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ABSTRACT 

The Transmission Control Protocol (TCP) of ARP ANET is one of the 
most popular transport level communication protocols in use today. Origi­
nally designed to handle unreliable and hostile subnets in a long-haul net­
work TCP has been adopted by many local area networks (LAN) as well. It 
is, for example, available in 4.2 BSD UNIX for interface to Eth~rnet and 
several other LAN technologies. This is convenient but not desirable from a 
performance standpoint since the control structure is far more complex than 
is necessary for LAN s. 

This paper describes what we learned in measuring and tuning the per­
formance of TCP in transferring large files between two hosts of different 
speeds over the Ethernet. Models are presented which allow the optimal 
buffer size and the flow control parameter to be determined. Based on 
observed traffic patterns and those reported elsewhere, we formulated guide­
lines for the design of transport protocols for a single LAN environment. We 
then present a new, much simpler LAN transport level protocol which 
replaces TCP with significant improvement in network throughput. Internet 
packets will use the full TCP. This is done at the gateway. Since the major­
ity of the packets in a LAN are for local usage, this scheme improves the 
overall network throughput rate as well as the mean packet delay time. 

• AJso appears in INFOR vol.23, no.3, Auguat 1985. This work was supported in part by the 
Natural Sciences and Engineering Research Council of Canada. 
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ABSTRACT 

The Transmission Control Protocol (TCP) of ARPANET is one of the most popular transport 
level communication protocols in use today. Originally designed 10 handle unreliablc_and 
hostile subnets in a long-haul network, TCI' has been adopted by many local area networks 
(LAN) as well. h is, for example, available in 4.2 aso UNIX for interface to Ethernet and 
several other LAN technologies. This is convenient bu1 not desirable from a performance 
standpoim, since the cont.ml structure is far more complex than is necessary for LANS. This 
paper describes what we lea.med in mcarur-ingand tuning the performance of-ruin trans­
ferring large files between two hosts of diffcrc.nt speeds over the Ethernet. Mode.l.s arc 
presented that all.ow the optimal buffer size and the flow control parameter to be deter­
mined. Based on observed traffic paucms and those reported cbcwhcre, we formulated 
guidelines for the design of transpon protocols for a single LAN environment. We t11cn 

present a new, much simpler LAN transport level protocol which replaces TCP with signifi­
cant improvement in nc1work. throughpuL Internet packets will use the full TCP. This is 
done a1 lhc gateway. Since lhc majority of the packets in a UN arc for local usage, lhi.s 
scheme improves lhc overall network throughput rate as well a.s the mean pa.ck.ct dct.y lime. 

RtsuMt 

La proc~urc.dc transmiuion TCP de ARPANET est aujourd'hui l'un.cs des proc~urcs lcs plus 
populaircs pour le nivcau de transpon. A l'origincc dcs1ince 1 des sous-rcseaux d'un fonc­
tionncmcnl inccrtain de rcscaux [l longue distance, cllc a Cte depuis adopt& par de nom­
brcux rcscaux locaux (LAN). Par cxemple, ONIX 4.2 aso sc sen de TCP pour rinicrfacc avcc 
l'Ethcme1. Cela est commode, ma.is la performance cst mediocre, parcc quc Iii structure de 
contr0lc est bcaucoup plus complcxc qu'il n'csl ncccssairc pour un rcscau local. Nous 
dccrivons cc quc nous avons appris en mcsurant Cl ajustant la performance de TCP pour 
le tr.msfcn de large fichicrs emre deux proccsscun ccnlr.lux de vitcsses diffcremcs avcc 
un £ihc.rnct. Now prc~ntons unc nouvelle procedure de Lransmission, beaucoup plus 
simple quc TCP, pour le nivcau de transpon loc.al. Les paqueu pour longucs distances 
utilisem TCP, 1 panirdc la portc du reseau. Comme la majoritc des paqueu dans un UN 

est pour wage local, ceci amcliore le volume du rescau, ainsi quc le dcla.i moycn par paquet. 

1. INTRODUCTION 

The Transmission Control Protocol (TCP) of ARPANET is one of the most 
popular transport level communication protocols in use today. Originally 
designed to handle unreliable and hostile subnets in a long-haul network, 
TCP has been adopted by many local area networks (LAN) as well. It is, for 
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example, available in 4.2 BSD UNIX for interface to Ethemet'
2

"
1 and several 

other LAN technologies. This is convenient but not desirable from a 
performance st.andpoint, since the control structure is usually much more 
complex than is necessary for LANs. 

Unlike long-haul networks (LHN), LANS are characterized by high 
channel speed (typically lOMb/sec as opposed to 9.6Mb/sec for LIINS), low 
transmission error i-ates, and a controllable environment. The major 
portion of Lhe packeL delay time (time to process and successfully deliver a 
packet to its destination) shifts from the propagation delay time for LHNS 

lO protocol processing time for LANS. Thus the efficiency of high-level 
proLOcols is an important design issue for local area networks. 

The Depanment of Computer Science at the University of BriLish 
Columbia runs 4.2 BSD UNIX on several VAXes and SUN (Mc680l0-based) 
workstations connected by a l 0Mb/sec Ethernet. This paper describes 
what we learned in measuring and tuning the performance of TCP in 
transferring large files beLween a fast host (VAX 11/750) and a slower host 
(suN workstation) over the Ethernet. We then present a new, much 
simpler transport-level protocol which replaces TCP with significant 
improvement in network throughput. When packets are intended to be 
sent to other networks which may be unreliable and which support only 
TCP, the full TCP can be used. This is done at the gateway. Since ~he 
majority of the packets in a UN are for local usage, this scheme greatly 
improves the network throughput rate as well as the mean packet delay 

time. 

2. TYPICAL LAN TRAFFIC 

Messages generated in a local area network environment fall into three 
major categories.<• ◄ > 

2.1 Remote service request - reply type ilo 
A client level process initiates a service request for a remote server and 
waits for a reply. The server processes the request and sends a reply 
messge. This sequence of activities is characterized by the exchange of 
short bursts of variable length messges. c 15> This type of exchanges are best 
supported by a datagram protocol like the UDP (User Datagram Protocol) 
or one that is custom-designed, sui:h as the "t/o protocol used in the 
V-System<8> and the remote D'C protocol used in SHOSHtN.'

91 Common 
applications that generate such exchanges include remote logins., remote 
executions, remote procedure calls, and remote file accesses. 
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2.2 Systnn-gmn-attd fMS.Sages 
Some messages are not explicitly initiated by a client level transaction but 
are generated by the system as a consequence of such a transaction. An 
example is a file creation/deletion request. This process necessitates 
propagation of directory updates to the various workstations maintaining 
in-core directory information. 'Other messages are unrelated to client 
activities such as event notifications, acknowledgements and status 
exchanges.< 16

• 181 These messages are short (mostly one or two packets) and 
infrequent. This type of messages also calls for a connectionless protocol 
as the packet transport mechanism. 

2.J Strtam type messages 
These require the support of a connection oriented protocol, and are 
characterized by a unidirectional transfer of much bigger packets and 
connections of longer life time than the other types of traffic.<• ◄ > The 
overhead due to initial connection set-up and run-time connection 
management common in virtual circuit protocols is justified by the 
efficiency provided. Typical applications generating this type of traffic 
are large file transfers, process control applications, image, and voice 
traffic. Throughput rate is the most important performance considera­
tion for file transfer type applications while delay times are more crucial 
in real-time closed loop type activities and image/voice data traffic. TCP/rp 
is a typical protocol used to support this type of applications which create 
much more demand on network bandwidth than the other applications 
(IP stands for Internet protocol and is a network level protocol). Later 
sections describe the performance evaluation of TCPIIP in supporting such 
stream type traffic, and the viability of a custom-designed protocol to 
replace TCPIIP to handle primarily this but also the other types of traffic. 

2.4 Some empirical data on LAN load d&araaeristics 
Knowledge of the characteristics of the network traffic as well as the 
underlying medium under operational loads is valuable in protocol 
design. Some measurement data are available,<Hi,l?,ts., 9•25> and are sum­
marized below. Although all the data had been collected from Ethernet 
installations, with the exception of the Ethernet specific statistics such as 
packet collision rates, most apply to other types of LANs as well. 

I. The peak load even for a large LAN typically constitutes only a small 
fraction of the network capacity .< 16

• 
17 

• 1
8

•231 Measured figures on Ether­
netc•5> (presumably using PUP in.temet protocols1251) in a single LAN 

consisting of 120 Alto machines, two time-sharing systems (TENEX), 
gateways, file and print servers, etc. showed that the maximum load as 
observed over a six-minute interval was 7.9% and the average load 
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0.8% of the Ethernet capacity of 2.94 .Mb/sec. The corresponding 
figures over an observation interval of one second were 32.4 % and 
2.7% respectively. Reference 1171 reported measurement data on an 
existing university time-sharing environment extrapolated to that for 
a large scale Ethernet-based LAN supporting the same environment. 
The network utilization for I ,000 users with heavy network disk usage 
was no more than 30%. 

2. For a given total load level, network performance is largely insensitive 
to the confrguration.06> For example, five stations, each preseming 
20% of the given load onto the network, have largely the same effect as 
fifty stations each inputing 2% of the load. 

3. 
4. 

5. 

6. 

7. 

Packet arrivals tend to be very bursty.116· 11J.t91 

Packet lengths exhibit a bimodal distribution116•181 characterizing the 
message types discussed in sections 2.1 to 2.3. 
The majority of the packets are locally consumed. Reference 116> 

reported that 72% of the traffic was intranetwork. 
The raw channel bit error rates are practically negligible, being of the 
order of I in 1011 to 1012Y.i6 •

27> The observed error statistics in an 
operational environment is smalJ;<23•17> reference (16) reported an 
error rate of I in 2* I 06 packets. 
Even in a busy large scale Ethernet, the probability of packet collision is 
small. Reference (17) reported negligible collisions up to 1,000 users. 
With 2,000 users, the collision rate was about one per successful 
transmission. The ninetieth percentile waiting time was 400 usec with 
about 1,400 users. The mean waiting time was around I 00 usec. Thus 
the theoretical pos~ibility of an unbounded packet delay is a non­
problem with current operational eh\'ironments. 

3 FACTORS INFLUENCING PROTOCOL PERFORMANCE 

The performance of a transport level protocol depends on the following 
factors; 

I. the control structure of the protoco)Ol 
2. the flow control mechanism if it is a stream protocol 
3. The volume of control packets generated by the protoco1<4> 
4. The way the protocol is implemented and its relationship to the host 

operating systemr◄ > 

5. Th( overhead induced by the host operating system and the structure 
of the network interface.<•> 

These factors were considered in the performance evaluation of TCP/JP 
in our LAN system. 

' i' 
,'i 

I I 
I 
I 
I 

} 
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J .1 Control structure 
The control structure of a transport protocol deals with the packet for­
mat, retransmission and timeout policies, client and network level inter­
faces, packet fragmentation and reassembly, congestion control, peer 
addressing, etc. TCP/JP12 ·!1> was designed to provide internet packet trans­
port over lossy subnets. The services provided include internet address 
handling, routing, internet congestion control and error reporting, 
multiple checksums (one at the TCP level and the other at the IP level), 
segment fragmentation and reassembly, datagram self-destruction 
mechanisms, and service level options to clients. The large, byte level 
sequence numbers used in TCP (thirty-two bits) incurs considerable 
processing overhead128> but is justified in the context of an ,LHN on tl1e 
grounds that a large recycling interval allows easy identification of 
out-of-order and duplicate segments and that byte level sequence 
numbers facilitate the fragmentation of segments at the local IP layer and 
the intervening gateways, and the reassembly at the remote TCP entity. 
These service features are seldom used (in fact some of them are irrele­
vant) in a single LAN environment. They nevertheless consume con­
siderable protocol processing time0 > which is a critical resource in a LAN 

and constitutes a performance bottleneck in a LAN environment.128
> How­

ever, since it is part of the protocol itself, one cannot proceed to improve 
performance by modifying the control structure without compromising 
the protocol specifications. See section 8. 

J.2 Flo11J control 
The TCP specifications do not specify the type of flow comrol to be 
implemented: only recommendations are made. {See <2> for details.) The 
T<'P implementation in 4.2 BSD UNIX has a simple flow control scheme. A 
flow control parameter a is defined which is the ratio of the number of 
buffers released (NP) since the last window update and the total number of 
available buffers (NB). That is, 

a= NPINB. (I) 

When a exceeds a preset value ac, an acknowledgement packet containing 
the current window size is sent to the sending peer. ac was originally set at 
0.35, which means that when the number of packets consumed exceeds 
35% of the total buffer space, a window update becomes due. Sender and 
receiver buffers were set at 2Kbytes each (see figure I). It was not clear 
whether the flow control and the buffer sizes were adequate. We believe, 
however that lax flow control will result in an uneven flow of packets 
because of the frequent choking of the protocol. On the other hand, a 
rigorous flow control scheme would generate excessive control traffic 

.. 
J 
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BUFFERS EXIST AT 

DATA­

CONTROL-----• 

ALL PROTOCOL BOUNDARIES 

MEASURED DELAY 

TIME 

F1G. I. lmplemen1a1io11 model of TCP/iP in BSD 4.2 UNIX 

which is wasteful of network resources. Thus it was felt that some detailed 
measurements are necessary in this respect. 

J .J Control traffic 
The third factor, the volume of control traffic, is closely related to the 

flow control policy. If the protocol treats window updates and packet 
acknowledgements separately, then this factor should be studied sepa­
rately from flow control. In TCP, however, since the acknowledgement 
and the window update go in the same packet, slUdy of flow comrol sheds 
light on this factor also. 

J. 4 How the protocol was implemented 
The fourth factor is the logical relationship between the protocol and the 
host operatinf◄ system. There are a variety of choices available to the 
implementor. ◄> 

I. The protocol runs as a user process. 
2. The protocol runs as a privileged process with direct mapping into the 

kernel address space.<20i 

3. The protocol runs completely within the kernel of the host operating 
system. 

4. The protocol runs on a separate front-end processor. 

l' ,, 
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F1G. 2a. Software loop back mode IPC (without protocol support) 

F1G. 2b. Software loop back mode IPC (with protocol support) 
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5. Some of the functional layers of the protocol run inside the kernel and 
the rest as user level processes. 

It is beyond the scope of this paper to discuss the relative merits of 
each. We shall mention however that 3 and 4 give the best performance. 
The interested reader is referred to <4> for a detailed discussion on this 
subject. In 4.2 BSD UNIX, TCP/JP has been implemented in the kernel, 
which means that all the kernel-provided services, such as timers, device 
control, and memory buffers, are readily available to the protocol. This is 
made possible because of the availability of a large address space in the 
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host machines (SUN and VAX) and of the large memory size. Thus it was felt 
that not much could be done to improve performance in this area, except 
of course to offload the protocol into a front-end processor (some of the 
commercially available network interfaces provide large buffers and 
software support for this offloading). 

3 .5 System overhead and the network interface structure 

3.5.1 Operating system overhead 
Operating system overhead is another factor that influences the protocol 
performance. For example, how data are passed among the various 
processes, the host-scheduling philosophy, the queue service disciplines, 
support of non-blocking i/o and context switching all affect the perfor­
mance in some way. In 4.2 BSD UN_I_-X, lPc-related calls are non-blocking; 
that is, the sender need not wait for the packet to be delivered to the 
receiver and acknowledged. Buffers are managed in units of J 12 bytes 
each. This leads to a fragmented representation of data, and all packet 
processing is done on a chained list of buffers, which emails considerable 
overhead. Our measurement of 4.2 BSD UNIX running on the SUN 
workstation showed this overhead to be around 45% to 50%. The 
software loopback measurement results described in <11 performed on a 
PDP· 11/70 running a modified version of UNIX indicate that 70% of the 
processing time is consumed by the system overhead in the form of system 
calls, context switching, etc . . 
3.5.2 Network interface structure 
The network interface unit (NIU) used to access the communication 
channel also strongly influences the performance of a transport connec­
tion. Our systems (both VAX and SUN) use Ethernet interfaces from 3coM 
Corporation which do not support true OMA. The interface has a pool of 
2Kbyte buffe1'3,< 10

•111 each of which can independently be controlled either 
by the host or the NIU at any time. (The number of buffers and their 
organization, however, are different in the two systems.) After a packet is 
processed by the protocol, the host copies it from its memory to the NIU 
buffer. The NIU then transmits the entire pclcket, and interrupts the host. 
Similarly an arriving packet interrupts the host, which then copies it into 
its memory. This structure is in contrast to that of a true OMA device 
which either has a dual-ported local buffer or can directly access the host 
memory across the system bus. The extra copy needed in our system can 
be circumvented if the packet is copied from the application data space 
directly into the NIU buffer. But this requires the packet routing decision 
to be made at the client layer which is above the transport level. This is 
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inconsistent with the os1 reference modet<il) which places the routing 
decisi.on at the network layer. 

Not wishing to modify the host operating system or change the NIU, we 
decided to probe in detail the protocol related aspects, namely the flow 
control scheme, the number of buffers and the control traffic. A 
performance study of TCP in the context of long-haul networks has been 
performed at University College, London.<51 In this study the focus was 
essentially on retransmission strategies and segment sizes. Flow control 
related aspects were studied to some extent, but the protocol was never 
considered a bottleneck. 

4. MEASUREMENT EXPERIMENTS 

4.1 Experiment 1 
The first experiment was designed to measure the performance of the 
existing TCP implementation in some quantitative terms. In this experi­
ment the client and the server processes reside on the same machine 
where a steady stream of data flows from the client to theserver(see figure 
2a). At the network interface level, the system provides a software 
loopback interface which mimics a physical network and echoes back the 
data to the receiver. In this experiment, data were transferred with and 
without protocol support. See figures 2a and 2b. From the results (figure 
3) several observations can be made. 
1. The performance without protocol support forms an upperbound on 

the performance of any protocol implementation in our LAN system. 
2. The TCP performance figures were only half of the upperbound 

(350Kb/sec as against 700Kb/sec). 
3. The packet level processing that is data independent, such as header 

processing, constitutes a sizeable fraction of the total packet processing 
time. This can be seen py the saturating behaviour of the throughput 
curves as packet size is increased. The throughput rate R (bits per 
second) is approximated by the simple relation. 

R = 8 • n/[2 • (TSYS + THDR + n.TPKT)], (2) 

where 

n = Packet size in bytes 
Tsvs= System call handling time(= 1.5 msec in 4.2 BSD UNIX on the 

SUN workstation) 
THDR = Header processing time 

I, 

; 

•I 
! 
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TPKT = Effective packet processing time per byte of useful data (it in­
cludes the processing time for control traffic, data copying, 
checksum evaluation, etc.). 

When n is small, the overhead per byte of data transferred is very 
large, and R varies considerably with n. For large n, n.TPKT > 
(Tsvs + THDR) and R tends to be a constant. 

From observation 3 we conclude that the packet size should be as large as 
possible. We recommend that a reasonable packet size at the client level 
should be 1,024 bytes, which is a frequently used unit of disk storage. 

4 .2 Experiment 2 
Instead of using the loopback mode, one of the processes was moved to 

the VAXI 1/750 running the same version of 4.2 BSD UNIX (see figure I). 
Using TCPIIP, large volumes of data were transferred in both directions, 
first from VAX to SUN, then from SUN to VAX. The throughput rate in the 
VAX-SUN transfer was about 400kb/sec for segments of 1,024 bytes 
whereas the reverse case yielded only about 340kb/sec. Even though 
a twofold increase in throughput rate with respect to the loopback mode 
testing was not expected (because in the actual transfer, servicing the 
network interface constitutes about 20% of the packet processing load), 
we did not expect the performance to be only marginally better than that 
of the Ioopback mode. We felt that inefficiency existed in the protocol 
either in the form of excessive control traffic or an uneven flow of packets 
or both. So the next step was to monitor the packet level activities within 
the protocol. 

4 .J Experimml J 
The aim of the experiment was to monitor the packet flow distribution, 
since we strongly believe that any misbehaviour on the part of the protocol 
will show up as uneven packet flow (the convene is not necessarily true). 
The distribution of packet sizes and packet interarrival times were 
monitored at the protocol boundary between TCPltP and the Ethernet. 
The results we obtained revealed the following: 

1. Data were heavily fragmented within the protocol (not the IP level 
fragmentation) even though the messages were all sized well below the 
Ethernet specified maximum of 1,500 bytes (see figure 4b). 

2. The packet flow was very uneven (and so was the control traffic) as seen 
by the widely spread-out packet interarrival time distribution curves 
(see figure·4a). 

3. There was a heavy volume of control traffic, about one control packet 
for every data packet. 
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We concluded that the 2K buffer space provided in TCP for each of the 
sender and the receiver was too sma1l, resulting in the exchange of small 
and varying window sizes. Thus the sending of peer blocks frequenLiy for 
want of window space. Even if the sender has a window available, it is 
often smaller than the client specified size. So the TCP fragments data to a 
size equal to that of the available window before sending. This explains 
the heavy fragmentation of data. Since buffers cannot be released without 
a positive acknowledgment from the receiver, the sender tends to choke 
very frequently. This happened about 925 times when 10,000 packets 
were transferred from the SUN to VAX. For the reverse traffic, the faster 
sender (VAX) was getting blocked at least 3,000 times for the same amount 
of traffic. The time average of the window space was only about 1,000 
bytes, rather small for a stream protocol in LANS where the normal unit of 
flow is 1,024 bytes. 
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4 .4 E 1wir01m1e11lal i1tle1f ere rices 
The environmental factors that could affect the measurements are the 
interference due to unrelated work loads presented by other users, the 
disk i/o initiated by the end applications handling the streams, other 
regularly activated daemon processes, and the mail traffic arriving over 
the network. The interference due to daemon processes is character­
ized by short bursts of computation and exchange of short packets 
separated by large intervals of inactivity; hence its effect is negligible. The 
message traffic was light in our system and arrived in random (of the 
order of one to two messages per minute). This interference too was 
found to be negligible. 

The question of whether to include disk i/o as part of the measurement 
process was carefully considered. The SUN workstation uses a FUJITSU disk 
drive with an average service time (access and data transfer) of about 30 
msecs. The disk drive on the VAX has comparable specifications. Since the 
network i/o is of the order of 15 msec per packet, a sufficient overlap of 
disk and network i/o can make the effect of disk i/o invisible. An asyn­
chronous process may be created to fetch mutiple disk blocks in a single 
request and pass them to the application process for network transfer (see 
figure 2c). It was found that with single disk requests of four disk blocks, 
the application process rarely gets blocked for want of data. However, 
there is the associated overhead in trans£ erring data between the pro­
cesses, context switchings, and disk driver processing. 

The interference due to unrelated work loads on the same workstation 
is completely random in nature and non-reproducible. It is very difficult 
to incorporate its effett in the study. However, as workstations are typi­
cally used by no more than one user at a time, the exclusion of this inter­
ference from the measurements might not be unrealistic. 

Regarding unrelated load on the Ethernet from other stations, 
measurement results from large Ethernet installations elsewhere,<16

•
17> as 

discussed in section 2.4, showed no collision for up to about 1,000 users. 
This means that except for extremely heavy workload on the Ethernet 
bus, a station can access the bus without collision. Thus, within limits, 
measurements across. a pair of stations are largely independent of other 
network activities. This fact was verified on our LAN system by the 
following experiments. Experiment 2 (vAx-11/750 to SUN file transfer) 
was repeated with additional file trans£ er traffic on the Ethernet from a 
second VAX-11/750 to a VAX-11/780. The added traffic was created first by 
two pairs of concurrent processes and again by sixteen pairs transferring 
files simultaneously. Each experiment was repeated six times. During the 
experiments electronic mail messages were coming in and processed by 
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TABLE I 

Throughput Quiet Loaded• 
ra1ct network network 

Mean (l<.bps) 400 400 
Standard 

deviation (Kbps) 2 6 

•two additional concurrent file transren 
••sixteen additional concurrent file transfers 
tvAx-11/750 to suN file transrer 

Loaded•• 
network 

398.5 

3.5 

the first VAX-11/750. The results of the experiments are summarized in 
table 1. The maximum difference in mean throughput rate was under 
0.4%. 

It was therefore decided to study the performance of the TCP/JP without 
any disk i/o and unrelated workloads. One should note, then, that the 
figures so obtained would provide upper bounds on the performance of 
the virtual channel between the transport level entities. 

5. TUNING THERAPIES 

Having located the bottlenecks, our next step was systematically to tune 
the .protocol parameters, namely the number of buffers and the flow 
control parameters ac. 

J.l Optimal buffer siu 
The net throughput rate and the mean packet delay time were taken as 
the primary performance indices. To make a systematic study of the 
effect of the buffer size on the performance indices, a simple determi­
nistic model was formulated which allows the throughput rate to be 
estimated in terms of the buffer size and the flow control parameter. 

5.1.1 Throughput model 
Consider the queueing model of figure 1. Since throughput is limited 

by the slowest server in the chain, the model essentially deals with param~ 
eters with respect to the slowest server. 

Let TDAT = Mean service time per data packet 
TACK = Mean service time for an ack~owledgement packet 

Mean effective service time per data packet= TDAT + TACJUNP, 

where NP(< NB) is related to the flow control parameter. 
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Normally, NP is chosen to be three to four buffers less Lhan NB as specified 
by the flow control model of section 5.2.1. It is the number of packets 
received and consumed since the last window update. So the maximum 
throughput rate achievable assuming a steady 1raffic is 

R = 1/(TDAT + TACJUNP} for a fast sender 
= 1/(TDAT + TSCH + TACJUNP} for a slow sender. (3) 

TSCH is the average time a packe1 waits in the receiver's input queue before 
the protocol layer is notified of its arrival This is a system relaled 
parameter and is heav'ily influenced by the host operating system's 
scheduling strategy. For example, with VAX-11/750 as the receiver (SUN 

being the sender), TSCH = 4 to 5 msec. Jn the case of a fast sender, TSCH = 
0 in our system, since the slow receiver always finds a packet in its input 
queue waiting to be processed, and the protocol process never relin­
quishes the CPU until its input queue is empty. This asymmetry shows up 
as reduced throughput rate for the SUN•VAX transfer (about 20%) 
compared with the VAX-SUN transfer. 

Reference 16
> describes a queueing-model based theoretical analysis ta 

compute the upper bounds on throughput rates when buffers constitute 
the bottleneck in the system. The model does not take into account the 
variation in control traffic that might arise as the buffer size is varied. We 
have extended and generalized lhe model to yield the upperbound on 
throughput rate RU. 

RU = NB/[(TDAT + TACJUNP}(KS + KR) + TON + TAN], (4) 

where I <=NP< = NB, and TON and TAN are the network delay times for 
the data and acknowledgement packets respectively. KS and KR are the 
speed factors for the sender and the receiver respectively (see append.ix 
A). Thus as NB increases, th~ optimal value for NP also increases, and RU 

has an increasing slope. Beyond NB= 3, receiver processing becomes the 
bottleneck. limiting the throughput rate. The observed throughput rates 
are well within these computed bounds. They also match well with 
equation (3) (see figures 7a and 7b). 

5.1.2 Tuning experimer;it I 
An experiment was designed to monitor the overall throughput rates and 
the mean packet delay limes as a function of the buffer size. The flow 
control parameter in each case was set as dictated by the model described 
in section 5.2.1. The sender was the faster VAX with the SUN workstation 
tbe receiver. The waiting times in the receiver queues were monitored. 
Each packet was timestamped on entry into the TCPhP input queue from 
the network interface. An updated timestamp was affixed on each packet 
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on exit from the input queue of the socket layer. The delay time distribu­
tion was also observed. It was found that the delay time of each packet had 
a lower bound that is much larger than the mean packet service time. This 
was a sensitive function of NP and NB. In the 15k buffer case, the mean 
packet delay time was about 130 msec whereas in the BK case, the delay 
was about 55 msec, with NP set at the optimal value in both cases. The 
delay time was also heavily dependent on the flow control parameter. The 
variation of the throughput rates and the packet delay times with respect 
to the buffer size is as given in figure 5. The observed throughput results 
match quite well with those obtained using equation 3 with the flow 
control parameter (and hence NP} set at the optimal value as described in 
section 5.2. l. One can see that the throughput rate saturates when the 
buffer size reaches 8Kbytes, whereas the packet delay times increases 
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monotonically. This behaviour is analogous to that of a muhiprogram­
ming system with respect to the degree of multiprogramming.122> 

With this experimentally observed throughput rate and delay time 
behaviour, we ap plied Kleinrock's criterion<'> with respect to the asymp­
totic behaviour of the system. The point of intersection of the asymptote 
to the delay time curve with the horizontal line representing the packet 
service time at the receiver fixes the optimal number of buffers that keeps 
throughput and delay time within acceptable limits. This was found to 
be between 6 to 8Kbytes. The throughput rate at this point is about 
530Kb/sec, and the packet delay time is around 40 msec (figure 5}. 

5.2. l Flow control model 
Having fixed the optimal buffer size, the next stage was to determine the 
optimal flow control parameter value that maintains an even flow of 
packets with a minimal amount of control traffic. A simple deterministic 
model was formulated for this purpose (see appendix A}. The model 
specifies the minimum amount of cushion needed at the receiver that 
satisfies the above conditions. The number of buffers released which 
generates an acknowledgement packet is given by the inequality. 

NP < = NB - [KR.NW/(KR + KN + KS)] 

-[(KR + KN + KS)/KS)[TACKITDAT] - [KS + KN]/KR. (5} 

To minimize the control traffic NP should be set equal to the expression on 
the right hand side of equation (5). This value of NP is easily mapped onto 
the TCP's flow control parameter by the simple relation (I} which is 
rewritten here as 

a= NPINB. 

5.2.2 Tuning experiment -2 
Experiments were conducted to monitor the throughput rate, packet 
delay time, control traffic, and the time average window size as a function 
of the flow control parameter a. The experiments were carried out with 
NB = Bk and 15k bytes. The optimal values of a obtained from the 
experimental results match quite well with the value proposed by the 
model. The results are as shown in figures 7a and 7b. The variation of the 
time average window size with respect to a is quite linear. Notice that a 
small a keeps the packet flow even and steady at the expense of increased 
control traffic. For a > a.,, the protocol gets blocked for want of window 
space, but the control traffic is reduced. At a = «c, the control traffic is just 
enough to maintain a steady flow without choking. It is observed that the 
performance degradation due to protocol blocking is more severe than 

~ . 

l 
l 
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that due to increased control traffic. This implies that an a slightly less 
than ac will be a safe region of operation. As seen in figure 6, the flow 
distribution shows sharp peaks indicating an even and unchoked flow. 
The control traffic is high but the protocol never blocks more than 
necessary. 

6. GUIDELINES TO PROTOCOL DESIGN AND EVALUATION 

Based on the analysis of the measured data as well as empirical data 
obtained elsewhere (see section 2.4), certain guidelines concerning the 
design and tuning of TCP-like protocols are presented below: 

1. The number of retransmissions at tbe TCP layer were practically zero in 
our small L.AN system. Even in large LANS, the probability of retransmis­
sion is very small. 06· 17•231 This means that a LAN transport protocol need 
not place much emphasis on retransmission-based error recovery 
schemes. Similarly, run-time connection management like connection 
resets, forcible shutdown of the connections with zero in our observa­
tions. Thus a LAN transport protocol requires only a simple connection 
management scheme (see also<8>). 

2. An end-to-end application seldom loads the network beyond a small 
fraction of the network capacity. In our measurements, a streaming 
application presents a maximum load of 6% while an interactive 
application (send-receive-reply) presents a maximum load of about 

3 . 
4. 

5. 

0.35% to 0.5% of the Ethernet capacity of 10 Mb/sec. Spectorll.!•I re­
ported that the maximum interactive load presented by a single Allo 
machine on a 2. 94 Mb/sec Ethernet is about 1.8%. This means that the 
subnet is almost never the bottleneck and the network delay times are 
small compared to the protocol processing times. So How control 
should be strong and adaptive enough to accommodate the diff erem 
speeds of the host machines and the varying work loads so that packets 
do not get discarded at the receiver for want of resources. This 
requirement is not as important for LHNS where the transmission 
speeds are typically several orders of magnitude s.lower; thus the 
probability of a fast sender swamping a slow receiver is much less than 
that in a LAN environment. 
It is not efficient to send packets in small sizes.<8

•151 

Checksumming and data copying operations should be kept to a 
mini.mum.<4 l 

The packet flow distribution can provide a conclusive pointer as to 
whether the flow control policy is a serious bottleneck. An inefficient 
flow control due either to the lack of buffers or delayed acknowledge-

·' 
'[ 
•I 

1 
.f 
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FIG. 7a. Effect of How control parameter on performance (N. = 15 Kbytes) 

ments results in an uneven How of packets that shows up as a wide 
distribution (i.e., withoul sharp peaks). 

6. Control traffic marginally higher than the required minimum keeps 
the flow steady with the throughput and packet delays close to the 
optimal values. It is not desirable to allow the protocol to gel blocked 
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more than necessary, since this is more detrimental than allowing a 
slight increase in coritrol traffic. 

7. Data should never be fragmented. This can be achieved by avoiding 
extremely small windows and allowing updates that are integral 
multiples of the frequently used packet sizes. 

8. Protocol performance is highly sensitive to the relative speeds of the 
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host machines, the resources available per connection, the character­
istics of the hardware network interface, and the system environment. 
The dependency of the protocol parameters on these factors should 
be carefully considered in protocol design and implementation. 

7. COMPARISON WITH THE PERFORMANCE OF SOME OTHER PROTOCOLS 

We briefly compare our results on TCP/JP performance with other 
implementations of TCPlrP as well as the DECnet protocol. This compari­
son is based on the informal measurement results that are distrihuted 
across the TCPIIP mailing list in the ARPANET mailing systcm.0 :iJ 

7.1 vccntt performance over Ethernet 
DEC's publicationc12> provides data on DECnet V3.l performance over 
Ethernet under VMS. The maximum task-to-task transfer rate between 
two VAx-I I/780's with an internal buffer of 576 bytes and user buffer of 4 
Kbytes is 800 Kb/sec while that for VAX-l l/750's is 600 Kb/sec; the file 
transfer rates (presumably including disk server processing) are 420 
Kb/sec and 350 Kb/sec, respectively. With link optimization, that is, an 
increased internal buffer size of 1,498 bytes, the throughput rates are 1.3 
Mb/sec and 1.2 Mb/sec, respectively, for task-to-task transfer, and 500 
Kb/sec and 390 Kb/sec for file transfers. 

7.2 Other TCPIIP implementations 
Both UNIX 4.2 BSD TCP/JP and VSMIEUNICVTCPIIP implemented on the 
Ungermann-Bass bTOadband network yield a file transfer rate of about 
200 Kb/sec. TEKTRONIX TCP/IP under VMS gives a file transfer rate of 140 
Kb/sec between a VAX-11/780 and a VAX-11/750 over an Ethernet with 
Interlan controller using blocking vws 1/o calls as against 280 Kb/sec for 
vMslDECnet. No results on possible performance improvement are 
available with non-blocking i/o calls. The corresponding figure for TCPIIP 
between two VAX;.l l/780s is 200 Kb/sec. Similarly the vMs/TcP/JP to UNIX 
4.2 BSD TCPIIP file transfer rate (again between VAX-I I/780's) is 200 Kb/sec 
with task-to-task communication at 400 Kb/sec. 

From the above informal benchmarks, it would appear that the DECnet 
protocol outperforms TCPIIP in a LAN environment. However, another 
study by Jacobson et al. at Lawrence Livermoore Labs (again circulated in 
the ARPANET mails<15>) claims that both the UNIX TCPhP and VSM TCPltP 
outperform VMs/DEcnet, with the UNixlTCPIIP performing better than its 
VMS counterpart; no quantitative results are given. Thus, due to the 
informal nature of these benchmarks and the lack of comparative studies 
in identical environments, it is difficult to draw firm conclusions as to the 
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performance of TCl'li P relative LO other protocols or even with implemen­
tations of TCP/r t> un<ler different systems. Our study has mainly concen­
trated on the tuning ispects of TCP/JP un<ler 4.2 BSD UNIX; nevertheless, 
our measurement data on TCP/JP performance are in line with the above 
informal benchmark results. 

8. A NEw TRANSPORT LEVEL PROTOCOL FOR LANs 

All the tuning procedures mentioned in the earlier sections are based on 
flow control and buffer-related aspects only. Not hing was done to the 
control structure of the protocol itself, since this would lead to violations 
of the protocol speci fi cations. To improve performance further we came 
up with a simple p rotocol LNTP (Local Network Transport protocol) that 
would provide the same functional service as TCP!tP for the local net 
traffic. The observed traffic characteristics in other large scale LAN 
installations, as discussed in section 2.4, were taken into account in the 
protocol design. The design emphasizes 

I. a simplified control structure, 
2. a clean flow control scheme with minimal interactions between sender 

and receiver. 

The protocol is asymmetric io structure, so that the processing at the 
sender and receiver is high.ly localized in functional ity. Since the protocol 
is to support a bidirectional stream interface to the client layer, a complete 
implememation has two complementary instances of the protocol 10 

provide such an abstraction . This keeps the protocol implementalion 
much cleaner and elegant. The main features of the new protocol are as 
follows: 

l. It provides a virtual circuit service on top of a datagram service. 
2. It encapsulates only the very rew protocol functions that are essential 

in a single LAN environment, leaving out the unnecessary complexities 
typical ofa urn protocol. Specifically, the internet address generation, 
routing, packet fragmentation and reassembly, different service level 
options pmvided to clients, congestion control and error reporting, 
multiple checksums and packet self-destruction mechanisms have 
been eliminated. This has resulted in considerable redution in the 
protocol overhead apart from the added advantage of a reduced 
packet header size (from 40 bytes to IO bytes). Furthermore, together 
with the dean How control mechanism, this has also resulted in a vety 
small set of control packet types. 
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LNTP = Local Network 
Transport Protocol 

Fie. 8. Implementation model of LNTP 

3. A deferred How control scheme that provides a maximum degree of 
parallelism between sender and receiver. 

4. Small, packet level sequence numbers (as opposed to large, byte level 
sequence numbers used by TCP) for simplicity in processing. 

A brief description of LNTP is presented in appendix B. Details can be 
found in <281• A preliminary implementation of the protocol in the 4.2 BSD 
UNIX kernel has been made at the same functional level as TCP/JP (see 
figure 8). It has been tested in software Joopback mode to get a 
comparat ive view of the protocol in terms of performance. The prOLocol 
gives a good improvement in throughput rate (around 450kb/sec 
compared with 360 kb/sec for the TCPltP under identical set of optimized 
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protocol parameters, see figure 3). Actual transfer of data with other hosts 
in our LAN system could not he done at this Lime, because the vendor 
support for the Ethernet is provided only for TCP/JP packets. Since we did 
not have the source code for the Ethernet driver at the time of writing, we 
could not provide the Ethernet support for our new protocol. Only after 
carrying out real transfer experiments can the contribution to perfor­
mance improvement due to the modified flow control, control traffic, and 
the simple structure be conclusively determined. 

9. PLANS FOR TIIE FUTURE 
Ethernet support for the new protocol will be provided. The protocol 
design and implementation are more or less complete. The performance 
of distributed applications supported by this protocol will be studied. 
Once the protocol is proved reliable and robust, all the distributed 
applications running under 4.2 BSD UNIX in our LAN system (currently 
supported by TCPIIP) will be supported by this new protocol. Though 
non-standard, it can provide an efficient communication support within 
the LAN system. When it is necessary to communicate with other systems, 
full TCP/JP can be implemented at the gateway. 

I 0. CONCLUSIONS 
Measurement experiments relating to the performance of the 4.2 BSD 
UNIX implementation of TCP/JP supporting the transfer of large files 
between hosts of-different speeds connected by a IO Mb/s Ethernet were 
described. A methodology was proposed which may detect the bottleneck 
in the protocol. Models were presented which allow the determination of 
the optimal buffer size and the How control parameter. We also described 
a new transport protocol for local area networks with much simpler 
control structure which provides the same functional service (excluding 
the internet packet transport) as TCPliP in 4.2 BSD UNIX with significant 
increase in network throughput. Finally, summing up what we have 
learned, a set of guidelines to protocol design and evaluation were 
presented. 

It is hoped that our experience in measuring and tuning TCP will be of 
use to others running the same system as well as to designers and 
implementers of protocols for local area networks. 

APPENDIX A: A DETERMINISTIC MODEL FOR FLOW CONTROL IN TCP 

The following analysis assumes that the input queue is never empty; that 
is, there are always some data to send. 

' ·l 

'.! 
T 
! 
,i 
.1 
'! 
' I 

t ;, 

i 
I 
i 



320 S.T. CHANSON, K. RAVJNDRAN, ANDS. ATKINS 

If we let 

TDAT = Mean packet processing time including interfacing to the client 
layer 

TACK= Mean processing time on an acknowledgement packet, 

then TDAT > TACK, because 

l. the data-dependent processing, such as copying, checksumming, and 
manipulation of memory buffers, need not be performed for the 
acknowledgement packet; 

2. the acknowledgement packet does not reach the client interface. 

TDAT and TACK are specified with respect to "reference machine." Let 

NW = mean number of packets in the system 
KS= speed fator for the sending machine 
KR= speed factor for the receiving machine 
KN= speed factor for the Ethernet layer. 

For the reference machine, the speed factor is 1.0. Thus for a machine 
with a speed factor K, K.TDAT and K.TACK are the protocol-processing 
times for the data and acknowledgement packets, respectively. Lel 

ws = size of the window at the most recent update 
NP= number of packets cleared from the receiver socket buffer 

since the last window update 

Two cases arc considered. 

Cast 1. Sender slower than receiver (Ks > KR) 

Example, SUN to VAxl/750 

When the NPth packet has been received, the window as seen by the 
sender is given by 

W = WS - NP - (KR+ KN)/Ks. (Al) 

The last term represents the number of packets that are already in the 
network. 

Mean proportion of traffic at Jhe input queue of the receiver 
= KRl(KS + KR+ KN). (A2) 

Since the acknowledgement packet has to traverse the downstream 
path against the incoming traffic, which has higher priority over the 
outgoing traffic, the time for the acknowledgement packet to reach the 
input queue of the sender is given by _ 

T' = (KR/[KS +KR+ KN]).NW.KR.TDAT +(KR+ KN).TACK. (A3) 
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If the sender gets the update before or just as its window closes, then the 
flow will be continuous, and there will be no choking. This condition can 
be mathematically expressed as 

T' < = [ws - NP - (KR+ KN)/Ks].KS.TDAT. 

From (A3), 

NP<= {[ws - (KR+ KN)/Ks)] - KR••2.Nw/[(KS +KR+ KN)·Ks] 
- (KR+ KN).TACKl(KS.TDAT)}. (A4) 

The control traffic is minimized if the right- and left-hand sides are equal. 

Case 2. Sender faster than receiver, that is, KS< KR 

Example, VAXI 1/750 to SUN 

The mean proportion of packets at the receiver input queue 
== KRl(KS +KR+ KN). (AS) 

An acknowledgement packet is sent by the receiver to the sender after 
the receipt of NP packets since the last window update. The time taken for 
this acknowledgement packet to reach the sender to enable transmission 
of a subsequent data packet and for this data packet 10 arrive al the 
receiver should be just sufficient for ,the receiver to complete processing 
the remaining (ws - NP) packets. This will minimize the control traffic 
without idling the slow receiver. Mathematically, the above time is given 
by 

T" =(KR+ KN+ KS).TACK + [KRl(KS +KN+ KR)J.NW.KR.TDAT 

+(KS+ KN).TDAT. (A6) 

Since 

T" < = (ws - NP).KR.TDAT 

therefore 

NP< = {ws - [KR.Nw/(KR + KN+ KS)] 

- [(KR+ KN + KS).TACKl(KR.TDAT)] - (KS+ KN)/KR}. (A 7) 

Equations (A4) and (A 7) provide some general guidelines for determin­
ing the value of NP which can easily be mapped onto the TCP control 
parameter. A numerical example ts presented below. 

The parameters for SUN and VAX 11/750 are (the SUN is taken as the 
reference machine) 

K(SUN) = 1.0, K(VAX) = 0.9 
KN= 0.066, TDAT = 14 msec, TACK= 6 msec. 
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Case 1. VAX to SUN transfer 
Apply equation (A 7): 

NP<= ws - 1.02 - 0.8426 - 0.966 with NW= 2.0 (approx.) 
=ws-2.829. 

This implies that a cushion of 2.829 buffers is needed al the receiver lo 
keep the SUN running continuously with a minimal How of acknowledge­
ment packets. 

With ws = 15 buffers, a(SUN) = 0.81, 
With ws = 8 buffers, a(suN) = 0.65. 

Case 2. SUN to VAX transfer 

Apply Equation (A4) 
NP< = WS - 0.966 - 0.824 - 0.414 with NW= 2.0 

=ws-2.204. 

This implies that a cushion of 2.204 buffers is to be provided at the 
receiver to keep a continuous flow of packets. 

With ws = 15 buffers, a(vAX) = 0.853, 
With ws = 8 buffers, a(VAX) = 0.7245. 

APPENDIX B: DESCRIPTION OF LNTP 
(LOCAL NETWORK TRANSPORT PROTOCOL) 

A brief description of the new protocol is given below (the connection 
set-up and close-down sequences are not described he1·e; please refer 
to c29> for details): 

B.1 Protocol structure 
The structure of the packets handled by the protocol is as shown in figures 
B.l and B.2. 

I SRC I DSTN I PKT I LEN I SEQ I RETX I DATA I CHK I 
I PORT I PORT I ID I I NO I CNT I I SUM I 

Fig. B.l. Structure ofa DATA and DATA+ PRMPT packet 

I SRC I DSTN I PKT I SEQ I CHK 
I PORT I PORT I ID I NO I SUM 

Fig. 8.2. Structure of a control packet 

ARl'ANliT TRANSMISSION CONTROL l'ROTOCOL 3!!3 
Let us denote lhe componenls of a packet by a "C"-like structure 

pkt= struct 
{ 
SRCPORT 
DSTNPORT 
PKTID 
LEN 
SEQNO 
RETXCNT 
DATA 
CKSUM 
} 

16 bits; 
16 bits; 
4 bits; 
12 bits; 
4 bits; 
4 bits; 
(LEN) bytes; 
16 bits; 

pkt.SRCPORT --> Port address associated with the sending peer 
pkt.DSTNPORT --> Pon address associated with the receiving peer 
pkt.PKTID--> Packet identifier. Identifies DATA, DATA + 

pkt.LEN--> 
pkt.SEQNO --> 

pkt.RETXCNT --> 
pkt.DATA--> 
pkt.CKSUM --> 

PRMPT & PRMPT from sender; RETXMT, 
RESUME, HOLD from receiver 
Data length in octets 
Sequence number of the data packet from sender. 
Wrap around occurs afler every MAX_SEQNO 
packets. From the receiver, this is one plus lhe se­
quence number of the packet last received correctly 
Retransmission count of a data packet (zero initially) 
Data 

· Checksum of the entire packet, including header 

The variables describing the protocol machine are 

MAX_SEQNO --> 

Sender 
SND.NXT--> 
SND.UNA--> 

Ntx--> 

Maximum sequence number space (16) 

Sequence number of the next packet to be sent 
Sequence number of the first packet in the sender 
waiting to be acknowledged 
Sender's threshhold in the protocol window 

The following entities are also defined 

1. A timer associated with the DAT A + PRMPT & PRMPT packets in the 
flow control region. 

2. A timer at the sender on every outgoing packet (TS) in the non-flow 
controlled region; it is reset on the arrival of either the next outgoing 
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data packet (it restarts the timer) or an acknowledgement packet. 
Similarly there is a timer (TR) at the receiver on eve,-y incoming packet; 
it is restaned by the arrival of the next incoming data packet. Tbe 
expiry of TS generates a DATA+ PRMPT from the sender. The expiry 
of TR generates an acknowledgement at the receiver. The timer values 
are chosen such that 

TS > EIT(DAT) + TR + EIT(ACK), 

where Err is the end-to-end transfer time for a packet. TR has to be 
chosen appropriately. The rationale behind this timer structure is that 
for stream traffic, the next outgoing/incoming packet resets TSITR so 
that no extra network traffic is generated. For interactive type traffic 
the timer values satisfying the above inequality will guard against pos­
sible deadlocks that might arise owing to packet losses. 

3. A queue containing assembled packets waiting to be transmitted. 

Receiver 

RCV.NXT--> 
RCV.CNS--> 

NTRI --> 
NTR2--> 

Sequence number of the next packet to be received 
Sequence number of the first packet in the receiver 
waiting to be consumed 
Threshhold value when the window decreases 
Threshhold value when the window increases 
(NTR2 < NTRI) 

The sending peer can be in one of three states: 

l. NORMAL state 
2. PRMPT_SENT state 
3. HOLD state. 

In the NORMAL state only data packets flow to the receiving peer. The 
transition to PRMPT _SENT when the window size becomes less than 
NTX provokes a control packet. In this state the protocol can still accept 
packets from the client layer and send DATA+ PRMPT packets. In the 
HOLD state no packet is sent except those provoked by RETXMT(n) con­
trol packet. 

The type of packets from the sending peer are 

1. DAT A packets 
2. DATA+ PRMPT packet 
3. PRMPT control packet. 
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The function of the PRMPT packet is to force an acknowledgment packet 
from the receiving peer. 

The receiving peer can exist in one of three states: 

I. NORMAL state 
2. RETXMT _SENT state 
3. HOLD_SENT state. 

In the NORMAL state, packets are accepted without generating any 
acknowledgment unless an out-of-order packet arrives which provokes 
an immediate RETXMT(n) control packet. Packets are still accepted by 
the protocol in the HOLO_SENT state until the window closes. 

Three types of packets may be sent by the receiving peer: 

I. RETXMT(n) packet 
2. RESUME(n) packet 
3. HOLD (n) packet, 

where n - I is the sequence number of the last packet that has been 
received correctly. Their functions are as follows: 

RETXMT(n)--> Retransmits packet of sequence number n. This is sent 
when an out-of-order packet arrives at this layer. The 
arrived packet is buffered. 

RESUME(n)--> Resumes transmission starting from packet of sequence 
· number 11. This is used when sufficient window space is 
available to re-enable the sending peer. Also this is sent 
in response lO a PRMPT control packet when packets up 
to n - I have been received correctly and the receiver 
is expecting packet n. 

HOLD(n)--> Instructs the sending peer to hold transmission until 
instructed to resume. This is sent when the window size 
falls below a threshhold. 

B 1.1 Error recovery 
The recovery from the various error conditions are performed as indi­
cated: 

Out-of-order packets--> By means of RETXMT control packets used to 
initiate selective retransmissions and sequence 
numbers assigned to packets 
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Damaged packets--> By means of checksum validation and 
RET XMT packets 

Duplicates--> By means of RETX_CNT assigned to packets 

B 1.2 Flow control 
This is achieved by means of PRMPT packets from the sender, and HOLD 
and RESUME packets from the receiver. 

T he sender's window is defi ned as 

SND.NXT <= sequence number< SND. UNA. 

Sender's window size (SWS) = MAX_SEQNO - (SND.NXT 

SND.UNA). 
Two regions are defined: 

sws < NTX ... Region 1 
SWS > = NTX ... Region 2 

No How control is initiated from the sender in Region I . Once the sender 
enters Region 2, it initiates flow control measures maintaining the data 
flow at the same time until the protocol stops when the window is filled. 

The receiver's window is defined as 

RCV.NXT <= sequence number< RCV.CNS. 

Rec~iver's window size (RWS) = MAX_SEQNO - (RCV.NXT 
RCV.CNS). 

Two regions are defined for RWS: 

< NTR 1 .•. Region 1 
>= NTRl ... Region 2 

when in the NORMAL state, and 
< NTR2 ... Region 1 

> = NTR2 ... Region 2 
when in the HOLD_SENT state. 

(In all cases, NTR2 < NTRl <MAX_SEQNO.) 

The point at which flow conttol takes effect 

= [Time at which RWS crosses NTRI] 
or 

[Time at which SWS crosses NTX] 

The hysteresis (NTRl - NTR2) is needed to absorb any transient surge in 

,;? 
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packet arrivals when the sender moves from the HOLD state to the 
NORMAL state, thereby avoiding any ping-pong effect. 
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