 
begin 

send_buffer.flag := false; 
send_seq := (send_seq + 1) mod 2 

end; 

from ESTAB, ACK_WAIT (• transistion 6 •) 
to SAME 

when N.DATA_responsc 
provided id = A_DATA 

begin 

out N.DATA_request(ACK, data, seq); 

if seq = recv _seq then 
begin 

recv _buffer.flag:= true; 
recv _buffer.msg.msgdata:= data; 
recv _buffer .msg.msgseq :=seq; 

recv _seq : = ( recv _seq + 1) mod 2 
end 

end; 

end al tern ating_process; 

(• timer module•) 

module timer; 
S : S_access_point(provider); 

68 



end timer; 

process timer_process for timer; 

QUEUED S; 

var 

index: 
a_timer: 

timer_type; 
time_struct; 

procedure schedule_timeout(Var timer: time_struct; time_value: integer); 
primitive; 

predicate timer _expired (Var timer : time_struct ); 
primitive; 

initialize 
begin 

for index := retransmit to retransmit do 
begin 

a_timer[index].flag .- FALSE; 
a_timer[index] .secs .- O; 
a_timer[indexJ .millisecs 0 

end 
end; 

(* transistions *) 

trans 

when S.Timer_request 
begin 

( * t.ransistion 1 *) 

scbedule_timeout(a_timerjNameJ,Time); 

end; 

69 



any index :timer_type do (• transition 2 •) 
pro" ided timer _expired( a_timerlindexl) 

begin 
a_timerlindexJ.flag .- false; 
out S.Timer_response(index) 

end; 

end timer_process; 

(•------- ------•) 

(• network module•) 

module network; 
N : N_access_point(Provider); 
send_path : network_channel(sender); 
receive_path : network_channel(receiver); 

end nelwork; 

process net_proc for network; 

QUEUED N, send_path , receive_path; 

trans 
when N.Data_request 

begin 
OUT seod_patb.packet(id, data, seq) 

end; 

trans 
when receive_path.packet 

begin 
OUT N.Data_response(id, data, seq) 

end; 

end net_proc; 

(•---

(• user module •) 

module the_user; 

-------•) 

70 



Us : U_send_point(sender) ; 
Ur : U_receive_point(sender); 

end the_user; 

process user_process(number : integer) for the_user; 

QUEUED Us, Ur; 

type 
request_type - (send, receive); 
message_value_type = 1..9; 

Yar 
user_number : integer; 

initialize 
begin 

trans 

trans 

user_number := number 
end; 

when Ur.RECEIVE_response 
begin 
writeln('User ',user _number,' received the message ', 

UData); 
end; 

any request : request_type; message : message_value_type do 
provided request = send 

begin 
writeln( 'User ',user_number,' sent the message ', 

message); 
OUT Us.SEND_request(message); 

end; 

provided request = receive 
begin 

OUT Ur.RECEIVE_request 
end; 

end user_process; 

(•----·- ------------•) 

(• define some instances•) 

71 



Al : Alternating_Bit with alternatiog_proce88; 
A2 : Alternating_Bit with alternating_process; 

timer! : timer with timer_process; 
timer2 : timer with timer_process; 

NI : network with net_proc; 
N2 : network with net_proc; 

Ul : the_user with user_process(l); 
U2 : the_user with user_process(2); 

(• and connect them together •) 

CONNECT 

AI.Us to UI.Us; 
Al.Ur to UI.Ur; 
Al.N to Nl.N; 
Al.S to timerl.S; 

A2.Us to U2.Us; 
A2.Ur to ll2.Ur; 
A2.N to N2.N; 
A2.S to timer2.S; 

NI.send_path to N2.receive_path; 
N2.send_path to Nl.receive_path; 

(* no replaces*) 

end ab_ref; 

72 



Appendix V 

Utility Routines for Alternating Bit 

#include "inet.h" 

#define ROLE 1 /• or O • / 

out(channel_list ,signal,chan_num,index) 

/• 
This routine dispatches a signal on the indicated channel. 

•/ 

struct cbannel_block •channel_list; 
struct signal_block •signal; 
int chan_num, index; 

{ 
extern int signal_pending, in_count, out_count; 

extern l'-YET_CONN conn; 

struct 
int 

channel_block •channel, •find_channel(); 
n; 

channel = find_channel(cbannel_list ,chan_num,index); 

if ((channel->target_channel != NULL) && 
(channel-> target_channel- >queued) ) 

{ 

} 

signal_pending++; 

sign al-> next = channel-> target_channel- > signal_list; 

channel-> target_channel->signal_list = signal; 

else / • send it out on the network • / 

{ 
bur[oj = signal->signal_id; 
buf[l I = signal-> lvars.network_channel.packet.id; 
buf/2I = signal-> lvars.nctwork_channel.packet.data; 

73 



} 

buf[3J = signal-> Jvars.network_channel.packet.seq; 

rree(signal); 
out_count++; 

if ((n =N_send(&conn,buf,16)) != NET_OK) 
{ 

} 

} 

printr(">>> out: send problem %d ",n); 
exit(l ); 

!---------

struct process_block •system_init() 

/• 
This routine causes the generation or the data structure and then checks 
for dangling channel con.nections. 

•/ 

{ 
struct process_block •ptr, •process_list, •remove_beader(); 

struct channel_block •c_ptr; 

int n· 
' 

/• user included dcl • / 

struct process_block •ioab_ref(); 

ir (ROLE== 1) /•server•/ 
{ 
n = N_open(&conn,"T_portl@cs",CLSTWO); 
if (n != NET_OK) 

{ 

} 

prin tf(" > > > service : N_open error %dO,n ); 
exit(l ); 

n = N_accept( &conn); 
if (n != NET_OK) 

{ 
printC(" > > > service : N_accept error %d0,n); 

74 



} 

exit(l ); 
} 

} 
else 

{ 
if ((n = N_connect(&conn,, "T_portl@cs'',CLSTWO)) != NET_OK) 

{ 

} 
} 

prin tr("> > > receiver : N_connect error %d" ,n ); 
exit(l ); 

process_list = remove_header(ioab_ret(NULL )); 

for (pt.r = process_list; ptr != NULL; ptr = ptr->next) 
{ 

} 

for (c_ptr = ptr->chan_list; c_ptr != NULL; c_ptr = c_ptr->next) 
{ 

} 

if (c_ptr->target_channcl == NULL) 
{ 

} 

/• oops a dangling connection•/ 

fprintf(stderr,"0YSTEM INITIALIZATION ERROR: dangling"); 
fprin tf(stderr," channel in an instance or 

ptr->p_ident); 
fprintf(stderr,"channel number %d, index %d0,c_ptr->c_id, 

c_ptr->index_num); 

/* join the ends or the process list into a loop • / 

for (ptr = process_list; ptr->next != NULL; ptr = ptr->next); 

ptr->next = process_list; 

return (process_list ); 

75 



schedu le(process_Iist) 

/• 
This is the main driving routine. 

•! 
struct process_block •process_list; 

{ 
extern int signal_pending; 
extern int in_count, out_count; 

struct 
struct 
struct 

channel_block 
signal_block 
process_block 

•c_ptr; 
•s__ptr, •get_signa.1(); 
*p__pt.r, •p__ptr2; 

p_ptr2 = process_Iist; 
p__ptr = process_list; 
c__ptr = p__ptr->chan_list; 
signal__pending = 0; 

while ( (in_count < 5) II (out_count <5)) 
/• arbitrary stop condition • / 

{ 
ir ((s__ptr = get_signal(&c..J)tr, &p__ptr)) 

!= NULL) 
{ 

/* call the transition routine • / 

( •(p_ptr- > proc_ptr) )(p_ptr ,c_ptr ,s__ptr ); 
} 

/• move on to the next channel for the 
start or the next search • / 

if (c__ptr->next != NULL) 
c__ptr = c__ptr->next; 

else 
{ 
p__ptr = p__ptr->next; 
c__ptr = p__ptr->chan_list; 
} 

ir ((strcmp(p__ptr2->p_ident,"timer_process") == 0) II 
(strcmp(p_ptr2- > p_ident,"user_process") == 0)) 

(•(p_ptr2-> proc_ptr)}(p_j,tr2,NULL,NULL ); 

p__ptr2 = p__ptr2->next; 

76 



} 

N_close( &conn); 

} 

!---·- --- ------•/ 

struct signa.l_block •get_sign al( c_ptr ,p_ptr) 
/• 

This (unction finds a pending signal on a signal queue. 
•/ 

struct cha.nnel_block 
struct process_block 

•(•c_ptr); 
•(•p_ptr); 

{ 
struct 
int 

signa.l_block •s_ptr, •s_ptr2; 
found= FALSE; 

int n, temp; 
extern NET_CONN conn; 
extern int in_count, out_count; 

static int count; 

s_ptr2 = NULL; 

for (;!found; (•p_pt.r) = (•p_ptr)->next,(•c_ptr)=(•p_ptr)->cban_list, 
s_ptr2 = NULL) 

{ 
for(; (((•c_ptr) != r-rULL) && (!found)); 

(•c_ptr)= (•c_ptr)->next) 
{ 
if ((•c_ptr)->signal_list != Nl,11..,L) 

{ 
found = TRUE; 
i( ((•c_ptr)->signal_list->next != NULL){ 

for (s_ptr = (•c_ptr)->signa.l_list, 
s_ptr2 = s_ptr->next; 

s_ptr2->next != NULL; 
s_ptr = s_ptr2, s_ptr2 = s_ptr2->next); 

s_ptr->next = NULL; 
} 

else 
{ 
s_ptr2 - (•c_ptr)->signal_list; 
(•c_ptr)->signa.l_list = NULL; 

77 



} 
} 

} 
goto end; 

} 

if ((strcmp(( •p_ptr}->p_ident,"net_proc") == 0) && 
(( •c_ptr)->c_id == 3)) 

{ 

if ((n = N_receive(&conn, bur, buffsize)) <= 0) 
{ 
if (n < 0) 

{ 

} 

printf(" read error %d0,n ); 
exit(l); 
} 

else 
{ 

} 

s_ptr2 = ALLOCA TE(signa.l_block ); 
s_ptr2->signal_id = burj0J; 
s_ptr2->lva.rs.network_channel.pa.cket.id = bufjlj; 
s_ptr2-> lvars.network_cha.nnel.pa.cket.data. = buCj2J; 
s_ptr2-> lvars.net.work_channel.packet.seq = buf[3J; 

in_count++; 

goto end; 

s_ptr2 = f\.'ULL; 
goto end; 

} 

end: 
return(s_ptr2); 

} 

/* - - ----- - ------ --•/ 
#include <sys/types.h > 
#include <sys/timeb.h> 

#include "listdefs.h" 

struct time_struct 
{ 

int flag; 

78 



int secs; 
int millisecs; 

}; 

schedule_timeout(timer,time_value) 

/• 
This routine places in the timer passed the value of present time + 
"time_value" which will be tested later by "timer_expired". The units 
or time_value are milliseconds. 

•/ 

struct time_struct •timer; 
int time_value; 

{ 

} 

struct timeb 

ftime(tp) ; 

timer-> flag 

timer-> secs 

TRUE; 

tp->time; 

timer-> millisecs= tp- > millitm; 

if ((t.ime_value = time_value + tp->millitm) >= 1000) 
{ 

timer->secs++; 
timer->millisecs - time_value - 1000; 

} 

/•---- -----·-------•/ 

int timer_expired(timer) 
/• 

This predicate returns TRUE if the timer passed has expired and cancels 
it if it has 

struct time_struct 

i9 



{ 

} 

struct timeb *tp; 

ftime(tp); 

if ((timer->flag == TRUE) && 
(timer-> secs < t1r > time) & & 
(timer->millisccs < tp- > miUitm)) 

return(TRUE); 

else return(F ALSE); 

cancel_timer( timer) 
/• 

This routine cancels the timer passed 

*/ 

struct time_struct *timer; 
{ 
timer->flag = FALSE; 

} 

80 

----•/ 



Appendix VI 

Alternating Bit Implementation Code 

#include <stdio.h> 
#include <strings.h> 
#include "listdeCs.h" 

/• type code •/ 
typedef int data_type; 
typedef int seq_type; 
typedef int id_type; 
typedef int timer _type; 
typedef struct { 

} 

id_type id; 
data_type data; 
seq_type seq; 

ndata_type; 
typedef struct { 

data_type msgdata; 
seq_type msgseq; 

} 
msg_type; 
typedef struct { 

} 

int flag; 
msg_type msg; 

buffer_type; 
typedef int int_type; 
typedef struct { 

} 

int flag; 
int secs; 
int millisecs; 

time_struct[ IJ; 
typedef int request_ty pe; 
typedef int message_value_type; 

----•/ 

/• signal block dcl •/ 

81 



struct signal_block { 
int signal_id; 
struct signal_block •next; 
union { 

struct { 
struct_{_ 

data_type udata; 
} 
re,~eiv e_respon se; 

} 
u_receive_point; 
struct { 

struct { 
data_type udata; 

} 
send_request; 

} 
u_send_poin t; 
struct { 

} 

struct { 

} 

timer_type name; 
int time; 

timer_request; 
struct { 

timer_type name; 
} 
timer _response; 

s_access__point; 
struct { 

} 

struct { 

} 

id_type id; 
data_type data; 
seq_type seq; 

data_request; 
struct { 

} 

id_type id; 
data_type data; 
seq_type seq; 

data_response; 

n_access__poin t; 
struct { 

} 

struct { 

} 

id_type id; 
data_type data; 
seq_type seq; 

packet; 

network_chanrel; 

82 



} 
lvars; 

}; 

--------•/ 

/• process dcl code •/ 
struct process_block { 

}; 

struct process_block •next; 
char p_ident[MAX_IDENT_LENGTH+lJ; 
struct channel_block •chan_list; 
struct process_block •refinement; 
int (•proc_ptr)(); 
union { 

} 
lvars; 

struct { 

} 

int state; 
seq_type send_seq; 
seq_type recv _seq; 
buffer_type send_buffer; 
buffer_type recv_buffer; 
msg_type p, q; 

s_alternating_process; 
struct { 

} 

timer_type index; 
time_struct a_timer; 

s_timer_proces~; 
struct { 

} 

int user_number; 
int count; 

s_user _process; 

/*--------------• I 

/• procedure code • / 
struct process_block •ioab_ref(p_block) struct process_block •p_block; 
{ 

struct process_block •ioalternating_process(); 
struct process_block •iotimer_process(); 
struct process_block •ionet_proc(); 
struct process_block •iouser_process(); 
struct channel_block •add_channel_block(), •c_ptr; 
struct process_block •add_refinement_header(), •clean_up(), 

•process_list; 
process_list = NULL; 
process_list = ioalternating_process(process_list); 
process_list = iotimer_proc::.>~5(process_list); 

83 



} 

process_list = ionet__proc(process_list); 
process_li t = iouser_process(process_list,l); 
conn ec t__ports(process_list,•1, 1, 0, 1, 1, 0); 
connect_ports(process_list,4, 2, 0, 1, 2, O); 
connect_ports(process_list,4, 3, 0, 2, 1, O); 
connect_ports(process_list,4, 4, 0, 3, 1, O); 
p_block = add_refin ement_beader(p_block,process_list); 
p_block-> refinement = clean_up(p_block-> refi nement); 
return(p_block); 

struct process_block •ioalternatin g__process(process_list) 

struct process_block *process_list; 
{ 

struct process_block *p_block, •add __ process_block(); 
extern int alternating_process(); 
struct channel_block *add_channel_block(), *c_ptr; 
p_block = add_process_block (process_list,alternating_process, 

"al tern ating_process" ); 
p_block->chan_list = add_channel_block(p_block->chan_list, 

&c_ptr,TRUE,1,0); 
p_block->chan_list = add_channel_block(p_block->chan_list, 

&c_ptr,TRUE,2,0); 
p_block-> chan_list = add_ch&nnel_block(p_block->chan_list., 

&c_ptr,TRUE,3,0); 
p_block- > chan_list = add_c hannel_block(p_block->chan_list, 

&c_ptr,TRUE,4,0); 
p~block-> lvars.s_alternating_process.state = 1; 
p_block-> lvars .s_alternating_process.send_seq = O; 
µ_block-> lvars.s_alternating_process.recv _seq = O; 
p_Llock-> Iv ars.s_alternating_process.send_buffer.Hag = O; 
p_block-> lvars.s_alternating_proress.recv _buffer.flag = O; 
return(p_block); 

} 

/*------*/ 

alternating_process(p_block,cbanncl,signal) 

struct process_block *p_block; 
struct channel_block •channel; 
struct signal_block •signal; 
{ 

struct signal_block *s_ptr; 
if ((channel != NULL) && 

((p_block->lvars.~_alterol\ting_process.state == 1))) 
if ((channel->c_id == 1) && (signal->signal_id == 2)) { 
if (. (p_block-> Iv ars.s_alt <> rn ating_process.send_buff er .flag)){ 

p_ bloc k-> lv ars. s_alte rnatiog_proce5S.state = 0 ; 
{ 
p_block-> lvars.s_alternatin&..J)rocess.send_bufl'er .flag = 1; 

84 



} 
} 

p _block-> h- ars.s_al tern a tin g_process.send_buffer .msg .msgd ata = 
signal-> lv ars. u_send_point.send_request.udata; 

p_bloc k- > lv ars.s_alternating_process.send_buffer .msg.msgseq = 
p_block-> Iv ars.s_alternating_process.send_seq; 

s_ptr = ALLOCATE(signal_block); 
s_ptr->signal_id = 5; 
s_ptr-> lvars.n_access_point.data_request.id = O; 
s_ptr-> lvars.n_access_point.data_request.data = 

signal-> )vars. u_send_point.send_request.udata; 
s_ptr-> lvars.n_access_point.data_request.seq = 

p_block- > Iv ars.s_alternating_process.send_seq; 
ou t(p_block- >chan_list,s_ptr,3,0); 
s_ptr = ALLOCA TE(signal_block ); 
s_ptr->signal_id = 3; 
s_ptr- > Iv ars.s_acces.s_poin t.timer _request.name = O; 
s_ptr-> lvars.s_access_point.timer_request.time = 100; 
ou t(p_block- > ch an_list,s_ptr, 4,0 ); 
} 

goto dispose; 

if ((channel != J\.'ULL) && 
((p_block->lvars.s_alternating__process.statc == 1 ) II 
(p_block-> lvars.s_alternating_process.state == 0))) 

} 

if ((channel->c_id == 2) && (signal->signal_id == 0)) { 
if (p_block- > Iv ars.s_alternating_proces.s.recv _buffer .flag){ 

} 

{ 
s_ptr = ALLOCATE(signal_block); 
s__ptr->signal_id = I; 
s__ptr-> lvars.u_rcceive_point.receive_response.udata = 
p_block-> lvars.s_altern ating_process.recv _buffer .msg.msgd ata; 

ou t(p_block- >chan_list,s_ptr,2,0); 
p_block-> lvars.s_alternating_process.recv _buffer .flag = O; 
} 
goto dispose; 

if ((channel!= NULL) && 
((p_block->lvars.s_alternating_process.state == 0))) 

if ((channel->c_id == 4) && (signal->signal_id == 4)) { 
if ((signal->lvars.s_access_point.timer_response.name == O)){ 
p_block-> lvars.s_alternating_process.state = 0 ; 
{ 
s_ptr = ALLOCA TE(signal_block ); 
s_ptr->signal_id = 5; 
s__ptr-> lvars.n_access__point.data_request.id = O; 
s_ptr-> lvars.n_access_point.data_request.data = 

p_block- > lvars.s_alternating_process.send_buffer .msg.msgd ata; 
s_ptr-> lvars.n_access_point.data_request.seq = 

p_bloc k- > lvars.s_alternating__process.send_buffer. msg.msgseq; 
out(p_block- > chan_list,s_ptr,3,0); 
s_ptr = ALLOCATE(signal_block); 
s_ptr->signal_id = 3; 

85 



} 
} 

s_ptr->lvars.s_access_point.timer_request.oame = O; 
s_ptr-> lvars.s_access_point.timer_request.t.ime = 100; 
ou t(p_block- > chan_list,s_ptr,4,0); 
} 
goto dispose; 

if ((channel != NULL) && 
((p_block->lvars .s_altemating_process.state == 1))) 

} 

if ((channel->c_id == 4) && (sigoal->signal_id == 4)) { 
if ((signal-> lvars.s_access_point.timer_response.name == O)){ 

p_block->lvars.s_alternatiog_process.state = 1 ; 
{ 
p_block-> lvars.s_alternating_process.state = 

p_block-> lvars.s_alternatiog_process.11tate; 
} 
goto dispose; 
} 

if ((channel!= NULL) && 

} 
} 

((p_block-> lvars.s_alternating_process.state == 0))) 
if ((channel-> c_id == 3) && (signal->signal_id == 6)) { 

if (ack_ok(sigo al-> lvars.n_ac:cess_point.data_response.id, 
signal-> Iv ars.n_access_point.data_response.seq, 
p_block- > lvars.s_alternating_process.send_seq) ){ 

p_block->lvars.s_alternating_process.state = 1 ; 
{ 
p_block-> lvars.s_alternat.ing_process.send_buffer .ftag = O; 
p_block-> lvars.s_alternating_process.send_seq = 
(((p_block->lvars.s_alternating_process.send_seq + 1)) % 2); 
} 
goto dispose; 

if ((channel!= NULL) && 
((p_block->lvars.s_alternating_process .state == 1) II 
(p_block-> lvars.s_alternating_process.state == 0))) 

if ((ch an nel- >c_id == 3) && (sigo al->signal_id == 6)) { 
if ((signal- > lvars.n_access_poin t.data_ respoose.id == O)){ 

{ 
s_ptr = ALLOCA TE(sigoal_biock ); 
s_ptr->signal_id = 5; 
s_ptr-> lvars.n_access_point.data_request.id = 1; 
s_pt.r-> lvars.n_access_point.data_request.data = 

signal-> Iv ars. n_access_point.data_response.data; 
s_ptr- > lvars.n_access_point.data_request.seq = 

signal-> lvars.n_access_poin t.data_response.seq; 
out(p_block- > chan_list,s_ptr,3,0); 

if((sign al-> lvars.n_access_point.data_response .seq == 
p_block-> lvars .s_alternating_process.recv _seq)) { 

{ 
p_block-> lvars.s_alternating _ _process.recv _buffer.flag = 1; 
p_block- > lvars.s_altern a ting_process.recv _buffer .msg.msgd ata = 

86 



} 
} 

sign al-> Jvars.n_access_poin t.data_response.data; 
p_block- > Iv ars.s_alternating_process.recv _buffer .msg.msgseq = 

signal-> lvars.n_access_point.data_response.seq; 
p_block->lvars.s_alternating_process.recv_seq = 
(((p_block-> lvars.s_alternating_process.recv _seq + 1 )) % 2); 
} 

goto dispose; 
} 
} 

if (channel != NULL) { 
requeue(cbannel,signal); 
signal=NULL; 

} 
dispose: 

free(signal ); 
} 

/---

int ack_ok(id ,seq,send_seq)id_type id; 
seq_type seq, send_seq; 
{ 

int rtv_ack_ok; 
{ 

rtv_ack_ok =(((id== 1)) && ((seq== send_seq))); 
} 
return(rtv _ack_ok); 

} 

struct process_block •iotimer_process(process_list) 
struct process_block •process_list; 
{ 
struct process_block •p_block, •add_process_block(); 
extern int timer_process(); 
struct channel_block •add_channel_block(), •c_ptr; 

p_block = add_process_block(process_list,timer_process, "timer_process" ); 
p_block->chan_list = add_channel_block(p_block->chan_list,&c_ptr,TRUE,1,0); 
for (p_block-> lvars.s_timer_process.index = O; 

p_block-> lvars.s_timer_process.index++ <= O;){ 
{ 
p_block- > Iv ars.s_timer _process.a_timer[ 

p_block- > Iv ars .s_timer _process.index] .flag = O; 
p_block-> Iv ars .s_timer_process.a_tirner[ 

p_block-> lvars.s_timer _process.index] .secs = O; 
p_block- > lvars .s_timer_process.a_timn[ 

} 
} 

p_block-> lvars .s_timer_process.indexJ .millisecs = O; 

87 



return(p_block ); 
} 

timer_process(p_block,channel,signal) 

struct process_block •p_block; 
struct channel_block •channel; 
struct signal_block •signal; 
{ 

struct signal_block •s_ptr; 

if ((channel != NULL) ) 
if ((channel->c_id == 1) && (signal->signal_id == 3)) { 
{ 
{ 
scbedule_timeout( &p _block-> lvars.s_timer_process.a_timer[ 

signal-> Iv ars.s_access_poin t. timer_request.namel, 
signal-> Iv ars.s_access_poin t. timer_request.time ); 

} 
goto dispose; 

} 
} 

if (channel != NULL) { 
requeue( channel,sign al); 
signal=NULL; 

} 

{ 
timer_type index; 
index = random_select(0,0 ); 
if (timer _expired( &p_block-> lvars.s_timer_process.a_timer[indexl)) { 
{ 
p_block->lvars.s_timcr_process.a_timcrlindexj .flag = 0; 
s_ptr = ALLOCATE(signal_block ); 
s_ptr->signal_id = 4; 
s_ptr- > Iv ars.s_access_poin t. timer _response.name = index; 
out(p_block-> chan_list,s_J>tr, 1,0); 
} 

goto dispose; 
} 
} 

dispose: 
free(signal); 

} 

---•! 

struct process_block •ionet_proc(process_list) 

struct process_block •process_list; 

88 



{ 
struct process_block •p_block, •add_process_block(); 
extern int net_proc(); 
struct channel_block •add_channel_block(), •c_ptr; 
p_block = add_process_block(process_Iist,net_proc, "net_proc" ); 
p_block->chan_Iist = add_channel_block{p_block->chan_Iist,&c_ptr,TRUE,1,0); 
p_block- > ch an_list = add_channel_block{p_block- > chan_list,&c_ptr,F ALSE,2 ,O); 
p_block->chan_Iist = add_channel_block{p_block->chan_list,&c_ptr,TRUE,3,0); 
return(p_block ); 
} 

net_proc(p_block ,chann el,signal) 

struct process_block •p_block; 
struct channr.l_block •channel; 
struct sign al_block •signal; 
{ 
struct signal_block •s_ptr; 
ii ((channel != NULL) ) 

if ((channel->c_id == 1) && {signal->signal_id == 5)) { 
{ 
{ 
s_ptr = ALLOCATE(signal_block); 
s_ptr->signal_id = 7; 
s_ptr-> lvars.network_channel.packet.id = 

sign al-> lvars.n_access_point.d ata_request.id; 
s_ptr- > lvars.network_channel .packet.data = 

sign al-> lvars.n_access_point.d ata_request.data; 
s_ptr-> lvars.network_channel .packet.seq = 

sign al-> !vars .n_access_point.d ata_request.seq; 
ou t(p_block- > ch an_list, s_ptr, 2 ,O); 
} 

goto dispose; 
} 
} 
if ((channel!= NULL) ) 

if ((channel->c_id == 3) && (signal->signal_id == 7)) { 
{ 
{ 
s_ptr = ALLOCA TE(sign al_block ); 
s_ptr->signal_id = 6; 

89 

s_ptr- > lvars.n_access_point.data_response.id = signal-> lvars.network_channel.packet.id; 
s_ptr-> lvars.n_access_point.data_response.data = sign al-> lvars.network_channel .packet.data; 
s_ptr- > Ivars.n_access_point.data_response.seq = signal-> lvars.network_channel.packet.seq; 
out(p_block-> ch an_list,s_ptr ,1,0 ); 
} 

goto dispose; 
} 
} 

if (channel!= NULL) { 
requeue( c hannel,signal); 



signal=NULL; 
} 

dispose: 
free(signal); 

} 

struct process_block •iouser _process(process_list,number) 

struct process_block •process_list; 
int number; 
{ 
struct process_block •p_block, •add_process_block(); 
extern int user_process(); 
struct channel_block • add_channel_block(), •c_ptr; 
p_block = add_process_block(process_list, user_process, "user_process" ); 
p_hlock-> ch an_list = add_cbannel_block(p_block->chan_list,&c_ptr, TRUE, 1,0); 
p_block- > ch an_list = add_c b annel_block(p _block- > chan_list,&c_ptr, TRUE,2,0 ); 
p_block->l\'ars.s_user_proc ess.user_number = number; 
p_block->lvars.s_user_process.count = O; 
return(p_block ); 
} 

----•! 

user _process(p_block ,ch an nel,signal) 
struct process_block *p_block; 
struct channel_block •channel; 
struct signal_block •signal; 
{ 
struct signal_block •s_ptr; 
if ((channel != NULL) ) 

if ((channel->c_id == 2) && (signal->signal_id == 1)) { 
{ 
{ 
printr("User "); 
printf(" o/-d ",p_ bl oc k-> I vars. _user _process.user_uumber); 
print((" received the message " ); 
printfC %d" ,signal- > lvars .u_receive_point.receive_response.udata); 
printf("O) ; 
} 

goto dispose; 
} 
} 

if (channel != NULL) { 
requeue( channel,signal); 
signal=NVLL; 

} 

{ 
request_t.ype request; 

00 



message_value_type message; 
request = random_select(0,1 ); 
message = random_select(l,9 ); 
ir ((request== 1)) { 

{ 
s_ptr = ALLOCATE(signal_block); 
s_ptr->signal_id = 0; 
out(p_block- > cban_list,s_ptr ,2,0); 
} 

goto dispose; 
} 
} 

{ 
request_type request; 
message_value_type message; 
request = random_select(0,l ); 
message = random_select(l,9 ); 
if ((((request == 0)) && 

((p_block->lvars.s_user_process.count < 5)))) { 
{ 
printf("User "); 
printf(" %d ,p_blodi-> lvars.s_user_J>rocess.user_number); 
printf(" sent them ssage "); 
printr("%d" ,message); 
printf("'0); 
p_block- > lvars.s_user_process.coun t = 

(p_block- > lvars.s_user_process.count + 1 ); 
s_ptr = ALLOCATE(signal_block); 
s_ptr->signal_id = 2; 
s_ptr-> lvars.u_send_J>oint.send_request.udata = message; 
out(p_block- >chan_list,s_ptr, 1,0); 
} 
goto dispose; 

} 
} 

dispose: 
free(signal); 

} 

/*------•/ 

#include "ldtutiJ.c" 

91 



Appendix VD 

Running The Complier 

To run the compiler is simple. Simply enter: 

- rdt <input&le >fd_t.c 

The outputfile fdt. c will contain the generated C code which is compiled and linked with the 

utility routines with the following command: 

- make 

This runs the make command which knows how to "make" programs, see the manual for 

further details. 

xcii 




