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ABSTRACT 

In recursion theory, recursion theorems are usually 

considered for effective functions over an effective uni

versal set, like the set N of all natural numbers or the 

set RE of all recursively enumerable sets. 

We observe that certain effective subsets of these 

effective universes have rich structure, and we study 

recursion theorems for these effective subsets. 

' 
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§1. Introduction 

We consider types as effective subsets of some effective 

universal set. 

Finitary types, i.e. types composed of finite objects can 

naturally be considered as recursive languages over a nonempty 

finite set r, or equivalently as recursive subsets of N. In §2 

we study the space of "typed partial recursive functions" 

f:Rk+R where R is an arbitrary finite type. We show that both 

Rogers and Kleene second recursion theorems hold for this 

typed function space. 

Infinitary types can be considered as suitable recursively 

enumerable subsets of some complete numeration which is rich 

enough to be a universal set. For example, the Post numbering 

W:N+RE of the set of all recursively enumerable sets would be 

. an interesting universal set. In §3, we study Ersov recursion 

theorem for these infinitary types in a general setting. 

In §4, we present an alternative to the approach taken 

in §3. Instead of a complete universe, we assume a universe 

which satisfies an analogue to Kleene 2nd recursion theorem, 

we call it K-recursion theorem, and we show that retracts of 

such universe satisfy the K-recursion theorem. 

Throughout we assume basic concepts and facts of recursive 

function theory. Readers are refered to standard textbooks. 

We also use basic results of the numeration theory. We briefly 

overview a small part of this theory, which is needed in this 

paper. For details see Ersov [2]. 
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Definition 1.1 

A numeration ( of a set X) is a surjection x:N+X. Given 

two numerations a:N+A and 6:N+B, a morphism from a to Bis a 

function h:A+B such that there is a recursive function rh:N+N 

satisfying: 

h•a=S•rh. 

We say such rh realizes h. Hom(a,6) denotes the set of all 

morphisms from a to 6. 

Lemma 1.2 

The collection of numerations and the collection of mor

phisms form a category. We denote this category by Num. 

Definition 1. 3 

Given numerations a 1 :N+A1 , ... , ak:N+Ak' we define a 

numeration a 1x•••xak:N+A1x•••xAk by 

· a 1 x • • • x ak ( <x 1 , .•• , xk >) = ( a 1 (x 1 ) , ••• , ak (xk) ) 

where <x 1 , ... ,xk>:Nk+N 

Definition 1.4 

is the standard bijection. 

A numeration a:N+A is preaomplete if for every partial 

recursive function f:N+N there exists a total recursive g:N+N 

such that 

f(iH· implies cx(g(i) )=cx(f (i)). 

Such ex is aomplete if there exists an element eEA such that 

a(g(i))=a(f(i)) if f (iH· 

e otherwise 

Such e is called a special element of a. 
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Proposition 1.5 (Ersov [2]) 

a:N-+A is precornplete- iff there exists a recursive funct

ion fix:N-+N such that 

implies 

a ( iµ ( i) (fix ( i) )) ~a (fix ( i) ) • 

where ~(k) is the Kleene numbering of partial recursive k-ary 

functions. 

In definition 1.4, g totaZizes f moduZo a. 
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§2. Recursive Sets and Typed Recursion Theorems 

Definition 2.1 

A function h:X-+X is an idempotent if h•h=h. A subset RcX 

is a retract of X if R={h(x) lxEX}=h(X) for some idempotent 

h:X-+X. 

Lemma 2.2 (Meseguer [3]) 

A nonempty subset of N is recursive iff it is a recursive 

retract of N. 

Proof Assume R=h(N) for some recursive idempotent h:N-+N. Then 

xEX iff h(x)=x. 

Thus Risa recursive set. Conversely assume R is recursive. 

Define h:N-+N by, 

h(x)=x if xEX 

otherwise 

where x 0 is the smallest element in R. Then his a recursive 

idempotent. Also R=h(N). 

Definition 2.3 

Let R be a recursive set and r:N-+N be a recursive idem

potent such that R=r(N). We define a numeration y :N-+R by r 

Yr(n)=r(n). 

A partial function f:R-+R is yr-partial reaursive if there 
'\I k exists a partial recursive function f:N -+N such that the 

following diagram commutes: 

Nk '[ 
N 

y k t 1 Yr r 
f R R 
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where for any function g:X+X, 

...... 
k-times 

is the following function: 

k g (x 1 , ••• ,xk)=(g(x 1 ) , ••• ,g(xk)). 

Theorem 2.4 

Let R be a recursive nonempty set and r 1 ,r 2 :N➔N be recur

sive idempotents such that 

Then a 

r
1 

(N) =r
2 

(N) =R. 

partial function f:Rk+R is y -partial r, 
is y -partial recursive. 

r2 

recursive iff it 

Proof Assume f:Rk➔R is y -partial recursive. Then there is r, 
a partial recursive function £ 1 :Nk➔N such that for all nENk, 

- k -r 
1 

• f 1 (n) = f • r 1 ( n) and 

iff 

From this f 1 we can construct a partial recursive function 

k 
£2 :N ➔N such that 

- k -r 2 •f2 (n)=f•r2 (n) and 

f 2 en>+ 
as follows: 

Define £2 by 

iff 

Since both r 1 and r 2 are recursive functions f 2 is partial 
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because r 1 is an idempotent for R. Thus we have: 

- k -r 2 •f2 (n)=f•r2 (n). 

This theorem states that the concept of "partial recrsive

ness" of partial functions f:Rk-+R where Risa recursive non

empty set is independent of the choice of recursive idempotents 

for R. 

Definition 2.5 

Let R be a nonempty recursive set. A partial function f:Rk-+R 

is partiaZ recursive if f is yr-partial recursive fo! some 

recursive idempotent such that R=r(N). Furtheremore for each 

nonempty recursive set R, the recursive idempotent h:N-+N 

defined by 

h(x)=x if xER 

otherwise 

where x 0 is the smallest element of R, is called the standard 

idempotent of Rand the numeration yh:N-+R is called the 

standard numeration of R. 

Due to the theorem 2.4, without loss of generality, we 

can restrict our discussion to standard idempotents and 

standard numerations of nonempty recursive sets. 

Definition 2.6 

Let R be a nonempty recursive set and PRR(k) be the set 

of all partial recursive functions Rk-+R. We define a numeration 

o(k):N+PRR(k) as follows: 
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o (~) =h•ip (~) f Rk 
l. l. 

where his the standard idempotent for R. 

The definition of o(k) indicates that this numeration 

inherits many properties of the numeration 1/J(k). 

Theorem 2.7 (Typed Rogers 2nd Recursion Theorem) 

Let R be a nonempty recursive set with the standard nume

ration y. For every partial recursive function f:N~N, there 

exists a number nfEN such that 

f (nf) -1- implies 

(k) ( _ (k) 
o (y x 1 ) , ••• ,y(xk))-o (Y(x

1
) , ••• ,Y(xk)) 

f(nf) nf 

Proof By the Rogers 2nd recursion theorem there exists a 

number nf such that 

f(nf)-1- implies 

(k) _,,, (k) 
1/Jf (nf) (x1 '· • • ,xk)-'I' nf (x1 '· • • ,xk) • 

Obviously this nf satisfies the theorem. 

When a property of ip(k) involves arguments of indexed 

functions, such property may not be passed directly to o(k). 

Theorem 2.8 (Typed 5-m-n Theorem} 

Let R be a nonempty recursive set and y be the standard 

enumeration of R. There exists a recursive function stm:Nrn+ 1~N n 

such that 

(m+n) ( ) ( 
0 i ( Y Y 1 ) ' · · 'Y ( Y m 'Y z 1 } ' • · 'Y ( zn) } 

=a(n! (y(z1), .. ,y(zn)). 
s tn ( i , y 1 , .. , y m) 
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wheres~ is the s-m-n function for the Kleene numbering. It 

can readily be seen that this st~ establishes the theorem. 

In the above proof, stm is not primitive recursive in n 

general because Y need not be so. Thus the primitive recursive-

ness of the s-rn-n function is lost in typed case. 

The following theorem is concerned with a property of 

the Kleene numbering which requires some elaboration to be 

passed to a (k) . 

Theorem 2.9 (Typed Kleene 2nd Recursion Theorem) 

Let R be a nonempty recursive set and let y be the standard 

numeration of R. For any partial recursive function f:Nk+ 1 ➔N 

there exists a number mf such that 

Proof Let 'f:Nk+ 2➔N be the following partial recursive function 

'f ( i , y , x 1 , ••• , xk} = f ( st~ ( i , y ( y) ) , x 1 , ••• , xk} . 

Due to the Kleene 2nd recursion theorem for ~(k+ 1 ), we have 

a number eEN such that 

(k+1) 'll 
~ e ( y , x 1 , • • • , xk } = t ( e , y , x 1 , • • • , xk) 

1 = f ( s tk ( e , y ( y ) ) , x 1 , • • • , xk ) 
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(k) 
cr ni ( Y ( x 1 ) , ••• , y ( xk) ) 

f 

(k + 1) 
= Y • \JI e ( Y ( e ) , Y ( x 1 ) , • • • , Y ( xk) ) 

1 . 
= y • f ( s tk ( e , y ( e ) ) , y ( x 1 ) , ••• , y ( xk) ) 

It is evident that the same results as in this section 

hold for a more general case of partial recursive word 

functions of Asser [1]. 

For technical simplicity, we considered only partial 

recursive functions f:Rk~R. It is evident that we can general

ize our results to partial recursive functions f:R 1 x•••xRk~R0 

where Ri (i~k) are recursive sets. 
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§3. Comp~ete Universes and Tvped Ersov Recursion Theorem 

Definition 3.1 

Let a:N➔A be a numeration. A subset BcA is weakly enume

rable if B=a(X) for some recursively enumerable set XcN. Let 

ar(A) be the collection of all weakly enumerable subsets of A 

and let p:N➔ar(A) be the following numeration: 

where Wis the Post numbering of recursively enumerable sets. 

Lemma 3.2 

pis precomplete. Thus the Ersov recursion theorem holds 

for p. 

Proof Immediate. 

This obvious lemma states that we can recursively define 

weakly enumerable sets. 

Definition 3.3 

Let a:N➔A be a complete numeration with a special element 

eEA. A weakly enumerable subset BcA such that eEB is called an 

a-type 

Due to Rice Theorem recursive subsets of A are trivial. 

Lemma 3.4 

Let a:N+A be a complete numeration with a special element 

e€A. Every a-type B has a complete numeration T:N+B with a 

special element e. 

Proof Since a is complete there is a total recursive function 

h:N+N which totalizes 

g(i)=f(ljJ~,, (0)) 
l. 
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modulo a where f is a total recursive function N+N such that 

B={f (i) I iEN}. 

Define T:N+B as 

T(i)=a•h(i). 

It can readily be seen that this Tis complete with a special 

element eEB. 

Theorem 3.5 (Typed Ersov 2nd Recursion Theorem) 

Let a:N+A be complete with a special element eEA. Let 

T:N+B the complete numeration of an a-type B with a special 

element e as above. Then for each partial recursive function 

f:N+N, there is a number nfEN such that: 

f(nf)~ implies T(f(nf))=T(nf). 

Proof By 3.4 and the Ersov recursion theorem 

This theorem states that every a-type admits recursive 

definition of its elements, thus provides a typed recursion 

theorem. 

Finding a good characterization of those partial recur

sive functions (recursive definitions) whose p-fixpoints are 

a-types is left open. 

In samrnary, lemma 3.2 and theorem 3.5 are numeration 

theoretic analogue to the retract calculus of Scott [4], which 

uses Tarski fixpoint theorem instead. 
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§4. Abstraction Universes and Typed K-recursion Theorem 

Definition 4 .1 

Let a:N+A be a numeration. A morphism hEHom(a,a) is an 

idempotent of a if h=h•h. The numeration y:N+h(A) such that 

y(i)=h(a(i)) 

is called a retraat of a (via h). 

Lemma 4.2 

If his an idempotent of a numeration a:N+A then h(A) 

is weakly enumerable. 

Proof trivial. 

Definition 4.3 

A pair (a,6) of numerations has the abstraation property 

if there exists a numeration (a+S):N+Hom(a,6) such that for 

every fEHom((a+B)xa,6) there exists a morphism cf from (a+B) 

to itself such that 

f ( ( a+ 6) ( i) , a ( j ) ) =cf ( ( a+ 6) ( i) ) ( a ( j) ) • 

Theorem 4.4 (The K-recursion Theorem) 

Assume that (a,6) has the abstraction property and (a+B) 

is precomplete, then for all fEHom((a+B)xa,B) there exists 

a number mf such that 

f ( (a+ B ) ( mf ) , a ( j ) ) = ( ( a+ B ) ( mf ) ) ( a ( j ) ) 

Proof Since (a,8) has the abstract1on property, for some 

cf€Hom((a+B) ,(a+S)) we have: 

f ( ( a+ 6) ( i) , a ( j ) ) =cf ( ( a+ 6) ( i) ) ( a ( j ) ) . 

Let g=r • Since (a+S) is precomplete there is a number ng 
cf 
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such that 

(a-+13) (g (ng)) = (a-+8) (ng). 

Thus we have: 

Set mf=ng. 

f ((a-+13) (n
9

) ,a(j) )=cf((a-+B) (n
9

)) (a(j)) 

= (a-+13) (g (n
9
)) (a (j)) 

=(a-+13) (ng) (a(j)). 

This theorem is a numeration theoretic analogue to the 

Kleene 2nd recursion theorem. 

Lemma 4.5 

Let a:N-+A be a numeration and y,y' be retracts of a via 

h,h' respectively. Then f:h(A)+h' (A) is a morphism from y to 

y' iff there is a morphism FEHom(a,a) such that 

f•h=h'•F. . . . . . . . . . . . (E) 

Proof Assume that f is a morphism from y toy'. Since hand 

h' are idempotents of a, F:A-+A defined by 

F=h'•f•h 

satisfies (E). Since f,h,h' are morphisms, due to 1.2, Fis 

a morphism from a to a. 

Conversely assume f is a function h(A)+h' (A) such that (E) 

holds for some FEHom(a,a). Let g=hth(A). Then r:N-+N defined by 

r=rh•rh 

is a recursive function which realizes g, for we have: 

Since his an idempotent of a, we have 

f=h' •F•g. 
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Thus f is a morphism from y toy'. 

Notice that the above proof also states that for any 

morphism FEHom(a,a), f:h(A)+h' (A) defined by 

f=h' •F•g 

is a morphism from y toy'. Thus we have the following 

definition: 

Definition 4.6 

Let a:N+A and (a+a) :N+Hom(d,a) be numerations. Let y,y' 

be retracts of a via h,h' respectively. We define a numeration 

(y+y'):N+Hom(y,y') by 

( y+y' ) ( i) =h ' • ( ( y+y) ( i) ) · g 

where g=h th (A) . 

Theorem 4.7 

Let a, (a+a) ,y,y' ,(y+y') be as in the definition 4.6. If 

(a+a) is precomplete then (y+y') also is precomplete. 

Proof For any partial recursive function f:N+N, the recurs

ive function g:N+N which totalizes f modulo (a+a) totalizes 

f modulo (y+y'). 

Theorem 4.8 

Let a,(a+a) ,y,y' ,(y+y') be as in the definition 4.6. If 

(a,a) has the abstraction property, then so does (y,y'). 

Proof Let tEHom((y+y')xy,y'). Define T:Hom(a,a)xA+A by: 

T(F,a)=t(h'•F•g,h(a)). 

Then Tis a morphism from (a+a)xa to a, for r:N+N such that 

r(~i,j>) =rt (rh' •rF•rg(i) ,rh (j)) 

realizes T. Since (a,a) has the abstraction property, for 
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T ( ( a+a) ( i) , a ( j) ) =c T ( ( a+a) ( i) ) ( a ( j) ) • 

Define ct:Hom(y,y')+Hom(y,y') by: 

Then ct is a morphism from (y+y') to itself because the 

identity function N+N realizes ct. But we have: 

Ct ( ( y+y I ) ( i) ) ( y ( j) ) 

Lemma 4.9 

= (h I • CT (h I • ( ( y+y I ) ( i) ) • h) • g) ( y ( j ) ) 

=h ' • T ( h' • ( ( a+a) ( i) ) • h) • g, y ( j) ) 

=h' • t (h' • ( ( a+a) ( i) ) • g, h ( y ( j) ) ) 

=h I • t ( ( y+y I ) ( i) , y ( j) ) 

=t ( ( y+y I ) ( i) I Y ( j) ) • 

Let a:N+A be a numeration and y 1 , ••• ,yk be retracts of a 

via h 1 , •.• ,hk respectively. Then y 1 x•••xyk is a retract of 

k-times 

Proof Define h=h 1 x•••xhk. Then h=h•h. Also his a morphism 

from ak to itself because r:N+N def-ined by 

realizes h. But obviously 
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Theorem 4.1~ (Typed K-recursion Theorem) 

.. k--
Assume ·ta ,a) has the abstraction property. Also assume 

that (ak+a) is precomplete. Then for each retracts y1 , •.• ,yk+ 1 

exists mf€N such that 

Proof Immediate from 4.4,4.7,4.8 and 4.9. 

A numeration a:N+A which satisfies the condition of the 

theorem 4.10 for every k~1 is called an abstraation universe. 

Retracts of such a is called a-K-types. 

In words, if a is an abstraction universe then a-K-types 

satisfy the typed K-recursion theorem. 
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