SEMI-AUTOMATIC IMPLEMENTATION OF
NETWORK PROTOCOLS

by
Daniel A. Ford

Technical Report 86-6
February 1986

T E—

SEMI—AUTOMATIC IMPLEMENTATION OF NETWORK PROTOCOLS
By
Daniel Alezander Ford
B.Sc.(Hons.), Simon Fraser University, 1084
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming

to the required standard

-
f
{

il Cu.m,q

////,/w' .

THE UNIVERSITY OF BRITISH COLUMBIA
March 1985

© Daniel Alexander Ford, 1985

Abstract

A compiler which achieves automatic implementation of network protocols by
transforming specifications written in FDT into C programs is presented. A brief introduction
to the the fundamentals of FDT, a standard language developed by ISO/TC97/SC 16/WG 1
Subgroup B for specifying network protocols, is given. We then present an overview of the
compiler and discuss the problem of PASCAL to C translation. Transformation of a FDT
specification into code is explained and illustrated by two implementation examples. The first
example illustrates the implementation strategy by tracing the processing of a simple proto-
col. The second example demonstrates the validity of using automatically generated imple-
mentations by showing how a communication path was established between two hosts using

code generated for the alternating bit protocol.

w

Acknowledgement

I wish to acknowledge the assistance of my supervisor Son Vuong and the invaluable
help of Jean-Marc Serre and also the financial assistance of the Natural Sciences and

Engineering Research Council of Canada.

iii

Table of Contents

ABEETTET w50 8 L) A S S A ARS8 PSS SR AT SRR SRR P
Acknowledgement ... isasmumniaimin i s sa s v e e i
Table of CODTOMER! wussass im0 DRSS
Table of Figires: iicunviinmiamisminsinbiusinsasmua it s
Chapter 1T Introduction: susimissiiirmisiisuaisr il vl s s it

L1 Metivations and B ieclives: s s s it s tesb M s i ol v S N Pty

1.2 Previous Research and Thesis Contribution

L3 ThesiB OULINE «oovoouosmsnmsnbossnsusounsonsngassssssssms s s o v s s s,
Chapter 2: FDT—A Formal Description Technique of Protocolsccccoeevieviiinciiinnnenn,
8 T T T
2.0 Module s s e e R R S T R A A P e S A S S esees
DI ORAINE] vttt O A PR lrrrnt s S ap ol e
LA PIOORES | sravmpesmmsomzsms o S e R e e A el
S B R EDRETIERE ivcvinsnnmronns s s s T RE s T S P S N R e S A
Chapter'3; The FDT Compiler i snmiis s onis i i ooisiss
31 The Compiler o s s s s S s s s
3.2 Pascal t0 C Translation st ol el
Chapter 4: Translating FDT Specifications into C Codeccoociiiiiiiiaiiiiiiiiiciceiiiiciinnn

AL CINEIVIEW orrirniatinsts it i e T A e v R sk B vt s vy

4.2 Data Structure .

4.3 Initialization RoOUbIes weuurmniimiisis iyt i e o iy

v

iv

vi

(<]

10

10

10

13

13

14

15

4.4 Transition ROULINES ..ousiosuisivmaimaminssmiie s s s v iriaes s s
Chapter 5: lllustrative Implementation Examplesccccimiiimniiiiiiiiiiii s e veevaenes
5.1 Example 1—The Hot Potato Protocolcccccvveinivininrininnicinniinns
5.1.1 Implementation Codecicreivimmisivesassnnsiseaanarsnssinssrntennans

5.1.2 Exectition Deseription ...iiciimiminmnisimssssssssassssadisnssisasis

5.1.3 Transition Processifgcceicerreersssnssasensseerersasssssnssanans

5.2 Example 2—The Alternating Bit Protocolcccvciinniveriininenns
Chapter 6; COBCIUBION «isiuiimimssmrensorsssonissyis comnsnsssesssasssss s i@sas s
6:1 Thésis SUMMBIY i siswsrindsimri el s Gl s i e s wavanpe
6: 2 FUBUTe WO v ey s L o B T e v S S ks a9y

L [1o B R e el
AppendiX|E ED T G aRYIIAT . iensiiiin s ey s s nsr s s s A A A A s A s DA SRS AN ST
Appendix II: Utility Routine Listingscvveeiieiiniiiiiiniesinie s vninmninnneaeens
APPEHAN NI LASCRETS R coosimmsnsmmovunsnoniomomnsy auassmss e o AR RIS s ATt fravive
Appendix I'Vi Alternating Bit Specification .uuwisaiiviommssmmi smaiasisasisasssiaviianion
Appendix VI: Utility Routines for Alternating Bitccoooiiiiiiiiiiiiiinniiiiieieeene i
Appendix VI: Alternating Bit Implementation Codecccvvviioivimiiiiiiiiiininee s

Appendix VII: Running the ComPpilerooooiiiiiiiiiiiiiie e e e s aa e

..........................

..........................

..........................

..........................

37

38

39

41

49

63

64

Table of Figures

Figure 1: Examnple Module Specificationcoovveeviieriiinercesssssensessmsens 5
Figure 2: Example Channel Specificationcccoeeeevverevirsssmmesnnrersanes 6
Figure 3: Example Process Specificationccceeeeeeeceeerercvererrisnnenens 8
Figure 4: Example Refinement Specificationcccccevivimvninriiinnennn, 9
Figure 5: Illustration of Hot Potato Protocol Machines 20
Figure 6: FDT Specification of Hot Potato Protocolcccocociivnnn 21
Figure 7: FDT Specification of Player Processccoveevvviiiiinnieenennn, 22
Figure 8: Implement=ation Code for Hot Potato Protocol 25
Figure 9: Initialization Routine for hot_refcoviieeriiiiicriiiiiiireniians 26
Figure 10: Initialization Routine for team_refccoevvvivvennnniniennnn. 27
Figure 11: Initializaticn Routine for player_processcccceevvereeenens 28
Figure 12: Transition Routitie for player_processovverervvrerenss 29

Figure 13: Representation Data Structures for Hot Potato Protocol .. 31

Chapter 1

Introduction

1.1 Motivations and Objectives

Network protocols have historically been specified in large informal documents
prepared by the protocol designer. This imprecise method of specifying such a complex entity
was potentially a source of problems when it came time to implement the protococl, particu-
larly when done by someone other than its designer. The document might contain ambigui-
ties or contradictions or it may simply be too vague. All of these inadequacies can impose
implementation decisions which may or may not be compatible with decisions made for other
implementations of the same protocol. Another problem of an informal specification is that it
excludes the possibility of processing the protocol specification to automatically generate an

implementation,

In an eflort to provide more precise specification techniques, various models for protocols
have been proposed [Boch 80]. The two most useful of which have been finite state machine
and Petri net models. In a finite state machine model the entities in the protocol (e.g. sender,
receiver) are each described as state machines. In a Petri net model the entire protocol is

described in terms of a Petri net.

A practical formalism of the finite state machine model has been developed in the form
of a PASCAL like language called Formal Description Technigue (FDT) [ISO 84]. In addi-
tion to providing unambiguous specifications, the programming language nature of FDT
makes it particularly amenable to processing and the automatic generation of implementa-

tions directly from their specifications.

Developing such an automatic implementation capability would remove the errors intro-
duced by manual interpretation and implementation. Furthermore, it would allow the
widespread installation of the protocol on differing machines and operating systems, subject

to the availability of a translation tool (compiler) for each environment.

The motivation for this thesis is the production of such a translation tool. A tool which
would correctly implement a protocol specification written in FDT and be as portable as pos-
sible. Achieving this goal would let installers working in different environments use the same
implementation tool, thereby enhancing the compatibility of their installations and providing

absolute portability of protocols at the FDT source code level.

A way of approaching this goal is to use a portable high level language as both the
implementation and target languages of the compiler. At present, one of the most portable
languages is C [Kern 781. Consequently, the ultimate objective of this thesis is the production

of a FDT compiler written in C which also uses C as its target language.

1.2 Previous Research and Thesls Contribution

There have been various attempts to produce compilers which process protocol
specifications. Blummer and Tenney [Blum 81] describe one for an early version of FDT.
Hansson [Hansson 84] describes the design of an “an integrated design environment” which
provides a number of tools to aid the protocol designer and which automatically produces an

implementation.

George Gerber, at the University of Montreal, has implemented a compiler in
DEC PASCAL on a VAX-11 running VMS and which uses DEC PASCAL as its target
language [Gerber 83]. Initial attempts by the author to port this compiler to Berkeley UNIX
4.2 BSD were unsuccessful however due to incompatibilities between Berkeley PASCAL and

DEC PASCAL. While it is possible to manually alter the FDT compiler’s source code to con-

form to Berkeley PASCAL, such efforts are for naught since it would still produce relatively
non-portable DEC PASCAL code which again would require manual processing before it

could be compiled.

This lack of success in porting the compiler underscores the need for a more portable
tool. By using C as both the implementation and target language of an FDT compiler, it

will be as portable as is presently possible.

1.3 Theslis Outline

Chapter 2 of the thesis gives an overview of the FDT language, Chapter 3 gives a short
description of the compiler implemented and a discussion of PASCAL to C translation,
Chapter 4 describes the technmique used to produce an implementation from a FDT
specification, Chapter 5 presents two implementation examples which illustrate the techniques
described in Chapter 4, and finally, Chapter 6 concludes the success of the implementation

and offers suggestions for further enhancements.

Chapter 2

FDT—A Formal Description Technique of Protocols

2.1 Overvlew

FDT (Formal Description Technique) is a language developed by Bochmann and
ISO/TC97/SC16/WG1 subgroup B [ISO 84] for specifying network protocols that is based on
the PASCAL programming language |Jensen 74]. The underlying model used in the FDT
approach is one of communicating finite state automatons called protocol machines which
exchange signals with each other and with their system environment. Except for intercom-

munication, the protocol machines are totally independent and operating in parallel.

FDT is really the melding of a state machine formalissm and a PASCAL engine.
This powerful combination allows the construction of extended state transition models. Such
models use the variables of a programming language to augment the memory capabilities of a
state machine. The net result is a powerful machine with a vastly smaller state space than

would normally be possible.

In FDT the behaviour of a protocol machine can be specified in two ways. Either
directly by a corresponding state machine described by a list of state transitions and associ-
ated actions or indirectly, by specifying a subsystem of interconnected protocol machines.
The subsystem would have appropriate connections between internal interaction points and
those of the enclosing machine being defined. Note that internal protocol machines are no
different from any other and may themselves be specified as a composition of other state

machines.

The non-procedural (i.e. nou-PASCAL) part of the language is concerned with the

definition of the protocol machines and their interconnections. Four concepts are embodied in
the language and are combined to produce a specification. A module corresponds to a type of
protocol machine. A channel represents a communication path between two protocol machines
(modules). A process is a declaration of a finite state machine. And a refinement is

specification of protocol machine instances and their interconnection.

2.2 Module

Conceptually, each module type specified in a FDT specification represents one particu-
lar type of protocol machine. The actual bebavior of which will be specified directly by a
process or indirectly by a refinement.

As it is used in the language a module is a precise specification of the types (i.e. channel
types) of interaction points belonging to a protocol machine. A FDT module specification is
simply a list of interaction points. Each of which is given an identifier and a channel type in

a manncr analogous to a variable declaration.

The example shown in Figure 1 declares a module called team. This module has two
interaction points called tossin and fossouf, both are of channel type foss. The interaction

point {ossin plays the role of “‘catcher” and tossout plays the role of ‘thrower".

MODULE team;
toesin : toss(calcher);
togsout: toss(thrower);

end feam;

Figure 1. Example Module Specification

2.3 Channel

In the model a channel is a2 communication path existing between two protocol

machines.

In a FDT specification, a channel is a precise description of the signals that may be
sent via a particular interaction point by the protocol machines on either side. A FDT chan-
nel specification gives names to the roles played by the protocol machines (modules) on each
side of the interaction point (e.g. provider/user, inputer/outputer etc.) which serve to distin-
guish one side from the other, and lists the signals, with any optional data fields, that can be

sent by each.

In Figure 2 below is an example channel declaration for 2 channel type called toss. This
channel type distinguishes the two sides of the interaction point as thrower and catcher.
Where the “thrower" side is allowed to send the message potato, which has two integer data

fields, and the ‘‘catcher” side is allowed to send the message thanks.

CHANNEL toss (thrower, catcher);
by thrower:
polato (thrower_team,
thrower_num : integer);
by catcher:

thanks;
end loss;

Figure 2. Example Channel Specification

2.4 Process

A process defines an (extended) state machine and is the atomic specification of the

behavior of a protocol machine.

A FDT process specification is a list of the transitions of a state machine, a declaration
of the queueing status of each interaction point declared in the associated module, local vari-
able declarations for the extended state model and declaration of initial values for those vari-

ables.

The queueing status of an interaction point states whether the signals sent via it are
queued or not before being accepted by a protocol machine. When signals are not queued
they are processed immediately upon arrival by the receiver (rendez-vous), even if this means

suspending the processing of the sender.

Each transition listed in a process consists of two parts, an enabling condition and an

operation. An enabling condition is a specification of:

the present state (FROM clause)

- an input signal (WHEN clause)

an enabling predicate (PROVIDED clause)

a transition priority (PRIORITY clause)

Note that not all of the above need be present for every transition. In particular, if the
input signal specification (WHEN clause) is absent the transition is sponfaneous. There is
also another clause, the ANY clause, which is to be used only in spontaneous transitions for

selecting “random” values.

The operation portion of each transition consists of an optional specification of the next
machine state (TO clause) and the action to be performed, usually a small fragment of a

PASCAL program.

Figure 3 below contains a sample process declaration. It defines a process called
player_process for the module type player. The process has two integer parameters team_num
and player_num which are used to pass values to be stored as part of the state information of
the state machine. The first statement declares that the two interaction points /eft and right,
of the module player are to queue their signals. The next two statements declare local vari-
ables and give them initial values. The rest of the process is a list of three transition

specifications. The first of which will occur whenever a potato signal is received via the left

interaction point, the second when a thankyou signal is reccived via the right interaction

point, and the third occurs spontaneously.

PROCESS player_process(leam_num, player_num : integer) FOR player,
QUEUED left, right; (# queuing status *)

VAR (# local variable declarations ¥)
the_team, the_player ! integer;

INITIALIZE (# local veriable initicllization ¥)

begin !
the_team := team_num;
the_player := player_num;
end;

TRANS (# potato message on lcft ¥)
WHEN left.potato begin
wrileln/ 'Player ',the_player,’ of team ',
the_team,' caught a potato from player ',
thrower_num, 'of team 'thrower_team);
OUT right.potatofthe_team,the_player);
OUT left.thenks;
end;

TRANS (* thanks message on right #)
WHEN right.thanks begin
writeln/'Player ', the_player,’ of team ',
the_team,’ got a thankyou');
end;

TRANS (# spontaneous ¥)
provided (/the_player = 1) and (the_team = 1))

begin OUT right.polatofthe_team,the_player); end;
end player_process;

Figure 3. Example Process Specification

2.5 Refilnement

The concept of a refinement is an indirect specification of the behaviour of one protocol

machine in terms of the combined behaviour of a set of other protocol machines.

A FDT refinement specification specifies the internal structure of a protocol machine.

This includes the declaration of new, internal, channel and module types as well as processes

and other refinements. Internal refinements, in turn, can have their own internal declarations.
The internal structure is defined by three sets of declarations; one for the protocol machine
instances (i.e. a module and a process or a refinement), one for protocol machine interconnec-
tion (CONNECT) and one for the connections between internal interaction points and those

of the enclosing machine being defined (REPLACE).

In the sample rcfinement shown in figure 4, one sees the internal declaration of a state
machine’s interaction points (the module player) and transitions (the process player_procees).
Instances of this machine, P1 and P2, are declared and then interconnected with the statment
P1.right to P2.left. The refinement's REPLACE section establishes equivalence (a connection)
between the interaction points fossin and tossout declared in its associated module team and

the internal interaction points P1.left and P2.right.

REFINEMENT team_ref(team_num : integer) FOR team;
MODULE player,

left : toss(catcher);

right: toss(thrower);
end player;

PROCESS player_process(team_num,
player_num : integer) FOR player;

(* declaration omited see figure 8 #)
end player_process;

(* instances #)

P1: player with player_process(team_num, 1);
P2: player with player_process(team_num, 2J;

CONNECT
Pl.right to P2.left;
REPLACE

tossin by P1.lefl;

tossout by P2.right;
end team_ref;

Figure 4. Example Refinement Specification

10

Chapter 3

The FDT Compiler

3.1 The Compiler

The FDT compiler was developed on a VAX-11/750 running Berkeley UNIX 4.2 BSD.
The implementation language used was C. Certain sections of the compiler were produced by
program generators. The lexical analysis module was generated by the LEX [Lesk 75] utility
and the parser was generated by the YACC [John 75] LALR parser generator utility. Both

are standardly available in UNIX environments.

Not including the automatically generated code, the compiler consists of some 8000 lines
of C and approximately 200 modules. It is structured much like all compilers, having the
standard lexical analysis, parser and symbol table modules. Processing uses no intermediate

forms and is completed in one pass of the source specification.

The following section discusses one of the main jobs of the compiler, the translation of

PASCAL to C.

3.2 Pascal to C Translation

One of the primary issues addressed during the implementation of the compiler was the
problem of translating programs and statements written in PASCAL to their equivalent
representations in C. Translation between the two languages is almost straight textual sub-
stitution, they being very similar in nature having almost identical control constructs and
data types. However, enough diflerences remain to impose limitations on the ease with which

the process can be performed.

10

11

Generally, generating a C program from a given PASCAL program does not require
sophisticated processing. Begin/end pairs are replaced by pairs of braces (i.e. { }) and data
types like reals translate to floals. All of the control constructs of PASCAL bhave direct
equivalents in C, and some even have the same names (e.g. FOR, WHILE etc.). While it is
tempting to think that a text editor is more suited to the job than a powerful compiler. The

language differences however preclude this possibility.

For example, the two languages have diflerent formats for specifying I/O. PASCAL
adopts a style similar to that of FORTRAN or PL/.J, while C uses its own considerably
different format. Direct translation between the two is difficult but not impossible, but cer-
tainly beyond the power of even a sophisticated text substitution system. A simple solution
to the problem is to produce one C output statment (i.e. printf) for each field in the PASCAL

format list.

PASCAL has a different mechanism from C for specifying a return value for a function.
PASCAL uses an assignment to the function identifier and C uses a relurn statement. A solu-
tion to this problem is to declare a variable in the corresponding C function to hold the

return value and then return it with a refurn statement.

The main difference between the two languages and the hardest one to overcome is their
different approaches to defining the scope of identifiers. PASCAL views identifier scope as a
variable gradation between being global to the entire program and local to a particular rou-
tine. C on the other hand, has only two levels of identifier scope (within one source file),
external (global) and internal (local). PASCAL for instance allows function and procedure
definitions to be nested while C does not. Implementing a scheme for automatically translat-

ing between the two views is not easy.

Two solutions to the problem are to use multiple output £les for the generated C code

or make all identifiers external and systematically rename them to avoid conflicts. Both will

12

work but, particularly in the former case, would be somewhat cumbersome to implement.

The solution adopted by this FDT compiler is to simply ignore the problem since the
types of programs likely to be processed are unlikely to require extensive use of PASCAL's
scoping rules. This approach does have implications for the user as it prohibits the use of

shared identifiers and global data references but should not be too much of a problem.

All in all, the problem of translating programs from PASCAL to C is not too difficult

provided some restrictions on the types of programs processed can be imposed.

Chapter 4

Translating DT Specifications into C Code

4.1 Overview

Generating a high level language program that implements a protocol specified in FDT
is not a difficult task. The declarative part of FDT which specifies the protocol machines,
their interconnection and the signals they pass, translates into simple conditional expressions,
calls to predefined routines and structure (record) declarations. The PASCAL parts of the

specification translate directly, requiring relatively little extra processing.

The implementation strategy adopted is the same one used successfully by Gerber in his
FDT compiler [Gerber 83]. This approach produces two sets of routines from a FDT
specification. One set, the {ransilion roufines, implements the transition processing of the
protocol machines, and the other, the tritislization roulines, is responsible for constructing a

data structure that represents the machines and their interconnections.

The transition routines are simply a series of conditional expressions and program
blocks. The expressions evaluate the enabling conditions of state transitions and the pro-

gram blocks implement the associated operations.

The initialization routines use a couple of predefined utilities to construct small parts of

the data structure which are then joined to produce the complete representation,

The binding force between these two groups of routines is a couple of prewritten driver
roufines which use the initialization routines to create the necessary data structure and then
the transition routines to process the transitions of the protocol machines. The driver rou-

tines are an initialization routine (eystem_inil) and a transition scheduler (schedule) which

13

14

directs the processing of signals.

4.2 Data Structure

The data structure used to represent the protocol machines and their interconnections
consists of a set of linked records. In all, four record structures are used, to store state infor-
mation (process block), to represent an interaction point (channel block), to represent a signal
and its data fields (signal block) and finally, to store index information for aggregate (array)
interaction points (indez block). When linked appropriately, records of these four types can

represent arbitrarily complex FDT structures in a simple manner.

The representation of one protocol machine instance, and the storing of its state infor-
mation, is performed by one instance of the process block record type. This record structure
has fields for the major state variable (if there is one) and any local variables. It also stores

the identifier of, and a pointer to, the instance’s transition routine.

Process block records also contain links to other process block records and to a list of

channel block records representing the protocol machine's interaction points.

Each interaction point of a protocol machine instance is represented by a channel block
record. Actually a channel block record only represents half of an interaction point, the other
half being represented by another channel block record belonging to the protocol machine on
the other side of the interaction Ipoiut‘ The channel blocks representing the interaction ponts
of a particular machine instance are joined together to form a linked list attached to the pro-

cess block of that instance.

Each channel block record stores two numbers to identify it, the first is the number of
the interaction point and the second is the index of the channel block record for an aggregate
interaction point. In addition, each record also contains pointers to the channel and process

blocks on the other side of the communication path. These pointers constitute the actual

15

connection between two protocol machines.

The queue of signals which can exist at an interaction point is represented by a list of

signal block records attached to a channel block record.

Signal block record instances represent messages sent by a protocol machines. They
contain fields to store an identifying number and optional transmitted data. Instances are
not produced by the initialization routines but come from the execution of OUT statements

in tramsition routines.

Finally, those channel records belonging to aggregate interaction points store their index
specified in the FDT source via a list of index block records. The index number stored in the
channel record is the ordinal of the interaction point in a row-major ordering of the array.
Index block records simply contain a single number that is the value of one dimension of an
array. These values are required by the enabling conditions of transitions to identify, and

possibly test, the identity of an interaction point receiving a signal.

4.3 Initialization Routines

The set of initialization routines contains two types, those that generate a representa-
tion of a machine instance (i.e. a process block and its channel list) and those that combine
the machine representations into larger structures. Each process specification in the FDT
source produces one routine belonging to the first group, and each refinement specification
produces one belonging to the second. Both groups make use of a series of prewritten utilities

to perform their functions.

The process initialization routines are quite simple. Their only responsibility is to con-
struct the part of the data structure needed to represent one machine instance. They merely
allocate a process block record, attach a list of channel block records, perform any initializa-

tion specified in the FDT source, and then add the process block record to a linked list.

16

The refinement initialization routines are a bit more complex as they must create a
complete representation of the structures defined within them. Their task is simplified some-
what by the use of initialization routines from both groups to construct the machine instance
representations. Their main job then becomes the combining of these small sections into one

larger one representing the internal structure.

The operations performed by a refinement imitialization routine can be divided into
four phases, three of which correspond to the instance, connection and replacement sections of

a FDT refinement and the fourth to what could be termed a '‘clean up' phase.

The instance section of a refinement defines the number and type of protocol machines
in the internal structure. Each instance specification causes a call to the appropriate process
or refinement routine to be generated, this call will simply add another machine instance on

to a linked list.

The connection section of a refinement specifies which interaction points of the protocol
machine instances are joined together. Each interconnection generates one call to a prewrit-
ten utility called connecf_ports which does the actual pointer manipulation to form the con-

nection.

The replacement section of a refinement specifies which internal interaction points are
to be used for the external interaction points of the protocol machine being defined. The
corresponding code in the refinement initialization routine first generates what is termed a
“refinement header”, consisting of a process block record and a channel block record list, and
which represents the external protocol machine and its interaction points. The list of process
block records produced by the instance and connection phases and which is now termed the
“refinement body" is linked to the refinement header. Each replacement specification in the
FDT source generates a call to a prewritten utility replace_ports which makes connections

between the channel block records in the refinement header and those in the refinement

17

body.

The refinement header is really a place holder whose purpose is to mimic a process block
and channpel list produced by a process initialization routine. This uniformity in representa-
tion allows protocol machine instances from both process and refinement initialization rou-
tines to appear to be identical in the process block record list processed by the connection and
replacement phases of a refinement initialization routine. This allows a consistent numbering
scheme to be employed when specifying interconnections. The prewritten utilities
conneci_porie and replace_porte are smart enough M; recognize connections to refinement
headers and will make the actual connections to internal channel block records in the

refinement bodies attached to the headers.

The fourth phase of a refinement routine, the ‘‘clean up"” phase, is where the
refinement headers holding the place of a protocol machine representation in the refinement
body are removed and replaced by their refinement bodies. This task is performed by the

prewritten utility clean_up.

4.4 Transition Routines

The actual implementation of a specified protocol, as opposed to simply creating a data
structure, is achieved by a section of the generated code known as the transition routines.
These routines, together with the prewritten transition scheduler, completely embody the

behaviour of the model described in the FDT source.

The transition scheduler calls a transition routine whenever it decides that some pro-
cessing should occur. The transition routine receives from the scheduler a process block
record and possibly channel and signal block records. The process block record contains the
state information of the machine instance needed to correctly process the state transitions. If

the transition routine does receive channel 2nd signal block records then the associated proto-

18

col machine has received a signal at an interaction point (the one represented by the channel
block record), if the signal does not cause a transition it is simply requeued. If the routine
does not receive the records then the scheduler has decided that a spontaneous tramsition

should be attempted by the transition routine.

For their part the transition routines consist of a series of if statments, each of which
corresponds to one transition in the FDT source. The boolean expression in the statement
evaluates the truth value of the enabling condition and the body contains the associated

action.

Chapter &

Illustrative Implementation Examples

This chapter presents two protocols and describes their implementation. The first pro-
tocol is a simple one invented to illustrate the implementation process. The second is the

alternating bit protocol.

5.1 Example 1—The Hot Potato Protocol

The simple protocol described below is an excellent vehicle for illustrating the imple-
mentation process used by the compiler. This protocol models a system of two ''teams’™ of
two ‘‘players'’ which continuously pass a message (a hot potato) around in a circle. Its
specification contains a good sampling of the features of contained in FDT. In addition to the
standard specification of channels, modules, processes and refinements, it contains composite

protocol machine definitions and argument passing to processes and refinements.

The actions of each "‘player” in the protocol are identical and specified by one process.
When a player receives a ‘‘potato’’ message from the player on his left he prints a message
identifying bimself and the player who sent the message. He then sends a ““thankyou’’ mes-

sage to that player and a new potato message to the player on his right.

The teams are organized identically and specified by a single refinement. The players

are conceptually side-by-side, with the right of one being connected to the left of the other.

The teams are joined by connecting the two remaining sides of the players on one team
to their opposite numbers on the other. Figure 5 shows the interconnection of the protocol

machines involved.

As part of his local state information each player stores two numbers, one identifies his

19

team and the other is his player number within the team.

The complete FDT specification for the protocol is shown in Figures 6 and 7 below.

Player |[left tossin right | Plaver
1 tossouf 2
right left
left right
Player right | tossout left | Player
2 tossin 1
Team 1 Team 2

Figure 5. Illustration of Hot Potato Protocol Machines

21

MODULE hot_potato; end hot_potalo;
REFINEMENT hot_ref FOR hot_potato;

CHANNEL toss (thrower, catcher);

by thrower: potato (thrower_team,
thrower_num : integer);

by catcher: thanks;

end toss;

MODULE team;
tossin : loss(catcher);
tossout: loss(thrower);
end leam;

REFINEMENT team_ref(team_num : integer) FOR team;

MODULE player,
left : toss(catcher);
right: toss(thrower);
end player;

PROCESS player_process(team_num,
player_num : integer) FOR player;
(* see Figure 7 for definition #)
end player_process;

P1: player with player_process(team_num, 1);
P2: player with player_process(team_num, 2);

COJ’\"J\FE CT
P1.right to P2.left;

REPLACE

tossin by Pl.left;
tossout by P2.right;
end leam_ref;

T1: team with team_ref(1);
T2: team with team_ref(2);

CONNECT
T1.tossout to T2.tossin;

T2.tossout to T1.lossin;

end hol_ref;

Figure 6. FDT Specification of Hot Potato Protocol

PROCESS player_process(team_num, player_num : integer)
FOR player;

QUEUED left, right; (* queuing status #)
VAR (*local variable declarations #)
the_team, the_player : integer;

INITIALIZE (#* local variable initiallization %)
begin
the_team =
the_player :=
end;

team_num;
player_num;

TRANS (* potato message on left #)

WHEN left.potato begin
writeln('Player 'the_player,’ of team ',
the_team,’ caught a potato from player

thrower_num, 'of team 'thrower_team);

L
»

OUT right.potato(the_team, the_player);

OQUT left.thanks;
end;

TRANS (* thanks message on right #)

WHEN right.thanks begin
writeln('Player ', the_player,' of team
the_team,' got o thankyou’);

end;

(* spontaneous #)

TRANS
provided ((the_player = I} and (the_team = 1))

begin OUT right.potatofthe_team, the_player); end,
end player_process;

Figure 7. FDT Specification of Player Process

The overall structure of the system is contained by the top level refinement hot_ref

which is specified for the empty, top level, module hot_potato. This refinement, directly or

indirectly, contains all of the other declarations. The system structure is defined by the

instance and connection specifications at the end of hot_ref.

23

The refinement team_ref is similar to hol_ref except that it also has a replace
specification which defines which interaction points, internal to feam_ref, are to be used for
the interaction points fossin and lossoul of the refinement's module team. Note that hot_ref
does not have a replace specification as its module hof_potato does not define any interaction

points.

In the instance specifications, both refinements pass arguments to the refinement or
process used. In ho!_ref one number identifying the team of the instance is given to the
refinement team_ref, which passes it and a player nur.nber to the process player_process in
its instance specification. Player_process stores the numbers it receives as part of the Jocal

state information of each machine instance.

The actions of the players in the protocol are specified by player_process. It declares
that the two interaction points, left and right, of its module player are to queue their signals,
that the protocol machine has two local variables, the_team and the_player, and that they

are to be initiallized to the values of the two parameters passed.

The first transition of player_process occurs whenever a potato message arrives via the

left interaction point. It prints a message and transmits two more messages,

The second transition occurs whenever a thanks message arrives via the right interac-

tion point of the protocol machine, it also prints a message.

The third transition will only occur for player one of team one when the transition
scheduler detects that there are no messages enqueued and awaiting processing. For this pro-

tocol that only occurs a the start of processing.

5.1.1 Implementation Code

The implementation code produced by the compiler is placed into one output file. The

24

first entries in this file are a series of ‘'#include's’’ whose purpose is to direct the C' compiler
to include files like the C' standard input/output library (stdio.h). The next entries are the
signal and process block declarations and then various initiallization, transition and user
defined procedures which are in no particular order. The finally entry of the file is another

“#include” which directs the C compiler to include (compile) the prewritten utility routines.

The output file generated for the example in Figures 6 and 7 is shown in Figure 8. The
bodies of the procedures have been deleted for brevity and are show individually in later Fig-

ures,

25

#include <stdio.h>
F#include < slrings.h>
#include 'listdefs.h”

struct gignal_block {
int signal_td;
struct signal_block #nexzt;
union { struct { struct {
int thrower_team, thrower_num;
} potato;

} toss;

} lvars;

)

struct process_block {
struct process_block mezl;
char p_tdent/MAX_IDENT_LENGTH+1];
struct channel_block #chan_list;
struct process_block #refinement;
int (#proc_ptr)();
union { struct {
int the_team, the_player;

} a_player_process;
} lvars;
}i
struct process_block *iohot_ref(p_block)
struct process_block *ioteam_ref(p_block, team_num)
slruct process_block *ioplayer_process(process_list, team_num,
player_num)

player_process()

#include “‘fdlutil.c”

Figure 8. Implementation Code for Hot Potato Protocol

The signal block declaration contains two fields, thrower_team and thrower_num, which
store the data values of a polalo message. If there had been other channel declarations, at
any level of nesting containing messages with data fields, they to would have appeared in the

declaration.

The process_block declaration bas similar fields for the storage of variables for a proto-

26

col machine instance. It also contains the identifier and a procedure pointer to the transition

routine associated with the process_block instance.

The initiallization and transition routines follow the two structure declarations. They
use the same identifiers as their associated refinement or process in the the FDT source, with
the exception that the initiallization routines also have a ‘‘io" prefix. This prefix is necessary
to distinguish between the two routines, one initiallization and one transition, generated for

each process specification.

The initiallization routine generated for the reinement hof_refis tohot_ref and is shown

in Figure 9. This procedure is called by the system initiallization utility to generate the

entire representation data structure.

struct process_block *ohot_ref(p_block)

struct process_block *p_block;

{

slruct process_block *ioteam_ref();

siruct process_block *ioteam_ref();

struct channel_block *add_channel_block(), *c_ptr;

slruct process_block #add_refinement_header(),
*clean_up(), *process_list;

process_list = NULL;

process_list = ioteam_ref(process_list, 1);

process_list = ioteam_ref(process_list, 2);

connect_ports(process_list, 2, 2, 0, 1, 1, 0);
connecl_ports{process_list, 1, 2, 0, 2, 1, 0);

p_block = add_refinement_header(p_block, process_list);
p_block->refinement = clean_up(p_block->refinement);

return(p_block);

Figure 9. Initiallization Routine for hot_ref

The initiallization routine generated for the refinement feam_ref is shown in Figure 10.

It is slightly more complex than iohot_ref as it must also add channel blocks to its refinement

27

header (add_channel_block) and establish connections between them and internal interaction

points [replace_ports).

The calls to conneci_ports in Figures 9 and 10 contain a cryptic set of numbers as
arguments to the routine. These numbers describe which two channel blocks are to be inter-
connected to form the interaction point. For example, the set of three numbers 2, 2, 0, tells
connect_ports to look in the channel list of the second process block in the process list for a
channel block containing the two numbers 2 and 0. Calls to replace_ports contain similar
sets of numbers except that the process block number for the first channel block is not
required because the channel list is know to be in the refinement header and so is omitted.
Note that the numbering of the process blocks in the list is the reverse of their creation since

the initiallization routines place them at the front of the process block list.

struct process_block #ioteam_ref(p_block, team_num)
struct process_block #p_block,
int feam_num;
{ struct process_block *ioplayer_process();
struct process_block *oplayer_process();
struct channel_block *add_channel_block(), *c_ptr;
struct process_block *add_refinement_header(),
*clean_up(), *process_list;

process_liest = NULL;
process_list=ioplayer_process(proceas_list, team_num, 1);
process_list=1ioplayer_process(process_list, team_num, 2);
connect_ports(procces_list, 2, 2, 0, 1, 1, 0);
p_block = add_refinement_header(p_block, process_list);
p_block-> chan_list=add_channel_block(p_block-> chan_list,
8c_ptr, FALSE, 1, 0);
p_block-> chan_list=add_channel_block(p_block-> chan_list,
8c_ptr, FALSE, 2, 0);

replace_port(p_block, 1, 0, 2, 1, 0);
replace_port(p_block, 2, 0, 1, 2, 0);

p_block->refinement = clean_up(p_block-> refinement);
return(p_block);

Figure 10. Initialization Routine for team ref

28

The two declarations of foplayer_process in Figures 9 and 10 is not an error, simply a
harmless idiosyncrasy of the compiler which was left in to ease the implementation of the
compiler., The C compiler will not complain about multiple function definitions so long as

they are consistent.

The initiallization routine generated for the process player_process is shown in Figure

11 and the transition routine in figure 12.

struct process_block ®oplayer_process(process_list,
team_num, player_num)
strucl procese_llock *procees_list;
ini leam_num, player_num;
{ struct process_block *p_block, *add_process_block();
extern inl player_process();
struct channel_block *add_channel_block(), *c_plr;

p_block = add_process_block(process_list,
player_process,”player_process” J;

p_block->chen_lisl =
add_channel_block(p_block->chan_list,
€c_ptr, TRUE, 1, 0);
p_block-> chan_list =
add_channel_block(p_block-> chan_list,
&c_ptr, TRUE, 2, 0);

p_block->lvars.s_player_process.the_team =
team_num;

p_block->lvars.s_player_process.the_player =
player_num;

return(p_block);

Figure 11. Initiallization Routine for player_process

player_process(p_block, channel, signal)
struct process_block #p_Llock;
struct channel_block *channel;
slruct signal_block *signal;

{ struct signal_block *s_ptr;

if ((channel I= NULL))
if ((channel->c_id == 1) 88 (signal-> signal_id == 0)) {{{

printf(“Player “);
printf(“%d",p_block-> lvars.s_player_process.the_player);
printf(* of team ");
printf(%d’ ,p_block-> lvars.s_player_process.the_team);
printf{** caught a potato from player ”);
printf(“%d" ,eignal->lvare.toss.potato.thrower_num);
printf('‘ of team "); ?
printf("'%d" ,eignal->lvars.toss.potato.thrower_team);
printf{*0);

s_ptr = ALLOCATE(signal_block); s_ptr-> signal_id = 0;
s_ptr->lvars.toss.potato.thrower_team =
p_block->lvars.s_player_process.the_team,
s_ptr->lvars.loss.potato.thrower_num =
p_block->lvars.s_player_process.the_player;
oul(p_block-> chan_list, s_ptr, £, 0);

e_plr = ALLOCATE(signal_block); a_ptr->signal_id = I,
out(p_block-> chan_list, a_ptr, 1, 0);
} goto dispose; }}

if ({channel != NULL))
if ((channel-> c_id == 2) 88 (signal->signal_id == 1)) {{{

printf(*‘Player " J;
printf("%d" ,p_block-> lvars.s_player_process.the_player);
printf{* of team ");
printf("% d,p_block-> lvars.s_player_process.the_team);
printf{'* got a thankyou”); printf(*'0);
} goto dispose; }}

if (channel I= NULL) { requeue(channel, signal); signal = NULL,}

if (((((p_block-> lvars.s_player_process.the_player == 1)) 8¢
((p_block->lvars.s_player_process.the_team == 1))})) {{
s_pir = ALLOCATE(signal_block); s_ptr-> signal_id = 0;
&_ptr->lvars.loss.potato.thrower_team =
p_block->lvars.s_player_process.the_team;
s_plr->lvars.toss.potato.thrower_num =
p_block->lvare.s_player_process.the_player;
out(p_block-> chan_list, s_ptr, 2, 0);
} goto dispose;
dispose: free(signalj;

Figure 12. Transition Routine for player_process

30

5.1.2 Execution Description

The creation of the data structure that represents the interconnected protocol machines
that implement the ho!_potato protocol is initiated by a call to the initiallization routine
1ohot_ref by the prewritten utility system_ini{. The subsequent sequence of calls to the other

initiallization routines and the construction of the data structure are described below.

The first operation performed by iohof_ref is to call the routine soteam_ref, which, in
turn, calls the initiallization routine foplayer_process twice to create two protocol machine

instances. The structure returned by one of these calls is shown in part (a) of Figure 13.

loteam_ref then calls connect_ports to connect together the interaction points of the
two instances. The resulting structure is a refinement body and is shown in part (b) of Figure

13.

Next, foteam_ref creates a refinement header (add_refinement_header), attaches the
refinement body and calls replace porls to make interconnections between the header and
the body. Its job is then completed by calling the prewritten utility elean_up which in this
case has no work to do and then returning. The complete structure returned by ioteam_ref is

shown in part (c) of Figure 13.

Iohot_ref now receives control and proceeds to call foteam_ref a second time to gen-

erate another machine representation. That structure is shown in part (d) of Figure 13.

With the construction of the two instances now complete sohol_ref calls connect_ports
to interconnect them. Connecl_ports will detect that it is making connections between
refinement headers and will connect to the appropriate channel blocks in their refinement

bodies instead.

Iohot_ref then creates a refinement header (without channel blocks) for the refinement

body (i.e. the two structures returned by toteam_ref).

3l

The last operation of iohol_ref is to call the utility clean_up which replaces the
refinement headers, in its refinement body, with their bodies. The complete structure

returned to system_init is shown in part (e) of Figure 13.

110 =210 |g1a
VAAS T o 7 ol 7 7
-
L
(a)
'—-xu-l 0 lor op——12 0lr |y
B v g

T H
L

|ole 210[2
o gL 1~
=
(b)
— J
_\9-1 oo =20 122
g @ |1 a8 |r
’(J
5 T
1{ole[——=12l0l8]5
y o 3 R -
o
L
|
W l
1\l b (e S—={2[0@ [#
gl At Ll ¢ |
- =l
-

(c)

Figure 13. Representation Data Structures for Hot Potato Protocol

Figure 13. Representation Data Structures for Hot Potato Protocol (continued)

we | B {ZI0EE
vy y I
——_,._1 0 I [=—>17 0l lgr
'] I3
»
L —
v \|; ‘E_
1[ole{ =—={2[0[0 7
o ¢ |t Al ot | e
z—| n ——
—3'5‘-_’
1]olg 2l0lglg
VARY B’ B' ‘a‘, W
=t
R
[— & \f
N\ TorT—0 07 1y
2 J°4 | o
£
VAl \
1{0le|=r—={2| 0|8}
a1 i a ¢ |~
= = —

o
E

olale

]
\
%

<

o
B
]
g
®

N
%

: K
~

alpyE

10 T#] 2]o oo
& . g ¢ |o
Z / |
N
'—_771’0| : 20 [
0| 1 @1 1 [
2 ¥ V]
(e)

Figure 13. Representation Data Structures for Hot Potato Protocol (continued)

5.1.3 Transition Processing

When the initiallization routines have completed their task and built the representation

data structure the transition scheduler receives control.

The scheduler distributes enqueued messages and spontaneous transitions in a round

robin manner.

The identities of the spontaneous routines are hand coded into the scheduler by the user
(not everything is automatic!). The user enters a series of string comparisons between the
identifier stored in the process_block instances and the identifiers of the spontaneous transi-
tion routines. These tests are OR'ed together and become the boolean expression of an if
statement that decides whether to call the transition routine to attempt a spontaneous transi-

tion,

In this example, when the scheduler first receives control it tests for the existence of
enqueued signals. Discovering that none exist it proceeds to search the process block list for a
process block that contains a transition routine identifier matching one of those known (hand
coded) to contain a spontaneous transition. The first block tested just happens to contain
(like the others) such an identifier (player_process) so the scheduler calls that routine. Once
a signal does get enqueued by the spontaneous transition of the protocol machine of player
one, team one, the scheduler stops searching for a spontaneous transition and goes about the

job of dispatching signals.

5.2 Example 2—The Alternating Bit Protocol

The second example is an implementation of the alternating bit protocol which serves to
illustrate the ability of the compiler to implement a real protocol. The specification of the

protocol is taken from the ISO working document [ISO 84] and is shown in Appendix IV.

35

The specification contains one, top level, refinement ab_ref, and five module types
ab_pc, Alternating_Bil, timer, network and user. It also has four diflerent channel types and

various messages.

The specification models the typical situation of a protocol machine on a particular level
of abstraction. It has the alternating bit protocol machine and a system entity (timer) on one

level, as well as entities on the levels above (user) and below (network).

This specification was used to create a communication path between two separate hosts.
This required the modification of the system initialization routine system_inil, the system
scheduler schedule and the the two signal transmission routines gei_gignal and ouf. A time out

facility was also implemented. Code for these routines is given in Appendix V.

The system initialization routine was modified to allow it to establish a network connec-
tion between the two hosts being used. The actual communication path was created using a
set of locally developed network primitives which allow easy access to a local area network

(ETHERNET).

The system scheduler was modified so that it tested the result of a call to gef_signal

before il called the destination routine.

Gel_signal was modified to detect when it was at the particular channel through which
signals from the network are to arrive. When at the designated channel it called a non-

blocking network receive primitive in attempt to get a signal from the other host.

The routine ou! was modified to detect the transmission of a signal over the channel
designated to carry traffic to the other host. Instead of queueing the signal it places it in a

buffer and calls a network send primitive.

The time ouf facility was provided by a pair of C routines which schedule and test
timers. These two routines are quite simple. The time out scheduler, schedule_timeout, adds
the timer duration to the present time and stores the value. The routine timer_ezpired

checks to see if the system time is later than the stored time and returns the appropriate

truth value,

The implementation code generated for this example can be found in Appendix VI

36

Chapter 6

Conclusion

6.1 Thesls Summary

The development of formal models for protocol specification has opened the door to the
possibility of automatically generating protocol implementations directly from their
specification. The wide spread availability of implementation tools will allow protocol imple-
mentors to produce compatible protocol implementations with ease. The compiler developed
demonstrates the feasibility of producing such a tool. It generates virtually all of the code
needed to implement a protocol (the only thing it does not produce are some simple declara-
tions and tests in two utility routines). And both it and its output code are written in highly
portable C. Despite of its large size, 8000 lines, it runs very quickly, processing the two

examples in negligible time (less than a second).

The restrictions placed on the structure of the PASCAL programs accepted by the com-
piler, namely the elimination of nested routines and global references, could be a factor when
more complex protocols are to be processed. However, at present the restrictions do not

appear to be too severe.

The success of the venture can be measured by contrasting automatic and manual pro-
tocol implementation techniques. The compiler produces consistently well structured and
easy to understand code. The quality of manually generated code varies considerably, Com-
piler generated code is easy to mzintain and modify, a change in the input specification is all
that is required. On the other hand, manually produced code requires a great deal of eflort
and expense to maintain. Perhaps the greatest difference between the two implementation
methods is the respective confidence given to their generated implementations. Code pro-

duced by a compiler can generally be assumed to be a correct representation of the

37

specification, whereas manually produced code cannot.

6.2 Enhancements

Further testing of the compiler on real-life protocols such as the ISO transport protocol
is desirable. Such a test would further demonstrate the usefulness of using such tools and

perhaps spawn the development of production versions of the compiler.

Enhancements to the compiler itself can also be made. The processing of the scope of
transition enabling condition clauses is currently handled clumsily and as a result the useful-
ness of some of the shorthand clause specifications is restricted. PASCAL set types, were not
implemented as they were not considered to be important enough to warrant the eflort. The
FDT DELAY clause which implements timer functions was not implemented as timers can be
simulated with system calls. Adding the DELAY clause would enhance the compatibility of

the compiler with the ISO standard.

A major enhancement to the system would be the implementation of protocol machires
as separate processes running under control of the host's operating system. This approach
would be 2 closer representation of the model of independent protocol machines then the

current one.

References

[Aho 78]
Aho, A., Ullman, J., “Principles of Compiler Design®, Addison-Wesly Publishing Com-

pany, 1978,

[Blum 81]
Blumer, T. P., Tenney, R. L., “An Automated Formal Specification Technique for Pro-

tocols”, Proceedings INWG/NPL workshop, May 1981, pp. 277-326.

[Boch 80]
Bochmann, B. V., Sunshine, C. A., ‘Formal Methods in Communication Protocol
Design™, IEEE Transacalions on Communications, Vol. Com-28, No. 4, April 1980,

pp. 624-631.

[Dant 80]

Danthine, A. A. S. , “Protocol Representation with Finite-State Models”, IEEE Trans,

Commun. vol. COM-28, pp. 632-643, April 1980.

[Gerber 83]
Gerber, G. W. , “Une Mecthode D'Implantalion Automalisee de Systemes Specifies For-
mellement”, Publication 142, -Deépartement D’Informatique et de Recherche

Opeérationnelle, Universite de Montreal, Aoit 1983.

[Hansson 84]
Hansson, H., ““Aspie, A system for Automatic Implementation of Communication Proto-

cols”, Uptec 8486R, Uppsala Institute of Technology, Uppsala 1984,

39

40

[1SO 84]
“A Formal Description Technigue based on an eztended etate iransition model, ISO/TC

97/SC 16/WG 1 Subgroup B, Working document, March 1984.

[Jensen 74]
Jensen, K., Wirth, N., ‘“Pascal—User Manual and Report”, Leclure Notes in Compuler

Science no. 18, Springer-Verlag. 1974.

[John 75)
Johnson, S. C., “Yacc: Yet Another Comptler-Compiler”, Comp. Sci. Tech. Rep. No. 32,

Bell Labratories, Murray Hill, New Jersy 1975

[Kern 78]
Kernighan, B. W., Ritchie, D. M., “The C Programming Language”, Prentence-Hall,

1978,

[Lesk 75])
Lesk, M. E., "Lez—A lezical Analyzer Generator”, Comp. Sci. Tech. Rep. No. 39, Bell

Labratories, Murray Hill, New Jersy (October 1975)

[Sunsh 79]
Sunshine, C. A. , ‘Formal Technigues for Protocol Specification aend Verification”,

Computer, vol. 12, pp. 20-27, Sept. 1979.

|[Tanen 81]

TANENBAUM, A. S., “Computer Networks”, Prentence-Hall, 1981.

Appendix I

FDT Grammar

specification -> segsect

segsect -> section ;" seqsect | /* empty */

section -> channel | module | process | refinemt

channel -> constd typed ‘‘channel” IDENT

“(" rolelist **)” *;” byclause ‘“‘end” IDENT

rolelist -> IDENT seqident

seqident -> ‘" rolelist | /* empty */

byclause -> ‘by” rolelist ':” signal byclause | /* empty */

signal -> IDENT signalpara ;" signal | /* empty */

signalpara -> ‘(" paradef ‘)" | /% empty */

seqparadef -> ;" paradel | /* empty */

paradefl -> rolelist “‘:” basictype seqparadef

module -> “‘module” IDENT '%;” portlist ‘‘end” IDENT

portlist -> rolelist ‘:” array IDENT *(” IDENT *)”

” portlist | / empty */

41

array

indextype

segindext

refinemt

refbody

instance

seginst

connect

intconn

seqintconn

replace

extconn

42

-> “‘array” “{” indextype seqindext '}” ‘“‘of”

| /# empty */

-> simpletype

-> ‘" indextype seqindext | /* empty */

-> “refinement” IDENT signalpara ‘‘for” IDENT ;"

refbody “‘end” IDENT

-> seqsect instance connect replace | /* empty */

-> rolelist *:” IDENT “‘with” IDENT actualpar *‘;”

seqinst

-> instance | /* empty */

-> ‘‘connect” intconn | /* empty */

-> mport “to” mport *‘;” seqintconn

-> intconn | /* empty */

-> ‘‘replace” extconn | /* empty */

-> port 'by” mport ‘';” segextconn

segextconn -> extconn | /* empty */

port

optindex

mport

-> IDENT optindex

-> '{” constant listconst “‘}” | /* empty */

-> IDENT *.” port

process

qchannel

procbody

pvard

procvar

stateset

init

initstatmt

trans

opttrans

seqclause

clause

seqtrans

opttag

vparam

43

-> ‘‘process” IDENT signalpara ‘'for” IDENT ;"

prochody “‘end” IDENT

-> ‘‘queued” rolelist ;> | /* empty */

-> qchannel constd typed pvard procfuncd init trans

| /+ empty +/
-> ‘‘var” procvar | /* empty */
-> IDENT ':” “(” rolelist ') “;” seqvardecl | vardecl
-> IDENT | /* empty #/

-> ‘‘initialize” stateset ‘‘begin” initstatmt

seqstatmt “end” ;" | [* empty %/

-> plainstatmt

-> ‘‘trans™ seqclause opttrans

-> trans | [* empty */

-> clause seqclause | opttag block ‘';” seqtrans

-> ‘“any” paradef “do” | “when” IDENT vparam “.” IDENT
| “from” rolelist | ‘‘to” nextmstate

| ““provided” expression | “‘priority” idorint

-> seqclause | /* empty */

-> IDENT . | /* empty */

-> “{” rolelist “}” | [* empty */

i n

listvariable-> ‘‘” variable | /* empty */

nextmstate-> IDENT | ‘‘same”

idorint -> IDENT | INTEGER

block -> labeld constd typed vard procfuncd ‘‘begin”

statmt segstatmt '‘end”

labeld -> ‘‘label” INTEGER seqinteger *;” | /¥ empty */

seqinteger -> “,” INTEGER seqinteger | /* empty */

constd -> ‘‘const” defconst | /* empty */

defconst -> IDENT “=" constant '‘;” seqdefconst

seqdefconst-> defconst | /* empty */

constant -> optsign numconst | STRING

optsign -> SIGN | /* empty */

numconst -> INTEGER | REAL | IDENT

typed -> “‘type” deftype | /* empty */

deftype -> IDENT “=" type ;" seqdeftype

seqdeftype -> deftype | /* empty */

type -> simpletype | optpack typstruct | ‘*” IDENT -
| [T ubooleann | tism ucharn ! (TR “integer"’

| [T BT

real”

44

simpletype -> ‘(" rolelist **)” | SIGN numconst “‘..” constant

optconst

optpack

typstruct

segsimplet

field

fixedpart

seqfield

typselect

variant

seqvariant

listconst

vard

vardec]

seqvardecl

| INTEGER ‘..” constant | IDENT optconst

| “boolean” | ‘‘char” | “integer” | “‘real”

v

“..” constant | /* empty */

“packed” | /* empty */

v

v

“array” '‘{” simpletype seqsimplet “}” “‘of” type

| “record” field “end”

-> ‘" simpletype seqsimplet | /* empty */

-> fixedpart seqfield

| “case” IDENT typselect “‘of” variant

\

rolelist “:” type | /* empty */

;" field | /* empty */

v

‘" basictype | /¥ empty */

Y

-> constant listconst ;" “(" field '‘)” seqvariant

| /* empty %/

> ';” variant | /* empty */

-> ' constant listconst | /[* empty */

-> ‘“‘var” vardecl | /* empty */

-> rolelist “:” type *;” seqvardecl

-> vardecl | /* empty */

45

procfuncd

pfheader

pfbody

Ipara

seqspara

spara

factor

segfactid

index

seqgindex

Iseqvaria

seqsetint

Isegset

setint

segxpset

46

-> procefuncd pfheader "';” pfbody ‘;” | /* empty */

-> “‘procedure”™ IDENT lpara | “‘predicate” IDENT Ipara

| “function” IDENT Ipara ‘“:” basictype

-> block | “‘extern” | “forward” | “‘primitive”
-> ‘(" spara seqspara ‘)" | [* empty */
-> ';” spara seqspara | [* empty */
-> rolelist '*:” basictype

| “var” rolelist “:” basictype

-> REAL | STRING | “nil” | INTEGER
| “{” segsetint “}” | “(” expression “')”

| “not” factor | IDENT seqfactid

-> lIseqvaria | ‘(" index)"

-> expression seqindex

-> ‘" index | /* empty */

-> “{” index "'}” lseqvaria | *.” IDENT lIseqvaria

| "7 lseqvaria | /* empty */

-> setint Isegset | /* empty */

-> ‘" getint Isegset | /* empty */

-> expression seqxpset

-> “.” expression | [* empty */

47

term -> term OPERMULT factor | factor
simplexp -> simplexp OPERADD term | optsign term
expression -> simplexp OPEREL simplexp | simplexp
statmt -> INTEGER ':" plainstatmt | plainstatmt
plainstatmt -> IDENT appendix
| “out” IDENT seqindice *.” IDENT actualpar
| “goto” INTEGER
| “begin” statmt seqstatmt “end”
| “if” expression ‘‘then” statmt else
| “case” expression ‘‘of” case seqcase otherw ‘‘end”
| “repeat” statmt seqstatmt ‘“‘until” expression
| “while” expression ‘“‘do” statmt
| “for” IDENT ‘“:=" expression
direction expression ‘‘do” statmt
| “write” iolist | “‘writeln” Iniolist
| /* empty 3/
actualpar -> “(” index *')” | /* empty */
newmstate -> IDENT | “same”
segstatmt -> ‘';” statmt seqstatmt | /* empty */
else -> ‘‘else” statmt | /* empty */
seqcase -> ';” case seqcase | [* empty */
case -> constant listconst ;" statmt | /* empty */

otherw

Iniolist

iolist

ioexp

seqioident

ioident

ioextra

direction

variable

appendix

seqindice

basictype

-> ‘“‘otherwise” statmt seqstatmt | /# empty */

-> iolist | /* empty */

_> n(” ioexp u)n

-> ioident seqioident

-> ‘" joexp | [* empty */

~> expression ioextra

-> ‘" simplexp | /* empty */

-> “to” | “downto”

-> IDENT lseqvaria listvariable

-> actualpar | Iseqvaria '';=" expression

-> "{” index “‘}” seqindice | /* empty */

-> IDENT | “boolean™ | ‘“‘char”

| “integer” | ‘‘real”

48

APPENDIX II

Utility Routine Listings

int signal_pending;

*/
struct process_block *add_process_block(process_list,proc_ptr,identifier)
*

This function allocates a new process block, initializes it, and places
it at the head of the process list passed to it. The pointer to the
process_list is returned.

‘!
struct process_block *process_list;
int (*proc_ptr)();
char *jdentifier;
{
struct process_block *ptr, *temp_ptr;
ptr = ALLOCATE(process_block);
ptr->next = process_list;
ptr->proc_ptr = proc_ptr;
strepy(ptr->p_ident,identifier);
ptr->chan_list = NULL;
ptr->refinement =NULL;
return(ptr);
}
e o
struct channel_block *add_channel_block(channel_list,c_ptr,queued_flag,

49

number,index)

/t
This function allocates a new channel block, initializes it, and places
it at the end of the channel list passed to it. It returns the channel
list,

L/

struct channel_block *channel_list, #(*c_ptr);
int queued_flag,number,index;

{

struct channel_block *ptr, *temp_ptr;

/* make a new channel block */

ptr = ALLOCATE(channel_block);
ptr->next = NULL;

ptr->c_id = number;

ptr->index_num = index;
ptr->signal_list = NULL;

ptr->queued = queued_flag;
ptr->target_proc = NULL;
ptr->target_channel= NULL,;
ptr->index_list = NULL;

*c_ptr = ptr;
if (channel_list != NULL)
{
/* find the end of the chanrel list */

for (temp_ptr = channel_list; temp_ptr->next |= NULL;
temp_ptr = temp_ptr->next);

temp_ptr->next = ptr;

return({channel_list);

}

else
return(ptr);

= s/

struct channel_block #find_channel(channel_list,id,index)
/*
This function returns a pointer to the first channel block with the
passed id in the channel list.

*/

51

struct channel_block *channpel_list;
int id, index;
{
struct channel_block *ptr;

/* find the block */

for (ptr = channel_list; (ptr->c_id != id)||(ptr->index_num != index);
ptr = ptr->umnext);

return(ptr);

}

e . |

struct process_block *add_refinement_header(process_list,ref_body)
/t

This function allocates a "refinement” type process header and places

it at the head of the process list. The ref_body (also a process list)

is then attached to the refinement header.

*/
struct process_block #process_list, *ref_body;
{
struct process_block #*ptr,*add_process_block();
ptr = add_process_block(process_list, NULL, refinement”);
ptr->refinement= ref_body;
return(ptr);
/* 4

connect_ports(process_list, instance_numl, channel_num]l,index1,
instance_num2, channel_num2,index2)

/t
This routine interconnects the specified channels.
*+f
struct process_block *process_list;
int instance_numl, instance_num?2,

chanpel_numl, channel_num?2,

52

index1, index?2;

{

struct process_block #find_process(), *p_ptrl, *p_ptr2;
struct channel_block *find_channel(), *c_ptrl, *c_ptr2;

p_ptrl = find_process(process_list,instance_num1);

p_ptr2 = find_process(process_list,instance_num2);

c_ptrl = find_channel(p_ptrl->chan_list,channel_numl,
index1);

c_ptr2 = find_channel(p_ptr2->chan_list,channel_num2,
index2);

/t

If the channel blocks are already connected to another channel
block then they must be in the header of a refinement so take
their targets as the channel blocks to connect to.

%/
p_ptrl = (c_ptrl->target_proc === NULL)
? p_ptrl
: c_ptrl->target_proc;
p_ptr2 = (c_ptr2->target_proc == NULL)
? p_ptr2
: c_ptr2->target_proc;
c_ptrl = (c_ptrl->target_channel == NULL)
? c_ptrl
: c_ptrl->target_channel;
c_ptr2 = (c_ptr2->target_channel == NULL)

? c_ptr2
. c_ptr2->target_channel;

/* make the connection */

c_ptrl->target_proc = p_ptr2;
c_ptrl->target_channel = ¢ ptrd;
c_ptr2->target_proc = p_ptrl;
c_ptr2->target_channel = c_ptrl;

}

struct process_block *find_process(process_list, number)
/t
This function returns a pointer to the number'th element of the
process list.

s/

struct process_block *process_list;
int number;

{
int I;

for (i = 1; i < number; i++)
process_list = process_list->next,;

return(process_list);

f* a/

replace_port(ref_ptr, port_num, port_index, instance, channel_num,index)
/t

This routine connects a port (channel) in a refinement header to a

port in the refinement body.

¥

struct process_block *rel_ptr;
int port_num, port_index, instance,
channel_num, index;

struct process_block *p_ptr,*find_process();

struct channel_block *c_ptrl,*c__ptr2,*ﬂnd_channel(];
p_ptr = find_process(ref_ptr->refinement,instance);
c_ptrl = find_channel(ref_ptr->chan_list,

port_num,port_index);

c_ptr2 = find_channel(p_ptr->chan_list,channel_num,index);

p_ptr = (c_ptr2->target_proc == NULL)
? p_ptr
. ¢_ptr2->target_proc;

c_ptr2 = (c_ptr2->target_channe] === NULL)
?c_ptr2
: c_ptr2->target_channel,

c_ptrl->target_proc = p_ptr,
c_ptrl->target_channel = c_ptr2;
c_ptr2->target_proc = ref_ptr;
c_ptr2->target_channel = c_ptrl;

/* o

struct process_block *clean_up(process_list)

/*
This function removes the refinement header in a process list. It
returns a process list which is a concatenation of the refinement
bodies

*
struct process_block *process_list,

{

struct process_block *ptrl, *ptr2, *remove_header();

if (process_list == NULL)

return(NULL);

else

{

ptrl
ptr2

I

process_list-> next;
process_list;

if (strcmp(process_list->p_ident, refinement”) == 0)
process_list = remove_header(process_list);

for (ptr2 = process_list; ptr2->next != NULL;
ptr2 = ptr2->next);

ptrl->next = ptrl;

}
while (ptr1 != NULL)

if (stremp(ptrl->p_ident,”refinement”) == 0)

54

ptrl = ptrl->next;
ptr2->next = remove_header(ptr2->npext);

while (ptr2->next != NULL)

ptr2 = ptr2->next;

}

ptr2->next = ptrl;

}

else

{

ptr2 = ptrl;
ptrl = ptrl->next;

}

return(process_list);

/e '/

struct process_block *remove_header(ref_ptr)
/t

This function removes the refinement header and its channel list and

returns a pointer to the refinement body.

*+/
struct process_block *rel_ptr,
{
struct process_block *p_ptr;
struct channel_block *c_ptrl, *c_ptr2;

/* remove the channel list */

for (c_ptrl = rel_ptr->chan_list; c_ptrl != NULL;
c_ptr2 = c_ptrl, c_ptrl = c_ptrl->next)

free(c_ptr2);

/* remove the process block #/

p_ptr = rel_ptr->refinement;
free(ref_ptr);

return(p_ptr);

55

56

P < |

out(channel_list,signal,chan_pum,index)
/t
This routine dispatches a signal on the indicated channel.
*/
struct channel_block *channel_list;

struct signal_block #signal;
int chan_num, index;

{
extern int signal_pending;

struct channel_block *channel, *find_channel();
channel = find_channel(channel_list,chan_num,index);

if (channel->target_channel->queued)
{
signal_pending++;
signal->next = chaunel->target_channel->signal_list;

channel->target_channel->signal_list = signal;
else /* rendez-vous */

(*(channel->target_proc->proc_ptr))(channel-> target_proc,
channel,signal);
}

/e J

struct process_block *system_init()

/t
This routine causes the generation of the data structure and then checks
for dangling channel connections.

|
{

struct process_block #*ptr, *process_list, *remove_header();

struct channel_block *c_ptr;

/* user included dcl #/

struct process_block *iohot_ref();

process_list = remove_header(iohot_ref(NULL));

for (ptr = process_list; ptr != NULL; ptr = ptr->next)
{
for (c_ptr = ptr->chan_list; c_ptr != NULL; c_ptr = c_ptr->next)
if (c_ptr->target_channel == NULL)
/* oops a dangling connection */
fprintf(stderr,”0YSTEM INITIALIZATION ERROR: dangling”);
fprintf(stderr,” channel in 2an instance of
ptr->p_ident);

fprintf(stderr,”channel number %d, index %d0,c_ptr->c_id,
c_ptr->index_num);

/* join the ends of the process list into a loop */

for (ptr = process_list; ptr->next != NULL; ptr = ptr->next);

ptr->next = process_list;

return(process_list);

57

/-

schedule(process_list)

/t

This is the main driving routine.

&

struct process_block #*process_list;

extern

struct
struct
struct

p_ptr2
p_ptr =

c_ptr =

int signal_pending;

channel_block *c_ptr;
signal_block *s_ptr, *get_signal();
process_block *p_ptr, *p_ptr2;

= process_list;
process_list;

p_ptr->chan_list;

signal_pending =0;

while (TRUE)

if (signal_pending > 0)

{

s_ptr = get_signal(&c_ptr, &p_ptr);

signal_pending—;

/* call the transition routine */

(*(p_ptr->proc_ptr))(p_ptr,c_ptr,s_ptr);

/* move on to the next channel for the
start of the next search */

if (c_ptr->next != NULL)
c_ptr = c_ptr->next;

else

59

{
p_ptr = p_ptr->next;
c_ptr = p_ptr->chan_list;

if ((stremp(p_ptr2->p_ident,” player_process”) == 0))
(*(p_ptr2->proc_ptr))(p_ptr2, NULL,NULL);

p_ptr2 = p_ptr2->next;

}
}
o */
struct signal_block *get_signal(c_ptr,p_ptr)
/*
This function finds a pending signal on a signal queue.
¥

struct channel_block #(*c_ptr);
struct process_block *(*p_ptr);

{

struct signal_block *5_ptr, *s_ptr2;
int found= FALSE;

for (; found; (*p_ptr) = (*p_ptr)->next,(*c_ptr)=(*p_ptr}->chan_list)

for (; ((*c_ptr) '= NULL) && (!found);
(*c_ptr)= (*c_ptr}->next)

il ((*c_ptr}>signal_list != NULL)

found = TRUE;
if ((*c_ptr)->signal_list->next '== NULL){
for (s_ptr = (*c_ptr)->signal_list,
8_ptr2 = s_ptr->next;
s_ptr2->next != NULL;
s_ptr = s_ptr2, s_ptr2 = s_ptr2->next);

s_ptr->next = NULL;
}

else

{

s_ptr2 = (*c_ptr)->signal_list;
(*c_ptr)->signal_list = NULL;

}

goto end;

}
}

}
end:
return(s_ptr2);

}
/* %

add_index_block (channel, index)
/t
This routine appends an index block on to the channels index list.
s/
struct channel_block *channel;

int index;

{

struct index_block *ptr, *ptr2;

ptr = ALLOCATE(index_block);

NULL;
index;

ptr->next
ptr->num

if (channel->index_list == NULL)
channel->index_list = ptr;

else{
for (ptr2 = channel->index_list; ptr2->next != NULL;
ptr2 = ptr2->next);

ptr2->next = ptr;

}

/e *f

int get_index(channel, index_pos)
/t

This routine retrives the index value store in an index block

The index_pos is origin zero

&

struct channel_block *channel;
int index_pos;

{

struct index_block #ptr;

for (ptr = channel->index_list; index_pos > 0;
ptr = ptr->next,index_pos--);

return(ptr->num);

}

I «

requeue(channel,signal)

/*
This routine puts the signal passed on to the head of the signal queue.

*/

struct channel_block #channel;
struct signal_block *signal;

{

struct signal_block xptr;

extern int signal_pending;

signal_pending++;
if (channel->signal_list != NULL).

for (ptr = channel->signal_list; ptr->next != NULL; ptr==ptr-> next);

ptr->next = signal;
else channel->signal_list = signal;

J

61

62

/e ‘
int random_select(low high)
/* '
This function returns a random integer between low and high, inclusive.
./
int low, high;

long random();
float temp;

temp = random();
temp = temp [OxTHAT;
return((low + ((high - low + 1) * temp))/1);

Appendix III

Listdefs.h
#tdefine MAX_IDENT_LENGTH 30
#fdefine TRUE 1
##define FALSE 0
##define ALLOCATE(A) (struct A *)malloc(sizeof(struct A));
struct channel_block
{
struct channel_block *next;
struct signal_block #signal_list;
struct process_block xtarget_proc;
struct channel_block *target_channel,
struct index_block *index_list;
int queued;
int c_id;
int index_num;
};
/* */
struct index_block
{
struct index_block *pext;
int num;
| §

63

Appdenix IV

Appendix IV: Alternating Bit Specification

module ab_pc;
end ab_pc;

refinement ab_ref for ab_pc;

const
retran_time = 100; (* retranstission time *)

type
data_type = integer;
seq_type 0..1;
id_type = (A_DATA,CK);

timer_type = (retransmit);

ndata_type=
record
id :id_type;
data : data_type;
seq : seq_type;
end;
msg_type =
record
msgdata : data_type;
msgseq : seq_type;
end;

buffer_type= record
flag : boolean;
msg: msg_type,;
end;

int_type = integer,

£ 9

(* channel definitions ¥)

64

channel U_receive_point(sender, receiver);

by sender:
RECEIVE_request;

by receiver:
RECEIVE_response(UData: data_type);

end U_receive_point;

channel U_send_point(sender, receiver);
by sender:
SEND_request(UData : data_type);

end U_send_point;

(“

type
time_struct = array|timer_type] of
record
flag : boolean;
secs : integer;
millisecs : integer;

end;

channel S_access_point(User, Provider);

by User:
Timer_request(name : timer_type;
time : integer),

by Provider:
Timer_response(Name: timer_type);
end S_access_point;

(v)

channel N_access_point(User, Provider);

by User:
Data_request(id:id_type; data: data_type; seq:seq_type);

by Provider:

65

G6

Data_response(id:id_type; data: data_type; seq:seq_type);

end N_access_point;

(* *)

channel network_channel(sender,receiver);

by sender,receiver:
packet(id:id_type; data: data_type; seq:seq_type);

end network_channel;

(* ")

(* module definitions *)

module Alternating_Bit;
Us : U_send_point(receiver);
ur : U_receive_point(receiver);
N : N_access_point(User);
S : S_access_point(User);

end Alternating_Bit,;

process alternating_process for Alternating_Bit;

QUEUED Us, Ur, N, S;

var
state: (ACK_WAIT, ESTAB);
send_seq: seq_type;
recv_seq: seq_type;
send_buffer: buffer_type;
recv_buffer: buffer_type;
P, msg_type;

function Ack_OK(id: id_type; seq,send_seq: seq_type) : boolean;
begin
Ack_OK := (id = ACK) and (seq = send_seq)

end;

initialize

begin
state := ESTAB;
send_seq =)
recv_seq = 0;
send_bufler.flag = FALSE;
recv_buffer.flag := FALSE;

end;

(* transistions *)

trans
from ESTAB (* transition 1 *)
to ACK_WAIT
when Us.SEND_request
provided not send_buffer.flag
begin
send_buffer.flag = true;
send_bufler.msg.msgdata := UData;
send_buffer.msg.msgseq := send_seq;
out N.NDATA_request(A_DATA,Udata, send_seq);
out S.TIMER_request(retransmit,retran_time)
end;
trans

from ESTAB, ACK_WAIT (* transition 2 *)
to SAME
when Ur.RECEIVE_request
provided recv_bufler.flag
begin

out Ur.RECEIVE_response(recv_buffer.msg.msgdata);
recv_bufler.flag := false;

end;
trans
from ACK_WAIT (* transition 3 *)
to ACK_WAIT
when S.TIMER_response
provided Name = retransmit
begin

out N.DATA_request(A_DATA send_buffer. msg.msgdata,
send_bufler.msg.msgseq);
out S.TIMER_request(retransmit,retran_time)
end;

trans
from ESTAB (* transition 4 *)
to ESTAB
when S.TIMER_respcnse
provided Name = retransmit
begin

(* do nothing: the message that cause this timer to be
sent has been acknowledged. *)

state := state
end;
trans
from ACK_WAIT (* transition 5 *)
to ESTAB

when N.DATA_response
provided Ack_OK(id, seq, send_seq)
begin
send_buffer.flag := false;
send_seq := (send_seq + 1) mod 2
end;
trans
from ESTAB, ACK_WAIT (* transistion 6 *)
to SAME
when NDATA_response
provided id = A_DATA
begin

out NNDATA_request(ACK, data, seq);

if seq = recv_seq then

begin
recv_buffer.flag:= true;
recv_buffer.msg.msgdata:= data;

recv_buffer.msg.msgseq :=seq;

recv_seq ;= (recv_seq + 1) mod 2
end
end;

end alternating_process;

(* timer module *)

module timer;
S : S_access_point(provider);

end timer;

process timer_process for timer;

QUEUED §;

var
index : timer_type;
a_timer: time_struct;

procedure schedule_timeout(Var timer: time_struct; time_value: integer);
primitive;

predicate timer_expired(Var timer : time_struct);
primitive;

initialize
begin
for index := retransmit to retransmit do
begin
a_timer[index].flag := FALSE;
a_timerlindex|.secs = 0;
a_timer|index].millisecs = 0
end
end;

(* transistions *)
trans
when S.Timer_request (* transistion 1 ¥)
begin
schedule_timeout(a_timer[Name], Time);

end;

any index:timer_type do (* transition 2 ¥)
provided timer_expired(a_timer|index])

begin

a_timer[index|.flag := false;
out S.Timer_response(index)
end;

end timer_process;

(* network module *)

module network;

N : N_access_point(Provider);
send_path : network_channel(sender);
receive_path : network_channel(receiver);

end network;

process net_proc for network;

QUEUED N, send_path, receive_path;

trans
when N.Data_request
begin
OUT send_path.packet(id, data, seq)
end;

trans
when receive_path.packet
begin
OUT N.Data_response(id, data, seq)
end;

end net_proc;

g)

(* user module %)

module the_user;

70

Us : U_send_point(sender);
Ur : U_receive_point(sender);
end the_user;

process user_process(number : integer) for the_user;

QUEUED Us, Ur;

type
request_type = (send, receive);
message_value_type = 1..9;
var

user_number : integer;

initialize
begin
user_number := number
end;

trans
when Ur.RECEIVE_response
begin
writeln('User ',user_number,’ received the message ',
UData);

end;

trans
any request : request_type; message : message_value_type do
provided request = send

begin

writeln(’User ',user_number,’ sent the message ’,
message);

OUT Us.SEND_request(message);

end;

provided request = receive
begin

OUT Ur.RECEIVE_request
end;

end user_process;
(* “

(* define some instances *)

71

Al : Alternating_Bit with alternating_process;
A2 : Alternating_Bit with alternating_process;

timerl : timer with timer_process;
timer2 : timer with timer_process;

N1 : network with net_proc;
N2 : network with net_proc;

Ul : the_user with user_process(1);
U2 : the_user with user_process(2);

(* and connect them together *)
CONNECT

Al.Us to Ul.Us;
A1.Ur to Ul.Ur;
AlN to N1.N;
Al.S to timerl.S;

A2.Us to U2.Us;

A2.Ur to U2.Ur;

A2.N to N2.N;

A2.S to timer2.S;

Nl.send_path to N2.receive_path;
N2.send_path to N1.receive_path;

(* no replaces *)

end ab_ref;

Appendix V

Utility Routines for Alternating Bit

#include "inet.h”
#define ROLE 1 /* or 0 */
out(channel_list,signal,chan_num,index)
/tl'his routine dispatches a signal on the indicated channel.
xf

struct channel_block *channel_list;

struct signal_block *signal;
int chan_num, index;

{

extern int signal_pending, in_count, out_count;
extern NET_CONN conn;

struct channel_block *channel, *find_channel();
int n;

channel = find_chaonel(channel_list,chan_num,index);

if ((channel->target_channel != NULL) &£&
(channel->target_channel->queued))

signal_pending++;
signal- >next = channel->target_channel->signal_list;

channel->target_channel->signal_list = signal;
else /* send it out on the network */

buf[0] = signal->signal_id;
buf(1] = signal->1lvars.network_channel.packet.id;
buf(2] = signal->lvars.nctwork_channel.packet.data;

buf[3] = signal->lvars.network_channel.packet.seq;

free(signal);

out_count+++;

if ((n =N_send(&conn,buf,16)) = NET_OK)
printf(”>>>> out : send problem %d ”,n);

exit(1);

}

P ¥

struct process_block *system_init()
*

This routine causes the generation of the data structure and then checks
for dangling channel connections.

¢
{

struct process_block *ptr, *process_list, *remove_header();
struct channel_block *c_ptr;

int n;

[* user included dcl */

struct process_block *ioab_ref(};

if (ROLE == 1) /#server*/

= N_open(&conn,”T_port1@cs” ,CLSTWO);
if (n = NET_OK)
{
printf(”> > > service : N_open error %d0,n);
exit(1);

}

n = N_accept{&conn};
i (o '= NET_OK)

printf(”> > > service : N_accept error %d0,n);

75

exit(1);

}

else

{
if (0 = N_connect(&conn, "T_port1@cs”,CLSTWO)) != NET_OK)

printf(®> > > receiver : N_connect error %d” n);
exit(1);
}
}

process_list = remove_header(ioab_ref(NULL));

for (ptr = process_list; ptr != NULL; ptr = ptr->next)
for (c_ptr = ptr->chan_list; c_ptr != NULL; c_ptr = c_ptr->next)
if (c_ptr->target_channel == NULL)
/* oops a dangling connection */
fprintf(stderr,”0YSTEM INITIALIZATION ERROR: dangling”);
fprintf(stderr,” channel in an instance of
ptr->p_ident);

fprintf(stderr,”channel number %d, index %d0,c_ptr->c_id,
c_ptr->index_num);

/* join the ends of the process list into a loop */

for (ptr = process_list; ptr->next != NULL; ptr = ptr->next);

ptr->next = process_list;

return(process_list);

schedule(process_list)
*

This is the main driving routine.

b |

struct process_block #*process_list;

{

extern int signal_pending;
extern int in_count, out_count;

struct channel_block *c_ptr;
struct signal_block *s_ptr, *get_signal();
struct process_block *p_ptr, *p_ptr2;

p_ptr2 = process_list;
p_ptr = process_list;

c_ptr = p_ptr->chan_list;
signal_pending =0;

while ((in_count < 5) || (out_count <5))
/* arbitrary stop condition */

if ((s_ptr = get_signal(&c_ptr, &p_ptr))
{= NULL)
{

/* call the transition routine */

(*{p_ptr->proc_ptr))(p_ptr,c_ptr,s_ptr);

/* move on to the next channel for the
start of the next search */

if (c_ptr->next != NULL)
c_ptr = c_ptr->next,

else

{
p_ptr = p_ptr->next;
c_ptr = p_ptr->chan_list;

}

if ((stremp(p_ptr2->p_ident,”timer_process”) == 0) ||
(stremp(p_ptr2->p_ident,"user_process”™) ==
(*(p_ptr2->proc_ptr))(p_ptr2, NULL NULL);

p_ptr2 = p_ptr2->next;

76

}

N_close(&conn);

}
s ¢/
struct signal_block *get_signal(c_ptr,p_ptr)
/*
This function finds a pending signal on a signal queue.
*/

struct channel_block *(*c_ptr);
struct process_block *(*p_ptr);

struct signal_block *g_ptr, *5_ptr2;
int found= FALSE;

int n, temp;

extern NET_CONN conn;

extern int in_count, out_count;

static int count;

s_ptr2 = NULL;

for (;!found; (*p_ptr) = (*p_ptr}->next,(*c_ptr)=(*p_ptr)->chan_list,
s_ptr2 = NULL)

for (; (((*c_ptr) != NULL) && (!found));
(*c_ptr)= (*c_ptr}->next)

if ((*c_ptr}->signal_list = NULL)
{
found = TRUE;
if ((*c_ptr)->signal_list->next != NULL){
for (s_ptr = (*c_ptr)}>signal_list,
s_ptr2 = s_ptr->next;
s_ptr2->npext != NULL;
s_ptr = s_ptr2, s_ptr2 = s_ptr2->npext);

s_ptr->pext = NULL;
}

else

{
s_ptr2
(*c_ptr)->signal_list

(*c_ptr)->signal_list;
NULL;

I

78

goto end;

if ((stremp((*p_ptr)}->p_ident,”net_proc”) == 0) &&
((*c_ptr}>c_id == 3))

if ((n = N_receive(&conn, buf, buffsize)) <= 0)
if (n < 0)

printf(” read error %d0,n);
exit(1);

s_ptr2 = ALLOCATE(signal_block);
s_ptr2->signal_id = buf|0];
s_ptr2->Ivars.network_channel.packet.id = buf[l};
s_ptr2->lvars.network_channel.packet.data = buf[2];
s_ptr2->lvars.network_channel.packet.seq = buf[3];

in_count++;
goto end;
}
s_ptr2 = NULL;
goto end;
}
}
}
end:
return(s_ptr2);
}
/* */

#tinclude <sys/types.h>
#include <sys/timeb.h>

#include "listdefs.h”
struct time_struct

{

int flag;

int secs;
int millisecs;

schedule_timeout(timer,time_value)
/*
This routine places in the timer passed the value of present time +

"time_value” which will be tested later by ”timer_expired”. The units

of time_value are milliseconds.

*/
struct time_struct #*timer;
int time_value;
{struct. timeb *tp;
ftime(tp);
timer->flag = TRUE;
timer->>secs = tp->time;
timer->millisecs= tp->millitm;
if ((time_value = time_value + tp->millitm) >= 1000)
{tirner->secs++;
timer->millisecs = time_value - 1000;
}
}
e s/

int timer_expired(timer)
/1
This predicate returns TRUE if the timer passed has expired and cancels
it if it has

&/

struct time_struct *timer,

{

struct timeb *tp;

ftime(tp);

if ((timer->flag == TRUE) &&
(timer->secs < tp->time) &&
(timer->millisecs < tp->millitm))
return(TRUE);

else return(FALSE);

/t

cancel_timer(timer)
*

This routine cancels the timer passed

*]

struct time_struct *timer;

{
timer->flag = FALSE;

}

Appendix VI

Alternating Bit Implementation Code

#include <stdio.h>
#tinclude <strings.h>
#include "listdefs.h”

/* type code */

typedel int data_type;

typedel int seq_type;

typedef int id_type;

typedef int timer_type;

typedef struct {
id_type id;
data_type data;
seq_type seq;

ndata_type;

typedef struct {
data_type msgdata,
seq_type msgseq;

msg_type;

typedef struct {
int flag;
msg_type msg,

buffer_type;
typedef int int_type;
typedef struct {

int flag;

int secs;

int millisecs;

time_struct(1];

typedef int request_type;
typedef int message_value_type;

i i

/#* signal block dcl */

81

struct signal_block {
int signal_id;
struct signal_block *next;
union {
struct {
struct { .
data_type udata;

receive_response;
} . .
u_receive_point;
struct {
struct {
data_type udata;

send_request;

}
u_send_point,;
struct {
struct {
timer_type name,
int time;
}-
timer_request,
struct {
timer_type name;
}
timer_response;
} .
§_access_point;
struct {
struct {
id_type id;
data_type data;
seq_type seq;

}

data_request;

struct {
id_type id;
data_type data;
seq_type seq;

}

data_response;

}

n_access_point;

struct {
struct {
id_type id;
data_type data;
seq_type seq;
packet;
}

network_chanrel;

/* process dcl code */
struct process_block {
struct process_block *next;
char p_ident|MAX_IDENT_LENGTH+1];
struct channel_block *chan_list;
struct process_block *refinement;
int (*proc_ptr)();
union {
struct {
int state;
seq_type send_seq;
seq type recv_seq;
bufler_type send_buffer;
buffer_type recv_buffer;
} msg_type p, g;
s_alternating_process;
struct {
timer_type index;
time_struct a_timer;
b
s_timer_process;
struct {
int user_number;
int count;

}

§_user_process;

}

lvars;

h
/* */

/* procedure code */
struct process_block *ioab_ref(p_block) struct process_block *p_block;
{
struct process_block *ioalternating_process();
struct process_block *iotimer_process();
struct process_block *ionet_proc();
struct process_block *iouser_process();
struct channel_block *add_channel_block(), *c_ptr;
struct process_block *add_refinement_header(), *clean_up(),
*process_list;
process_list = NULL;
process_list = joalternating_process(process_list);
process_list = iotimer_process(process_list);

}

/-

84

process_list = ionet_proc(process_list);

process_list = jouser_process(process_list,1);
connect_ports(process_list, 4, 1, 0, 1, 1, 0);
connect_ports(process_list,4, 2, 0, 1, 2, 0);
connect_ports(process_list,4, 3, 0, 2, 1, 0);
connect_ports(process_list,4, 4, 0, 3, 1, 0);

p_block = add_refinement_header(p_block,process_list);
p_block->refinement = clean_up(p_block->refinement);
return(p_block);

“

struct process_block *ioalternating_process(process_list)

struct process_block *process_list;

{

}

/*

struct process_block *p_block, *add_process_block();

extern int alternating_process();

struct channel_block *add_channel_block(), *c_ptr;

p_block = add_process_block(process_list,alternating_process,
"alternating_process”);

p_block->chap_list = add_channel_block(p_block->chan_list,
&c_ptr,TRUL,1,0);

p_block->chan_list = add_channel_block(p_block->chan_list,
&c_ptr, TRUE,2,0);

p_block->chan_list = add_channel_block(p_block->chan_list,
&c_ptr, TRUE, 3,0);

p_block->chan_list = add_channel_block(p_block->chan_list,
&c_ptr,TRUE, 4,0);

p_block->1vars.s_alternating_process.state = 1;

p_block->lvars.s_alternating_process.send_seq = 0;

_block->1vars.s_alternating_process.recv_seq = 0;

p_block->1lvars.s_alternating_process.send_buffer.flag = 0;

p_block->lvars.s_alternating_process.recv_buffer.flag = 0;

return(p_block);

i

alternating_process(p_block,channel signal)

struct process_block #p_block;
struct channel_block *channel;
struct signal_block *signal;

{

struct signal_block *s_ptr;
if ((channe] != NULL) &&
((p_block->lvars.s_alternating_process.state == 1)))
if ((chanpel->c_id == 1) && (signal->signal_id == 2)) {
if (!(p_block->Ivars.s_alternating_process.send_buffer.flag)){
p_block->lvars.s_alternating_process.state = 0 ;

p_block->lvars.s_alternating_process.send_bufler flag = 1,

p_block->Ivars.s_alternating_process.send_bufler.msg.msgdata =
signal->lvars.u_send_point.send_request.udata;

p_block->Ilvars.s_alternating_process.send_buffer.msg.msgseq =
p_block->lvars.s_alternating_process.send_seq;

s_ptr = ALLOCATE(signal_block);

s_ptr->signal_id = 5;

&_ptr->lvars.n_access_point.data_request.id = 0;

s_ptr->>lvars.n_access_point.data_request.data =
signal->lvars.u_send_point.send_request.udata,;

s_ptr->lvars.n_access_point.data_request.seq =

_block->1vars.s_alternating_process.send_seq;

out(p_block->chan_list,s_ptr,3,0);

s_ptr = ALLOCATE(signal_block});

s_ptr->signal_id = 3;

s_ptr->lvars.s_access_point.timer_request.name = 0;

s_ptr->lvars.s_access_point.timer_request.time = 100;

out(p_block->chan_list,s_ptr,4,0);

}

goto dispose;

}

}

if ((channel != NULL) &&
((p_block->>1vars.s_alternating_process.state == 1) ||
(p_block->lvars.s_alternating_process.state == 0)))
if ((channel->c_id == 2) && (signal->signal_id == 0)) {

}

if (p_block->lvars.s_alternating_process.recv_buffer.flag){

s_ptr = ALLOCATE(signal_block);

s_ptr->signal_id = 1;
s_ptr->lvars.u_receive_point.receive_response.udata =
p_block->lvars.s_alternating_process.recv_buffer.msg.msgdata;
out(p_block->chan_list,s_ptr,2,0);
p_block->lvars.s_alternating_process.recv_buffer.flag = 0;

}

goto dispose;

}
if {(channel != NULL) &&
((p_block->lvars.s_alternating_process.state == 0)))
if ((channel->c_id == 4) && (signal->signal_id == 4)) {

if ((signal->lvars.s_access_point.timer_response.name == 0)){
p_block->lvars.s_alternating_process.state = 0 ;

s_ptr = ALLOCATE(signal_block);

s_ptr->signal_id = 5;

§_ptr->lvars.n_access_point.data_request.id = 0;

s_ptr->lvars.n_access_point.data_request.data =
p_block->lvars.s_alternating_process.send_buffer.msg.msgdata;

s_ptr->lvars.n_access_point.data_request.seq =
p_block->lvars.s_alternating_process.send_buffer.msg.msgseq;

out(p_block->chan_list,s_ptr,3,0);

s_ptr = ALLOCATE(signal_block);

s_ptr->signal_id = 3;

s_ptr->lvars.s_access_point.timer_request.name = 0;
s_ptr->lvars.s_access_point.timer_request.time = 100;
out(p_block->chan_list,s_ptr,4,0);

goto dispose;

}

}
if ((channel != NULL) &&
((p_block->lvars.s_alternating_process.state == 1)))
if ((channel->c¢_id == 4) && (signak->signal_id == 4)) {
if ((signal->lvars.s_access_point.timer_response.name === 0)){
p_block->lvars.s_alternating_process.state = 1 ;

p_block->lvars.s_alternating_process.state =
p_block->lvars.s_alternating_process.state;
}

goto dispose;

}

}
if ((channel != NULL) &&
((p_block->1vars.s_alternating_process.state === 0)))
if ((channel->c_id == 3) && (signal->signal_id == 6)) {
if (ack_ok(signal->lvars.n_access_point.data_response.id,
signal- >lvars.n_access_point.data_response.seq,
p_block->1vars.s_alternating_process.send_seq)){
p_block->lvars.s_alternating process.state = 1 ;

p_block->lvars.s_alternating_process.send_buffer.flag = 0;
p_block->Ilvars.s_alternating_process.send_seq =
(((p_block->lvars.s_alternating_process.send_seq + 1)) % 2);

goto dispose;

}
}
if ((channel != NULL) &&

((p_block->lvars.s_alternating_process.state == 1) ||
(p_block->lvars.s_alternating_process.state == 0)))

if ((channel->c_id == 3) && (signal->signal_id == 6)) {
if ((signal->lvars.n_access_point.data_response.id == 0)){

s_ptr = ALLOCATE(signal_block);

s_ptr->signal_id = §;

&_ptr->lvars.n_access_point.data_request.id = 1;

s_ptr->lvars.n_access_point.data_request.data =
signal- >lvars.n_access_point.data_response.data;

s_ptr->lvars.n_access_point.data_request.seq =
signal->lvars.n_access_point.data_response.seq;

out(p_block->chan_list,s_ptr,3,0);

if((signal->lvars.n_access_point.data_response.seq ===
p_block->lvars.s_alternating_process.recv_seq)) {

p_block->lvars.s_alternating_process.recv_buffer.flag = 1;
p_block->lvars.s_alternating_process.recv_bufler. msg. msgdata =

signal- >lvars.n_access_point.data_response.data;
p_block->1vars.s_alternating_process.recv_buffer.msg.msgseq =

signal->lvars.n_access_point.data_response.seq;
p_block->lvars.s_alternating_process.recv_seq ==
(((p_block->lvars.s_alternating_process.recv_seq + 1)) % 2);

)
}

goto dispose;
}
}

if (channel != NULL) {
requeue(channel signal);

signal=NULL;
}
dispose:
free(signal);
/e ‘

int ack_ok(id,seq,send_seq)id_type id;
seq_type seq, send_seq;

int rtv_ack_ok;

{ rtv_ack_ok = (((id == 1)) && ((seq == send_seq)));
return(rtv_ack_ok);

}

I* */

struct process_block *iotimer_process(process_list)
struct process_block *process_list;

{

struct process_block *p_block, *add_process_block();
extern int timer_process();
struct channel_block *add_channel_block(), *c_ptr;

p_block = add_process_block(process_list,timer_process,”timer_process”);

_block->chan_list = add_channel_block(p_block->chan_list,&c_ptr, TRUE,1,0);

for (p_block->lvars.s_timer_process.index = 0;
p_block->lvars.s_timer_process.index++ <= 0;){

p_block->1lvars.s_timer_process.a_timer|
_block->Ivars.s_timer_process.index|.flag = 0;
p_block->1vars.s_timer_process.a_timer|
p_block->Ivars.s_timer_process.index].secs = 0;
p_block->lvars.s_timer_process.a_timer|
p_block->lvars.s_timer_process.index|.millisecs = 0;

)
}

87

return(p_block);

}
[

%

timer_process(p_block,channel,signal)

struct process_block *p_block;
struct channel_block *channel;
struct signal_block *signal;

{

struct signal_block #*s_ptr;

if ((channel != NULL))
if ((channel->c_id == 1) && (signal->signal_id == 3)) {
{

schedule_timeout(&p_block->>lvars.s_timer_process.a_timer|
signal->lvars.s_access_point.timer_request.name,
signal->lvars.s_access_point.timer_request.time);

}

goto dispose;

}

if (channel = NULL) {
requeue(channel signal);
signal=NULL;

}

{

timer_type index;

index = random_select(0,0);

if (timer_expired(&p_block->lvars.s_timer_process.a_timer|index])) {

p_b!ock->lvars.s_timcr_process.a__timor[index].ﬂag = 0;
s_ptr = ALLOCATE(signal_block);
s_ptr->signal_id = 4;
s_ptr->lvars.s_access_point.timer_response.name = index;
out(p_block->chan_list,s_ptr,1,0);

}

goto dispose;

)

}

dispose:

free(signal);

/i

*/

struct process_block *ionet_proc(process_list)

struct process_block *process_list;

89

{

struct process_block *p_block, *add_process_block();

extern int net_proc();

struct channel_block *add_channel_block(), *c_ptr;

p_block = add_process_block{process_list,net_proc,”net_proc”);
p_block->chan_list = add_channel_block(p_block->chan_list,&c_ptr, TRUE,1,0);
p_block->chan_list = add_channel_block(p_block->chan_list,&c_ptr, FALSE,2,0);
p_block->chan_list = add_channel_block(p_block->chan_list,&c_ptr, TRUE,3,0);
return(p_block);

f* o
net_proc(p_block,channel,signal)

struct process_block *p_block;
struct channel_block *channel;
struct signal_block *signal;
{
struct signal_block *s_ptr;
if ((channel != NULL))
if ((channel->c¢_id == 1) && (signal->signal_id == 5)) {
{

s_ptr = ALLOCATE(signal_block);
s_ptr->signal_id = 7,
s_ptr->lvars.network_channel packet.id =
signal->lvars.n_access_point.data_request.id;
s_ptr->lvars.network_channel.packet.data =
signal->Ivars.n_access_point.data_request.data;
s_ptr->lvars.network_channel.packet.seq =
signal->lvars.n_access_point.data_request.seq;
out(p_block->chan_list,s_ptr,2,0);
}
goto dispose;
}

}
if ((cbannel != NULL))

if ((channel->c_id == 3) && (signal->signal_id == T)) {

{

s_ptr = ALLOCATE(signal_block);

s_ptr->signal_id = 6;

s_ptr->lvars.n_access_point.data_response.id = signal->lvars.network_channel.packet.id;
s_ptr->lvars.n_access_point.data_response.data = signal->lvars.network_channel.packet.data;
s_ptr->lvars.n_access_point.data_response.seq = signal->lvars.network_channel.packet.seq;
out(p_block->chan_list,s_ptr,1,0);

goto dispose;
}
}

if (channel != NULL) {
requeue(channel,signal);

signal=NULL;

}
dispose:
free(signal);
J* s}

struct process_block *iouser_process(process_list,number)

struct process_block *process_list;

int number;

{

struct process_block *p_block, *add_process_block();

extern int user_process();

struct channel_block *add_channel_block(), *c_ptr;

p_block = add_process_block(process_list,user_process,” user_process”);
p_block->chan_list = add_channel_block(p_block->chan_list,&c_ptr, TRUE,1,0);
p_block->chan_list = add_channel_block(p_block->chan_list,&c_ptr, TRUE,2,0);
p_block->lvars.s_user_process.user_number = number;
p_block->lvars.s_user_process.count = 0;

return(p_block});

/e :/

user_process(p_block,channel,signal)

struct process_block *p_block;

struct channel_block *channel;

struct signal_block *signal;

{

struct signal_block *s_ptr;

if ((channel '= NULL))
if ((channel->c_id == 2) && (signal->signal_id == 1)) {
{
{
printf("User 7);
priotf(”%6d”,p_block->lvars.s_user_process.user_number);
printf(” received the message "),
printf("9¢d” signal-> Ivars.u_receive_point.receive_response.udata);
printf(”0);

goto dispose;
}
}

if (channel != NULL) {
requeue(channel signal);
signal=NULL;

}

{

request_type request;

message_value_type message;
request = random_select(0,1);
message = random_select(1,9);
if ((request == 1)) {

s_ptr = ALLOCATE(signal_block);
s_ptr->signal_id = 0;
out(p_block->chan_list,s_ptr,2,0);

goto dispose;
}
}

{

request_type request;

message_value_type message;

request = random_select(0,1);

message = random_selec((1,9);

if ((((request == 0)) &&
((p_block->Ivars.s_user_process.count < 5)))) {

printf("User ");

printf("%d",p_block->lvars.s_user_process.user_number);

printf(” sent the message ”);

printf(”%d” ,message);

printf(”0);

p_block->lvars.s_user_process.count =
(p_block->Ilvars.s_user_process.count + 1);

s_ptr = ALLOCATE(signal_block);

s_ptr->signal_id = 2;

s_ptr->lvars.u_send_point.send_request.udata = message;

out(p_block->chan_list,s_ptr,1,0);

}

goto dispose;

}

}

dispose:
free(signal);

#include "fdtutil.c”

91

Appendix VII

Running The Compiler

To run the compiler is simple. Simply enter:

- fdt <inputfile >fdt.c

The outputfile fdi.c will contain the generated C code which is compiled and linked with the

utility routines with the following command:

- make

This runs the make command which knows how to ‘“‘make” programs, see the manual for

further details.

xcii

