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ABSTRACT 

Multicasting provides a convenient and efficient way to perform one-to­
many process communication. This paper presents a kernel model which sup­
ports reliable group communication in a distributed computing environment. 
We introduce new semantic tools which capture the nondeterminism of the 
underlying low level events concisely and describe a process alias-based struc­
turing technique for the kernel to handle the reliability problems that may 
arise during group communication. The scheme works by maintaining a close 
association between group messages and their corresponding reply messages. 
We also introduce a dynamic binding scheme which maps group id's to mul­
ticast addresses. The scheme allows the detection and subsequent recovery 
from inconsistencies in the binding information. Sample programs illustrating 
how the semantic tools may be used are also included. 

* Also appears in the Proceedings of the IEEE Computer Society Real-Time Sys­

tems Symposium, New Orleans, Dec. 1986. 
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ABSTRACT 

One-to-many (group) interprocess communication is 

useful in many real-time distributed applications. It may 

be conveniently and efficiently realised using the multicast 

feature available in contemporary local area networks. This 

paper presents a kernel model which supports reliable 

group communication in a distributed computing environ­

ment. We introduce new semantic tools which capture the 

nondeterminis~ of the underlying low level events con­

cisely and describe a process alias-based structuring tech­

nique for the kernel to handle the reliability problems that 

may arise during group communication. The scheme works 

by maintaining a close association between group messages 

and their corresponding reply messages. Sample programs 

illustrating how the semantic tools may be used are also 

included. 

L Introduction 

In distributed system architectures, one-to-many 

(group) interprocess communication {f PC) is a useful para­

digm for structuring intra-program communication in diatri­

butA:d programs7
. It refers to an [PC activity by which a sin­

gle message may be transfen;-ed from one part of a computa­

tion to many other parts which may be in the same or 

diff'ercnt machines in the network. Ex.amples are searching a 

file in the network and propagating an update to replicated 

databases. 

The need for group communication is inherent in many 

real-time distributed applications. An example is an embed­

ded system such as an on-board control system for aircrafts 

in which the functional components are replicated and/or 

distributed, Car overall system reliability, acr~i, a number of 

proces.'IOni interacting with one another over a shared bus11• 

One-to-many IPC i.11 us~ul in such systems to co-ordinate 

among the various components. Anoiher example is a_set of 

ma.chines interconnected by a local aru uetwQrk"(LAN)' and 

interfaced to an industrial plant ( e.g., a radar control sys­

tem12) in which the monitoring and the control functions are 

performed by these machines. One-to-many IPC is the tool 

of choice in this type of systems to propagate the state value 

from a sensor to multiple monitoring/control stations and to 

transmit a proces.~ed output to multiple actuators in the 

plant. Besides these application-driven requirements, the 

availability of multicast feature in many of the current LAN 

technologies◄ is providing an impetus to programs, particu­

larly those with real-time constraints, to use one--to-many 

!PC because multicaating supports one--to-many rPC more 

efficient!y3
• 

In order that distributed programs may systematically 

employ one-to-many IPC for intra-program communication, 

adequate operating system tools al'e required. In general, 

such tools should handle the associated semantic issues 

which are different and more complex than those of one-to­

one IJlO. Since different applications may require di.fferent 

degrees of reliability in the communication mechanism, the 

tools should provide a powerful and flexible semantics to 

on~to-many IPC as well as a uniform structural base for 

using this form of [PC. The requirement for such type of 

tools is stronger in real-time programs because of the time 

constraints under which they operate. The lack of adequate 

program-level tools hitherto has forced the realisation of an 

equivalent communication by repeated one- to-one IPC with 

the attendant -penalty on efficiency and semantic con.sistency. 

This could have adverse implicaUons on the structure and 

the real-time behaviour of distributed programs. 

In this paper, we describe the mechanisms provided by 

the kernel to support a flexible form of reliable one-to-many 

lPC. Applications may build the required recovery pro­

cedures on top of these kernel mechanisms in the client­

server i/o interface. 

2, Process groups and group communication 

Different types of operating system objects such as mul­

ticast socket.s6 and pr~ groups' have been introdu-ced to 



encapsulate the notion of one-to-many IPC. Beca4se they 

can be more easily extended to a distributed environment, 

we have adopted process groups based on the message­

passing abstractio_n as the basis for our discussion. 

A process group is a set of processes that share one or 

more abstract objects and interact among themselves to pro­

vide a unified interface to the external world. An example is 

a distributed file server structured as a group of processes 

and running on a set of workstations on a LAN. The 

. members in a group may be structured in a linear, hierarchi­

cal or other relationships based on the nature of information 

flow among them11• For simplicity, we shall consider only the 

linear group structure in our discussion. 

Group communication is a kernel mechanism by which 

a process may interact with process groups. It refers to a 

communication activity whereby a sender sends information 

to be simultaneously delivered to one or more recipients with 

the latter named. as a group rather than individually. The 

reliability semantics associated with the group communica­

tion, i.e., the notion of success or failure of the group com­

munication, must capture the failures that may occur during 

communication with members of the group. We describe 

these issues in sections 3 and 4. 

3. Semantics of group communication 

To understand the underlying semantic issues better, 

we first compare this mechanism with one-to-one IPC. 

One-to-one IPC refers to a message-passing activity between 

one sender and one receiver with the communication 

partners known to each other and often explicitly named. 

The semantics of such an activity is well-defined because 

with a single receiver, the sender knows from which process 

to expect a reply if the activity is successful, and which pro­

cess has not received the message if the activity fails for 

whatever reasons. On the other hand, during a group com­

munication activity, each of the group members as well as 

the interaction with that member may fail independently. 

For example, in a group· consis ting of N members, K of them 

may fail independently; of the remaining (N-K) members, 

perhaps only R (R :$ (N-K)] may receive the group message 

due to the independent failure of the communication activi­

ties. Is a groµp communication activity successful when 

some members of the group did not receive the message 

(either due t~ communication failures or because the 

processes have failed)? Also how should the sender deal with 

the reply messages, the n.umbe.r and sources of which are 

unknown before they arrive? How does the sender know if 

all {Ilembers in the _group have received the message since 

acknowle,;Jgement.s or replies may have been lost? These 

inher<:_n~ly non-detemtlnistic issues m&ke the reliability 

semantics of & group IPC more complicated than that of a 

one-to-one IPC. 

9. t Event-based analysis of group communication 

The semantics of any inter-machine activity is derived 

from the low level events {Ei} that occurred during the 

activity. We shall denote this association by 

Nm 

{ s1}J=1,2, .. -+ {Eih=1,2,.. 

where {s1} is the abstract characterisation of {Ei} exposed by 

the kernel to the applications. Consider, for example, a 

synchronous IPO between processes O and S residing on sites 

Mc a.hd Ms respectively. The outcomes specified by the ker­

nel are s1 = SUdCESS, s2 = NON_EXISTENT_PROCESS, 

s3 = SITE_.F All,ED, s, = NETWORK_,F AILED and s5 = 
SITE_UNREACHABLE2• Each of these outcomes is an 

abstract representation of the state of the participating com­

ponents in the IPC, namely the pentt\,-tuple <C, M0 , net­

work, Ms, S>. Since each of the componen_t.s may be opera­

tional (UP) or failed {DOWN) denoted by the states U &nd 

D respectively, the semantics of each of the outcomes as 

viewed from the client process may be given by: 

oem 
SUCCESS-+(U AU AU AU AU), 

oem 
NON_EXISTENTYROCESS-t (U A U A U AU A D}, 

oem 
SITE_FAILED-+(U AU AU AD AD), 

aem 
NETWORK_FAILED-t(U AU AD AU AU) V 

(U A U A D A D A D) V 

(U A U A D A U A D), 
oem 

SITE_UNREACHABLE-+ (U A U A U A D A D} V 

(U A U A D A U A U) V 

(U A. U A D A. D A. D) V 

(U A. U AD A. U A D). 

Thus a quantitative analysis of the events that comprise the 

activity enables us to provide an adequate and concise 

abstraction of the underlying events. 

BasicalJy, group communication supported. by a distri­

buted kernel may be of two types -- Jitatdcss and blocking 

(analogous to their one-to-one counterparts). We consider 

them separately: 

3. 1.1 StatQleo« group communication, A stateless group 

communication is a single event activity that does not main­

tain any state information as to its success or failure. It typ­

ically uses a network level multicast datagram with no 

guarantee on reliable or confirmed delivery. The stateless 

nature of such a multicaHt datagnun transmission at the net­

work level can be easily mapped onto a high level stateless 

group communication operation. 

We may abstract. multicMt datagram as a series of uni­

cast datagrams triggered at the source at infinitesimally 



spaced intervals. Each of euch datagrams may arrive success­

fully at the destination (ARRIVAL event) or lost/damaged 

(NON_.ARRIV AL event). Thus a multicast datagram gen­

erates a set of ARRIVAL and NON_.ARRIV AL events, one 

at each of the recipient sites, given by 

Edgrm c {ARRIVAL, NON..,ARRIVAL} x 
{M1, M2, .. , MN} 

where the M1's (i==l,2, .. ,N) are the component datagrams of 

the mu!Ucast message and 'X' denot~ the cartesian product 

of the two sets. Note that (ARRIVAL, Mi) and 

(NON_ARRIV AL, Mi) are mutually exclusive events. 

Since each member of the group may independently 

exist or fail, represented by the states EXISTENT and 

NON_EXISTENT, the set of events generated by a stateless 

group communication operation built on top of multicast 

datagram is given by 

E,tla c {EXISTENT, NON_EXISTENT} x 

{Gp G2, .. , GN} x Edg,-m 

where the G1's (i=I,2, .. ,N) are the individual members of the 

group. Note that (EXISTEJNT, G1) and (NON_EXISTENT, 

G1) are mutually exclusive elements {i= I,2, .. ,N). 

9.1.$ Blocking groug communt'cation. In a blocking type 

primitive, the sender is blocked until a certain number of 

replies from the group members are received. The multicast 

datagram transmission _triggers, say R arrival events (R :S 
N) at the receiving sites given by 

E = {X : X = (ARRIVAL, M.) A msg l 

X E Edgrm ' (i=l,2, .. ,N) }. 

The R' (R' :S R) reply events generated at the receiving sites 

is given by 

E,ep c {EXISTENT, NON_EXfSTENT} x 

{Gl' G2,·· • GN} X F.meg· 

These R' events cause R" events (R" :S R1 pertaining to the 

arrive.I of these replies at the sending site are given by 

Eblk c {ARRIVAL, NON..,ARRIVAL} x E,ep· 

The above analysis shows the large number of low level 

events that may occur during a group communication 

activity. Applications should be designed to handle the asso-
oem 

dated reliability semantics, namely, s,u,-+E,ti. and 
Nm 

sblk--+ Ebik, and be structured accordingly {s,u, and sblk are 

the representations used to specify the outcomes of the 

activities concerned). 

9.2 Semantic tools 

Despite the large combinations of low level events that 

may occur as illustrated by the event-based analysis, the 

-.3-

semantics can be concisely abstracted. This is because, unlike 

the one-to-one IPC, each individual low level event does not 

by itself significantly influence the outcome of the group 

communication activity, thus not all low level even ts need to 

be considered. Neverthless, existing semantic tools used for 

one-to-one IPC were not designed to handle the non­

determinism a.ssociated with group ·communication thereby 

neceasitating new tools. Such tools must concisely, ade-
.. m 

quately and uniformly convey the semantics s,tl,-+ E,11, and 
_,. 

sb1k--+ Eb11i to applications. 

Two basic notations are introduced to characterize the 

success/failure of group communication: 

9,t.1 Degree of delivm1, It is defined as the fraction of 

the members in the group that has received the message. 

Thus, for example, if R members in a group of N actually 

receive a message sent, then the degree of delivery r of the 

message is given by 

R 
r = N' (0.0 $ r :S 1.0). 

This notion allows a sender initiating a group message to 

specify the desired delivery requirement independently of the 

size (cardinality) of the group. It also implici tly specifies the 

desired degree of synchronisation with the group members, a 

useful paradigm for real-time applications. It may be used by 

the IPC layer supporting group communication to quantify 

the degree of success or failure. The notion of confirmed 

delivery is based on the number of replies the sending site 

has received. Thus if R members of the group have received 

the message and replied (R :S N). and R' replies arrive at the 

sending site (R' :S R), then 

Degree of delivery = ~ , and 

R' 
Degree of confirmed delivery = N" 

These notions capture the underlying characteristics 

that the success/failure of a group communication usually 

does not depend on that of any of the individual members. 

For example, even if a member fails during a group commun­

ication, the operation may succeed by the arrival of replies 

from other members. In other words, the semantics of the 

operation depends more on the macroscopic events pertain­

ing to the group behaviour than those of individual 

members. 

For applications requiring a specific number of replies 

and/or where the group size is not known, we provide 

another form of specifying the degrees of delivery and 

confirmed delivery where the desired number of replies is 

specified as an integer. 

A group send primitive incorporating the above notion 

takes the form 



status = group_send {msg, group_id, r, time_out). 

The message <msg> is sent Lo Lhe members contained in the 

group <group_id> . <status> is a data structure returned 

by the kernel to indicate the outcome of the primitive; <r> 

is a data sLructure used to define the scope of the communi­

cation operation requesLed (i.e., iL specifies the desired degree 

of confirmed delivery): 

Case 1. r = <FRACTION, 0.0>. 

The operation degenerates into a datagram send opera­

tion. The sender is . unblocked immediately after the 

message is sent. At the receiving sites, reply mes:iages to 

this operation are inhibited by the kernel. Tl1i.e may be 

useful in certain real-time applications such as sending 

periodfo sampled data values from a sensor to multiple 

monitoring stations in a plant; such updates may not 

require co!l{irm,ed delivery since euors due to lost 

samples will usually be corrected by a subsequent sam­

ple. 

Case 2. r = <FRACTION, val>, where 0.0 < val :$ 1.0. 

The operation blocks the sender. As part of the message 

transport mechanism, the kernel acquires the cardinality 

N of the group from the hosts• containing the members 

of the 
I 
group. After receipt of at least r*N replies or 

timeout, whichever occurs earlier, the kernel unblocks 

the sender. 

Case 3. r = <INTEGER, num>, where num > 0. 

The operation blocks the sender until the specified 

numb~r of replies are received or timeout occurs, which­

ever is earlier. 

The sender may either belong to the same group as the reci­

pients or be external to the group. 

9.t • .e Completion varjablts. When the kernel terminates 

a group communication, it returns two values to the sender 

through the variables ATLEAST and ATMOST. These 

values are interpreted as follows: 

At least a fraction s1 of the total number of 

members in the group has received the message. 

ATMOST(s2) 

At most a fraction s2 of the total number of 

members in the group has received the message. 

Note that (0.0$s1:$s2$1.0). These completion variables 

characterise the degree of success/failure of the group com­

munication, and they are returned in the <status> data 

structure (refer to the primitive in section 3.2.1). 

• A hoot u an _abetrad object -odaled with a particulor inotantiation of a 
machine. · 

The ATMOST(s2) and ATLEAST(s1) tools bring 

out two characteristic aspects of group communication, 

namely, partial completion and partial success respectively. 

Partial completion refers to a situation where communication 

with all N . members of the group is not yet completed. If 

communication is known to have been completed with R1 

members (R1<N), and of these, only R2 is known to be suc­

cessful (R2:$R1), then the semantics of the operation is 

R, R1 
ATLEAST(N) A ATMOST(N). Partial success refers 

to a situation where communication with all N members of 

the group is completed but only R2 of these is known to be 

successful (R2<N). This is captured by the expression 
R, 

ATLEAST(N) A ATMOST(l.0). In terms of these 

semantic tools, complete success and complete failure are just 

two special cases, namely ATLEAST(l.O) and 

ATMOST(O.O) respectively. 

For a stateless group communication, since no informa­

tion is maintained about the success/failure of the activity, 

the. kernel may only return ATLEAST(0.O) A 

ATMOST(l.O). A simple form of blocking group communi-

cation is provided in the V-System5 where r = ~, i.e., the 

sender blocks until at least one member of the group has 

received the message and replied, or timeout occurs, which­

ever is earlier. In this form, the sender need not possess 

knowledge of the size and/or membership of the group. In 

terms of our semantic tools, the return code for the V-

System primitive is ATLEAST( ~ ) A ATMOST(l.O) 

when the primitive is unblocked by a successful reply; when 

unblocked by a timeout, the return code is ATLEAST(0.O) 

A ATMOST(l.0). 

9,9 Partial communication 

It is important that applications are aware of the possi­

bility of partial communication because of its implications .. 

Consider the group communication primitive introduced ear­

lier in section 3.2.1. Partial communication is possible in cer­

tain communication architectures where all members of the 

group cannot be reached by a single message-passing event. 

Examples are group communication implemented on top of 

one-to-one IPC and group communication spanning intercon­

nected LANs. 

Consider the situation in which an application requires 

a. confirmed deliv:~ry to R members. We considllr __ the _ 

following scenarios: 

(i) R«N. 

The communication activity may be declared suc­

cessful after completion of communication with R' 

members (R$R'<N). Thus the IPC layer has not 



attempted to communicate with all members in 

the group. 1h this eense, the communication 

activity is incomplete though successful. 

(ii) Inadequate timeout intervals. 

If the timeout interval specified for the group 

communication is not sufficient to contact enough 

mem~ers in the group, as is likely in applications 

with certain real-time deadlines, premature termi­

nation of the communication is likely. Note that 

this is different from the case where all members 

have been contacted but the timeout interval is 

not sufficient to receive enough replies. 

(iii) Network partitioning in the midst of the message-

passing activities. 

A network failure may occur during the sequence 

of message transmissions which may result in par­

titioning of the group. With some network 

hardware, the kernel can detect this failure ena­

_bling appropriate recovery. 

(iv) Incorrect binding of group id's to the members in the 

group. 

Any inconsistency in the binding that arises due 

to changes in the group constituency may lead to 

undetected incomplete communication in certain 

situations. 

Our proposed semantic tools may be used to characterise 

such anamolies in group communication. 

3.3.1 Group communication on tov of one-to-one (PC. 
The IPC layer that implements the group communication 

primitives maintains a list L(G) of the members of the group 

G, and sends a one-to-one message to each member at the 

corresponding unicast address; each of these one-to-one com­

munication is supported by a point-to-point protocol such as 

the symmetric polling protocol2 and the paired message 
protocol10. The cardinality N(G) of the group is derived from 

L(G). 

The semantics of such a group communication primitive 

Sgrp/l-l is to be built in terms of that of the individual one­

to-one IPC primitives S
1
_1 and the low level events that may 

occur during such a sequence. Let S1-1 be {SUCCESS, 

NON~XISTENT_FROCESS, SITE_UNREACHABLE} 

describing the various failure conditions2
, and let L(G) = 

{gl' g2_, .. , gN}. Suppose after K one-to-one IPC (with success 

or failure, K < N(G)), the group communication activity ter­

minates for any of the reasons discussed before. Then the 

output events that constitute the group communication form 
a set given by 

where {SUCCESS,g1), (NON_EXISTENT_PROCESS,gi) and 

(SITE_UNREACHABLE,g) are mutually exclusive events 

for i = 1, 2, .. , K. Thus the possible degree of delivery (r) and 

the confirmed degree of delivery (r1 are given by 

K 
r= N' and 

K' . 
r' =-,where 

N 

K' = card [ { X: X = (SUCCESS,g1) A 
X E El-1, (i=l,2, .. ,K) } ). 

'card(}• is a function that returns the cardinality of a set. 

Thus the semantics of the primitive is 

Mm 

S11IP/l-l = ATLEAST(r~ A ATMOST(r) -+E1_1 

ff.9.t Group ,ommynication on top of network multic-ast. 
Suppose the IPC layer implements the group communication 

primitives on top of network multicast. If the group is 

located on a single LAN, the transmission of the message to 

the individual members is a single event. The multicast 

address A(G) associated with the group G is essential in 

such an approach. The IPC layer multicasts the message at 

address A(G) and collates the replies from the individual 

members over the timeout interval. The semantics of the 

primitive, then, is to be built in terms of the multicast 

transmission event, the reply and other related events. A 

timeout or network partitioning event may place the sending 

site in one of two situations, namely the message has been 

multicast or not multicast. In the former case, all members 

in the group may have received the message implying an 

ATMOST(l.0) semantics while the later case indicates a 

failure resulting in an ATMOST(0.0} semantics. Intermedi­

ate values of the degree of delivery is not possiblet. 

However, if a process group spans across interconnected 

LANs, a single group communication activity causes a 

sequence of multicast events to be triggered at the interven­

ing gateways. Each multicast event atomically delivers the 

message to the subset of the group on the associated local 

network. Since gateways may fail, partial completion may 

result; but the granularity of delivery on a particular LAN is 

the entire subset of the group that resides on it. For exam­

ple, let sc, and sc
2 

be the subsets of the group G that reside 

on LAN1 and LAN2 respectively, and let a sender on LAN1 

initiate a group message. If the gateway failed before the 

multicast message is relayed onto LAN2, the semantics is 

given by 
oem 

SvP/M = ATLEAST(r1) A ATMOST(r2) -+EIIIP 

R1 card(sc ) 
where r1=-, r2= 1 

, (R1 is the number of replies 
N N 

received by the sender from sc,), and Egrp is the set of events 

comprising the communication activity. 

3.3.B lm11li,ations of pgrtjal communii;atjon. Depending 

f Thuo group cx,mmunicatlon lmplomented by network-multicut I, ,omantical­
ly different from that by ropeated on•to-<>ne IPC. 



on the applications , part ial communication might require 

specific high level protocols to counter it. For example, in the 

CffiCUS system6 which implements group communication 

using one-to-one IPC, partial completion may result if the 

group constituency changes without properly updating the 

membership list at the sender's site. Since CIRCUS requires 

confirmed execution or the operation specified in a group 

message by all members of the group, the designers circum­

vented th.is problem by using an unconventional protocol 

wh ereby the group id changes whenever the group consti­

tuency ch~nges. This forces the sending site to rebind to the 

changed id, and in the process, correct its membership list. 

Also, for group communication using one-to-one IPC'e 

and those across interconnected LANe, there is an implicit 

ordering in which the meesage is communicated to the group 

members. This implies a priority 8S8ignment among the 

group members which violates the semantics of process 

groups. TypicaUy, membera lower down in the ordered list 

are lees likely to be communicated during the group com­

munication activity. Though some form of dynamic priority 

reassignment techniques might be used to enhance the 

chance of fairness in communication, such techniques do not 

eliminate the issue. Note that the high level issues arising 

from these ana.molies in communication might be different 

depending on the underlying cause. 

Examples illustrating how the above semantic tools 

may be used by application programs are given in the appen­

dix. 

4. Structuring tools fo r gro1m communication 

We now look into the structural elements needed by 

the distributed kernel to handle the reliability issues that 

may a rise du.r ing grou p communication. Basically, this 

requires moui toring of events on the machi nes part icipating 

in a group communicat ion as well as the flow of sta te infor­

mation among them. We ba ve used process aliases• a.s the 

primary structuring tools in kernel deaig,ns to perform such 

functions and hence to provide appropriate semantics to 

one-to-one IPC against failure events and process reloca­

tions1•2. Such tools may, in principle, be used in designing 

kernels to support process groups as well. However, the func­

tionality of. such aliases depend on the type of semantics 

required. 

The kernel at the sending site may create invisible 

aliases for the sending process at the member sites; these 

aliases may monitor the progress of events during the group 

• A proceN aliu i1 a li1ht-weirrht executin1 ontity created by a pro-. 01' bmel 
( known u lnvioibl• allu io the lat&..- caN) lo perform a w•ll•d•flned and 1impl• 
runclion. It may ...,.,&, on a di!T!f""'I oddr- 1pac1 {indudln, the k.mol -) 
on th• oame 01' a dlfrONJtt maduno from that of ita cr•tor. It d0e1 not hav. in­
dependent exht•nc.. It can not eel up 1tronJ bindinp In the ,y,,tom and aati,ft,. 
other propertiea 10 that it may be created and d .. t,oyed inexponllvely. 

communication and dispatch state information back to the 

sending site. However, unlike the one-to-one case, the 

number of microscopic events that may occur per communi­

cation activity is large, creating excessive message traffic and 

making event monitoring at the low level expensive. 

Secondly, as noted earlier, failure events with respect to indi­

vidual members do not individually affect the outcome of the 

communication activity. Therefore, it is necessary only to 

monitor essential macroscopic events. 

1.1 The kernel requirements 

The kernel should provide a consistent message-passing 

semantics against failures of the group members during a 

group communication. Furthermore, unlike the case of a 

blocking one-to-one IPC, the sender and the recipients in a 

group communication are not tightly synchronised. For 

example, a sender may be unblocked during a group com­

munication and send further messages t<;> the group many 

times before some recipients get around to replying to the 

first message. This may arise, for example, because a member 

site is heavily loaded or is much slower than other member 

sites. This may lead to the following undesirable phenomena 

at the kernel level:-

The queueing up of group messages at some member 

sites pertaining to already-completed group communica­

tion activities. Such messages are meaningless particu­

larly if messages have expiry deadlines as in real-time 

applications. 

The flow of unnecessary reply messages for already­

completed communication activities. 

The undetected pairing of reply message and group 

message belonging to different communication activities. 

For example, a reply from a member for the j-th group 

message may be construed by the sender as a reply to 

its on-going k-th group communication (k > j). 

The first two phenomena consume system resources unneces­

sarily and should be eliminated or minimised. The third 

phenomenon is logically incorrect, and should be eliminated. 

The solution to the problems lies in maintaining the associa­

tion between group messages and reply messages. 

LB Process alias basr; d strn cturr; 

In this structure, the association between group mes­

sages and reply messages is maintained partly in the 

member's process descriptor and partly in a remote alias 

residing at the member site created on behalf of the sender 

(see Figure 1). When a sender C sends a message to the 

group consisting of N members, the kernel at the sending site 

sets up an invisible alias Act at the local site and an invisible 

alias ACI\ at the i-th member site _(i=l,2, .. ,N) . These alias.es 
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Figure 1. A process alias based structure to 
implement group communication. 
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are set up by the initial message that is multicast , and are 

destroyed upon completion of the communication activity or 

the failure of the sender. In addition, when the i-th member 

replies or fails, the alias Acr; associated with it is destroyed. 

The remote alias Acr
1 

serves two functions : i) maintains 

an image of the state of the sender at the i-th member site, 

and ii) acts as a remote repository of the group message 

M(snd_seq) where <snd_seq> is the sequence number of the 

on-going group communication activity at the sender's site. 

A may be construed as maintaining the state variable 
Cl) 

<snd_seq> that is updated by the initiation and completion 

events occurring at the sending site for the group communi­

cation activity. Another state variable <rev _seq>, which is 

the sequence number of the group message currently being 

processed by the member, is maintained in the member's 

process descriptor. There is one <rev _seq> for each con­

current communication stream in which the process is 

engaged in. If the member is not currently processing any 

message from the sender, the corresponding <rcv_seq> is 

assigned a null value. 

4,2.1 The mu,ltjca,?t protocol. Ad engages in an asym­

metric protocol with the Acri's. Ad periodically multicasts an 

l_AM_HERE( <snd_seq>) message to the Aa,,'s indicating 

that the sender C and the communication activity is still 

alive. If the communication activity completes, Ac1 destroys 

itself after multicasting an 

ACTIVITY _COMPLET~( <s~d_seq>) message. If C fails, 

•• We aaaume • r•liaation of aroup communication on top cl network mutt..,_ 
cut. 

-1-

Ac1 destroys itself after mulLicas ting an ACTIVl'l'Y _ABORT 

message. On receivin g ei tl1 er one of the messages, each. Acr
1 

destroys itself. If the message is lost or if the machine Mc 

fails or if the network partitions isolating one or more 

members from Mc, the Aa/s affected eventually recover by 

the protracted absence of the I_}..M_HERE message from Ad, 

and destroy themselves. When a group member (say the j-th 

member) issues a reply operation to a group message, the 

kernel may dispatch the reply on.ly if the concerned alias AaJ 

exists; otherwise the kernel fails the reply operation. Acri is 

destroyed when the reply message is sent. 

4 • .e.2 Recover!/ procedure al the receiver site:. Consider 

the followin g events occu rring at the i- th member site. 

Event 1. The member issues a grp_receive operation. 

If the associated <rev _seq> is not null, the kernel fails 

the attempt by the member to receive a message before 

the message M( rev ..Jleq) currently beil)g processed has 

been replied. If < rcv_seq> has a null value, the kernel 

checks for the existence of Acr
1
• If Acri exists, the group 

m essage M(snd_seq) is delivered to the member and 

< rcv_seq> is updated to the value contai.ned in 

<snd_seq> . Otherwise the kernel blocks the receiver to 

await a new message from the sender, and resorts to an 

asynchronous protocol to ascertain the existence of the 

sender. 

Event 2. The member issues a stateless grp_reply opera-

tion. 

If the corresponding <rev _seq> has a null value, the 

kernel fails the attempt by the member to reply to a 

non-received message. If <rcvJeq> is not null, the ker­

nel checks for the existence of Acri- There are two cases 

to consider: 

(i) Acq exists, ind icating that there is an on-going group 

commun icat ion activity with the sequence number 

<snd...,seq>. 

If <snd_seq> is equal to <rcv_seq>, the kernel 

dispatches the reply message with a sequence 

number=<snd_seq> and destroys Ac,:,. Otherwise 

the kernel fails the operation with an error code 

N0N_EXISTENT_C0MMN indicating that the 

communication activity has already been com­

pleted. In either case, the kernel sets <rev _seq> 

to null. Inconsistency in the semantics of the reply 

operation is possible if the sender has either ter­

minated the communication activity or failed but 

Acri has not yet noticed it; in this case the reply 

operation fails at the sending site whereas it suc­

ceeded at the member site. The inconsistency 

arises due to the stateless nature of the grp_reply 

operation. Another primitive grp_reply_with_ack is 



introduced whereby the success or failure of the 

operation at the sender's site is reported back to 

the member site in the form of an acknowledge­

ment. Such an operation may be used by applica­

tions which require a confirmed delivery of the 

reply message. 

(ii) ACI\ does not exist, indicating that currently there is 

no on-going communication activity from the sender. 

The kernel fails the reply operation. For non­

critical operations, the member may issue the 

stateless grp_reply primitive which returns an 

error code REPLY Y AIL URE indicating that the 

error may be due to either the failure of the 

sender or the completion of the concerned com­

munication activity. For critical operations, the 

member may issue the grp_reply_with_4ck primitve 

whereby the kernel may ascertain the existence of 

the sender by a simple failure detection protocol 

using an AYT (synonyom for Are You There?) 

probe message and return either the 

NON_EXISTENT_COMMN or the 

NON_EXISTENT_SENDER error code, the latter 

indicating that the sender has failed. These well­

defined error code enable applications to be struc­

tured accordingly. 

~.s Concurrent access to the sender's address space 

Access to the sender's address space by recipients is 

sometimes useful. When the sender is blocked on a group 

communication, one or more recipients may move large 

chunks of data to/from the sender's address space. In the 

one-to-one IPC model, the blocking semantics of the IPC 

operations guarantees mutual exclusion between the sender 

and the recipient in accessing the sender's addess space. 

However, group communication operations violate this exclu­

sion mechanism. Since any recipient of the message in the 

group may potentially access the sender's address space, it 

raises a non-deterministic mutual exclusion problem among 

the recipients. Furthermore, when the message sender is 

unblocked after the desired degree of delivery is achieved, 

there may still be recipients in the group which have not 

completed the "receive-reply" cycle; such recipients may try 

to access the sender's address space independently later on. 

The issue of concurrent access to the sender's address 

space may be controlled by enforcing a policy for such access 

when the sender is blocked on a group communication. In 

the simplest form, a receiver may be prohibited from access­

ing the sender's space after receiving a group message. Or, 

the kernel may implement a lock-based access policy to pro­

vide increased _functionality. In this policy, a grQilp mel!lbei: 

must acquire a lock before accessing the sender's addreBB 

space. The lock will be granted by the kernel if the sender is 

blocked on the group to which the member belongs and the 

lock on the address space has not been allocated to another 

process. If the lock is already given to another member of the 

group, then the lock request is queued up by the kernel until 

the current holder of the lock releases it. 

If a member that has acquired a lock on the sender's 

address space fails, the lock must be recovered so that the 

sender may become ready to execute and other members 

'which intend to access the sender's space are given a chance. 

, Since the state of the lock· on the sender's address space is 

maintained at a single point (the kernel at the sending site), 

a mechanism for one-to-one notification of failures suffices to 

protect the lock. It may be realised using process aliases 

inside the kernel. When the kernel concedes the lock to a 

group member, it creates an invisible alias at the sending site 

and one at the member site. These aliases engage in a 

symmetric failure detection protocol by exchanging periodic 

probe packets2
• On detecting a failure, . the kernel may 

recover the lock. 

5, Conclusions 

We have examined the reliability issues associated with 

group communication in a distributed envii:onment. A kernel 

model with new semantic tools concisely capturing the non­

determinism associated with group communication has been 

presented. Sample programs illustrating how the semantic 

tools may be used are included in the appendix. We have 

also described a process alias-based structuring technique for 

the kernel to handle the reliability problems that may arise 

durjng group communication. The scl'ierne works by main­

taining a close asiiociation between group messages and their 

corresponding reply messages. 

We feel that the characterization of group communica­

tion, as described in this paper, will be useruJ in the design of 

language(s) for real-time applicaLions as w II as lending 

insiglit into tbe implementation of group communication in a 

system. 
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Appendix 

We present examples to illustrate how applications may 

be structured by using the semantic tools described in sec­

tion 3 ( we use a 'C '-like syntax for the code skeletons). 

A.1 Group svnchronisation 

In hard real-time systems 11, external events such as a 

plant variable exceeding a threshold (indicating an emer­

gency) usually requires corrective action to be initiated on 

multiple sites simultaneously. We present a code skeleton for 

this type of applications using our model of group communi­

cation. 

function event_notifier{) 
{ forever 

{ 
receive(event_msg, event_monitor_id); 
reply( ack_msg, evenL_rnonitor_jd); 
status = group_eend(event_msg, 

event_hand ler_grp, 1.0, time_out); 
if (status.atlea.st < 1.0) 

{ 
if ({status.atleast ~ LOW J,IMlT) II 

(ata.tus.a.tmoat $ INSUFFICIENT)) 

<Raise alarm or.reissu·e group_send>; 
} 

else ; /* All members have synchronised • / } 
} /* End of function • / 

function event..,bandler() 
{ /* A member or the event handler group • / 

forever { 
status= grpJeceive(grp_msg); 
grpJeply{event_notifier_id, ack_msg); 
< handle event>; } } 

A • .e Revlicated data bases 

We describe how update ·operations may be requested 

on a tuple in a replicated data base. 

function dbase_update() 
{ struct msg rep...msg, grp_msg; 

grp_.mag.rqst_code = WRITE_TUPLE; 
grpJilllg.attributes = <tuple attributes>; 
grp_id = DATA_BASE_CRP; 
deg_del = 1.0; 
repeat { 

status = group_sead(grp_id, grp_msg, 
deg_del, time_out); 

for (i dequeue_rcply{rep_msg) 
I= NO_MORE_REPLY ;) 

iI (rep__msg.err_code = UPDATE_FAIL) 
< Note down failure>; 

else 
< Note down success>;} 

until ((status.atleast = deg_del) II 
(++i = MAX_TRIES)) 

if (i = = MAX_RETRIES) 
<report failure>; 

else 
if ( <update failures noted>) 

<recover>; 
} /* End of dbase_update * / 

~ 

The following 1s the code skeleton of a client that 

wishes to locate a file maintained by a file server group. 

function file_query() 
{ atruct msg rcp_m.sg, grp_msg; 

grpJnSg.rqst_code = QUERY_FILE; 
grp_msg.attributes = <file attributes>; 
grpjd = FILE_SERVER_GRP; 
deg_del = 1.0; /* Specify the largest value * / 
ftleJound· = F AI.SE; 
repeat { 

status= group_send (grp_id, grp_msg, 
deg_del, time_out); 

for (i=0; dequeue_reply(rcp_msg) 
l=NO_MORE_REPLY ;) { 

file_srvr_pidti++) = rep_msg[0J.proccssjd; 
file_found = TRUE; } } 

until ( (file_found} II {++ i = MAX_TR]ES)) 
if (i == MAX_RETRlES) 

<File not available>; 
else 

<Establish connection t9 the file server>; 
} /* End of file_query • / 


