## RETRACTS OF NUMERATIONS

Akira Kanda
Department of Computer Science
University of British Columbia Vancouver, B.C.

Canada

## TECHNICAL REPORT 86-1

[^0]n


#### Abstract

S

In this paper we study some important properties of numerations which can be passe to their retracts. Furthermore we show a sufficient condition for a category Ret $(\alpha)$ of retracts of a numeration $\alpha$ and morphisms to be Cartesian closed, in terms of $\alpha$.


## §1. Introduction

The retracts have been uesd for the study of substructure. In this paper, we study retracts of numerations.

In $\S 2$, we study some interesting properties of numerations which can be passed to their retracts. Especially we study a few properties, yielding recursion theorems, which can be passed to their retracts.

In $\S 3$, we study a category $\operatorname{Ret}(\alpha)$ of retracts of a numeration $\alpha$ and morphisms, which is a full subcategory of the category Num of numerations and morphisms. One of the main results is a sufficient condition for $\operatorname{Ret}(\alpha)$ to be Cartesian closed, in terms of the numeration $\alpha$.

Before we finish this introductory section, we briefly overview a small part of the theory of numerations developed by Eršv and Mal'cev. For details and further exposure readers and referred to Ersov [1] and Mal'cev [4].

## Definition 1.1.

A numeration (of a set $A$ ) is a surjection $\alpha: N \rightarrow A$. Let $\alpha: N \rightarrow A, \beta: N \rightarrow B$ be numerations. A morphism from $\alpha$ to $\beta$ is a function $f: A \rightarrow B$ such that there exists a recursive function $r_{f}: N \rightarrow N$ which makes the following diagram commute:


We say $r_{f}$ realizes $f$.

Lemma 1.2.

Numerations and morphisms among them form a category. We denote it by Num.

## Definition 1.3 .

Let $\alpha: N \rightarrow A$ be a numeration. It is precomplete if for every partial recursive function $f: N \rightarrow N$ there is a recursive function $g: N \rightarrow N$ such that

$$
f(i) \quad \text { implies } \quad \alpha(g(i))=\alpha(f(i))
$$

We say $g$ totalizes $f$ modulo $\alpha$. It is complete if there exists an element $e \in A$ such that for every partial recursive $f: N \rightarrow N$ there exists a recursive $g: N \rightarrow N$ satisfying:

$$
\begin{array}{cl}
\alpha(g(i))=\alpha(f(i)) & \text { if } f(i) \downarrow \\
e & \text { otherwise. }
\end{array}
$$

Theorem 1.4. (Ersov Recursion Theorem [1])

A numeration $\alpha: N \rightarrow A$ is precomplete iff there exists a recursive function fix:N $\rightarrow N$ such that

$$
\varphi_{1}^{(1)}(f i x(i)) \downarrow \quad \text { implies } \quad \alpha\left(\varphi_{1}^{(1)}(f i x(i))\right)=\alpha(f i x(i))
$$

where $\varphi^{(k)}$ is the Kleene numbering of partial recursive $k$-ary functions. We call $f i x(i)$ a fixpoint of $\phi_{1}^{(1)}$ modulo $\alpha$.

Corollary 1.5.

A numeration $\alpha: N \rightarrow A$ is precomplete if there exists a recursive function total $: N \rightarrow N$ such that:

## Definition 1.6.

Let $\alpha: N \rightarrow A, \beta: N \rightarrow B$ be numerations. A numeration $\tau: N \rightarrow \operatorname{Hom}(\alpha, \beta)$ is realizable if there exists a recursive function real $: N \rightarrow N$ such that:

$$
\varphi_{\text {real }(i)}^{(1)} \text { realizes } \quad t(i) .
$$

It is enumerable if there exists a recursive function enum $N \rightarrow N$ such that:

$$
\text { if } \varphi_{i}^{(1)} \text { realizes } f \in \operatorname{Hom}(\alpha, \beta) \quad \text { then } f=x(\text { enum }(i))
$$

It is acceptable if it is both realizable and enumerable.

Theorem 1.7. (see [2])

Let $\tau, \tau^{\prime}: N \rightarrow H o m(\alpha, \beta)$ be acceptable. Then there exists a recursive isomorphism $h: N \rightarrow N$ such that

$$
\tau=\tau^{\prime} \cdot h
$$

## Defintion 1.8.

Given numerations $\alpha_{1}: N \rightarrow A_{1}, \ldots, \alpha_{k}: N \rightarrow A_{k}, \quad$ we define a numeration $\alpha_{1} \times \ldots \times \alpha_{k}: N \rightarrow A_{1} \times \ldots \times A_{k}$ by

$$
\begin{aligned}
& \alpha_{1} \times \ldots \times \alpha_{k}\left(<x_{1}, \ldots, x_{k}>\right) \\
& =\left(\alpha_{1}\left(x_{1}\right), \ldots, \alpha_{k}\left(x_{k}\right)\right)
\end{aligned}
$$

where $<x_{1}, \ldots, x_{k}>: N^{k} \rightarrow N$ is the standard bijection.

## Definition 1.9.

Let $\alpha: N \rightarrow A, \beta: N \rightarrow B$ be numerations. A numeration $(\alpha \rightarrow \beta): N \rightarrow \operatorname{Hom}(\alpha, \beta)$ is abstract if for every $f \in \operatorname{Hom}((\alpha \rightarrow \beta) \times \alpha, \beta)$ there exists a morphism $c_{f} \in \operatorname{Hom}((\alpha \rightarrow \beta),(\alpha \rightarrow \beta))$ satisfying:

$$
\begin{aligned}
& f((\alpha \rightarrow \beta)(i), \alpha(j)) \\
& \quad=c_{f}((\alpha \rightarrow \beta)(i))(\alpha(j))
\end{aligned}
$$

Theorem 1.10. ( $K$-recursion Theorem [B])

Assume $(\alpha \rightarrow \beta)$ is abstract and precomplete. For all $f \in H o m((\alpha \rightarrow \beta) \times \alpha, \beta)$ there exists a number $m_{\rho} \in N$ such that

$$
\begin{aligned}
& f\left((\alpha \rightarrow \beta)\left(m_{f}\right), \alpha(j)\right) \\
& =\left((\alpha \rightarrow \beta)\left(m_{f}\right)\right)(\alpha(j))
\end{aligned}
$$

Proof. (Outline) A fixpoint of $c_{\rho}$ modulo $(\alpha \rightarrow \beta)$ is the desired number.

Theorem 1.11. (see [2])

Let $\alpha, \beta, \gamma$ be numerations such that $(\alpha \times \beta \rightarrow \gamma): N \rightarrow \operatorname{Hom}(\alpha \times \beta, \gamma)$, $(\beta \rightarrow \gamma): N \rightarrow \operatorname{Hom}(\beta, \gamma) \quad$ and $\quad(\alpha \rightarrow(\beta \rightarrow \gamma)): N \rightarrow \operatorname{Hom}(\alpha,(\beta \rightarrow \gamma)) \quad$ are acceptable. Then $(\alpha \times \beta \rightarrow \gamma) \cong(\alpha \rightarrow(\beta \rightarrow \gamma))$.

## §2. Retracts of Numerations

## Definition 2.1.

Let $\alpha: N \rightarrow A$ be a numeration. A morphism $h \in H o m(\alpha, \alpha)$ is an idempotent of $\alpha$ if $h=h \cdot h$. The numeration $\gamma: N \rightarrow h(A)$ such that

$$
\gamma(i)=h(\alpha(i))
$$

is called a retract of a (via $h$ ).

Lemma 2.2.

Let $\alpha$ be a numeration and $\gamma$ be a retract of $\alpha$ via $h$. Then $x=\gamma(i)$ for some $i \in N$ iff $x$ is a fixpoint of $h$.

Proof. trivial.

Theorem 2.9.

Let $\alpha: N \rightarrow A, \beta: N \rightarrow B$ be numerations and $\gamma, \gamma^{\prime}$ be retracts of $\alpha, \beta$ via $h, h^{\prime}$ respectively. $f: h(A) \rightarrow h^{\prime}(B)$ is a morphism from $\gamma$ to $\gamma^{\prime}$ iff there exists a morphism $\tilde{f} \in \operatorname{Hom}(\alpha, \beta)$ such that the following diagram commutes:


Proof. Assume $f \in \operatorname{Hom}\left(\gamma, \gamma^{\prime}\right)$. Define $\tilde{f}: A \rightarrow B$ by

$$
\begin{gathered}
-6- \\
\tilde{f}=h^{\prime} \cdot f \cdot h .
\end{gathered}
$$

This $\tilde{f}$ makes the above diagram commute and it is a morphism from $\alpha$ to $\beta$ due to 1.2. Conversely assume $f: h(A) \rightarrow h^{\prime}(B)$ and for some $\tilde{f} \in H o m(\alpha, \beta)$ the above diagram commutes. Let $g=h \uparrow h(A)$. This $g$ is a morphism from $\gamma$ to $\alpha$ because

$$
g(\gamma(i))=h\left(\alpha\left(r_{h}(i)\right)\right)=\alpha\left(r_{h} \cdot r_{h}(i)\right)
$$

By the diagram we have:

$$
f=h^{\prime} \cdot \tilde{f} \cdot g
$$

Thus $f \in \operatorname{Hom}\left(\gamma, \gamma^{\prime}\right)$.

Theorem 2.4.
Let $\gamma$ be a retract of $\alpha$. Then we have:
(1) If $\alpha$ is precomplete then so is $\gamma$.
(2) If $\alpha$ is complete then so is $\gamma$.

Proof. trivial.

Definition 2.5.

Let $\gamma, \gamma^{\prime}$ be retracts of $\alpha, \beta$ via $h, h^{\prime}$ respectively. Also let ( $\alpha \rightarrow \beta$ ) be a numeration of $\operatorname{Hom}(\alpha, \beta)$. Define a numeration $\left(\gamma \rightarrow \gamma^{\prime}\right)$ of $\operatorname{Hom}\left(\gamma, \gamma^{\prime}\right)$ by

$$
\left(\gamma \rightarrow \gamma^{\prime}\right)(i)=h^{\prime} \cdot((\alpha \rightarrow \beta)(i)) \cdot g
$$

where $g=h\lceil h(A)$.

Due to the theorem 2.3, this $\left(\gamma \rightarrow \gamma^{\prime}\right)$ is well-defined.

Theorem 2.6.

Let $\gamma, \gamma^{\prime}$ be retracts of $\alpha, \beta$ via $h, h^{\prime}$ respectively. Also assume that $(\alpha \rightarrow \beta)$ is a numeration of $\operatorname{Hom}(\alpha, \beta)$.
(1) if $(\alpha \rightarrow \beta)$ is precomplete then so is $\left(\gamma \rightarrow \gamma^{\prime}\right)$.
(2) if $(\alpha \rightarrow \beta)$ is complete then so is $\left(\gamma \rightarrow \gamma^{\prime}\right)$.

Proof. trivial.

Theorem 2.7.

Let $\gamma, \gamma^{\prime}$ be retracts of $\alpha, \beta$ via $h, h^{\prime}$ respectively. Also assume that $(\alpha \rightarrow \beta)$ is a numeration of $\operatorname{Hom}(\alpha, \beta)$.
(1) if $(\alpha \rightarrow \beta)$ is realizable then so is $\left(\gamma \rightarrow \gamma^{\prime}\right)$.
(2) if $(\alpha \rightarrow \beta)$ is enumerable then so is $\left(\gamma \rightarrow \gamma^{\prime}\right)$.
(3) if $(\alpha \rightarrow \beta)$ is acceptable then so is $\left(\gamma \rightarrow \gamma^{\prime}\right)$.

Proof.
(1) $\quad\left(\gamma \rightarrow \gamma^{\prime}\right)(i)=h^{\prime} \cdot((\alpha \rightarrow \beta)(i)) \cdot g$. But $(\alpha \rightarrow \beta)(i)$ is realized by $\varphi_{\text {real }(i)}^{(1)}$. Thus $\left(\gamma \rightarrow \gamma^{\prime}\right)(i)$ is realized by

$$
r=r_{h} \cdot \cdot \varphi_{r e a l(i)}^{(1)} r_{g} .
$$

By $s-m-n$ theorem, $r=\varphi_{i(i)}^{(1)}$ for some recursive $z: N \rightarrow N$.
(2) Assume $\varphi_{1}^{(1)}$ realizes $f \in \operatorname{Hom}\left(\gamma, \gamma^{\prime}\right)$. Then $\tilde{f}=h^{\prime} \cdot f \cdot h$ is realized by

$$
r=r_{h} \cdot \varphi_{l}^{\left.(1) \cdot r_{h}=\varphi_{l(1)}^{(1)}\right), ~}
$$

where $t$ is a recursive function due to the $s-m-n$ theorem. Since $\bar{f} \in H o m(\alpha, \beta)$, and $(\alpha \rightarrow \beta)$ is enumerable,

$$
\tilde{f}=(\alpha \rightarrow \beta)(\text { enum }(t(i))) .
$$

Thus we have

$$
\begin{gathered}
f=h^{\prime} \cdot((\alpha \rightarrow \beta)(\text { enum }(t(i)))) \cdot g \\
=\left(\gamma \rightarrow \gamma^{\prime}\right)(\text { enum } \cdot t(i))
\end{gathered}
$$

(3) immediate from (1) to (2).

Theorem 2.8. (see [3])
Let $\gamma, \gamma^{\prime}$ be retracts of $\alpha, \alpha^{\prime}$ via $h, h^{\prime}$ respectively. Assume $(\alpha \rightarrow \beta)$ is abstract, then so is $\left(\gamma \rightarrow \gamma^{\prime}\right)$.

Proof. For every $t \in \operatorname{Hom}\left(\left(\gamma \rightarrow \gamma^{\prime}\right) \times \gamma, \gamma^{\prime}\right)$, we define $T: \operatorname{Hom}(\alpha, \beta) \times A \rightarrow B$ as

$$
T(f, a)=t\left(h^{\prime} \cdot f \cdot g, h(a)\right)
$$

where $g=h \upharpoonright h(A)$. It can readily be seen that $T$ is a morphism from $(\alpha \rightarrow \beta) \times \alpha$ to $\beta$. Since $(\alpha \rightarrow \beta)$ is abstract, for some $C_{T} \in \operatorname{Hom}((\alpha \rightarrow \beta),(\alpha \rightarrow \beta))$

$$
T((\alpha \rightarrow \beta)(i), \alpha(j))=C_{T}((\alpha \rightarrow \beta)(i))(\alpha(j)) .
$$

Define $C_{t}: \operatorname{Hom}\left(\gamma, \gamma^{\prime}\right) \rightarrow \operatorname{Hom}\left(\gamma, \gamma^{\prime}\right)$ by

$$
C_{t}(f)=h^{\prime} \cdot C_{T}\left(h^{\prime} \cdot f \cdot h\right) \cdot g
$$

Using that $h^{\prime}, h$ are idempotents, we can show

$$
C_{T}\left(\left(\gamma \rightarrow \gamma^{\prime}\right)(i)\right)(\gamma(j))
$$

$$
=t\left(\left(\gamma \rightarrow \gamma^{\prime}\right)(i), \gamma(j)\right) .
$$

## Theorem 2.9.

Let $\alpha_{i}: N \rightarrow A_{i}$ be a numeration and let $\gamma_{i}$ be retracts of $\alpha_{i}$ via $h_{i}$ respectively $(1 \leq i \leq k)$. Then $\gamma_{1} \times \ldots \times \gamma_{k}$ is a retract of $\alpha_{1} \times \ldots \times \alpha_{k}$. Also if $\alpha_{i}, 1 \leq i \leq k$ are precomplete then so is $\gamma_{1} \times \ldots \times \gamma_{k}$. Furthermore if $\alpha_{i}, 1 \leq i \leq k$ are complete then so is $\gamma_{1} \times \ldots \times \gamma_{k}$.

Proof. Define $h=h_{1} \times \ldots \times h_{k}$. Then $h=h \cdot h$. Also $h$ is a morphism from $\alpha_{1} \times \ldots \times \alpha_{k}$ to itself, for

$$
\left.r\left(<x_{1}, \ldots, x_{k}>\right)=<r_{h_{1}}\left(x_{1}\right), \ldots, r_{h_{k}}\left(x_{k}\right)\right\rangle
$$

realizes $h$. But obviously

$$
\begin{aligned}
& \gamma_{1} \times \ldots \times \gamma_{k}\left(<x_{1}, \ldots, x_{k}>\right) \\
& =h\left(\alpha_{1} \times \ldots \times \alpha_{k}\left(<x_{1}, \ldots, x_{k}>\right)\right)
\end{aligned}
$$

Thus $\gamma_{1} \times \ldots \times \gamma_{k}$ is a retract of $\alpha_{1} \times \ldots \times \alpha_{k}$ via $h$. Assume $\alpha_{i}(1 \leq i \leq k)$ are precomplete then by $2.4, \gamma_{i}$ are precomplete. Let $f: N \rightarrow N$ be a partial recursive function. Define $f_{i}: N \rightarrow N$ by:

$$
f_{i}(x)=y_{i} \quad \text { where } \quad f(x)=<y_{1}, \ldots, y_{k}>
$$

Then $f_{i}$ are partial recursive, $1 \leq i \leq k$. Let $g_{i}$ totalizes $f_{i}$ moduldo $\gamma_{i}$. Define $g: N \rightarrow N$ by

$$
g(x)=<g_{1}(x), \ldots, g_{k}(x)>
$$

Then $g$ is recursive. Also we have:

$$
\begin{aligned}
\gamma_{1} \times \ldots & \times \gamma_{k}(g(x)) \\
& =\gamma_{1} \times \ldots \times \gamma_{k}\left(<g_{1}(x), \ldots, g_{k}(x)>\right) \\
& =\gamma_{1} \times \ldots \times \gamma_{k}(f(x)) \quad \text { if } f(x) \downarrow .
\end{aligned}
$$

Thus $g$ totalizes $f$ modulo $\gamma_{1} \times \ldots \times \gamma_{k}$. Similarly if $\alpha_{i}(1 \leq i \leq k)$ are complete then so is $\gamma_{1} \times \ldots \times \gamma_{k}$.

Theorem 2.10.

Assume $\left(\alpha_{1} \times \ldots \times \alpha_{k} \rightarrow \alpha_{0}\right): N \rightarrow \operatorname{Hom}\left(\alpha_{1} \times \ldots \times \alpha_{k}, \alpha_{0}\right)$ is abstract and precomplete. Then for each retracts $\gamma_{i}$ of $\alpha_{i}(0 \leq i \leq k)$, if $f \in \operatorname{Hom}\left(\left(\gamma_{1} \times \ldots \times \gamma_{k} \rightarrow \gamma_{0}\right) \times \gamma_{1} \times \ldots \times \gamma_{k}, \gamma_{0}\right)$ then there exists $m_{f} \in N$ such that

$$
\begin{aligned}
& f\left(\left(\gamma_{1} \times \ldots \times \gamma_{k} \rightarrow \gamma_{0}\right)\left(m_{\rho}\right), \gamma_{1}\left(x_{1}\right), \ldots, \gamma_{k}\left(x_{k}\right)\right) \\
& \quad=\left(\gamma_{1} \times \ldots \times \gamma_{k} \rightarrow \gamma_{0}\right)\left(m_{f}\right)\left(\gamma_{1}\left(x_{1}\right), \ldots, \gamma_{k}\left(x_{k}\right)\right)
\end{aligned}
$$

Proof. Immediate from 1.10, 2.6, 2.8 and 2.9.

Lemma 2.11.
(1) If $\gamma$ is a retract of $\alpha: N \rightarrow A$ then there is a pair $(f, g)$ of morphisms $f \in \operatorname{Hom}(\alpha, \gamma)$, $g \in \operatorname{Hom}(\gamma, \alpha)$ such that $f \cdot g=i d_{\gamma}$ where $i d_{\gamma}$ is the identity morphism over $\gamma$.
(2) If there exists a pair $(f, g)$ of morphisms $f \in \operatorname{Hom}(\alpha, \beta), g \in \operatorname{Hom}(\beta, \alpha)$, such that $\int \cdot g=i d_{\beta}$ then there is a retract $\gamma$ of $\alpha$ such that $\gamma \cong \beta$ in Num.

Proof.
(1) Assume $\gamma$ is a retract of $\alpha$ via $h$. Define $g=h$ § $h(A)$. Then $g \in \operatorname{Hom}(\gamma, \alpha)$ and $h \cdot g=i d \gamma$.
(2) Define $h=g \cdot f$. Then $h \in \operatorname{Hom}(\alpha, \alpha)$. Also $h \cdot h=g \cdot f \cdot g \cdot f=g \cdot f=h$. Let $\gamma$ be a retract of $\alpha$ via $h$. Define $\Phi=f \cdot(h\rceil h(A))$ and $\Psi=h \cdot g$. Then $\Phi \in H o m(\gamma, \beta)$ and $\Psi \in \operatorname{Hom}(\beta, \gamma)$, because $h \in \operatorname{Hom}(\alpha, \gamma)$ and $h \uparrow h(A) \in \operatorname{Hom}(\gamma, \alpha)$. Furthermore we have:

$$
\begin{aligned}
\Phi \cdot \Psi & =f \cdot g \cdot(f\lceil h(A)) \cdot h \cdot g \\
& =f \cdot g \cdot f \cdot h \cdot g \\
& =f \cdot g \cdot f \cdot g \cdot f \cdot g \\
& =f \cdot g \cdot f \cdot g \\
& =i d_{\beta} . \\
\Psi \cdot \Phi & =g \cdot f \cdot g \cdot f \cdot(h\lceil h(A)) \\
& =g \cdot f \cdot g \cdot f \cdot g \cdot f\lceil h(A) \\
& =g \cdot f\lceil h(A) \\
& =h\lceil h(A) \\
& =i d_{\gamma}
\end{aligned}
$$

Note. If there exists a pair $(f, g)$ of morphisms $\int \in \operatorname{Hom}(\alpha, \beta)$ and $g \in H o m(\beta, \alpha)$ such that $f \cdot g=i d_{\beta}$, we write $\alpha \triangleright \beta$. Also $(f, g)$ is called a retraction pair.

## §3. Categories of Retracts

## Lemma S.1.

Every numeration is a retract of itself via the identity morphism. Therefore the $N u m$ is the same as the category of retracts (of numerations) and morphisms.

Proof. trivial

Lemma 3.2.

Retracts of a numeration $\alpha: N \rightarrow A$ and morphisms among them form a category, which is denoted by Ret $(\alpha)$. This is a full subcategory of Num .

Proof. Immediate from 1.2 and 2.3.

Lemma 3.3.

Ret $(\alpha)$ has a final object.

Proof. Let $h_{0}: A \rightarrow A$ be the following function:

$$
h_{0}(x)=a \quad \text { for all } x
$$

where $a$ is an element of $A$. Then $h_{0} \cdot h_{0}=h_{0}$. Also $r: N \rightarrow N$ such that

$$
r(i)=j \quad \text { for all } i
$$

where $\alpha(j)=a$, realizes $h_{0}$. Thus $h_{0}$ is an idempotent of $\alpha$. Let $\rho: N \rightarrow\{a\}$ be the following numeration:

$$
\rho(i)=h_{0}(\alpha(i)) .
$$

Then $\rho \in \operatorname{Ret}(\alpha)$. Let $\delta \in \operatorname{Ret}(\alpha)$. Then for some idempotent $h$ of $\alpha$,

$$
\delta(i)=h(\alpha(i)) .
$$

Let $f$ be the only function from $h(A)$ to $\{a\}$. Obviously $g: N \rightarrow N$ such that

$$
g(i)=0
$$

is a recursive function which realizes $\int$. Thus $\{f\}=\operatorname{Hom}(\delta, \rho)$. Thus $\rho$ is a final object in $\operatorname{Ret}(\alpha)$.

Lemma 3.4. (Ersov [1])
Num is a Cartesian category.

Proof. Let $\alpha: N \rightarrow A$ and $\beta: N \rightarrow B$ be numerations. Furthermore let $\chi: N \rightarrow X$ be a numeration and $p_{1} \in \operatorname{Hom}(\chi, \alpha), p_{2} \in \operatorname{Hom}(\chi, \beta)$. Since the category Set of sets and functions is Cartesian there is a unique function $h: X \rightarrow A \times B$ such that the following diagram in Set commutes:


In fact $h(x)=\left(p_{1}(x), p_{2}(x)\right)$. But this $h: X \rightarrow A \times B$ can be realized by the following recursive function $r: N \rightarrow N$;

$$
\left.r(i)=<r_{p_{1}}(i), r_{p_{2}}(i)\right\rangle
$$

because

$$
\begin{aligned}
h(\chi(i)) & =\left(p_{1}(\chi(i)), p_{2}(\chi(i))\right) \\
& =\left(\alpha\left(r_{p_{1}}(i)\right), \beta\left(r_{p_{2}}(i)\right)\right) \\
& =\alpha \times \beta\left(<r_{p_{1}}(i), r_{p_{2}}(i)>\right) .
\end{aligned}
$$

Thus $h \in H o m(\chi, \alpha \times \beta)$. Also $\pi_{1}: A \times B \rightarrow A, \pi_{2}: A \times B \rightarrow B$ can be realized by $<>_{1}$, $\left\rangle_{2}\right.$ where $\left\rangle_{1},\langle \rangle_{2}\right.$ are the recursive inverse of $\left\langle x_{1}, x_{2}\right\rangle$. Thus $\pi_{1} \in \operatorname{Hom}(\alpha \times \beta, \alpha)$, $\pi_{2} \in \operatorname{Hom}(\alpha \times \beta, \beta)$. Therefore $h$ is the unique morphism from $\chi$ to $\alpha \times \beta$ which makes the following diagram in Num commute:


Obviously $N u m$ has the final object.

Theorem 9.5.

Let $\alpha: N \rightarrow A$ be a numeration. If $\alpha \cong \alpha \times \alpha$ in $\operatorname{Num}$ then $\operatorname{Ret}(\alpha)$ is a Cartesian category.

Proof. Let $[-,-]$ be a pairing morphism and []$_{1},[]_{2}$ be the inverses of $[-,-]$ such that

$$
\begin{aligned}
& {[\alpha(i), \alpha(j)]_{1}=\alpha(i)} \\
& {[\alpha(i), \alpha(j)]_{2}=\alpha(j)}
\end{aligned}
$$

Assume $\gamma_{i}$ is a retract of $\alpha$ via $h_{i}(i=1,2)$. By 2.9, $\gamma_{1} \times \gamma_{2}$ is a retrct of $\alpha$ via $h_{1} \times h_{2}$. Define $h: A \rightarrow A$ by,

$$
h(a)=\left[h_{1} \times h_{2}\left([a]_{1},[a]_{2}\right)\right]=\left[h_{1}\left([a]_{1}\right), h_{2}([a])_{2}\right]
$$

Then $h$ is realized by a recursive function:

$$
r(j)=r_{[-,-]]}\left(r_{h_{1} \times h_{2}}\left(<r_{[]_{1}}(j), r_{\|_{2}}(j)>\right)\right)
$$

Furthermore we have:

$$
\begin{aligned}
h \cdot h([a, b]) & =\left[h_{1} \times h_{2}\left(h_{1}(a), h_{2}(b)\right)\right] \\
& =\left[h_{1} \cdot h_{1}(a), h_{2} \cdot h_{2}(b)\right] \\
& =\left[h_{1}(a), h_{2}(b)\right] \\
& =h([a, b])
\end{aligned}
$$

Thus $h$ is an idempotent of $\alpha$. Let $\gamma$ be a retract of $\alpha$ via $h$. Define $\rho_{i}: h(A) \rightarrow h_{i}(A)$ ( $i=1,2$ ) by:

$$
\rho_{i}(h(a))=h_{i}\left([a]_{i}\right)
$$

Then $\rho_{i} \in \operatorname{Hom}\left(\gamma, \gamma_{i}\right)$ because the recursive functions $r_{\|_{1}}$ realizes $\rho_{i}$. We calim that $\left(\gamma, \rho_{1}, \rho_{2}\right)$ is the product of $\gamma_{1}$ and $\gamma_{2}$ in $\operatorname{Ret}(\alpha)$. To prove this claim, assume $\delta$ is a retract of $\alpha$ via $g$ and $p_{i} \in \operatorname{Hom}\left(\delta, \delta_{i}\right) i=1,2$. Define a function $u: g(A) \rightarrow h(A)$ by:

$$
u(x)=\left[p_{1}(x), p_{2}(x)\right]
$$

This $u$ is a morphism from $\delta$ to $\gamma$ because

$$
r_{u}(j)=r_{[-,-]]}\left(<r_{h_{1}} \cdot r_{p_{1}}(j), r_{h_{2}} \cdot r_{p_{2}}(j)>\right)
$$

realizes it as

$$
\begin{aligned}
u(\delta(n)) & =\left[\delta_{1}\left(r_{p_{1}}(n)\right), \delta_{2}\left(r_{p_{2}}(n)\right)\right] \\
& =\left[\alpha\left(r_{h_{1}} \cdot r_{p_{1}}(n)\right), \alpha\left(r_{h_{2}} \cdot r_{p_{2}}(n)\right)\right] \\
& =\alpha\left(r_{[-,-]}\left(<r_{h_{1}} \cdot r_{p_{1}}(n), r_{h_{2}} \cdot r_{p_{2}}(n)>\right)\right) \\
& =h\left(\alpha\left(r_{u}(n)\right)\right)
\end{aligned}
$$

$$
=\gamma\left(r_{u}(j)\right)
$$

Furthermore we have:

$$
\begin{aligned}
\rho_{i} \cdot u(x) & =\rho_{i}\left(\left[p_{1}(x), p_{2}(x)\right]\right) \\
& =\rho_{i}\left(h\left(\left[p_{1}(x), p_{2}(x)\right]\right)\right) \\
& =h_{i}\left(p_{i}(x)\right) \\
& =p_{i}(x) \quad i=1,2 .
\end{aligned}
$$

Thus $u$ makes the following diagram in $\operatorname{Ret}(\alpha)$ commutes:


Assume $\boldsymbol{v} \in \operatorname{Hom}(\delta, \gamma)$ also makes the above diagram commutes. Then

$$
\rho_{i} \cdot v=p_{i} \quad i=1,2
$$

Thus

$$
\begin{aligned}
P_{i}(x) & =h_{i}\left([v(x)]_{i}\right) \\
& =[v(x)]_{i}
\end{aligned}
$$

Therefore $v(x)=\left[p_{1}(x), p_{2}(x)\right]=u(x)$.

Note. We can prove this theorem in an alternative way as follows: We can show $\gamma \cong \gamma_{1} \times \gamma_{2}$ in Num. Since $\rho_{i}$ are isomorphic image of $\pi_{i} \in \operatorname{Hom}\left(\gamma_{1} \times \gamma_{2}, \gamma_{i}\right)$ an $\operatorname{Ret}(\alpha)$ is a full subcategory of $N u m$, using lemma 3.4 , we can show that $\left(\gamma, \rho_{1}, \rho_{2}\right)$ is a product of $\gamma_{1}$ and $\gamma_{2}$ in $\operatorname{Ret}(\alpha)$.

Lemma 9.6.

Let $\alpha: N \rightarrow A$ be a numeration such that $\alpha \triangleright(\alpha \rightarrow \alpha)$ for some acceptable numeration $(\alpha \rightarrow \alpha): N \rightarrow \operatorname{Hom}(\alpha, \alpha)$. Then for every retracts $\gamma_{1}, \gamma_{2}$ of $\alpha$, there is a retract $\gamma$ of $\alpha$ such that $\gamma \cong\left(\gamma_{1} \rightarrow \gamma_{2}\right)$ in $N u m$.

Proof. Let $\gamma_{1}, \gamma_{2}$ be retracts of $\alpha$ via $h_{1}, h_{2}$ respectively. Let $\Psi \in H o m((\alpha \rightarrow \alpha), \alpha)$, $\Phi \in \operatorname{Hom}(\alpha,(\alpha \rightarrow \alpha))$ be such that $\Phi \cdot \Psi=i d_{(\alpha \rightarrow \beta)}$. Define $h: A \rightarrow A$ as

$$
h(x)=\Psi\left(h_{2} \cdot \Phi(x) \cdot h_{1}\right) .
$$

Then we have:

$$
\begin{aligned}
h \cdot h(x) & =\Psi\left(h_{2} \cdot \Phi\left(\Psi\left(h_{2} \cdot \Phi(x) \cdot h_{1}\right)\right) \cdot h_{1}\right) \\
& \left.=\Psi\left(h_{2} \cdot \Phi(x)\right) \cdot h_{1}\right) \\
& =h(x)
\end{aligned}
$$

Since Num is a category, $h \in \operatorname{Hom}(\alpha, \alpha)$. Thus $h$ is an idempotent of $\alpha$. Note $\left(\gamma_{1} \rightarrow \gamma_{2}\right)(i)=h_{2} \cdot(\alpha \rightarrow \alpha)(i) \cdot g \quad$ where $\quad g=h_{1} \upharpoonright h_{1}(A)$. Let $F: \operatorname{Hom}\left(\gamma_{1}, \gamma_{2}\right) \rightarrow h(A) \quad$ and $G: h(A) \rightarrow \operatorname{Hom}\left(\gamma_{1}, \gamma_{2}\right)$ be as follows:

$$
\begin{aligned}
& F(f)=\Psi\left(h_{2} \cdot h_{2} \cdot f \cdot h_{1} \cdot h_{1}\right) \\
& =\Psi\left(h_{2} \cdot f \cdot h_{1}\right) \\
& \begin{aligned}
G(h(x)) & =h_{2} \cdot \Phi(h(x)) \cdot g \\
& =h_{2} \cdot h_{2} \cdot \Phi(x) \cdot h_{1} \cdot g \\
& =h_{2} \cdot \Phi(x) \cdot g .
\end{aligned}
\end{aligned}
$$

Then $F \in \operatorname{Hom}\left(\left(\gamma_{1} \rightarrow \gamma_{2}\right), \gamma\right)$ and $G \in \operatorname{Hom}\left(\gamma,\left(\gamma_{1} \rightarrow \gamma_{2}\right)\right)$. Also we have:

$$
F \cdot G(h(x))
$$

$$
\begin{aligned}
& =\Psi\left(h_{2} \cdot h_{2} \cdot \Phi(x) \cdot g \cdot h_{1}\right) \\
& =\Psi\left(h_{2} \cdot \Phi(x) \cdot h_{1}\right) \\
& =h(x)
\end{aligned}
$$

$$
\begin{aligned}
G \cdot F & (f) \\
& =h_{2} \cdot \Phi\left(\Psi\left(h_{2} \cdot f \cdot h_{1}\right)\right) \cdot g \\
& =h_{2} \cdot f \cdot g \\
& =f \quad\left(\because f \in \operatorname{Hom}\left(\gamma_{1}, \gamma_{2}\right)\right)
\end{aligned}
$$

Therefore $\gamma \cong\left(\gamma_{1} \rightarrow \gamma_{2}\right)$ in Num.

Lemma 3.7.

Let $(\alpha \rightarrow \gamma): N \rightarrow H o m(\alpha, \gamma)$ be a numeration and $\alpha \cong \beta$ in Num. Define $(\beta \rightarrow \gamma): N \rightarrow \operatorname{Hom}(\beta, \gamma)$ by:

$$
(\beta \rightarrow \gamma)(i)=((\alpha \rightarrow \gamma)(i)) \cdot g
$$

where $(f \in \operatorname{Hom}(\alpha, \beta), g \in \operatorname{Hom}(\beta, \alpha))$ is an isomorphism pair. Then we have:

$$
(\alpha \rightarrow \gamma) \cong(\beta \rightarrow \gamma)
$$

in Num .

Proof. Define $F: \operatorname{Hom}(\alpha, \gamma) \rightarrow \operatorname{Hom}(\beta, \gamma)$ and $G: \operatorname{Hom}(\beta, \gamma) \rightarrow \operatorname{Hom}(\alpha, \gamma)$ by:

$$
\begin{aligned}
& F((\alpha \rightarrow \gamma)(i))=(\beta \rightarrow \gamma)(i) \\
& G((\beta \rightarrow \gamma)(i))=(\alpha \rightarrow \gamma)(i) .
\end{aligned}
$$

Obviously $F \in \operatorname{Hom}((\alpha \rightarrow \gamma),(\beta \rightarrow \gamma))$ and $G \in \operatorname{Hom}((\beta \rightarrow \gamma),(\alpha \rightarrow \gamma))$. Furthermore we have:

$$
\begin{aligned}
& F \cdot G=i d_{(\beta \rightarrow \gamma)} \quad \text { and } \\
& G \cdot F=i d_{(\alpha \rightarrow \gamma)}
\end{aligned}
$$

Thus $(\alpha \rightarrow \gamma) \cong(\beta \rightarrow \gamma)$ in Num.


Lemma 3.8.

Let $(\alpha \rightarrow \beta): N \rightarrow \operatorname{Hom}(\alpha, \beta)$ be a numeration and $\beta \cong \gamma$ in $N u m$. Define a numeration $(\alpha \rightarrow \gamma): N \rightarrow \operatorname{Hom}(\alpha, \gamma)$ by:

$$
(\alpha \rightarrow \gamma)(i)=f \cdot((\alpha \rightarrow \beta)(i))
$$

where $(f \in \operatorname{Hom}(\beta, \gamma), g \in \operatorname{Hom}(\gamma, \beta))$ is an isomorphism pair. Then

$$
(\alpha \rightarrow \gamma) \cong(\alpha \rightarrow \beta) .
$$

Proof. Define $G: \operatorname{Hom}(\alpha, \gamma) \rightarrow \operatorname{Hom}(\alpha, \beta)$ and $F: \operatorname{Hom}(\alpha, \beta) \rightarrow \operatorname{Hom}(\alpha, \gamma)$ by

$$
\begin{aligned}
& G((\alpha \rightarrow \gamma)(i))=g \cdot((\alpha \rightarrow \gamma)(i)) \\
& F((\alpha \rightarrow \beta)(i))=f \cdot((\alpha \rightarrow \beta)(i))
\end{aligned}
$$

Then

$$
\begin{aligned}
G((\alpha \rightarrow \gamma)(i)) & =g \cdot f \cdot((\alpha \rightarrow \beta)(i)) \\
& =(\alpha \rightarrow \beta)(i) \quad \text { and } \\
F((\alpha \rightarrow \beta)(i)) & =(\alpha \rightarrow \gamma)(i) .
\end{aligned}
$$

Thus $G \in H o m((\alpha \rightarrow \gamma),(\alpha \rightarrow \beta))$ and $F \in \operatorname{Hom}((\alpha \rightarrow \beta),(\alpha \rightarrow \gamma))$. Also obviously

$$
G \cdot F=i d_{(\alpha \rightarrow \beta)} \quad F \cdot G=i d_{(\alpha \rightarrow \gamma)}
$$

Lemma 9.9.

Let $(\alpha \rightarrow \beta): N \rightarrow H o m(\alpha, \beta)$ be acceptable and let $\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right): N \rightarrow H o m\left(\alpha^{\prime}, \beta^{\prime}\right)$ be a numeration such that $(\alpha \rightarrow \beta) \cong\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)$. Then $\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)$ is acceptable.

Proof. Let $\left(f \in \operatorname{Hom}\left((\alpha \rightarrow \beta),\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)\right)\right.$, $\left.g \in \operatorname{Hom}\left(\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right),(\alpha \rightarrow \beta)\right)\right)$ be an isomorphism pair. Assume $\varphi_{k}^{(1)}$ realizes $\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)(i)$. Then

$$
\begin{aligned}
& g\left(\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)(i)\right) \\
& \quad=(\alpha \rightarrow \beta)(\text { enum } \cdot t(k))
\end{aligned}
$$

where $t$ is a recursive function satisfying:

$$
\varphi_{t}^{(1)}(k)=r_{g} \cdot \varphi_{k}^{(1)} .
$$

Thus

$$
\begin{aligned}
\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)(i) & =f((\alpha \rightarrow \beta)(\text { enum } \cdot t(k))) \\
& =\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)\left(r_{j} \cdot \text { enum } \cdot t(k)\right)
\end{aligned}
$$

Hence $\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)$ is enumerable. Since

$$
g\left(\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)(i)\right)=(\alpha \rightarrow \beta)\left(r_{g}(i)\right)
$$

is realized by $\varphi_{\text {real }\left(r_{g}(i)\right)}^{(1)}$.

$$
\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)(i)=\int\left((\alpha \rightarrow \beta)\left(r_{g}(i)\right)\right)
$$

is realized by $\varphi_{t(i)}^{(1)}$ where $t$ is a recursive function s.t.

$$
\varphi_{l(i)}^{(1)}=r_{j} \cdot \varphi_{r e a l\left(r_{g}(i)\right)}^{(1)} .
$$

Theorem 8.10.

Let $\alpha: N \rightarrow A$ be a numeration such that in $N u m \alpha \times \alpha \cong \alpha$ and $\alpha \triangleright(\alpha \rightarrow \alpha)$, for some acceptable numeration $(\alpha \rightarrow \alpha): N \rightarrow \operatorname{Hom}(\alpha, \alpha)$. Then the category $\operatorname{Ret}(\alpha)$ is Cartesian closed.

Proof. Let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ be retracts of $\alpha$ via $h_{1}, h_{2}, h_{3}$ respectively. Due to the proof of 3.5 there exists a retract $\delta$ of $\alpha$ such that

$$
\delta \cong \gamma_{1} \times \gamma_{2}
$$

in Num. Also by 2.7, $\left(\gamma_{2} \rightarrow \gamma_{3}\right)$ as defined in 2.5 is acceptable. Furthermore by 3.6 , there is a retract $\gamma$ of $\alpha$ such that $\gamma \cong\left(\gamma_{2} \rightarrow \gamma_{3}\right)$ in Num. By 2.7, $\left(\gamma_{1} \rightarrow \gamma\right)$ is acceptable and by 3.8,

$$
\left(\gamma_{1} \rightarrow \gamma\right) \cong\left(\gamma_{1} \rightarrow\left(\gamma_{2} \rightarrow \gamma_{3}\right)\right)
$$

Thus by 3.9, $\left(\gamma_{1} \rightarrow\left(\gamma_{2} \rightarrow \gamma_{3}\right)\right)$ is acceptable. By 2.7, $\left(\delta \rightarrow \gamma_{3}\right)$ is acceptable. By 3.6, there is a retract $\sigma$ of $\alpha$ such that $\sigma \cong\left(\delta \rightarrow \gamma_{3}\right)$. Also by 3.7, in Num we have:

$$
\left(\delta \rightarrow \gamma_{3}\right) \cong\left(\gamma_{1} \times \gamma_{2} \rightarrow \gamma_{3}\right) .
$$

Thus by $3.9,\left(\gamma_{1} \times \gamma_{2} \rightarrow \gamma_{3}\right)$ is acceptable. Therefore by 1.11 we have:

$$
\left(\gamma_{1} \rightarrow\left(\gamma_{2} \rightarrow \gamma_{3}\right)\right) \cong\left(\gamma_{1} \times \gamma_{2} \rightarrow \gamma_{3}\right) .
$$

Since $\operatorname{Ret}(\alpha)$ is a full subcategory of $N u m$, by 3.2 and 3.5 we can conclude that $\operatorname{Ret}(\alpha)$ is Cartesian closed.

Corollary 8.11.

If $\alpha: N \rightarrow A$ is a numeration such that in $N u m$

$$
\alpha \times \alpha \cong \alpha
$$

$$
\alpha P(\alpha \rightarrow \alpha)
$$

for some acceptable numeration $(\alpha \rightarrow \alpha): N \rightarrow \operatorname{Hom}(\alpha, \alpha)$, then we have: for every retracts $\gamma_{1}, \gamma_{2}$ of $\alpha_{1}:$
(1) $\left(\gamma_{1} \rightarrow \gamma_{2}\right)$ is abstract
(2) $\left(\gamma_{1} \rightarrow \gamma_{2}\right)$ is acceptable.

Thus both $K$-recursion theorem and Ersov recursion theorem hold for $\left(\gamma_{1} \rightarrow \gamma_{2}\right)$.

Proof. Immediate

## REFERENCES

[1] Eršov, Ju. L., Theorie der Numerengen I, Zeitschrift für Mth. Logik, Bd 19, Heft 4, 1973.
[2] Kanda, A., Acceptable Numerations of Function Spaces, to appear in Zeitschrift für Math. Logik.
[3] Kanda, A., Typed Recursion Theorems, submitted for publication.
[4] Mal'cev, A.I., The Metamathematics of Algebraic Systems, North-Holland, Amsterdam, 1971.


[^0]:    This research was carried out when the author was at Copenhagen University. Also this research was supported by Canada Natural Science and Engineering Research Council grant A2457.

