
A distributed kernel
for reliable group communication

Samuel T. Chanson 8 K. Ravindran

February 1986
Revised August 1986

Technical Report 8fr4*

ABSTRACT

Multicasting provides a convenient and efficient way to perform one-to­
many process communication. This paper presents a kernel model which sup­
ports reliable group communication in a distributed computing environment.
We introduce new semantic tools which capture the nondeterminism of the
underlying low level events concisely and describe a process alias-based struc­
turing technique for the kernel to handle the reliability problems that may
arise during group communication. The scheme works by maintaining a close
association between group messages and their corresponding reply messages.
We also introduce a dynamic binding scheme which maps group id's to mul­
ticast addresses. The scheme allows the detection and subsequent recovery
from inconsistencies in the binding information. Sample programs illustrating
how the semantic tools may be used are also included.

* Also appears in the Proceedings of the IEEE Computer Society Real-Time Sys­

tems Symposium, New Orleans, Dec. 1986.

A distributed kernel model for reliable group communication

Samuel T. Chanson &, K. Ravindran

Dept. of Computer Science,
Univcraity of British Columbia.

Vancouver, B.C., Canada V6T 1W5

ABSTRACT

One-to-many (group) interprocess communication is

useful in many real-time distributed applications. It may

be conveniently and efficiently realised using the multicast

feature available in contemporary local area networks. This

paper presents a kernel model which supports reliable

group communication in a distributed computing environ­

ment. We introduce new semantic tools which capture the

nondeterminis~ of the underlying low level events con­

cisely and describe a process alias-based structuring tech­

nique for the kernel to handle the reliability problems that

may arise during group communication. The scheme works

by maintaining a close association between group messages

and their corresponding reply messages. Sample programs

illustrating how the semantic tools may be used are also

included.

L Introduction

In distributed system architectures, one-to-many

(group) interprocess communication {f PC) is a useful para­

digm for structuring intra-program communication in diatri­

butA:d programs7
. It refers to an [PC activity by which a sin­

gle message may be transfen;-ed from one part of a computa­

tion to many other parts which may be in the same or

diff'ercnt machines in the network. Ex.amples are searching a

file in the network and propagating an update to replicated

databases.

The need for group communication is inherent in many

real-time distributed applications. An example is an embed­

ded system such as an on-board control system for aircrafts

in which the functional components are replicated and/or

distributed, Car overall system reliability, acr~i, a number of

proces.'IOni interacting with one another over a shared bus11•

One-to-many IPC i.11 us~ul in such systems to co-ordinate

among the various components. Anoiher example is a_set of

ma.chines interconnected by a local aru uetwQrk"(LAN)' and

interfaced to an industrial plant (e.g., a radar control sys­

tem12) in which the monitoring and the control functions are

performed by these machines. One-to-many IPC is the tool

of choice in this type of systems to propagate the state value

from a sensor to multiple monitoring/control stations and to

transmit a proces.~ed output to multiple actuators in the

plant. Besides these application-driven requirements, the

availability of multicast feature in many of the current LAN

technologies◄ is providing an impetus to programs, particu­

larly those with real-time constraints, to use one--to-many

!PC because multicaating supports one--to-many rPC more

efficient!y3
•

In order that distributed programs may systematically

employ one-to-many IPC for intra-program communication,

adequate operating system tools al'e required. In general,

such tools should handle the associated semantic issues

which are different and more complex than those of one-to­

one IJlO. Since different applications may require di.fferent

degrees of reliability in the communication mechanism, the

tools should provide a powerful and flexible semantics to

on~to-many IPC as well as a uniform structural base for

using this form of [PC. The requirement for such type of

tools is stronger in real-time programs because of the time

constraints under which they operate. The lack of adequate

program-level tools hitherto has forced the realisation of an

equivalent communication by repeated one- to-one IPC with

the attendant -penalty on efficiency and semantic con.sistency.

This could have adverse implicaUons on the structure and

the real-time behaviour of distributed programs.

In this paper, we describe the mechanisms provided by

the kernel to support a flexible form of reliable one-to-many

lPC. Applications may build the required recovery pro­

cedures on top of these kernel mechanisms in the client­

server i/o interface.

2, Process groups and group communication

Different types of operating system objects such as mul­

ticast socket.s6 and pr~ groups' have been introdu-ced to

encapsulate the notion of one-to-many IPC. Beca4se they

can be more easily extended to a distributed environment,

we have adopted process groups based on the message­

passing abstractio_n as the basis for our discussion.

A process group is a set of processes that share one or

more abstract objects and interact among themselves to pro­

vide a unified interface to the external world. An example is

a distributed file server structured as a group of processes

and running on a set of workstations on a LAN. The

. members in a group may be structured in a linear, hierarchi­

cal or other relationships based on the nature of information

flow among them11• For simplicity, we shall consider only the

linear group structure in our discussion.

Group communication is a kernel mechanism by which

a process may interact with process groups. It refers to a

communication activity whereby a sender sends information

to be simultaneously delivered to one or more recipients with

the latter named. as a group rather than individually. The

reliability semantics associated with the group communica­

tion, i.e., the notion of success or failure of the group com­

munication, must capture the failures that may occur during

communication with members of the group. We describe

these issues in sections 3 and 4.

3. Semantics of group communication

To understand the underlying semantic issues better,

we first compare this mechanism with one-to-one IPC.

One-to-one IPC refers to a message-passing activity between

one sender and one receiver with the communication

partners known to each other and often explicitly named.

The semantics of such an activity is well-defined because

with a single receiver, the sender knows from which process

to expect a reply if the activity is successful, and which pro­

cess has not received the message if the activity fails for

whatever reasons. On the other hand, during a group com­

munication activity, each of the group members as well as

the interaction with that member may fail independently.

For example, in a group· consis ting of N members, K of them

may fail independently; of the remaining (N-K) members,

perhaps only R (R :$ (N-K)] may receive the group message

due to the independent failure of the communication activi­

ties. Is a groµp communication activity successful when

some members of the group did not receive the message

(either due t~ communication failures or because the

processes have failed)? Also how should the sender deal with

the reply messages, the n.umbe.r and sources of which are

unknown before they arrive? How does the sender know if

all {Ilembers in the _group have received the message since

acknowle,;Jgement.s or replies may have been lost? These

inher<:_n~ly non-detemtlnistic issues m&ke the reliability

semantics of & group IPC more complicated than that of a

one-to-one IPC.

9. t Event-based analysis of group communication

The semantics of any inter-machine activity is derived

from the low level events {Ei} that occurred during the

activity. We shall denote this association by

Nm

{ s1}J=1,2, .. -+ {Eih=1,2,..

where {s1} is the abstract characterisation of {Ei} exposed by

the kernel to the applications. Consider, for example, a

synchronous IPO between processes O and S residing on sites

Mc a.hd Ms respectively. The outcomes specified by the ker­

nel are s1 = SUdCESS, s2 = NON_EXISTENT_PROCESS,

s3 = SITE_.F All,ED, s, = NETWORK_,F AILED and s5 =
SITE_UNREACHABLE2• Each of these outcomes is an

abstract representation of the state of the participating com­

ponents in the IPC, namely the pentt\,-tuple <C, M0 , net­

work, Ms, S>. Since each of the componen_t.s may be opera­

tional (UP) or failed {DOWN) denoted by the states U &nd

D respectively, the semantics of each of the outcomes as

viewed from the client process may be given by:

oem
SUCCESS-+(U AU AU AU AU),

oem
NON_EXISTENTYROCESS-t (U A U A U AU A D},

oem
SITE_FAILED-+(U AU AU AD AD),

aem
NETWORK_FAILED-t(U AU AD AU AU) V

(U A U A D A D A D) V

(U A U A D A U A D),
oem

SITE_UNREACHABLE-+ (U A U A U A D A D} V

(U A U A D A U A U) V

(U A. U A D A. D A. D) V

(U A. U AD A. U A D).

Thus a quantitative analysis of the events that comprise the

activity enables us to provide an adequate and concise

abstraction of the underlying events.

BasicalJy, group communication supported. by a distri­

buted kernel may be of two types -- Jitatdcss and blocking

(analogous to their one-to-one counterparts). We consider

them separately:

3. 1.1 StatQleo« group communication, A stateless group

communication is a single event activity that does not main­

tain any state information as to its success or failure. It typ­

ically uses a network level multicast datagram with no

guarantee on reliable or confirmed delivery. The stateless

nature of such a multicaHt datagnun transmission at the net­

work level can be easily mapped onto a high level stateless

group communication operation.

We may abstract. multicMt datagram as a series of uni­

cast datagrams triggered at the source at infinitesimally

spaced intervals. Each of euch datagrams may arrive success­

fully at the destination (ARRIVAL event) or lost/damaged

(NON_.ARRIV AL event). Thus a multicast datagram gen­

erates a set of ARRIVAL and NON_.ARRIV AL events, one

at each of the recipient sites, given by

Edgrm c {ARRIVAL, NON..,ARRIVAL} x
{M1, M2, .. , MN}

where the M1's (i==l,2, .. ,N) are the component datagrams of

the mu!Ucast message and 'X' denot~ the cartesian product

of the two sets. Note that (ARRIVAL, Mi) and

(NON_ARRIV AL, Mi) are mutually exclusive events.

Since each member of the group may independently

exist or fail, represented by the states EXISTENT and

NON_EXISTENT, the set of events generated by a stateless

group communication operation built on top of multicast

datagram is given by

E,tla c {EXISTENT, NON_EXISTENT} x

{Gp G2, .. , GN} x Edg,-m

where the G1's (i=I,2, .. ,N) are the individual members of the

group. Note that (EXISTEJNT, G1) and (NON_EXISTENT,

G1) are mutually exclusive elements {i= I,2, .. ,N).

9.1.$ Blocking groug communt'cation. In a blocking type

primitive, the sender is blocked until a certain number of

replies from the group members are received. The multicast

datagram transmission _triggers, say R arrival events (R :S
N) at the receiving sites given by

E = {X : X = (ARRIVAL, M.) A msg l

X E Edgrm ' (i=l,2, .. ,N) }.

The R' (R' :S R) reply events generated at the receiving sites

is given by

E,ep c {EXISTENT, NON_EXfSTENT} x

{Gl' G2,·· • GN} X F.meg·

These R' events cause R" events (R" :S R1 pertaining to the

arrive.I of these replies at the sending site are given by

Eblk c {ARRIVAL, NON..,ARRIVAL} x E,ep·

The above analysis shows the large number of low level

events that may occur during a group communication

activity. Applications should be designed to handle the asso-
oem

dated reliability semantics, namely, s,u,-+E,ti. and
Nm

sblk--+ Ebik, and be structured accordingly {s,u, and sblk are

the representations used to specify the outcomes of the

activities concerned).

9.2 Semantic tools

Despite the large combinations of low level events that

may occur as illustrated by the event-based analysis, the

-.3-

semantics can be concisely abstracted. This is because, unlike

the one-to-one IPC, each individual low level event does not

by itself significantly influence the outcome of the group

communication activity, thus not all low level even ts need to

be considered. Neverthless, existing semantic tools used for

one-to-one IPC were not designed to handle the non­

determinism a.ssociated with group ·communication thereby

neceasitating new tools. Such tools must concisely, ade-
.. m

quately and uniformly convey the semantics s,tl,-+ E,11, and
_,.

sb1k--+ Eb11i to applications.

Two basic notations are introduced to characterize the

success/failure of group communication:

9,t.1 Degree of delivm1, It is defined as the fraction of

the members in the group that has received the message.

Thus, for example, if R members in a group of N actually

receive a message sent, then the degree of delivery r of the

message is given by

R
r = N' (0.0 $ r :S 1.0).

This notion allows a sender initiating a group message to

specify the desired delivery requirement independently of the

size (cardinality) of the group. It also implici tly specifies the

desired degree of synchronisation with the group members, a

useful paradigm for real-time applications. It may be used by

the IPC layer supporting group communication to quantify

the degree of success or failure. The notion of confirmed

delivery is based on the number of replies the sending site

has received. Thus if R members of the group have received

the message and replied (R :S N). and R' replies arrive at the

sending site (R' :S R), then

Degree of delivery = ~ , and

R'
Degree of confirmed delivery = N"

These notions capture the underlying characteristics

that the success/failure of a group communication usually

does not depend on that of any of the individual members.

For example, even if a member fails during a group commun­

ication, the operation may succeed by the arrival of replies

from other members. In other words, the semantics of the

operation depends more on the macroscopic events pertain­

ing to the group behaviour than those of individual

members.

For applications requiring a specific number of replies

and/or where the group size is not known, we provide

another form of specifying the degrees of delivery and

confirmed delivery where the desired number of replies is

specified as an integer.

A group send primitive incorporating the above notion

takes the form

status = group_send {msg, group_id, r, time_out).

The message <msg> is sent Lo Lhe members contained in the

group <group_id> . <status> is a data structure returned

by the kernel to indicate the outcome of the primitive; <r>

is a data sLructure used to define the scope of the communi­

cation operation requesLed (i.e., iL specifies the desired degree

of confirmed delivery):

Case 1. r = <FRACTION, 0.0>.

The operation degenerates into a datagram send opera­

tion. The sender is . unblocked immediately after the

message is sent. At the receiving sites, reply mes:iages to

this operation are inhibited by the kernel. Tl1i.e may be

useful in certain real-time applications such as sending

periodfo sampled data values from a sensor to multiple

monitoring stations in a plant; such updates may not

require co!l{irm,ed delivery since euors due to lost

samples will usually be corrected by a subsequent sam­

ple.

Case 2. r = <FRACTION, val>, where 0.0 < val :$ 1.0.

The operation blocks the sender. As part of the message

transport mechanism, the kernel acquires the cardinality

N of the group from the hosts• containing the members

of the
I
group. After receipt of at least r*N replies or

timeout, whichever occurs earlier, the kernel unblocks

the sender.

Case 3. r = <INTEGER, num>, where num > 0.

The operation blocks the sender until the specified

numb~r of replies are received or timeout occurs, which­

ever is earlier.

The sender may either belong to the same group as the reci­

pients or be external to the group.

9.t • .e Completion varjablts. When the kernel terminates

a group communication, it returns two values to the sender

through the variables ATLEAST and ATMOST. These

values are interpreted as follows:

At least a fraction s1 of the total number of

members in the group has received the message.

ATMOST(s2)

At most a fraction s2 of the total number of

members in the group has received the message.

Note that (0.0$s1:$s2$1.0). These completion variables

characterise the degree of success/failure of the group com­

munication, and they are returned in the <status> data

structure (refer to the primitive in section 3.2.1).

• A hoot u an _abetrad object -odaled with a particulor inotantiation of a
machine. ·

The ATMOST(s2) and ATLEAST(s1) tools bring

out two characteristic aspects of group communication,

namely, partial completion and partial success respectively.

Partial completion refers to a situation where communication

with all N . members of the group is not yet completed. If

communication is known to have been completed with R1

members (R1<N), and of these, only R2 is known to be suc­

cessful (R2:$R1), then the semantics of the operation is

R, R1
ATLEAST(N) A ATMOST(N). Partial success refers

to a situation where communication with all N members of

the group is completed but only R2 of these is known to be

successful (R2<N). This is captured by the expression
R,

ATLEAST(N) A ATMOST(l.0). In terms of these

semantic tools, complete success and complete failure are just

two special cases, namely ATLEAST(l.O) and

ATMOST(O.O) respectively.

For a stateless group communication, since no informa­

tion is maintained about the success/failure of the activity,

the. kernel may only return ATLEAST(0.O) A

ATMOST(l.O). A simple form of blocking group communi-

cation is provided in the V-System5 where r = ~, i.e., the

sender blocks until at least one member of the group has

received the message and replied, or timeout occurs, which­

ever is earlier. In this form, the sender need not possess

knowledge of the size and/or membership of the group. In

terms of our semantic tools, the return code for the V-

System primitive is ATLEAST(~) A ATMOST(l.O)

when the primitive is unblocked by a successful reply; when

unblocked by a timeout, the return code is ATLEAST(0.O)

A ATMOST(l.0).

9,9 Partial communication

It is important that applications are aware of the possi­

bility of partial communication because of its implications ..

Consider the group communication primitive introduced ear­

lier in section 3.2.1. Partial communication is possible in cer­

tain communication architectures where all members of the

group cannot be reached by a single message-passing event.

Examples are group communication implemented on top of

one-to-one IPC and group communication spanning intercon­

nected LANs.

Consider the situation in which an application requires

a. confirmed deliv:~ry to R members. We considllr __ the _

following scenarios:

(i) R«N.

The communication activity may be declared suc­

cessful after completion of communication with R'

members (R$R'<N). Thus the IPC layer has not

attempted to communicate with all members in

the group. 1h this eense, the communication

activity is incomplete though successful.

(ii) Inadequate timeout intervals.

If the timeout interval specified for the group

communication is not sufficient to contact enough

mem~ers in the group, as is likely in applications

with certain real-time deadlines, premature termi­

nation of the communication is likely. Note that

this is different from the case where all members

have been contacted but the timeout interval is

not sufficient to receive enough replies.

(iii) Network partitioning in the midst of the message-

passing activities.

A network failure may occur during the sequence

of message transmissions which may result in par­

titioning of the group. With some network

hardware, the kernel can detect this failure ena­

_bling appropriate recovery.

(iv) Incorrect binding of group id's to the members in the

group.

Any inconsistency in the binding that arises due

to changes in the group constituency may lead to

undetected incomplete communication in certain

situations.

Our proposed semantic tools may be used to characterise

such anamolies in group communication.

3.3.1 Group communication on tov of one-to-one (PC.
The IPC layer that implements the group communication

primitives maintains a list L(G) of the members of the group

G, and sends a one-to-one message to each member at the

corresponding unicast address; each of these one-to-one com­

munication is supported by a point-to-point protocol such as

the symmetric polling protocol2 and the paired message
protocol10. The cardinality N(G) of the group is derived from

L(G).

The semantics of such a group communication primitive

Sgrp/l-l is to be built in terms of that of the individual one­

to-one IPC primitives S
1
_1 and the low level events that may

occur during such a sequence. Let S1-1 be {SUCCESS,

NON~XISTENT_FROCESS, SITE_UNREACHABLE}

describing the various failure conditions2
, and let L(G) =

{gl' g2_, .. , gN}. Suppose after K one-to-one IPC (with success

or failure, K < N(G)), the group communication activity ter­

minates for any of the reasons discussed before. Then the

output events that constitute the group communication form
a set given by

where {SUCCESS,g1), (NON_EXISTENT_PROCESS,gi) and

(SITE_UNREACHABLE,g) are mutually exclusive events

for i = 1, 2, .. , K. Thus the possible degree of delivery (r) and

the confirmed degree of delivery (r1 are given by

K
r= N' and

K' .
r' =-,where

N

K' = card [{ X: X = (SUCCESS,g1) A
X E El-1, (i=l,2, .. ,K) }).

'card(}• is a function that returns the cardinality of a set.

Thus the semantics of the primitive is

Mm

S11IP/l-l = ATLEAST(r~ A ATMOST(r) -+E1_1

ff.9.t Group ,ommynication on top of network multic-ast.
Suppose the IPC layer implements the group communication

primitives on top of network multicast. If the group is

located on a single LAN, the transmission of the message to

the individual members is a single event. The multicast

address A(G) associated with the group G is essential in

such an approach. The IPC layer multicasts the message at

address A(G) and collates the replies from the individual

members over the timeout interval. The semantics of the

primitive, then, is to be built in terms of the multicast

transmission event, the reply and other related events. A

timeout or network partitioning event may place the sending

site in one of two situations, namely the message has been

multicast or not multicast. In the former case, all members

in the group may have received the message implying an

ATMOST(l.0) semantics while the later case indicates a

failure resulting in an ATMOST(0.0} semantics. Intermedi­

ate values of the degree of delivery is not possiblet.

However, if a process group spans across interconnected

LANs, a single group communication activity causes a

sequence of multicast events to be triggered at the interven­

ing gateways. Each multicast event atomically delivers the

message to the subset of the group on the associated local

network. Since gateways may fail, partial completion may

result; but the granularity of delivery on a particular LAN is

the entire subset of the group that resides on it. For exam­

ple, let sc, and sc
2

be the subsets of the group G that reside

on LAN1 and LAN2 respectively, and let a sender on LAN1

initiate a group message. If the gateway failed before the

multicast message is relayed onto LAN2, the semantics is

given by
oem

SvP/M = ATLEAST(r1) A ATMOST(r2) -+EIIIP

R1 card(sc)
where r1=-, r2= 1

, (R1 is the number of replies
N N

received by the sender from sc,), and Egrp is the set of events

comprising the communication activity.

3.3.B lm11li,ations of pgrtjal communii;atjon. Depending

f Thuo group cx,mmunicatlon lmplomented by network-multicut I, ,omantical­
ly different from that by ropeated on•to-<>ne IPC.

on the applications , part ial communication might require

specific high level protocols to counter it. For example, in the

CffiCUS system6 which implements group communication

using one-to-one IPC, partial completion may result if the

group constituency changes without properly updating the

membership list at the sender's site. Since CIRCUS requires

confirmed execution or the operation specified in a group

message by all members of the group, the designers circum­

vented th.is problem by using an unconventional protocol

wh ereby the group id changes whenever the group consti­

tuency ch~nges. This forces the sending site to rebind to the

changed id, and in the process, correct its membership list.

Also, for group communication using one-to-one IPC'e

and those across interconnected LANe, there is an implicit

ordering in which the meesage is communicated to the group

members. This implies a priority 8S8ignment among the

group members which violates the semantics of process

groups. TypicaUy, membera lower down in the ordered list

are lees likely to be communicated during the group com­

munication activity. Though some form of dynamic priority

reassignment techniques might be used to enhance the

chance of fairness in communication, such techniques do not

eliminate the issue. Note that the high level issues arising

from these ana.molies in communication might be different

depending on the underlying cause.

Examples illustrating how the above semantic tools

may be used by application programs are given in the appen­

dix.

4. Structuring tools fo r gro1m communication

We now look into the structural elements needed by

the distributed kernel to handle the reliability issues that

may a rise du.r ing grou p communication. Basically, this

requires moui toring of events on the machi nes part icipating

in a group communicat ion as well as the flow of sta te infor­

mation among them. We ba ve used process aliases• a.s the

primary structuring tools in kernel deaig,ns to perform such

functions and hence to provide appropriate semantics to

one-to-one IPC against failure events and process reloca­

tions1•2. Such tools may, in principle, be used in designing

kernels to support process groups as well. However, the func­

tionality of. such aliases depend on the type of semantics

required.

The kernel at the sending site may create invisible

aliases for the sending process at the member sites; these

aliases may monitor the progress of events during the group

• A proceN aliu i1 a li1ht-weirrht executin1 ontity created by a pro-. 01' bmel
(known u lnvioibl• allu io the lat&..- caN) lo perform a w•ll•d•flned and 1impl•
runclion. It may ...,.,&, on a di!T!f""'I oddr- 1pac1 {indudln, the k.mol -)
on th• oame 01' a dlfrONJtt maduno from that of ita cr•tor. It d0e1 not hav. in­
dependent exht•nc.. It can not eel up 1tronJ bindinp In the ,y,,tom and aati,ft,.
other propertiea 10 that it may be created and d .. t,oyed inexponllvely.

communication and dispatch state information back to the

sending site. However, unlike the one-to-one case, the

number of microscopic events that may occur per communi­

cation activity is large, creating excessive message traffic and

making event monitoring at the low level expensive.

Secondly, as noted earlier, failure events with respect to indi­

vidual members do not individually affect the outcome of the

communication activity. Therefore, it is necessary only to

monitor essential macroscopic events.

1.1 The kernel requirements

The kernel should provide a consistent message-passing

semantics against failures of the group members during a

group communication. Furthermore, unlike the case of a

blocking one-to-one IPC, the sender and the recipients in a

group communication are not tightly synchronised. For

example, a sender may be unblocked during a group com­

munication and send further messages t<;> the group many

times before some recipients get around to replying to the

first message. This may arise, for example, because a member

site is heavily loaded or is much slower than other member

sites. This may lead to the following undesirable phenomena

at the kernel level:-

The queueing up of group messages at some member

sites pertaining to already-completed group communica­

tion activities. Such messages are meaningless particu­

larly if messages have expiry deadlines as in real-time

applications.

The flow of unnecessary reply messages for already­

completed communication activities.

The undetected pairing of reply message and group

message belonging to different communication activities.

For example, a reply from a member for the j-th group

message may be construed by the sender as a reply to

its on-going k-th group communication (k > j).

The first two phenomena consume system resources unneces­

sarily and should be eliminated or minimised. The third

phenomenon is logically incorrect, and should be eliminated.

The solution to the problems lies in maintaining the associa­

tion between group messages and reply messages.

LB Process alias basr; d strn cturr;

In this structure, the association between group mes­

sages and reply messages is maintained partly in the

member's process descriptor and partly in a remote alias

residing at the member site created on behalf of the sender

(see Figure 1). When a sender C sends a message to the

group consisting of N members, the kernel at the sending site

sets up an invisible alias Act at the local site and an invisible

alias ACI\ at the i-th member site _(i=l,2, .. ,N) . These alias.es

~
gm 0
~~
\u 7

gm

gm Group message

Figure 1. A process alias based structure to
implement group communication.

.. -
are set up by the initial message that is multicast , and are

destroyed upon completion of the communication activity or

the failure of the sender. In addition, when the i-th member

replies or fails, the alias Acr; associated with it is destroyed.

The remote alias Acr
1

serves two functions : i) maintains

an image of the state of the sender at the i-th member site,

and ii) acts as a remote repository of the group message

M(snd_seq) where <snd_seq> is the sequence number of the

on-going group communication activity at the sender's site.

A may be construed as maintaining the state variable
Cl)

<snd_seq> that is updated by the initiation and completion

events occurring at the sending site for the group communi­

cation activity. Another state variable <rev _seq>, which is

the sequence number of the group message currently being

processed by the member, is maintained in the member's

process descriptor. There is one <rev _seq> for each con­

current communication stream in which the process is

engaged in. If the member is not currently processing any

message from the sender, the corresponding <rcv_seq> is

assigned a null value.

4,2.1 The mu,ltjca,?t protocol. Ad engages in an asym­

metric protocol with the Acri's. Ad periodically multicasts an

l_AM_HERE(<snd_seq>) message to the Aa,,'s indicating

that the sender C and the communication activity is still

alive. If the communication activity completes, Ac1 destroys

itself after multicasting an

ACTIVITY _COMPLET~(<s~d_seq>) message. If C fails,

•• We aaaume • r•liaation of aroup communication on top cl network mutt..,_
cut.

-1-

Ac1 destroys itself after mulLicas ting an ACTIVl'l'Y _ABORT

message. On receivin g ei tl1 er one of the messages, each. Acr
1

destroys itself. If the message is lost or if the machine Mc

fails or if the network partitions isolating one or more

members from Mc, the Aa/s affected eventually recover by

the protracted absence of the I_}..M_HERE message from Ad,

and destroy themselves. When a group member (say the j-th

member) issues a reply operation to a group message, the

kernel may dispatch the reply on.ly if the concerned alias AaJ

exists; otherwise the kernel fails the reply operation. Acri is

destroyed when the reply message is sent.

4 • .e.2 Recover!/ procedure al the receiver site:. Consider

the followin g events occu rring at the i- th member site.

Event 1. The member issues a grp_receive operation.

If the associated <rev _seq> is not null, the kernel fails

the attempt by the member to receive a message before

the message M(rev ..Jleq) currently beil)g processed has

been replied. If < rcv_seq> has a null value, the kernel

checks for the existence of Acr
1
• If Acri exists, the group

m essage M(snd_seq) is delivered to the member and

< rcv_seq> is updated to the value contai.ned in

<snd_seq> . Otherwise the kernel blocks the receiver to

await a new message from the sender, and resorts to an

asynchronous protocol to ascertain the existence of the

sender.

Event 2. The member issues a stateless grp_reply opera-

tion.

If the corresponding <rev _seq> has a null value, the

kernel fails the attempt by the member to reply to a

non-received message. If <rcvJeq> is not null, the ker­

nel checks for the existence of Acri- There are two cases

to consider:

(i) Acq exists, ind icating that there is an on-going group

commun icat ion activity with the sequence number

<snd...,seq>.

If <snd_seq> is equal to <rcv_seq>, the kernel

dispatches the reply message with a sequence

number=<snd_seq> and destroys Ac,:,. Otherwise

the kernel fails the operation with an error code

N0N_EXISTENT_C0MMN indicating that the

communication activity has already been com­

pleted. In either case, the kernel sets <rev _seq>

to null. Inconsistency in the semantics of the reply

operation is possible if the sender has either ter­

minated the communication activity or failed but

Acri has not yet noticed it; in this case the reply

operation fails at the sending site whereas it suc­

ceeded at the member site. The inconsistency

arises due to the stateless nature of the grp_reply

operation. Another primitive grp_reply_with_ack is

introduced whereby the success or failure of the

operation at the sender's site is reported back to

the member site in the form of an acknowledge­

ment. Such an operation may be used by applica­

tions which require a confirmed delivery of the

reply message.

(ii) ACI\ does not exist, indicating that currently there is

no on-going communication activity from the sender.

The kernel fails the reply operation. For non­

critical operations, the member may issue the

stateless grp_reply primitive which returns an

error code REPLY Y AIL URE indicating that the

error may be due to either the failure of the

sender or the completion of the concerned com­

munication activity. For critical operations, the

member may issue the grp_reply_with_4ck primitve

whereby the kernel may ascertain the existence of

the sender by a simple failure detection protocol

using an AYT (synonyom for Are You There?)

probe message and return either the

NON_EXISTENT_COMMN or the

NON_EXISTENT_SENDER error code, the latter

indicating that the sender has failed. These well­

defined error code enable applications to be struc­

tured accordingly.

~.s Concurrent access to the sender's address space

Access to the sender's address space by recipients is

sometimes useful. When the sender is blocked on a group

communication, one or more recipients may move large

chunks of data to/from the sender's address space. In the

one-to-one IPC model, the blocking semantics of the IPC

operations guarantees mutual exclusion between the sender

and the recipient in accessing the sender's addess space.

However, group communication operations violate this exclu­

sion mechanism. Since any recipient of the message in the

group may potentially access the sender's address space, it

raises a non-deterministic mutual exclusion problem among

the recipients. Furthermore, when the message sender is

unblocked after the desired degree of delivery is achieved,

there may still be recipients in the group which have not

completed the "receive-reply" cycle; such recipients may try

to access the sender's address space independently later on.

The issue of concurrent access to the sender's address

space may be controlled by enforcing a policy for such access

when the sender is blocked on a group communication. In

the simplest form, a receiver may be prohibited from access­

ing the sender's space after receiving a group message. Or,

the kernel may implement a lock-based access policy to pro­

vide increased _functionality. In this policy, a grQilp mel!lbei:

must acquire a lock before accessing the sender's addreBB

space. The lock will be granted by the kernel if the sender is

blocked on the group to which the member belongs and the

lock on the address space has not been allocated to another

process. If the lock is already given to another member of the

group, then the lock request is queued up by the kernel until

the current holder of the lock releases it.

If a member that has acquired a lock on the sender's

address space fails, the lock must be recovered so that the

sender may become ready to execute and other members

'which intend to access the sender's space are given a chance.

, Since the state of the lock· on the sender's address space is

maintained at a single point (the kernel at the sending site),

a mechanism for one-to-one notification of failures suffices to

protect the lock. It may be realised using process aliases

inside the kernel. When the kernel concedes the lock to a

group member, it creates an invisible alias at the sending site

and one at the member site. These aliases engage in a

symmetric failure detection protocol by exchanging periodic

probe packets2
• On detecting a failure, . the kernel may

recover the lock.

5, Conclusions

We have examined the reliability issues associated with

group communication in a distributed envii:onment. A kernel

model with new semantic tools concisely capturing the non­

determinism associated with group communication has been

presented. Sample programs illustrating how the semantic

tools may be used are included in the appendix. We have

also described a process alias-based structuring technique for

the kernel to handle the reliability problems that may arise

durjng group communication. The scl'ierne works by main­

taining a close asiiociation between group messages and their

corresponding reply messages.

We feel that the characterization of group communica­

tion, as described in this paper, will be useruJ in the design of

language(s) for real-time applicaLions as w II as lending

insiglit into tbe implementation of group communication in a

system.

l.

2.

3.

References

K.Ravindrlill and S.T.Cbanson, Process aliaa-ba"8ed
structuring Lcchniquu for diBtributed computing sys­

ttina, Proc. of the 6th IEEE-CS International Oonfer­
ence on Distributed Computing Systems, Cambridge,
Mass., May 186 1 pp.355-363.

K.Ravindran and S.T.Chanson, State inconsistency
isauea in local area network based distributed kernels,
Proc. of the 5th IEEE-CS Symposium on Reliability
in Distr ibuted Software and Database Systems, Los
Angeles, Jan.86, pp.188-195.

D.R.Cheriton and W .Zwa,enepoel, Diatributed process
groups in the V Kernel, ACM Tram. on Computer
SystcmB, Vol.3, No.2, May '85, pp.77-107.

4. W .J. Neilson, and U.M. Maydell, A survey of current
LAN technology and performance, CINFOR Vol.23,
no.3, Aug.'85, pp.215-247.

5. E.C.Cooper, Replic4l.ed duitributed programs, Proc. of
the 10th ACM Sympoeium on Opera.ting System
Principles, Vol.19, No.5, Dec.'85, pp.63-78.

6. M.Ahamad and A.J.Bernstein, Multicast communica­
tion in UNIX ~.2 BSD, Proc. of the 5th IEEE-CS
Symposium on Distributed Computing Systems, May
'85, pp.80-87.

7. G.Rossi and G.Garavaglia, A proposal for an
improved network layer of an LAN, Computer Com­
munication Review (ACM SIGCOMM), Vol.16, No.l,
Jan.-Feb.'86, pp.13-17.

8. K.Ra.mamirtham and J.A.Stankovic, Dynamic task
scheduling in hard real-time systems, IEEE Software,
Vol.I, No.4, July '84, pp.65-75.

9. A.J.Frank, et al., Group communication on net com­
puters, Proc. of the 4-th IEEE-CS Conf. on Distri­
buted Computing Systems, May '84, pp.326-335.

10, K.White, An implementation of Remote Procedure
Call Protocol in the Berkeley UNIX Kernel, Technical
Report No. UCB/CSD 85/248, June '85.

11. C.J.Walter, et al., MAFT: A multicomputer architec­
ture for fault-tolerance in real-time control systems,
Proc. of the IEEE-CS Symposium on Real Time Sys­
tems, Dec.'85, pp.133-140.

12. E.T.Fathi and N.R.Fines, Real-time data acquisition,
processing and distribution for Radar applications,
Proc. of the IEEE-CS Symposium on Real Time Sys­
tems, Dec. '84, pp.95-101.

Appendix

We present examples to illustrate how applications may

be structured by using the semantic tools described in sec­

tion 3 (we use a 'C '-like syntax for the code skeletons).

A.1 Group svnchronisation

In hard real-time systems 11, external events such as a

plant variable exceeding a threshold (indicating an emer­

gency) usually requires corrective action to be initiated on

multiple sites simultaneously. We present a code skeleton for

this type of applications using our model of group communi­

cation.

function event_notifier{)
{ forever

{
receive(event_msg, event_monitor_id);
reply(ack_msg, evenL_rnonitor_jd);
status = group_eend(event_msg,

event_hand ler_grp, 1.0, time_out);
if (status.atlea.st < 1.0)

{
if ({status.atleast ~ LOW J,IMlT) II

(ata.tus.a.tmoat $ INSUFFICIENT))

<Raise alarm or.reissu·e group_send>;
}

else ; /* All members have synchronised • / }
} /* End of function • /

function event..,bandler()
{ /* A member or the event handler group • /

forever {
status= grpJeceive(grp_msg);
grpJeply{event_notifier_id, ack_msg);
< handle event>; } }

A • .e Revlicated data bases

We describe how update ·operations may be requested

on a tuple in a replicated data base.

function dbase_update()
{ struct msg rep...msg, grp_msg;

grp_.mag.rqst_code = WRITE_TUPLE;
grpJilllg.attributes = <tuple attributes>;
grp_id = DATA_BASE_CRP;
deg_del = 1.0;
repeat {

status = group_sead(grp_id, grp_msg,
deg_del, time_out);

for (i dequeue_rcply{rep_msg)
I= NO_MORE_REPLY ;)

iI (rep__msg.err_code = UPDATE_FAIL)
< Note down failure>;

else
< Note down success>;}

until ((status.atleast = deg_del) II
(++i = MAX_TRIES))

if (i = = MAX_RETRIES)
<report failure>;

else
if (<update failures noted>)

<recover>;
} /* End of dbase_update * /

~

The following 1s the code skeleton of a client that

wishes to locate a file maintained by a file server group.

function file_query()
{ atruct msg rcp_m.sg, grp_msg;

grpJnSg.rqst_code = QUERY_FILE;
grp_msg.attributes = <file attributes>;
grpjd = FILE_SERVER_GRP;
deg_del = 1.0; /* Specify the largest value * /
ftleJound· = F AI.SE;
repeat {

status= group_send (grp_id, grp_msg,
deg_del, time_out);

for (i=0; dequeue_reply(rcp_msg)
l=NO_MORE_REPLY ;) {

file_srvr_pidti++) = rep_msg[0J.proccssjd;
file_found = TRUE; } }

until ((file_found} II {++ i = MAX_TR]ES))
if (i == MAX_RETRlES)

<File not available>;
else

<Establish connection t9 the file server>;
} /* End of file_query • /

