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ABSTRACTS 

In this paper we study some important properties of numerations which can be 
passe to their retracts. Furthermore we sl10w a sufficient condition for a category 
R et (a) of retr acts of a numera ion o: and morphisms to be Cartesian closed, in terms of 
o: . 
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§1. Introduction 

The retracts have been uesd for the study of substructure. In this paper, we study 

retracts of numerations. 

In §2, we study some interesting properties of numerations which can be passed to 

their retracts . Especially we study a few properties, yielding recursion theorems, which 

can be passed to their retracts. 

In §3, we study a category Rel (a) of retracts of a numeration ct and morphisms, 

which is a full subcategory of the category Num of numerations and morphisms. One of 

the main results is a sufficient condition for Ret(o:) to be Cartesian closed, in terms of 

the numeration a:. 

Before we finish this introductory section, we briefly overview a small part of the 

theory of numerations developed by Er;ov and Mal'cev. For details and further expo~ 

sure readers and referred to Er;ov [l] and Mal'cev [4]. 

Definition 1.1. 

A numeration (of a ut A) is a surjection a:N -+A . Let o::N -+A , /3:N -+B be 

numerations. A morphism f from a to ,B is a function / :A -+ B such that there exists a 

recursive function r1 :N-+N which makes the following diagram commute: 

I 
A B 

1 i /3 r1 
N--- ~N 

We say r I realizes f . 

I] 

Lemma 1.2. 



Numerations and morphisms among them form a category. We denote it by Num. 

Definition 1.9. 

Let o::N -+A be a numeration. It is precomplete if for every partial recursive func­

tion f :N -+N there is a recursive function g :N -+N such that 

f (i) implies o:(g ( i ))=o:(/ (i )). 

We say g totalizes f modulo o:. It is complete if there exists an element e EA such that 

for every partial recursive J :N -+-N there exists a recursive g :N -+N satisfying: 

o:(g(i)) = a(! (i)) if / ( i )! 

e otherwise. 

I] 

Theorem 1.4, (Ersov Recursion Theorem [I]) 

A numeration a:N -+A is precomplete iff there exists a recursive function 

fix :N -+N such that 

implies o:(ip.(1l(Jix(i))) = o:(fix(i)). 

where <p(k) is the Kleene numbering of partial recursive k-ary functions. We call / ix (i) 

a fixpoint of ¢,.{1l modulo a. 

I] 

Corollary 1.5. 

A numeration o::N -+A 1s precomplete if there exists a recursive function 

total :N -+N such that: 
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<p,Wat(i) totalizea <p.{1) modulo o:. 

I] 

Definition 1.6. 

Let o: :N-+ A , fJ:N-+ B be numerations. A numeration r:N-+ Hom ( o: ,fJ) is realiz­

able if there exists a recursive function real :N -+N such that: 

(1) 
<pr~al(i) realizea r{ i ). 

It is enumerable if there exists a recursive function enum :N -+N such that: 

if cppl realizes / EH om (a,fJ) then f =r{ enum ( i)) 

It is acceptable if it is both realizable and enumerable. 

Theorem 1. 7. (see [2]) 

I] 

Let r,r' :N -+Hom (o:,fJ) be acceptabk. Then there exists a recursive isomorphism 

h :N -+N such that 

r=r' ·h. 

I] 

Definition 1.8. 

Given numerations o: 1:N -+A 1, ••• ,o:k :N -+Ak, we define a numeration 

where < x 1, ..• , X.t >: N k -+ N is the standard bijection. 

I] 



Definition 1. 9. 

Let a:N-+A, ,B:N -+B be numerations. A numeration (a-+/3):N-+Hom (o,,B) is 

abstract if for every / EHom ((o-+/3)Xo,/3) there exists a morphism 

c1 EHom ((a-+,B),(a-+P)) satisfying: 

/ ((o-+/J)(i),o(j)) 

= c 1 (( a-----+f3)( i ))( a(j )). 

I] 

Theorem 1.10. (I( -recursion Theorem [:3]) 

Assume (a-+,8) is abstract and precomplete. For all / EHom((a-+fJ)Xa,{3) there 

exists a number m1 EN such that 

/ (( o:-+,8)( m, ),a(j )) 

= ((o:-----+/3)(m 1 ))(a(j )). 

Proof. (Outline) A fixpoint of c I modulo (a-+,8) is the desired number. 

I] 

Theorem 1.11. (sec [2]) 

Let a,(3,1 be numerations such that (aX/3-+1 ):N-+Hom (oX/J,1 ), 

(/3-+1 ):N -+Hom (,B, 1 ) and ( a-+(.8-----+1 )):N -+Hom ( a,(,8-+1 )) arc acceptable. Then 

(a xP-~t):::'.(a-(/1-,)). 

I] 1 · 
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§2. Retracts of Numerations 

Definition 2.1. 

Let o::N-+A be a numeration. A morphism hEJlom(o:,o:) is an idempotent of o: if 

h =h ·h. The numeration ,:N -+h (A ) such that 

1( i ) = h ( o:(i ) ) 

is called a retract of o: (,,ia h}. 

I] 

Lemma 2.2. 

Let o: be a numeration and , be a retract of o: via h. Then x =,( i) for some i EN 

iff x is a fixpoint of h . 

Proof. trivial. 

I] 

Theorem 2.9 . 

Let o::N -+A , /3:N -+B be numerations and ,, 1
1 be retracts of o:, f3 via h, h 1 

respectively. / :h (A )-+h 1 (B) is a morphism from I to 1
1 iff there exists a morphism 

f EHom (o:,,8) such that the following diagram commutes: 

I 
A--~B 

h i ~ h' 
h (A )~h I (B) 

I 

Proof. Assume / EH om b,,' ). Define / :A -+B by 



- 6 -

i =h I·! ·h. 

This / makes the above diagram commute and it is a morphism from o to fJ due to 1.2. 

Conversely assume / :h (A )--+h 1 (B) and for some / EH om (o,/3) the above diagram 

commutes. Let g =hf h (A). This g is a morphism from I to o because 

By the diagram we have: 

I = h I·/ ·g. 

Thus / EH om(,,,'). 

Theorem 2.4. 

Let , be a retract of o. Then we have: 

( 1) If o is precomplete then so is ,. 

(2) If o is complete then so is ,. 

Proof. trivial. 

Definition 2.5. 

I] 

I] 

Let ,, ,' be retracts of o, f3 via h, h I respectively. Also let (o--+/3) be a numera­

tion of Hom (o,/3). Define a numeration (,--+1 1 ) of Hom(,,,') by 

( ,_..,, )( i) = h 1 ·(( o--+/J)( i ))·g 

where g=hf h(A ). 
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Due to the theorem 2.3, this ( 1-+1') is well-defined. 

Theorem fJ.6 . 

Let 1, 1' be retracts of a, /3 via h, h I respectively. Also assume that (a-+,8) is a 

numeration of Hom ( a,/3). 

( 1) if ( a-+ /3) is precom plete then so is (1-+1 1 ). 

(2) if (a-+,8) is complete then so is (1-+1' ). 

Proof. trivial. 

Theorem 2. 7. 

I] 

Let 1, 1' be retracts of a, f3 via h , h I respectively. Also assume that ( a-+ .8) is a 

numeration of Hom(a,,8). 

(I) if (a-+fJ) is realizable then so is (1-+1' ). 

(2) if (a-+,B) is enumerable then so is (1-+1' ). 

(3) if (a-+/3) is acceptable then so is h-+1 1 
). 

Proof. 

(1) h-,' )(i) = h 1 ·((a-f3)(i ))·g. But (a-+f3)(i) IS realized by 'Pm/(i)· Thus 

h-1 1 )(i) is realized by 

r - rh .,,., (1) (. ·r 
- 1 r real , ) g • 

By 8 -m-n theorem, r =<p]H) for some recursive z :N-+N. 

(2) Assume ippl realizes / EHom (1,1' ). Then / =h 1 ·f ·h is realized by 



-8-

where t is a recursive function due to the a -m-n theorem. Since j EH om (a,13), 

and (a-+P) is enumerable, 

Thus we have 

/ = ( a-+13)( enum ( t (i ))). 

f = h 1 ·((o:-+P)(enum(t(i))))·g 

= (1-+1' )( enum ·t (i )) 

(3) immediate from (1) to (2). 

Theorem 2.8. (see [31) 

I] 

Let 1, 1' be retracts of o:, a I via h, h I respectively. Assume ( a-+/3) is abstract, 

then so is (1-+1 1 
). 

Proof. For every t EHom ((1-+1 1 )X1,1' ), we define T :Hom (a,f3)XA -+B as 

T(f ,a)= t(h 1 ·f ·g,h(a)) 

where g =hf h (A). It can readily be seen that T is a morphism from (o:-+/3)Xa to /3. 

Since (o:-+/3) is abstract, for some Cr EHom ((o-+/3),(0:-+/3)) 

Define C1 :Hom (1,1' )---+Hom (1,1') by 

Using that h 1
, h are idempotents, we can show 
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= t ((,-Fr' )(i ),,{j )). 

I] 

Theorem 2.9. 

Let o:i :N -+Ai be a numeration and let "Yi be retracts of oi via h; respectively 

precomplete then so is 1 1 X ... X 1 1;. Furthermore if o.-, l<i<k are complete then so is 

"Yt X ... X,1c. 

Proof. Define h =h I X ... X h1:. Then h =h ·h. Also h is a morphism from o 1 X ... X 01: 

to itself, for 

realizes h. But obviously 

"Y1X ... X11c(<x 1, ... ,x1; >) 

Thus ~ft X ... X ,,. is a retract of o 1 X ... X 01; via h. Assume o.- (1 < i <k) are precom­

plete then by 2.4, "Yi are precomplete. Let / :N -+N be a partial recursive function. 

Define / 1 :N -+N by: 

f .-(x) = Yi where / (x )=<Y1,• 00 ,Yk >. 

Then / i are partial recursive, 1 < i <k. Let g.- totalizes / i moduldo Ii. Define 

g:N-+N by 

g (x) = <g 1(x ), ... ,g1; (x )>. 

Then g 
. . 
1s recursive. Also we have: 



11X ... X,A:(g(x)) 

= 11X ... X,A:(<u1(x), ... ,gA:(x)>) 

= 11X ... x,df (x )) •f f (x )!. 

Thus g totalizes / modulo 11 X ... X 1k· Similarly if ai (l<i<k) are complete then so 

is 11X ... X,k · 

I] 

Theorem 2.10. 

Assume (a 1 X ... Xak--+a 0):N--+Hom(a1 X ... Xa1;,a 0) is abstract and precomplete. 

Then for each retracts 1; of o:; (O<i <k ), if/ EHom ((,1X ... X,1;--+,0)X,1X ... X,k ,,0) 

then there exists m I EN such that 

I (h1X ... x,k --+,o)(m1 ),,1(xi), ... ,,,dxk)) 

= h1X ... X,k--+1o)(m1 )h1(x1), ... ,,t(xt)). 

Proof. Immediate from 1.10, 2.6, 2.8 and 2.9. 

I] 

Lemma 2.11. 

(1) If I is a retract of a:N -+A then there is a pair(/ ,g) of morphisms f EH om (a,1 ), 

gEHom(,,a)such that/ ·g=id,where id,is the identity morphism over 1. 

(2) If there exists a pair (/ ,g) of morphisms / EHom (o:,/3), g EH om (/3,a), such that 

J ·g =id 13 then there is a retract I of a such that ,,__,/3 in Num. 

Proof. 

(1) Assume I is a retract of a via h. Define g =hf h (A). Then g EH om (,,a) and 

h·g=id,. 
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(2) Defineh=g·/. ThenhEHom(o:,o:). Alsoh·h=g·f·g·/=g·f=h. Let,be 

a retract of o: via h . Define <I>=/ ·(hf h (A )) and W=h ·g. Then <l>EHom ("Y,P) 

and WEIi om (/3,,), because h EHom (o:,1) and hf h (A )EH om ("Y,o:). Furthermore 

we have: 

<l>·w = / ·g ·(/ f h (A ))·h ·g 

= f ·g ·/ ·h ·g 

= f ·g ·/ ·g ·! ·g 

= f ·g ·! ·g 

= idp. 

"1·<1> = g ·J ·g ·/·(hf h(A )) 

= g·f ·g·f ·g·f f h(A) 

=g·Jfh(A) 

= hf h (A ) 

I] 

Note. If there exists a pair (/ ,g) of morphisms / EH om (a,/3) and g EH om (fl,a) such 

that / ·g =id p, we write o:r::,, /3. Also (J ,g) is called a retraction pa.ir. 
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§3. Categories of Retracts 

Lemma S.1. 

Every numeration is a retract of itself via the identity morphism. Therefore the 

Num is the same as the category of retracts (of numerations) and morphisms. 

Proof. trivial 

I] 

Lemma 9.2. 

Retracts of a numeration o::N -+A and morphisms among them form a category, 

which is denoted by Rel (n). This is a full subcategory of Num. 

Proof. Immediate from 1.2 and 2.3. 

I] 

Lemma 9.9. 

Ret (o:) ha.s a final object. 

Proof. Let h 0:A -+A be the following function: 

h 0(x )=a for all x 

where a is an clement of A. Then h 0·h 0=h 0• Also r :N-+N such that 

r (i )=j for all i 

where o:(j)=a, realizes h 0 . Thus h 0 is an idempotent of o. Let p:N-+{a} be the fol-

lowing numeration: 
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p(i)=h 0(o(i)). 

Then pERet(a). Let 6ERet(a). Then for some idempotent h of a, 

6(i )=h (o(i )). 

Let / be the only function from h (A) to {a}. Obviously g :N -N such that 

g(i )=0 

is a recursive function which realizes / . Thus {/ }=Hom (6,p). Thus pis a final object 

in Ret(o:) . 

I] 

Lemma 9 . ..f.. (Ersov [I]} 

Num is a Cartesian category. 

Proof. Let o:N -A and (3:N -B be numerations. Furthermore let x:N -x be a 

numeration and p 1EHom(x,o:), p 2EHom(x,f3). Since the category Set of sets and func­

tions is Cartesian there is a unique function h :X -A X B such that the following 

diagram in Set commutes: 

x-------P1----1 P2 
A ~ h ~ B 

~ 1r1 1r2~ 

........._ A XB ----

In fact h(x)=(p 1(x),p2'x)). But this h:X-A XB can be realized by the following 

recursive function r :N -N; 

because 



h(x(i)) = (P1(x(i )),P2(x(i))) 

= (o:(rp
1
(i )),,8(rp

2
(i))) 

- U-

Thus hEHom(x,aX/3). Also rr1:A XB-+A, rr2:A XB-+B can be realized by <> 1, 

<>2 where <> 1, <> 2 are the recursive inverse of <:z: 1,x 2>. Thus rr1EHom(oX/3,o:), 

1r2EHom (aX/3,/3). Therefore h is the unique morphism from x to aX() which makes 

the following diagram in Num commute: 

X 

P1 ----1----- P2 
o: ~ h ~ /3 
~ 7r 1 7r2 ~ 

--._ a X /3 ___-

Obviously Num has the final object. 

I] 

Theorem 9.5. 

Let a:N-+A be a numeration. If o::::::'.oXo in Num then Ret(o:) is a Cartesian 

category. 

Proof. Let [-,-] be a pairing morphism and [] 1, [h be the inverses of (- ,-] such that 

[o:( i ),o:(j )Ji = o:( i) 

[a( i ),o:U )h = o:(i) 

Assume ti is a retract of a via hi ( i =1,2). By 2.9, 11 X 12 is a retrct of a via h 1 X h 2. 

Define h :A -+A by, 
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Then h is realized by a recursive function: 

Furthermore we have: 

h ·h([a ,b]) = [h 1Xhih 1(a ),hib ))] 

= [h 1·h 1(a ),h 2 ·h 2(b )] 

= [h 1(a),hib)] 

= h([a,b]). 

Thus h is an idempotent of a. Let 1 be a retract of a via h. Define Pi :h (A )-+hi (A ) 

(i =1,2) by: 

Then Pi EH om h,1i) because the recursive functions r [I, realizes Pi. We calim that 

(,,p1,p2) is the product of 11 and 12 in Ret (a). To prove this claim, assume fJ is a retract 

of a via g and Pi EH om (6,bj) i =1,2. Define a function u :g (A )-.h (A) by: 

This u is a morphism from 8 to 1 because 

realizes it as 

u(b(n)) = [61(rp 1
(n)),8irp

2
(n))J 

= [a(rh
1
·rPJn )),a(rh

2
·rp

2
(n ))] 

= a(r [-,-]( < rh
1
·rpJn ),rh

2
·rp

2
(n )> )) 

= h ( a( r u ( n ))) 



Furthermore we have: 

Pi ·u (x) = Pi([P1(x ),pz(x)]) 

= Pi(h([Pi(x ),pz(x )])) 

=hdPi(x)) 

= Pi (x) i=l,2. 

Thus u makes the following diagram in Ret (a) commutes: 

Assume v EHom (6,,) also makes the above diagram commutes. Then 

Thus 

Pi(x) = hi([v(x )]d 

=[v(x)Ji 

Therefore v(x )=[p 1(x ),p 2(x )]=u(x ). 

i=l,2. 

I] 

Note. We can prove this theorem in an alternative way as follows: We can show 

,,..__,-y1X,2 in Num. Since Pi are isomorphic image of TriEHom(,1 X,2,,i) an Ret(a) is 

a full subcategory of Num, using lemma 3.4, we can show that (,,p1,p2) is a product of 

, 1 and , 2 in Ret (a). 
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Lemma 9.6. 

Let o::N-+A be a numeration such that o:j>(o:-+o) for some acceptable numeration 

( o:-+o: ):N-+ Hom ( o ,o: ). Then for every retracts 1 1, 12 of o:, there is a retract I of o such 

that , .......... (,1-+12) in Num. 

Proof. Let 11 , 12 be retracts of o: via h 1, h 2 respectively. Let 'l'Elfom((o:-+o:),a), 

cf>EHom (a,(a-+a)) be such that 4>·\l'=id(a-+P)· Define h :A -+A as 

Then we have: 

h ·h (x) = w(h 2 ·cf>(w(h 2·<1>(x )·h i))·h i) 

= w(h 2 ·<1>(x )}·h 1) 

= h (x) 

Since Num is a category, h EHom (o:,o:). Thus h is an idempotent of o:. Note 

(,1-+12)(i)=h 2·(o:-+o:)(i)·g where g=h 1f h 1(A}. Let F:Hom(,1,,2)-+h(A) and 

G :h (A )-+Hom ( 11 ,12 ) be as follows: 

F(J) = w(h 2 ·h 2 ·/ ·h 1·hi) 

= w(hz·f ·hi) 

G ( h ( X ) ) = h 2 • cf>( h ( X ) ) · g 

= h 2·h 2·cf>(x )·h i'll 

= h 2 ·<1>(x )·g. 

Then FEHom((,1-+12),1 ) and GEHom(,,(,1-+12)). Also we have: 

F·G(h(x)) 



= w(h2·h2·<l>(x )·g ·hi) 

= w(h 2 ·<1>(x )·hi) 

= h(x) 

G ·F(f) 

= h 2·<1>(11t(h2·f ·hi))·g 

= h2·/ ·g 

= f (' .' f Elf om h1,12)) 

Therefore ,,..._,( 11-+-12) in Num . 

Lemma 9.7. 
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I] 

Let (a-+-1):N -+Hom (a,,) be a numeration and o:-:::::.{J m Num. Define 

(/3-+-1 ):N-+-Hom (/3,,) by: 

where(/ Ellom (o:,/3),g El-lorn (/3,a)) is an isomorphism pair. Then we have: 

in Num . 

Proof. Define F :Hom (a,1)-+-Hom (/3,,) and G :Hom (/3, 1)-+-Hom (o,1) by: 

F (( o-+-1)(i)) = (/3-+1)( i) 

G ((,8-+,)(i )) = ( o-+1)( i ). 

Obviously F EH om ((o:-+-1),(/J-+1)) and G EH om ((/3-+-1),(cr-+-1)). Furthermore we have: 
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F · G = id (fJ---. 7) and 

Thus (a--+1)::::::(,8--+1) in Num. 

I] 

Lemma 9.8. 

Let (a--+/J):N -+Hom (a,/3) be a numeration and p~, in Num. Define a numera­

tion (o:--+1):N -+Hom (o:,1) by: 

( o:--+, )(i ) = I ·( ( a-+ ,8)( i )) 

where(/ EHom (/3, 1),g EHom (,,,8)) is an isomorphism pair. Then 

Proof. Define G :Hom (o:, 1)--+Hom (o:,/J) and F :Hom (o:,,8)--+Hom (a,,) by 

G((o:--+1)(i)) = g ·((o-+··t)(i)) 

F ((o:--+,8)( i )) = f ·(( a-/3)( i )) 

Then 

G((o:--+,)(i)) = g ·f ·((o:--+f])(i)) 

= ( o:--+,B)(i) and 

F (( o:--+,B)(i )) = ( o:--+1)( i ). 

Thus G EH om (( o:--+1),( o:--+/J)) and F EH om (( o:--+{J),( o:--+1)). Also obviously 

I] 



- zo -

Lemma 9.9. 

Let (0t-+,8):N-+Hom (0t,,8) be acceptable and let (0t' -+/3 1 ):N-+Hom (a' ,/J') be a 

numeration such that (o-+,8),,...,.,(o' -+/J 1 ). Then (a' -+,81 ) is acceptable. 

Proof. Let(/ Ellom((o:-+/J),(o: 1 -+/J')), gEHom((a 1 -+/J 1 ),(o-+fJ))) be an isomorphism 

pair. Assume <pf1l realizes (a' -+/3 1 )(i). Then 

= (o-+,B)(enum ·t(k)) 

where t is a recursive function satisfying: 

Thus 

(a' -+/3 1 )(i) = / ((a-+,B)(enum ·t(k))) 

= (a' -+/3 1 )(r1 ·enum ·t(k)) 

Hence (0t' --+/3 1
) is enumerable. Since 

. 1· d b (t) 
IS rea 1ze Y 'Preal(r, (i ))· 

is realized by <p/th where t is a recursive function s.t. 

(l) _ . (l) 
'Pt(,) - r J <preal(r, (i))· 

Theorem 9.10. 
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Let 0::N-+A be a numeration such that in Num 0:X0:::::=0: and of:>(0:-+0:), for 

some acceptable numeration (a-+a):N-+Hom (o:,o:). Then the category Ret (o:) is Carte­

sian closed. 

Proof. Let 'Yi, ')'2 , ')'3 be retracts of 0: via h 1, h 2 , h 3 respectively. Due to the proof of 3.5 

there exists a retract c5 of a such that 

c5,..__,,1 X,2 

in Num. Also by 2.7, (,2-+13) as defined in 2.5 is acceptable. Furthermore by 3.6, there 

is a retract ')' of a such that ')':::::'.(,2 -+13) in Num. By 2.7, (,1-+1) is acceptable and by 

3.8, 

Thus by 3.9, (,1-+(,2-+13)) is acceptable. By 2.7, (6-+13) is acceptable. By 3.6, there is 

a retract u of a such that u~( D-+13). Also by 3.7, in Num we have: 

Thus by 3.9, (,1 X 12-+13) is acceptable. Therefore by 1.11 we have: 

Since Ret(a) is a full subcategory of Num, by 3.2 and 3.5 we can conclude that Ret(a) 

is Cartesian closed. 

I] 

Corollary 9.11. 

If a:N -+A is a numeration such that in Num 



- 22 -

for some acceptable numeration (a-+a):N-+Hom (a,a), then we have: for every retracts 

11, 12 of 0 1: 

( 1) h1 -+12) is abstract 

( 2) h1 -+12) is acceptable. 

Thus both I< -recursion theorem and ErJov recursion theorem hold for (11-+12). 

Proof. Immediate 

I] 
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