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ABSTRACTS

In this paper we study some important properties of numerations which can be
passe to their retracts. Furthermore we show a sufficient condition for a category
Ret (o) of retracts of a numeration o and morphisms to be Cartesian closed, in terms of
a.






§1. Introduction

The retracts have been uesd for the study of substructure. In this paper, we study
retracts of numerations.

In §2, we study some interesting properties of numerations which can be passed to
their retracts. Especially we study a few properties, yielding recursion theorems, which
can be passed to their retracts.

In §3, we study a category Ret(a) of retracts of a numeration @ and morphisms,
which is a full subcategory of the category Num of numerations and morphisms. One of
the main results is a sufficient condition for Ret(a) to be Cartesian closed, in terms of
the numeration a.

Before we finish this introductory section, we briefly overview a small part of the
theory of numerations developed by Ersov and Mal’cev. For details and further expo-

sure readers and referred to Ersov [1] and Mal'cev [4].

Definition 1.1.

A numeration (of a set A ) is a surjection a:N—A. Let a:N—A, f:N—B be
numerations. A morphism f from a to B is a function f :A — B such that there exists a

recursive function r; :N —N which makes the following diagram commute:

A%f-v"B
1, 1
N———>N

We say r; realizes f.

Lemma 1.2.



Numerations and morphisms among them form a category. We denote it by Num.
|l
Definstion 1.3.

Let a:N —A be a numeration. It is precomplete if for every partial recursive func-

tion f :N —N there is a recursive function g :N —N such that

f (i) implies ofg (i)=a(f (v)).

We say g totalizes f modulo a. It is complete if there exists an element e EA such that

for every partial recursive f :/N —/N there exists a recursive g :N —N satisfying:

alg()) =olf (+)) if S ()

e otherwise.

Theorem 1.4. (Ersov Recursion Theorem [1])
A numeration a:N—A is precomplete iff there exists a recursive function
fiz:N —N such that
el fiz () implies ol fiz (i) = o fiz(i)).

where o{f) is the Kleene numbering of partial recursive k-ary functions. We call fiz (7)
a fizpoint ofé,(l) modulo a.
Il

Corollary 1.5.

A numeration a:N —A is precomplete if there exists a recursive function

total :N — N such that:
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eQuey totalizes oY) modulo a.

Definition 1.6.

Let a:N—A, f:N—B be numerations. A numeration 7:N —Hom (a,8) is realiz-

able if there exists a recursive function real :N — N such that:

gp,(}),(,-) realizes 7).

[t 1s enumerable if there exists a recursive function enum :N —N such that:

if o[V realizes [ €Hom (a,f) then [ =r{enum (1))

It is acceptable if it is both realizable and enumerable.

Theorem 1.7. (see [2])

Let 7,r':N —Hom (a,f) be acceptable. Then there exists a recursive isomorphism

h:N —N such that

r=r'"k.

Definition 1.8.
Given numerations a;:N —A,...,0;:N—A;, we define a
a; X..Xag:N—A X..XA; by
;X Xap (<2 q,yeyzp >)
= (ay(z ), ()

where <& gy 23 >:N* N is the standard bijection.

numeration

|l



Definition 1.9.

Let a:N—A, f:N—B be numerations. A numeration (a—f):N —Hom (a,B) is
abstract if for every [ €EHom((a—f)Xa,f) there exists a morphism
c; €EHom ((a—p),(a— f)) satislying:

/ ((e—=B8)(1),a(5))

= ¢y ((a=B)i ))a(s)).
I
Theorem 1.10. (K -recursion Theorem [3])

Assume (a—f) is abstract and precomplete. For all f €Hom ((a—p)Xa,B) there

exists a number m; EN such that

f ((a=B)my ),a(5))
= ((a—8)(m; ))(e(5)).

Proof. (Outline) A fixpoint of ¢, modulo (a—f) is the desired number.

Theorem 1.11. (see [2])

Let a,/y be numerations such that (aXpf—n):N—Hom (aXB,7),
(B—4):N —Hom (B8,y) and (a—(f—%)):N—Hom(a,(B—~)) are acceptable. Then
(a X B—7)=(a—(8—7)).



§2. Retracts of Numerations

Definition 2.1.

Let a:N —A be a numeration. A morphism k €EHom (a,a) is an idempotent of a if

h=h-h. The numeration 7:N —h (A ) such that
i) = h(a(i))
is called a retract of @ (via h).
|
Lemma 2.2.

Let a be a numeration and ~ be a retract of a via h. Then z=n(1) for some 1 EN

iff z is a fixpoint of A .

Proof. trivial.
Il
Theorem 2.3.

Let a:N —A, f:N —B be numerations and v, v’ be retracts of a, # via h, h'

respectively. [ :h(A)—h '(B) is a morphism from v to 4' iff there exists a morphism

f €EHom (a,p) such that the following diagram commutes:

f
—>B

hf Y

h(A)—>h'(B)
/

Proof. Assume f €Hom/(7,y'). Define f :A —B by



J=h'-fh

This ? makes the above diagram commute and it is a morphism from a to 8 due to 1.2.
Conversely assume f :h(A)—h'(B) and for some f €Hom(a,8) the above diagram

commutes. Let g=h[ h(A). This g is a morphism from 7 to o because
g(A#)) = h(a(ry(¢))) = alry (7).

By the diagram we have:

Thus f €Hom(~,y').
||
Theorem 2.4.

Let v be a retract of &. Then we have:
(1) If o is precomplete then so is 4.

(2) If ais complete then so is 7.

Proof. trivial.
I
Definition 2.5.

Let 4, 7' be retracts of a, 8 via h, h' respectively. Also let (a—p) be a numera-

tion of Hom (a,f). Define a numeration (y—~') of Hom(~,7') by
(y=7")(5) = b ' ((a—B)s)) g
where g=4[ h(A).



Due to the theorem 2.3, this (y—~') is well-defined.

Theorem 2.6.

Let v, v' be retracts of a, B via h, h' respectively. Also assume that (a—p) is a
numeration of Hom (a,f).
(1) if (a—p) is precomplete then so is (v—~').

(2) if (a—p) is complete then so is (yv—~"').

Proof. trivial.

I
Theorem 2.7.

Let 5, 7' be retracts of @, f via h, h' respectively. Also assume that (a—f) is a
numeration of Hom (a,p).
(1) if (a—f) is realizable then so is (v—~"').
(2) if (@—p) is enumerable then so is (y—7').

(3) if (&—p) is acceptable then so is (yv—7').

Proof.
(1) (=7 )i) = b '{(e—B)i))-g. But (a—p)i) is realized by o) Thus
(y—~" )¢ ) is realized by

(1)

r = Tht Preal(i) Ty -

By s -m -n theorem, r =goz(%}) for some recursive z :N —N .

(2) Assume oY) realizes f €Hom (7,7'). Then f =h '-f -k is realized by

r = rnoplln = pf
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where ¢ is a recursive function due to the s —m —n theorem. Since f €Hom (a,f),

and (a@—f) is enumerable,
[ = (a=p)(enum (t(1))).
Thus we have
f = h'((a—B)(enum (¢t(i)))g
= (v Nenum -£(v))
(3) immediate from (1) to (2).
|l
Theorem 2.8. (see [3])
Let v, 7' be retracts of @, o' via h, h ' respectively. Assume (a@—f) is abstract,

then so is (y—7').

Proof. For every t EHom ((v—~')X7,7'), we define T :Hom (a,8) X A —B as
T(f,a)=1t(h'-f g,k(a))

where g ==h | h(A). It can readily be seen that T is a morphism from (a—f)Xa to B.

Since (a—f) is abstract, for some Cp €Hom ((a—f8),(a—f))
T((a—B)i)a(5)) = Cr((a=B)(¥)Nals))-
Define C, :Hom (v,7')—Hom (7,7') by
Ce(f)=h'Cr(h'-f -h)g.
Using that h ', h are idempotents, we can show

Cr((v—=~" N N(A1))



= t((y=' N5 )A7)).
||

Theorem 2.9.

Let a;:N—A; be a numeration and let v; be retracts of a; via h; respectively
(1<:<k). Then ~v;X..X~; is a retract of a;X..Xay. Also if a;, 1<¢ <k are

precomplete then so is v; X...X~; . Furthermore if a;, 1<¢ <k are complete then so is

Y X X g -
Proof. Define h=h;X...Xhy. Then h=h-h. Also h is a morphism from a;X...Xa;
to itself, for
r(<zyy002 >) = <13 (21)ysrn (2 )>
realizes i . But obviously

N X X (L2 g5ees g >)

= h(o; X..Xa (<20 >))

Thus ~;X...X~v¢ is a retract of a; X...Xa; via h. Assume a; (1< <k) are precom-

plete then by 2.4, v, are precomplete. Let f :N—N be a partial recursive function.

Define f;:N —N by:
fi(z) =¥ where f (Z )=<y1r'-';yk >.

Then f; are partial recursive, 1<¢ <k. Let g; totalizes f; moduldo ~;. Define

g:N—N by
g(:t) = <gl(z )"")gk(z )>

Then g is recursive. Also we have:
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N X X7 (9(2))
= 1 X XY (<912 ),y 06 (2)>)

=nXXnu(f(z) ()l
Thus g totalizes f modulo v, X...X~; . Similarly if a; (1<¢ <k ) are complete then so
is Yy X .. X Vg -

Theorem 2.10.
Assume (a;X...Xap —ag):N—Hom (a;X...Xay ,0p) is abstract and precomplete.
Then for each retracts v; of a; (0<¢ <k ), if f €EHom (4 X... XY —Y0) X% X - X Y& %)

then there exists m; EN such that

S (X Xy =v0)(my ), vi(2 1), (1))

= (X Xy =v0)my Yz 1),e7e (2 )):
Proof. Immediate from 1.10, 2.6, 2.8 and 2.9.
Il
Lemma 2.11.
(1) If vis a retract of «:N —A then there is a pair (f ,g) of morphisms f €Hom (a,7),
g EHom (v,a) such that f -g=id_ where id is the identity morphism over .

(2) If there exists a pair (f ,g) of morphisms f €Hom (a,8), g €EHom (B,a), such that

f -g =1d 4 then there is a retract v of a such that y=8 in Num.
8 v

Proof.
(1) Assume ~ is a retract of a via k. Define g=h[ h(A). Then g EHom (y,a) and

h-g=id.,
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(2) Define h=g-f. Then h€Hom (a,a). Also h-h=g-f -g-f =g-f =h. Let v be
a retract of @ via h. Define &=f «(h[ h(A)) and ¥=h-g. Then ®€Hom (v,4)
and WEHom (f,7), because h €Hom (e,y) and h[ h(A)EHom (v,a). Furthermore

we have:

V¥ = [ g(f[h(A))h-g
=/f9f hyg
=/f97 979
= fg-f 9
= idy.

Vo =yg-fg-f (] h(4)
=g fgf9f]h(A)
=g/ h(4)
=h{ h(A)
= id,,

||

Note. If there exists a pair (f ,¢) of morphisms f €Hom (a,8) and g €Hom (f,) such

that f -g=1idg we write af>f. Also (f ,g) is called a retraction pasr.
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§3. Categories of Retracts

Lemma 3.1.

Every numeration is a retract of itself via the identity morphism. Therefore the

Num is the same as the category of retracts (of numerations) and morphisms.

Proof. trivial
||
Lemma 8.2.

Retracts of a numeration a:N —+A and morphisms among them form a category,

which i1s denoted by Ret(a). This is a full subcategory of Num .

Proof. Immediate from 1.2 and 2.3.

Lemma 8.3.

Ret (a) has a final object.

Proof. Let hy:A —A be the following function:
ho(z)=a Jor all
where a is an element of A. Then hy-hy=h,. Also r :N—N such that
r(i)=j for all ¢

where a(j)=a, realizes h,. Thus k, is an idempotent of a. Let p:N —{a} be the fol-

lowing numeration:
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p(3)=ho(a(s)).
Then pERet (). Let 6€Ret(a). Then for some idempotent h of o,
8¢ )=h(a(1)).
Let f be the only function from h(A ) to {a}. Obviously g :N —N such that
g(i)=0
is a recursive function which realizes f . Thus {f }=Hom (6,p). Thus p is a final object

in Ret(a).
Il

Lemma 8.4. (Ersov [1])

Num is a Cartesian category.

Proof. Let a:N —A and f:N—B be numerations. Furthermore let x:N —X be a
numeration and p,EHom (x,a), p,€EHom (x,B8). Since the category Set of sets and func-
tions is Cartesian there is a unique function A:X —A X B such that the following
diagram in Sef commutes:
X
Py — \ P
AE h >
/

L W . N

\AXB/

In fact h(z)=(p,(z),p(z)). But this h:X —A4 XB can be realized by the following

recursive function r :N —N;
F()=<r, () i)>

because
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h(x(1)) = (p1(x()),pox(1)))
= (a(r, (¢)),8(r, (1))

= a)(ﬂ((rpl(i),rh(t‘ )>).

Thus h€Hom (x,aXf). Also m:A XB—A, m:A XB—B can be realized by <>,
<>, where <>, <>, are the recursive inverse of <z,,2,>. Thus m€EHom (a X f,a),
mo€EHom (a X 8,6). Therefore h is the unique morphism from x to aX A which makes

the following diagram in Num commute:

p,/x\pz
a</ T~
\ ' /ﬂ

m T
P aX B _—

Obviously Num has the final object.
Il
Theorem 8.5.

Let a:N —A be a numeration. If a=aXa in Num then Ret(a) is a Cartesian

category.

Proof. Let [-,-] be a pairing morphism and [];, [], be the inverses of [-,~] such that
[a(i),a(s)]; = of)
[a(i ),a(7)]e = o(7)

Assume 7; is a retract of a via h; (+=1,2). By 2.9, 4, X, is a retrct of a via h; X h,.

Define h:A —A by,

h(e)=1[hXhy[al,[al)] = [Ai([a],).ho([a])]



=15 =

Then h is realized by a recursive function:
r(5)=rp(raxs {<r5)rL5)>))

Furthermore we have:

h-k([a,b]) = [, Xho(h(a)kyb))
= [hyhy(a)hyho(b))
= [hy(a),ho(b)]
= h([a,b])

Thus k is an idempotent of a. Let ~ be a retract of @ via h. Define p;:h(A )—h;(A)

pi(h(a)) = hi([a];).
Then p;€Hom(7,7;) because the recursive functions r( realizes p;. We calim that

(7v,p1,p2) is the product of v, and 7, in Ret(a). To prove this claim, assume § is a retract
of @ via ¢ and p; EHom (6,6;) 1 =1,2. Define a function u:g(A )—h(A) by:
u(z)=[pi(z)psfz)
This ¢ i1s a morphism from é to v because
Ty (J ) = [—,—]( <y LT 1(1. )7rh2.rp2(-’. )>)
realizes it as
u(b6(n)) = [8,(ry (n)),85(r, (n))]
= [a(ry 1y (n))alrs, rp (n))]

= olr (< rayp (1 ray 7 (1)>)

= h(a(r,(n))
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= 7(ru (J‘ ))
Furthermore we have:

piu(z)=pi([pyz)pz))
= pi(k([ps(z),po(2)])
= hi(pi(z))

= p,-(z ) 8.=1,2.
Thus v makes the following diagram in Ret(a) commutes:
]
P P2
el "
\ 4 J{

M Y2

~
/

P2

Assume v EHom (6,7) also makes the above diagram commutes. Then

pi v =p; i =1,2.

Pi(z) = hi([v(2)];)
= [v(2))
Therefore v(z )=[p(z ),po(z )|=u(z).
Il
Note. We can prove this theorem in an alternative way as follows: We can show
y==v; X7, in Num . Since p; are isomorphic image of m; EHom (v, X¥,7;) an Ret(a) is

a full subcategory of Num, using lemma 3.4, we can show that (v,p,,p;) is a product of

v, and v, in Ret (a).
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Lemma 3.6.

Let a:N —A be a numeration such that a[>(a—a) for some acceptable numeration
(e—a):N —Hom (a,a). Then for every retracts ~;, 7, of a, there is a retract v of & such

that y==(v;—7,) in Num .

Proof. Let 7, 7, be retracts of & via h;, h, respectively. Let YEHom ((a—a),a),

d€Hom (a,(a—a)) be such that ¢-¥=id(, .4. Define h:4 —A as
h(z ) = ‘I’(h2'¢(x )'hl).
Then we have:
hti(z) = ¥(hy®(¥(hyP(z)h))h)
= V(hy®(z))hy)
= h(z)
Since Num is a category, h€Hom (a,2). Thus h is an idempotent of @. Note
(r1=%)(i)=hy(a—a)(i)-g where g=h,[ h(A). Let F:Hom(y,7,)—~h(A) and
G :h (A )—Hom (v;,7,) be as follows:
F(f)=W¥hyhof hyhy)

s ‘I’(h o f hy)

G (h(z)) = hyd(h(z))g
= hyhy®(z ) h g

= h,P(z)g.
Then F €Hom ((y;—72),7) and G €Hom (v,(7;—7,)). Also we have:

F-G(h(z))



- 18 -

= V(hyhy®(z)g-hy)
= VY(hy®(z)hy)

= h(z)

G-F([f)
= h2-¢(\P(h2-f ‘hy))g
=hyf g

= f (" [ €Hom(v,72))

Therefore y=(~v,—7;) in Num .

Lemma 8.7.

Let (a—7):N—Hom(a,7) be a numeration and a==f in Num.

(B—7):N —Hom (B,7) by:
-~ (B=) = (=) ) e
where (f €Hom (a,8),g €Hom (8,)) is an isomorphism pair. Then we have:
(a—7)=(f—)

in Num .

Proof. Define F:Hom (a,y)—Hom (f8,7) and G :Hom (83,7)—Hom (a,y) by:

F((a—9)(¢)) = (B—=(¥)

G (=) = (a—)(¥).

Define

Obviously F €Hom ((a—~),(f—7)) and G EHom ((f—~),(a—~)). Furthermore we have:
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F-G = id(p_,,,) and

GF = id(a_..,).

Thus (a—~v)=<(f—~) in Num .

Lemma 3.8.

Let (a—p):N —Hom (a,f) be a numeration and f=v in Num . Define a numera-

tion (a—+):N —Hom (,7) by:
(a=)(¢) = [ ((a—B)(¥))
where (f €Hom (,7),g EHom (7,8)) is an isomorphism pair. Then
(a—7)=(a—H).
Proof. Define G :Hom (a,y)—Hom (a,8) and I :Hom (a,8)—Hom (a,7) by
G ((a—=)(7)) = g ((a—>)(1))
F(a—p)i)) = f ((a—B)(i))
Then
G((e=)i)) = g/ ((a—B)+))

= (a—B)i) and

F((a=B)i)) = (a—7)(s).
Thus G €Hom ({(a—~),(a—f)) and F EHom ((a—f),(a—")). Also obviously

GF = id(.p) F-G = idgy
Il
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Lemma 38.9.
Let (a—p):N—Hom (a,f) be acceptable and let (o' —p'):N —+Hom(a',B') be a

numeration such that (a—f)=(a'—pf'). Then (a’—pA") is acceptable.

Proof. Let (f €Hom ((a—pB)(a'—A")), g€EHom ((a’'—B"'),(a—p))) be an isomorphism

pair. Assume ¢! realizes (a’ —A')(i). Then
g((a’'—p")1))
= (a—B)(enum -t (k))
where ¢ is a recursive function satisfying:
oilly= 1,0l
Thus
(a'=p')¢) = [ ((a—P)(enum -t (k )))
— (a'—p'ry -enum -t(k))
Hence (' —f') is enumerable. Since
g((a' =B')1)) = (a—B)r, (#))
is realized by o), (i)
(a'=B')¥) = f ((a—B)(ry ()
is realized by got((l,)) where ¢t is a recursive function s.t.
SOe((l.)) = Ty 'Pr(ell:(r,(f))-

Theorem 8.10.
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Let a:N —A be a numeration such that in Num aXa=za and ap>(a—a), for
some acceptable numeration (a—a):N —Hom (a,a). Then the category Ret(a) is Carte-

sian closed.

Proof. Let ~,, 7,, 73 be retracts of a via h,, h,y, h; respectively. Due to the proof of 3.5

there exists a retract § of a such that
b=, X,

in Num . Also by 2.7, (7,—"3) as defined in 2.5 is acceptable. Furthermore by 3.6, there
is a retract v of o such that y==(v,—~3) in Num. By 2.7, (y;—") is acceptable and by

3.8,
(m=Y)=(1— (7))

Thus by 3.9, (y;—(~Y,—";)) is acceptable. By 2.7, (§—n;) is acceptable. By 3.6, there is

a retract o of a such that o=<(§—~;). Also by 3.7, in Num we have:
(8—73)=(1 X 12— 3)-
Thus by 3.9, (v, X7,—73) is acceptable. Therefore by 1.11 we have:
(m—=(re=73))=(n X2 —)-

Since Ret(a) is a full subcategory of Num , by 3.2 and 3.5 we can conclude that Ret(a)

is Cartesian closed.
||
Corollary 3.11.
If a:N —A is a numeration such that in Num

aXo=o
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o> (a—va)
for some acceptable numeration (a—a):N —Hom (a,a), then we have: for every retracts

RITERY) of Gyl
(1)  (y;—"2) is abstract
(2)  (v1—72) is acceptable.

Thus both K -recursion theorem and Ersov recursion theorem hold for (y,—,).

Proof. Immediate



(1l

2]

8l
[4]
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