
Performance Evaluation of the ARP ANET
Transmission Control Protocol in a
Local Area Network Environment

Samuel T. Chanson, K. Ravindran 8 Stella Atkins

July 1984
Revised December 1984
Technical Report 85-6*

ABSTRACT

The Transmission Control Protocol (TCP) of ARP ANET is one of the
most popular transport level communication protocols in use today. Origi­
nally designed to handle unreliable and hostile subnets in a long-haul net­
work TCP has been adopted by many local area networks (LAN) as well. It
is, for example, available in 4.2 BSD UNIX for interface to Eth~rnet and
several other LAN technologies. This is convenient but not desirable from a
performance standpoint since the control structure is far more complex than
is necessary for LAN s.

This paper describes what we learned in measuring and tuning the per­
formance of TCP in transferring large files between two hosts of different
speeds over the Ethernet. Models are presented which allow the optimal
buffer size and the flow control parameter to be determined. Based on
observed traffic patterns and those reported elsewhere, we formulated guide­
lines for the design of transport protocols for a single LAN environment. We
then present a new, much simpler LAN transport level protocol which
replaces TCP with significant improvement in network throughput. Internet
packets will use the full TCP. This is done at the gateway. Since the major­
ity of the packets in a LAN are for local usage, this scheme improves the
overall network throughput rate as well as the mean packet delay time.

• AJso appears in INFOR vol.23, no.3, Auguat 1985. This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada.

PERFORMANCE EVALUATION OF THE ARPANET
TRANSMISSION CONTROL PROTOCOL IN A LOCAL AREA

NETWORK ENVIRONMENT•

SAMUEL T. CHANSON, K. RAVINDRAN, AND STELLA ATKINS

Dtpartmml of Comfndtr Scinact, UniversitJ of Brilis/a Columbia, Vancouver, B.C., Canada

ABSTRACT

The Transmission Control Protocol (TCP) of ARPANET is one of the most popular transport
level communication protocols in use today. Originally designed 10 handle unreliablc_and
hostile subnets in a long-haul network, TCI' has been adopted by many local area networks
(LAN) as well. h is, for example, available in 4.2 aso UNIX for interface to Ethernet and
several other LAN technologies. This is convenient bu1 not desirable from a performance
standpoim, since the cont.ml structure is far more complex than is necessary for LANS. This
paper describes what we lea.med in mcarur-ingand tuning the performance of-ruin trans­
ferring large files between two hosts of diffcrc.nt speeds over the Ethernet. Mode.l.s arc
presented that all.ow the optimal buffer size and the flow control parameter to be deter­
mined. Based on observed traffic paucms and those reported cbcwhcre, we formulated
guidelines for the design of transpon protocols for a single LAN environment. We t11cn

present a new, much simpler LAN transport level protocol which replaces TCP with signifi­
cant improvement in nc1work. throughpuL Internet packets will use the full TCP. This is
done a1 lhc gateway. Since lhc majority of the packets in a UN arc for local usage, lhi.s
scheme improves lhc overall network throughput rate as well a.s the mean pa.ck.ct dct.y lime.

RtsuMt

La proc~urc.dc transmiuion TCP de ARPANET est aujourd'hui l'un.cs des proc~urcs lcs plus
populaircs pour le nivcau de transpon. A l'origincc dcs1ince 1 des sous-rcseaux d'un fonc­
tionncmcnl inccrtain de rcscaux [l longue distance, cllc a Cte depuis adopt& par de nom­
brcux rcscaux locaux (LAN). Par cxemple, ONIX 4.2 aso sc sen de TCP pour rinicrfacc avcc
l'Ethcme1. Cela est commode, ma.is la performance cst mediocre, parcc quc Iii structure de
contr0lc est bcaucoup plus complcxc qu'il n'csl ncccssairc pour un rcscau local. Nous
dccrivons cc quc nous avons appris en mcsurant Cl ajustant la performance de TCP pour
le tr.msfcn de large fichicrs emre deux proccsscun ccnlr.lux de vitcsses diffcremcs avcc
un £ihc.rnct. Now prc~ntons unc nouvelle procedure de Lransmission, beaucoup plus
simple quc TCP, pour le nivcau de transpon loc.al. Les paqueu pour longucs distances
utilisem TCP, 1 panirdc la portc du reseau. Comme la majoritc des paqueu dans un UN

est pour wage local, ceci amcliore le volume du rescau, ainsi quc le dcla.i moycn par paquet.

1. INTRODUCTION

The Transmission Control Protocol (TCP) of ARPANET is one of the most
popular transport level communication protocols in use today. Originally
designed to handle unreliable and hostile subnets in a long-haul network,
TCP has been adopted by many local area networks (LAN) as well. It is, for

•Received July 1984; revised December 1984

294
um,a vol 25, no. 5, August 1985

;·

I ·.,

•a,
I

(

.! ,
l
.~

ARPAN~T TRANSMISSION CONTROL PROTOCOL ~%

example, available in 4.2 BSD UNIX for interface to Ethemet'
2

"
1 and several

other LAN technologies. This is convenient but not desirable from a
performance st.andpoint, since the control structure is usually much more
complex than is necessary for LANs.

Unlike long-haul networks (LHN), LANS are characterized by high
channel speed (typically lOMb/sec as opposed to 9.6Mb/sec for LIINS), low
transmission error i-ates, and a controllable environment. The major
portion of Lhe packeL delay time (time to process and successfully deliver a
packet to its destination) shifts from the propagation delay time for LHNS

lO protocol processing time for LANS. Thus the efficiency of high-level
proLOcols is an important design issue for local area networks.

The Depanment of Computer Science at the University of BriLish
Columbia runs 4.2 BSD UNIX on several VAXes and SUN (Mc680l0-based)
workstations connected by a l 0Mb/sec Ethernet. This paper describes
what we learned in measuring and tuning the performance of TCP in
transferring large files beLween a fast host (VAX 11/750) and a slower host
(suN workstation) over the Ethernet. We then present a new, much
simpler transport-level protocol which replaces TCP with significant
improvement in network throughput. When packets are intended to be
sent to other networks which may be unreliable and which support only
TCP, the full TCP can be used. This is done at the gateway. Since ~he
majority of the packets in a UN are for local usage, this scheme greatly
improves the network throughput rate as well as the mean packet delay

time.

2. TYPICAL LAN TRAFFIC

Messages generated in a local area network environment fall into three
major categories.<• ◄ >

2.1 Remote service request - reply type ilo
A client level process initiates a service request for a remote server and
waits for a reply. The server processes the request and sends a reply
messge. This sequence of activities is characterized by the exchange of
short bursts of variable length messges. c 15> This type of exchanges are best
supported by a datagram protocol like the UDP (User Datagram Protocol)
or one that is custom-designed, sui:h as the "t/o protocol used in the
V-System<8> and the remote D'C protocol used in SHOSHtN.'

91 Common
applications that generate such exchanges include remote logins., remote
executions, remote procedure calls, and remote file accesses.

2% S.T. CHANSON, K. RAVINl>RAN, ANDS. ATKINS

2.2 Systnn-gmn-attd fMS.Sages
Some messages are not explicitly initiated by a client level transaction but
are generated by the system as a consequence of such a transaction. An
example is a file creation/deletion request. This process necessitates
propagation of directory updates to the various workstations maintaining
in-core directory information. 'Other messages are unrelated to client
activities such as event notifications, acknowledgements and status
exchanges.< 16

• 181 These messages are short (mostly one or two packets) and
infrequent. This type of messages also calls for a connectionless protocol
as the packet transport mechanism.

2.J Strtam type messages
These require the support of a connection oriented protocol, and are
characterized by a unidirectional transfer of much bigger packets and
connections of longer life time than the other types of traffic.<• ◄ > The
overhead due to initial connection set-up and run-time connection
management common in virtual circuit protocols is justified by the
efficiency provided. Typical applications generating this type of traffic
are large file transfers, process control applications, image, and voice
traffic. Throughput rate is the most important performance considera­
tion for file transfer type applications while delay times are more crucial
in real-time closed loop type activities and image/voice data traffic. TCP/rp
is a typical protocol used to support this type of applications which create
much more demand on network bandwidth than the other applications
(IP stands for Internet protocol and is a network level protocol). Later
sections describe the performance evaluation of TCPIIP in supporting such
stream type traffic, and the viability of a custom-designed protocol to
replace TCPIIP to handle primarily this but also the other types of traffic.

2.4 Some empirical data on LAN load d&araaeristics
Knowledge of the characteristics of the network traffic as well as the
underlying medium under operational loads is valuable in protocol
design. Some measurement data are available,<Hi,l?,ts., 9•25> and are sum­
marized below. Although all the data had been collected from Ethernet
installations, with the exception of the Ethernet specific statistics such as
packet collision rates, most apply to other types of LANs as well.

I. The peak load even for a large LAN typically constitutes only a small
fraction of the network capacity .< 16

•
17

• 1
8

•231 Measured figures on Ether­
netc•5> (presumably using PUP in.temet protocols1251) in a single LAN

consisting of 120 Alto machines, two time-sharing systems (TENEX),
gateways, file and print servers, etc. showed that the maximum load as
observed over a six-minute interval was 7.9% and the average load

, . 11
t
f,.,

-~

ARPANET TRANSMISSION CONTROL PROTOCOi. ~!17

0.8% of the Ethernet capacity of 2.94 .Mb/sec. The corresponding
figures over an observation interval of one second were 32.4 % and
2.7% respectively. Reference 1171 reported measurement data on an
existing university time-sharing environment extrapolated to that for
a large scale Ethernet-based LAN supporting the same environment.
The network utilization for I ,000 users with heavy network disk usage
was no more than 30%.

2. For a given total load level, network performance is largely insensitive
to the confrguration.06> For example, five stations, each preseming
20% of the given load onto the network, have largely the same effect as
fifty stations each inputing 2% of the load.

3.
4.

5.

6.

7.

Packet arrivals tend to be very bursty.116· 11J.t91

Packet lengths exhibit a bimodal distribution116•181 characterizing the
message types discussed in sections 2.1 to 2.3.
The majority of the packets are locally consumed. Reference 116>

reported that 72% of the traffic was intranetwork.
The raw channel bit error rates are practically negligible, being of the
order of I in 1011 to 1012Y.i6 •

27> The observed error statistics in an
operational environment is smalJ;<23•17> reference (16) reported an
error rate of I in 2* I 06 packets.
Even in a busy large scale Ethernet, the probability of packet collision is
small. Reference (17) reported negligible collisions up to 1,000 users.
With 2,000 users, the collision rate was about one per successful
transmission. The ninetieth percentile waiting time was 400 usec with
about 1,400 users. The mean waiting time was around I 00 usec. Thus
the theoretical pos~ibility of an unbounded packet delay is a non­
problem with current operational eh\'ironments.

3 FACTORS INFLUENCING PROTOCOL PERFORMANCE

The performance of a transport level protocol depends on the following
factors;

I. the control structure of the protoco)Ol
2. the flow control mechanism if it is a stream protocol
3. The volume of control packets generated by the protoco1<4>
4. The way the protocol is implemented and its relationship to the host

operating systemr◄ >

5. Th(overhead induced by the host operating system and the structure
of the network interface.<•>

These factors were considered in the performance evaluation of TCP/JP
in our LAN system.

' i'
,'i

I I
I
I
I

}

!
1

~98 S.T. CHANSON, K. RAVINDRAN, ANDS. ATKINS

J .1 Control structure
The control structure of a transport protocol deals with the packet for­
mat, retransmission and timeout policies, client and network level inter­
faces, packet fragmentation and reassembly, congestion control, peer
addressing, etc. TCP/JP12 ·!1> was designed to provide internet packet trans­
port over lossy subnets. The services provided include internet address
handling, routing, internet congestion control and error reporting,
multiple checksums (one at the TCP level and the other at the IP level),
segment fragmentation and reassembly, datagram self-destruction
mechanisms, and service level options to clients. The large, byte level
sequence numbers used in TCP (thirty-two bits) incurs considerable
processing overhead128> but is justified in the context of an ,LHN on tl1e
grounds that a large recycling interval allows easy identification of
out-of-order and duplicate segments and that byte level sequence
numbers facilitate the fragmentation of segments at the local IP layer and
the intervening gateways, and the reassembly at the remote TCP entity.
These service features are seldom used (in fact some of them are irrele­
vant) in a single LAN environment. They nevertheless consume con­
siderable protocol processing time0 > which is a critical resource in a LAN

and constitutes a performance bottleneck in a LAN environment.128
> How­

ever, since it is part of the protocol itself, one cannot proceed to improve
performance by modifying the control structure without compromising
the protocol specifications. See section 8.

J.2 Flo11J control
The TCP specifications do not specify the type of flow comrol to be
implemented: only recommendations are made. {See <2> for details.) The
T<'P implementation in 4.2 BSD UNIX has a simple flow control scheme. A
flow control parameter a is defined which is the ratio of the number of
buffers released (NP) since the last window update and the total number of
available buffers (NB). That is,

a= NPINB. (I)

When a exceeds a preset value ac, an acknowledgement packet containing
the current window size is sent to the sending peer. ac was originally set at
0.35, which means that when the number of packets consumed exceeds
35% of the total buffer space, a window update becomes due. Sender and
receiver buffers were set at 2Kbytes each (see figure I). It was not clear
whether the flow control and the buffer sizes were adequate. We believe,
however that lax flow control will result in an uneven flow of packets
because of the frequent choking of the protocol. On the other hand, a
rigorous flow control scheme would generate excessive control traffic

..
J

ARPANI::T TRANSMISSION CONTROL PROTOCOL :!99

BUFFERS EXIST AT

DATA­

CONTROL-----•

ALL PROTOCOL BOUNDARIES

MEASURED DELAY

TIME

F1G. I. lmplemen1a1io11 model of TCP/iP in BSD 4.2 UNIX

which is wasteful of network resources. Thus it was felt that some detailed
measurements are necessary in this respect.

J .J Control traffic
The third factor, the volume of control traffic, is closely related to the

flow control policy. If the protocol treats window updates and packet
acknowledgements separately, then this factor should be studied sepa­
rately from flow control. In TCP, however, since the acknowledgement
and the window update go in the same packet, slUdy of flow comrol sheds
light on this factor also.

J. 4 How the protocol was implemented
The fourth factor is the logical relationship between the protocol and the
host operatinf◄ system. There are a variety of choices available to the
implementor. ◄>

I. The protocol runs as a user process.
2. The protocol runs as a privileged process with direct mapping into the

kernel address space.<20i

3. The protocol runs completely within the kernel of the host operating
system.

4. The protocol runs on a separate front-end processor.

l' ,,

300 S.T. CHANSON, K. RAVlNDRAN, ANDS. ATKINS

F1G. 2a. Software loop back mode IPC (without protocol support)

F1G. 2b. Software loop back mode IPC (with protocol support)

STATION!

STATION2

8 ...

0 ..
! •
1 .,. 0
:,:: -..
:, 0
:, ..
0

.. ,
1-t JI

0
Cl

,
if -

tf

AKPANt:T TllANSMISSION t;ONTIWL PROTOCOL

,
, . ,

DISK
SERVER

DISK
SERVER

F,c. 2c. JPC setup with disk i/o included

,,.-

_,,.✓

Local IPC wllhoal HT proloeol Hpporl

... - - - - ---• - --- - - - - - - - -- - -0

___ v-·-
.•• Local IPC wit .. LNTl" Rpporl

.. ----·.-0 ___ .. -·
Local IPC with TCP /IP (taned) aapport - -
Local IPC wit .. TCP /JP (Htaaed) eapport

JPC - l■terproe- eo-•■leatlo•

0 +--,---,-- -,--..... - - - ---.----.----.----.----.-- --.--..... - --,
0 160 500 1&0 1000 1260 1600 1760 IOOO

Client !.Yal packet ■lae(bJ'&a)

Frc. 3. Software loop back test results

301

5. Some of the functional layers of the protocol run inside the kernel and
the rest as user level processes.

It is beyond the scope of this paper to discuss the relative merits of
each. We shall mention however that 3 and 4 give the best performance.
The interested reader is referred to <4> for a detailed discussion on this
subject. In 4.2 BSD UNIX, TCP/JP has been implemented in the kernel,
which means that all the kernel-provided services, such as timers, device
control, and memory buffers, are readily available to the protocol. This is
made possible because of the availability of a large address space in the

302 S.T. CHANSON, K. RAVINDRAN, ANDS. ATKINS

host machines (SUN and VAX) and of the large memory size. Thus it was felt
that not much could be done to improve performance in this area, except
of course to offload the protocol into a front-end processor (some of the
commercially available network interfaces provide large buffers and
software support for this offloading).

3 .5 System overhead and the network interface structure

3.5.1 Operating system overhead
Operating system overhead is another factor that influences the protocol
performance. For example, how data are passed among the various
processes, the host-scheduling philosophy, the queue service disciplines,
support of non-blocking i/o and context switching all affect the perfor­
mance in some way. In 4.2 BSD UN_I_-X, lPc-related calls are non-blocking;
that is, the sender need not wait for the packet to be delivered to the
receiver and acknowledged. Buffers are managed in units of J 12 bytes
each. This leads to a fragmented representation of data, and all packet
processing is done on a chained list of buffers, which emails considerable
overhead. Our measurement of 4.2 BSD UNIX running on the SUN
workstation showed this overhead to be around 45% to 50%. The
software loopback measurement results described in <11 performed on a
PDP· 11/70 running a modified version of UNIX indicate that 70% of the
processing time is consumed by the system overhead in the form of system
calls, context switching, etc . .
3.5.2 Network interface structure
The network interface unit (NIU) used to access the communication
channel also strongly influences the performance of a transport connec­
tion. Our systems (both VAX and SUN) use Ethernet interfaces from 3coM
Corporation which do not support true OMA. The interface has a pool of
2Kbyte buffe1'3,< 10

•111 each of which can independently be controlled either
by the host or the NIU at any time. (The number of buffers and their
organization, however, are different in the two systems.) After a packet is
processed by the protocol, the host copies it from its memory to the NIU
buffer. The NIU then transmits the entire pclcket, and interrupts the host.
Similarly an arriving packet interrupts the host, which then copies it into
its memory. This structure is in contrast to that of a true OMA device
which either has a dual-ported local buffer or can directly access the host
memory across the system bus. The extra copy needed in our system can
be circumvented if the packet is copied from the application data space
directly into the NIU buffer. But this requires the packet routing decision
to be made at the client layer which is above the transport level. This is

AIU'ANt:T TRANSMISSION CONTllOL l'kOTOCOL 303

inconsistent with the os1 reference modet<il) which places the routing
decisi.on at the network layer.

Not wishing to modify the host operating system or change the NIU, we
decided to probe in detail the protocol related aspects, namely the flow
control scheme, the number of buffers and the control traffic. A
performance study of TCP in the context of long-haul networks has been
performed at University College, London.<51 In this study the focus was
essentially on retransmission strategies and segment sizes. Flow control
related aspects were studied to some extent, but the protocol was never
considered a bottleneck.

4. MEASUREMENT EXPERIMENTS

4.1 Experiment 1
The first experiment was designed to measure the performance of the
existing TCP implementation in some quantitative terms. In this experi­
ment the client and the server processes reside on the same machine
where a steady stream of data flows from the client to theserver(see figure
2a). At the network interface level, the system provides a software
loopback interface which mimics a physical network and echoes back the
data to the receiver. In this experiment, data were transferred with and
without protocol support. See figures 2a and 2b. From the results (figure
3) several observations can be made.
1. The performance without protocol support forms an upperbound on

the performance of any protocol implementation in our LAN system.
2. The TCP performance figures were only half of the upperbound

(350Kb/sec as against 700Kb/sec).
3. The packet level processing that is data independent, such as header

processing, constitutes a sizeable fraction of the total packet processing
time. This can be seen py the saturating behaviour of the throughput
curves as packet size is increased. The throughput rate R (bits per
second) is approximated by the simple relation.

R = 8 • n/[2 • (TSYS + THDR + n.TPKT)], (2)

where

n = Packet size in bytes
Tsvs= System call handling time(= 1.5 msec in 4.2 BSD UNIX on the

SUN workstation)
THDR = Header processing time

I,

;

•I
!

304 S.T. CHANSON, K. RAVINl>RAN, ANl> S. ATKINS

TPKT = Effective packet processing time per byte of useful data (it in­
cludes the processing time for control traffic, data copying,
checksum evaluation, etc.).

When n is small, the overhead per byte of data transferred is very
large, and R varies considerably with n. For large n, n.TPKT >
(Tsvs + THDR) and R tends to be a constant.

From observation 3 we conclude that the packet size should be as large as
possible. We recommend that a reasonable packet size at the client level
should be 1,024 bytes, which is a frequently used unit of disk storage.

4 .2 Experiment 2
Instead of using the loopback mode, one of the processes was moved to

the VAXI 1/750 running the same version of 4.2 BSD UNIX (see figure I).
Using TCPIIP, large volumes of data were transferred in both directions,
first from VAX to SUN, then from SUN to VAX. The throughput rate in the
VAX-SUN transfer was about 400kb/sec for segments of 1,024 bytes
whereas the reverse case yielded only about 340kb/sec. Even though
a twofold increase in throughput rate with respect to the loopback mode
testing was not expected (because in the actual transfer, servicing the
network interface constitutes about 20% of the packet processing load),
we did not expect the performance to be only marginally better than that
of the Ioopback mode. We felt that inefficiency existed in the protocol
either in the form of excessive control traffic or an uneven flow of packets
or both. So the next step was to monitor the packet level activities within
the protocol.

4 .J Experimml J
The aim of the experiment was to monitor the packet flow distribution,
since we strongly believe that any misbehaviour on the part of the protocol
will show up as uneven packet flow (the convene is not necessarily true).
The distribution of packet sizes and packet interarrival times were
monitored at the protocol boundary between TCPltP and the Ethernet.
The results we obtained revealed the following:

1. Data were heavily fragmented within the protocol (not the IP level
fragmentation) even though the messages were all sized well below the
Ethernet specified maximum of 1,500 bytes (see figure 4b).

2. The packet flow was very uneven (and so was the control traffic) as seen
by the widely spread-out packet interarrival time distribution curves
(see figure·4a).

3. There was a heavy volume of control traffic, about one control packet
for every data packet.

-..
"O
.._
u
ii
• ..
0
0
a
0 = u • ..
~

N .,
0

..
" 0

ID ...
0

CD
0
0

0

0
a
0
u .._
u

~
• ..
3 ...
0
i:
.2 ..
u • ..
~

N .,
0

..
" 0

ID ...
0

• C!
Cl

Cl

ARPAN~T TRANSMISSION CONTROL PROTOCOL

0 8 12 18 24 30
to to to to to to
8 12 18 24 30 38

Packet lnterarrl..-al time (msec)

F1G. 4a. I. Flow distribution of data packets (untuncd TCP)

0
to
10

10
to
20

20
to
30

30
to
40

40
to
60

Packet baterarrl..-al time (maee)

F1G. 4a.2. Flow distribution of control packets (untuncd TCP)

38
to
42

60
to
80

305

306

• ..
c:I
II a
1111
i

Q.,
0 E-< _ o ...
:ft:C
~

ii--...
0 ...
II
~
0
c:I
0
~
u • ..
'"'

0
&O

c:i

0 ...
c:i

0 .,
c:i

0
C'!
Cl

Cl
""!
g

0

S.T. CHANSON, K. RAVINURAN, ANDS. ATKINS

0
to
100

200
to
300

400
to
600

eoo
to
700

800
to
000

TCP segment else (bytes)

1000
to
1100

F1G. 4b. Size distribution of data packets (untuned TCP)

1200
to
1300

We concluded that the 2K buffer space provided in TCP for each of the
sender and the receiver was too sma1l, resulting in the exchange of small
and varying window sizes. Thus the sending of peer blocks frequenLiy for
want of window space. Even if the sender has a window available, it is
often smaller than the client specified size. So the TCP fragments data to a
size equal to that of the available window before sending. This explains
the heavy fragmentation of data. Since buffers cannot be released without
a positive acknowledgment from the receiver, the sender tends to choke
very frequently. This happened about 925 times when 10,000 packets
were transferred from the SUN to VAX. For the reverse traffic, the faster
sender (VAX) was getting blocked at least 3,000 times for the same amount
of traffic. The time average of the window space was only about 1,000
bytes, rather small for a stream protocol in LANS where the normal unit of
flow is 1,024 bytes.

AIU'ANt:T TRANSMISSION CONTROL PROTOCOL 307

4 .4 E 1wir01m1e11lal i1tle1f ere rices
The environmental factors that could affect the measurements are the
interference due to unrelated work loads presented by other users, the
disk i/o initiated by the end applications handling the streams, other
regularly activated daemon processes, and the mail traffic arriving over
the network. The interference due to daemon processes is character­
ized by short bursts of computation and exchange of short packets
separated by large intervals of inactivity; hence its effect is negligible. The
message traffic was light in our system and arrived in random (of the
order of one to two messages per minute). This interference too was
found to be negligible.

The question of whether to include disk i/o as part of the measurement
process was carefully considered. The SUN workstation uses a FUJITSU disk
drive with an average service time (access and data transfer) of about 30
msecs. The disk drive on the VAX has comparable specifications. Since the
network i/o is of the order of 15 msec per packet, a sufficient overlap of
disk and network i/o can make the effect of disk i/o invisible. An asyn­
chronous process may be created to fetch mutiple disk blocks in a single
request and pass them to the application process for network transfer (see
figure 2c). It was found that with single disk requests of four disk blocks,
the application process rarely gets blocked for want of data. However,
there is the associated overhead in trans£ erring data between the pro­
cesses, context switchings, and disk driver processing.

The interference due to unrelated work loads on the same workstation
is completely random in nature and non-reproducible. It is very difficult
to incorporate its effett in the study. However, as workstations are typi­
cally used by no more than one user at a time, the exclusion of this inter­
ference from the measurements might not be unrealistic.

Regarding unrelated load on the Ethernet from other stations,
measurement results from large Ethernet installations elsewhere,<16

•
17> as

discussed in section 2.4, showed no collision for up to about 1,000 users.
This means that except for extremely heavy workload on the Ethernet
bus, a station can access the bus without collision. Thus, within limits,
measurements across. a pair of stations are largely independent of other
network activities. This fact was verified on our LAN system by the
following experiments. Experiment 2 (vAx-11/750 to SUN file transfer)
was repeated with additional file trans£ er traffic on the Ethernet from a
second VAX-11/750 to a VAX-11/780. The added traffic was created first by
two pairs of concurrent processes and again by sixteen pairs transferring
files simultaneously. Each experiment was repeated six times. During the
experiments electronic mail messages were coming in and processed by

308 S.T. CHANSON, K. RAVINDRAN, ANDS. ATKINS

TABLE I

Throughput Quiet Loaded•
ra1ct network network

Mean (l<.bps) 400 400
Standard

deviation (Kbps) 2 6

•two additional concurrent file transren
••sixteen additional concurrent file transfers
tvAx-11/750 to suN file transrer

Loaded••
network

398.5

3.5

the first VAX-11/750. The results of the experiments are summarized in
table 1. The maximum difference in mean throughput rate was under
0.4%.

It was therefore decided to study the performance of the TCP/JP without
any disk i/o and unrelated workloads. One should note, then, that the
figures so obtained would provide upper bounds on the performance of
the virtual channel between the transport level entities.

5. TUNING THERAPIES

Having located the bottlenecks, our next step was systematically to tune
the .protocol parameters, namely the number of buffers and the flow
control parameters ac.

J.l Optimal buffer siu
The net throughput rate and the mean packet delay time were taken as
the primary performance indices. To make a systematic study of the
effect of the buffer size on the performance indices, a simple determi­
nistic model was formulated which allows the throughput rate to be
estimated in terms of the buffer size and the flow control parameter.

5.1.1 Throughput model
Consider the queueing model of figure 1. Since throughput is limited

by the slowest server in the chain, the model essentially deals with param~
eters with respect to the slowest server.

Let TDAT = Mean service time per data packet
TACK = Mean service time for an ack~owledgement packet

Mean effective service time per data packet= TDAT + TACJUNP,

where NP(< NB) is related to the flow control parameter.

ARl'ANle:T TRANSMISSION CONTROL l'ROTOCOL 309
Normally, NP is chosen to be three to four buffers less Lhan NB as specified
by the flow control model of section 5.2.1. It is the number of packets
received and consumed since the last window update. So the maximum
throughput rate achievable assuming a steady 1raffic is

R = 1/(TDAT + TACJUNP} for a fast sender
= 1/(TDAT + TSCH + TACJUNP} for a slow sender. (3)

TSCH is the average time a packe1 waits in the receiver's input queue before
the protocol layer is notified of its arrival This is a system relaled
parameter and is heav'ily influenced by the host operating system's
scheduling strategy. For example, with VAX-11/750 as the receiver (SUN

being the sender), TSCH = 4 to 5 msec. Jn the case of a fast sender, TSCH =
0 in our system, since the slow receiver always finds a packet in its input
queue waiting to be processed, and the protocol process never relin­
quishes the CPU until its input queue is empty. This asymmetry shows up
as reduced throughput rate for the SUN•VAX transfer (about 20%)
compared with the VAX-SUN transfer.

Reference 16
> describes a queueing-model based theoretical analysis ta

compute the upper bounds on throughput rates when buffers constitute
the bottleneck in the system. The model does not take into account the
variation in control traffic that might arise as the buffer size is varied. We
have extended and generalized lhe model to yield the upperbound on
throughput rate RU.

RU = NB/[(TDAT + TACJUNP}(KS + KR) + TON + TAN], (4)

where I <=NP< = NB, and TON and TAN are the network delay times for
the data and acknowledgement packets respectively. KS and KR are the
speed factors for the sender and the receiver respectively (see append.ix
A). Thus as NB increases, th~ optimal value for NP also increases, and RU

has an increasing slope. Beyond NB= 3, receiver processing becomes the
bottleneck. limiting the throughput rate. The observed throughput rates
are well within these computed bounds. They also match well with
equation (3) (see figures 7a and 7b).

5.1.2 Tuning experimer;it I
An experiment was designed to monitor the overall throughput rates and
the mean packet delay limes as a function of the buffer size. The flow
control parameter in each case was set as dictated by the model described
in section 5.2.1. The sender was the faster VAX with the SUN workstation
tbe receiver. The waiting times in the receiver queues were monitored.
Each packet was timestamped on entry into the TCPhP input queue from
the network interface. An updated timestamp was affixed on each packet

3IO

8 •
u
Ii: 0
~ ..
:ii
:.::
;; 8
J:. ..
"

S.T. CHANSON, K. RAVINPKAN, ANDS. ATKINS

~Upper boa■d lmpoaed by tbe bull'en

__ / _J_ _ _ _ _ _ _ Upper bouad lmpoaed by tbe receiver

I
I
I
I
I
I
I

.,,,11,-- - ... ~

NP la ad to tbe optimal value ID all caaea

Rcglo■ l - Bull'en are tbe bottlc11.cck

e
J:.
I-<

; } 1 j Re1lo■ 2 - Receiver procua1D1 la the bottleneck

•) " 6 - Tbroa1bpat ratu aa utlmated by the analytic model

u
Ii:
B -..
~
>, • ii
u • ...
a • ..
~

8 1R~11oa 1 Re1loa I o - ObHrved tbrou1bput rate• ..
0
:::

0 •

0 ..
0

0

I

I
I

I
I

';
';

I

/Aaymptote to tbe packet delay time curve

/ / N11° - Optimal aumber of bull'en

- - - iii~ - - - - - - - - Mea■ paeket aervlce time curve
b

.. • lll 11

Total ■amber of bull'en (nell bull'er - 1 Kbyte)

Fie. 5. Performance varia1ion wilh rcspccl lo 1hc number of buffers

on exit from the input queue of the socket layer. The delay time distribu­
tion was also observed. It was found that the delay time of each packet had
a lower bound that is much larger than the mean packet service time. This
was a sensitive function of NP and NB. In the 15k buffer case, the mean
packet delay time was about 130 msec whereas in the BK case, the delay
was about 55 msec, with NP set at the optimal value in both cases. The
delay time was also heavily dependent on the flow control parameter. The
variation of the throughput rates and the packet delay times with respect
to the buffer size is as given in figure 5. The observed throughput results
match quite well with those obtained using equation 3 with the flow
control parameter (and hence NP} set at the optimal value as described in
section 5.2. l. One can see that the throughput rate saturates when the
buffer size reaches 8Kbytes, whereas the packet delay times increases

ARl'ANJ::T TRANSMISSION (;ONTROL l'ROTOCOL 311

monotonically. This behaviour is analogous to that of a muhiprogram­
ming system with respect to the degree of multiprogramming.122>

With this experimentally observed throughput rate and delay time
behaviour, we ap plied Kleinrock's criterion<'> with respect to the asymp­
totic behaviour of the system. The point of intersection of the asymptote
to the delay time curve with the horizontal line representing the packet
service time at the receiver fixes the optimal number of buffers that keeps
throughput and delay time within acceptable limits. This was found to
be between 6 to 8Kbytes. The throughput rate at this point is about
530Kb/sec, and the packet delay time is around 40 msec (figure 5}.

5.2. l Flow control model
Having fixed the optimal buffer size, the next stage was to determine the
optimal flow control parameter value that maintains an even flow of
packets with a minimal amount of control traffic. A simple deterministic
model was formulated for this purpose (see appendix A}. The model
specifies the minimum amount of cushion needed at the receiver that
satisfies the above conditions. The number of buffers released which
generates an acknowledgement packet is given by the inequality.

NP < = NB - [KR.NW/(KR + KN + KS)]

-[(KR + KN + KS)/KS)[TACKITDAT] - [KS + KN]/KR. (5}

To minimize the control traffic NP should be set equal to the expression on
the right hand side of equation (5). This value of NP is easily mapped onto
the TCP's flow control parameter by the simple relation (I} which is
rewritten here as

a= NPINB.

5.2.2 Tuning experiment -2
Experiments were conducted to monitor the throughput rate, packet
delay time, control traffic, and the time average window size as a function
of the flow control parameter a. The experiments were carried out with
NB = Bk and 15k bytes. The optimal values of a obtained from the
experimental results match quite well with the value proposed by the
model. The results are as shown in figures 7a and 7b. The variation of the
time average window size with respect to a is quite linear. Notice that a
small a keeps the packet flow even and steady at the expense of increased
control traffic. For a > a.,, the protocol gets blocked for want of window
space, but the control traffic is reduced. At a = «c, the control traffic is just
enough to maintain a steady flow without choking. It is observed that the
performance degradation due to protocol blocking is more severe than

~ .

l
l

oro Zl'O 80"0 to·o

(J0.1100:>) :>UJV.11 JW'J01 JO UOt'J:>W.1.f

mro OJ"O 01ro oz·o, 01'0

(•1•p) :>WW.11 1•101 JO 0011:>U.f

0

0

OoO
CID..> Cl

g3~

coo ...,. ..,,o

ooo
N..,M

o.82

11100 ... ,.) '°

~I oO .,

0 0 ...
.-1 ... N

o.Sao

-u
I a -II
j ...
.;
> ·-... ...
1111 ...
II ...
. 9 ...

1,1
.:.ii
u ..

Cl..

-u
II .,
e -u
j ... -..
;,.
i:
:a ..
II ...

.!3 ...
II
~ u ..
Cl..

a:-
u ...
-0
u
C

£
:J
u

.>I.
u ..
0.

0
!::
C
0
u
0
C
0

]
·s
"' :a
3:

_g

"'
.ci
<D
(.)
~

a:-
u ...
-0
II
C
g
:J
~
~
0.

!!,, ...
0
C
.g
::,
.a ·s
:a
3:
0
ii:

" <D

(.)
i.::

I
I

ARPANt:T TRANSMISSION (;ONTKOL PROTOCOL 313

that due to increased control traffic. This implies that an a slightly less
than ac will be a safe region of operation. As seen in figure 6, the flow
distribution shows sharp peaks indicating an even and unchoked flow.
The control traffic is high but the protocol never blocks more than
necessary.

6. GUIDELINES TO PROTOCOL DESIGN AND EVALUATION

Based on the analysis of the measured data as well as empirical data
obtained elsewhere (see section 2.4), certain guidelines concerning the
design and tuning of TCP-like protocols are presented below:

1. The number of retransmissions at tbe TCP layer were practically zero in
our small L.AN system. Even in large LANS, the probability of retransmis­
sion is very small. 06· 17•231 This means that a LAN transport protocol need
not place much emphasis on retransmission-based error recovery
schemes. Similarly, run-time connection management like connection
resets, forcible shutdown of the connections with zero in our observa­
tions. Thus a LAN transport protocol requires only a simple connection
management scheme (see also<8>).

2. An end-to-end application seldom loads the network beyond a small
fraction of the network capacity. In our measurements, a streaming
application presents a maximum load of 6% while an interactive
application (send-receive-reply) presents a maximum load of about

3 .
4.

5.

0.35% to 0.5% of the Ethernet capacity of 10 Mb/sec. Spectorll.!•I re­
ported that the maximum interactive load presented by a single Allo
machine on a 2. 94 Mb/sec Ethernet is about 1.8%. This means that the
subnet is almost never the bottleneck and the network delay times are
small compared to the protocol processing times. So How control
should be strong and adaptive enough to accommodate the diff erem
speeds of the host machines and the varying work loads so that packets
do not get discarded at the receiver for want of resources. This
requirement is not as important for LHNS where the transmission
speeds are typically several orders of magnitude s.lower; thus the
probability of a fast sender swamping a slow receiver is much less than
that in a LAN environment.
It is not efficient to send packets in small sizes.<8

•151

Checksumming and data copying operations should be kept to a
mini.mum.<4 l

The packet flow distribution can provide a conclusive pointer as to
whether the flow control policy is a serious bottleneck. An inefficient
flow control due either to the lack of buffers or delayed acknowledge-

·'
'[
•I

1
.f

314

~
>

-
!!,
:;;
:.: -..
:,
A.
.a • :,

f
.a
E--

I: a -• e -;

~ v
"II .. • ...
u ..
A.

= u
~

-e
0

"'!
0

.,
0

0

0 ..
"'

g
"'

0 • ..

8
"
0
~ :

0 • ..
0
0

" ..
0

S.T. CHANSON, K. RAVINDRAN, ANUS. ATKINS

0,2

v. - Volume or control traJnc

V 4 - Vohame or data tralllc

.... ------·

A - Tllroupput rate atlmated b:, tbe anal7tlc model

o - Obae"ed tbrou1bput rate

o., 0.1 0.8 1.0

Flow control parameter (••••)

FIG. 7a. Effect of How control parameter on performance (N. = 15 Kbytes)

ments results in an uneven How of packets that shows up as a wide
distribution (i.e., withoul sharp peaks).

6. Control traffic marginally higher than the required minimum keeps
the flow steady with the throughput and packet delays close to the
optimal values. It is not desirable to allow the protocol to gel blocked

>"'
>u

u
I
!I
:;;
:.: -.. ..
A.

.a • "' f

.a
E--.,

!
~
v
"II .. u-
... u

ii
=-.,
~

C!
~

.,
c:i

• c:i

..
c:i

" 0

0

0
~

0 • ..
2 ..
0 •

0 ..
~

ARl'ANt:T TRANSMISSION CONTROL PROTOCOL

•

0

' ' ' '

. .

o.s

v •.. Volume or control traJnc

v4 - Volume or data traJllc

..

., - Tbroughput rate utlmatcd b:, tbe anal:,tlc model

o - Obaervcd tbron1bput rate

o., o., o., 1.0

Flow control parameter (a9.,.)

Fie. 7b. Effect or How control parameter on performance (N,. • 8 Kbytes)

315

more than necessary, since this is more detrimental than allowing a
slight increase in coritrol traffic.

7. Data should never be fragmented. This can be achieved by avoiding
extremely small windows and allowing updates that are integral
multiples of the frequently used packet sizes.

8. Protocol performance is highly sensitive to the relative speeds of the

316 S.T. CHANSON, K. RAVINDRAN, ANDS, ATKINS

host machines, the resources available per connection, the character­
istics of the hardware network interface, and the system environment.
The dependency of the protocol parameters on these factors should
be carefully considered in protocol design and implementation.

7. COMPARISON WITH THE PERFORMANCE OF SOME OTHER PROTOCOLS

We briefly compare our results on TCP/JP performance with other
implementations of TCPlrP as well as the DECnet protocol. This compari­
son is based on the informal measurement results that are distrihuted
across the TCPIIP mailing list in the ARPANET mailing systcm.0 :iJ

7.1 vccntt performance over Ethernet
DEC's publicationc12> provides data on DECnet V3.l performance over
Ethernet under VMS. The maximum task-to-task transfer rate between
two VAx-I I/780's with an internal buffer of 576 bytes and user buffer of 4
Kbytes is 800 Kb/sec while that for VAX-l l/750's is 600 Kb/sec; the file
transfer rates (presumably including disk server processing) are 420
Kb/sec and 350 Kb/sec, respectively. With link optimization, that is, an
increased internal buffer size of 1,498 bytes, the throughput rates are 1.3
Mb/sec and 1.2 Mb/sec, respectively, for task-to-task transfer, and 500
Kb/sec and 390 Kb/sec for file transfers.

7.2 Other TCPIIP implementations
Both UNIX 4.2 BSD TCP/JP and VSMIEUNICVTCPIIP implemented on the
Ungermann-Bass bTOadband network yield a file transfer rate of about
200 Kb/sec. TEKTRONIX TCP/IP under VMS gives a file transfer rate of 140
Kb/sec between a VAX-11/780 and a VAX-11/750 over an Ethernet with
Interlan controller using blocking vws 1/o calls as against 280 Kb/sec for
vMslDECnet. No results on possible performance improvement are
available with non-blocking i/o calls. The corresponding figure for TCPIIP
between two VAX;.l l/780s is 200 Kb/sec. Similarly the vMs/TcP/JP to UNIX
4.2 BSD TCPIIP file transfer rate (again between VAX-I I/780's) is 200 Kb/sec
with task-to-task communication at 400 Kb/sec.

From the above informal benchmarks, it would appear that the DECnet
protocol outperforms TCPIIP in a LAN environment. However, another
study by Jacobson et al. at Lawrence Livermoore Labs (again circulated in
the ARPANET mails<15>) claims that both the UNIX TCPhP and VSM TCPltP
outperform VMs/DEcnet, with the UNixlTCPIIP performing better than its
VMS counterpart; no quantitative results are given. Thus, due to the
informal nature of these benchmarks and the lack of comparative studies
in identical environments, it is difficult to draw firm conclusions as to the

ARPANJe:T TRANSMISSION <.:ONTKOL l'KOTOCOL :\17

performance of TCl'li P relative LO other protocols or even with implemen­
tations of TCP/r t> un<ler different systems. Our study has mainly concen­
trated on the tuning ispects of TCP/JP un<ler 4.2 BSD UNIX; nevertheless,
our measurement data on TCP/JP performance are in line with the above
informal benchmark results.

8. A NEw TRANSPORT LEVEL PROTOCOL FOR LANs

All the tuning procedures mentioned in the earlier sections are based on
flow control and buffer-related aspects only. Not hing was done to the
control structure of the protocol itself, since this would lead to violations
of the protocol speci fi cations. To improve performance further we came
up with a simple p rotocol LNTP (Local Network Transport protocol) that
would provide the same functional service as TCP!tP for the local net
traffic. The observed traffic characteristics in other large scale LAN
installations, as discussed in section 2.4, were taken into account in the
protocol design. The design emphasizes

I. a simplified control structure,
2. a clean flow control scheme with minimal interactions between sender

and receiver.

The protocol is asymmetric io structure, so that the processing at the
sender and receiver is high.ly localized in functional ity. Since the protocol
is to support a bidirectional stream interface to the client layer, a complete
implememation has two complementary instances of the protocol 10

provide such an abstraction . This keeps the protocol implementalion
much cleaner and elegant. The main features of the new protocol are as
follows:

l. It provides a virtual circuit service on top of a datagram service.
2. It encapsulates only the very rew protocol functions that are essential

in a single LAN environment, leaving out the unnecessary complexities
typical ofa urn protocol. Specifically, the internet address generation,
routing, packet fragmentation and reassembly, different service level
options pmvided to clients, congestion control and error reporting,
multiple checksums and packet self-destruction mechanisms have
been eliminated. This has resulted in considerable redution in the
protocol overhead apart from the added advantage of a reduced
packet header size (from 40 bytes to IO bytes). Furthermore, together
with the dean How control mechanism, this has also resulted in a vety
small set of control packet types.

318 S.T. CHANSON, K. RAVINDKAN, ANDS. ATKINS

LNTP = Local Network
Transport Protocol

Fie. 8. Implementation model of LNTP

3. A deferred How control scheme that provides a maximum degree of
parallelism between sender and receiver.

4. Small, packet level sequence numbers (as opposed to large, byte level
sequence numbers used by TCP) for simplicity in processing.

A brief description of LNTP is presented in appendix B. Details can be
found in <281• A preliminary implementation of the protocol in the 4.2 BSD
UNIX kernel has been made at the same functional level as TCP/JP (see
figure 8). It has been tested in software Joopback mode to get a
comparat ive view of the protocol in terms of performance. The prOLocol
gives a good improvement in throughput rate (around 450kb/sec
compared with 360 kb/sec for the TCPltP under identical set of optimized

·, AKPAN ET TRANSMISSION CONTKOL PROTOCOL 319

protocol parameters, see figure 3). Actual transfer of data with other hosts
in our LAN system could not he done at this Lime, because the vendor
support for the Ethernet is provided only for TCP/JP packets. Since we did
not have the source code for the Ethernet driver at the time of writing, we
could not provide the Ethernet support for our new protocol. Only after
carrying out real transfer experiments can the contribution to perfor­
mance improvement due to the modified flow control, control traffic, and
the simple structure be conclusively determined.

9. PLANS FOR TIIE FUTURE
Ethernet support for the new protocol will be provided. The protocol
design and implementation are more or less complete. The performance
of distributed applications supported by this protocol will be studied.
Once the protocol is proved reliable and robust, all the distributed
applications running under 4.2 BSD UNIX in our LAN system (currently
supported by TCPIIP) will be supported by this new protocol. Though
non-standard, it can provide an efficient communication support within
the LAN system. When it is necessary to communicate with other systems,
full TCP/JP can be implemented at the gateway.

I 0. CONCLUSIONS
Measurement experiments relating to the performance of the 4.2 BSD
UNIX implementation of TCP/JP supporting the transfer of large files
between hosts of-different speeds connected by a IO Mb/s Ethernet were
described. A methodology was proposed which may detect the bottleneck
in the protocol. Models were presented which allow the determination of
the optimal buffer size and the How control parameter. We also described
a new transport protocol for local area networks with much simpler
control structure which provides the same functional service (excluding
the internet packet transport) as TCPliP in 4.2 BSD UNIX with significant
increase in network throughput. Finally, summing up what we have
learned, a set of guidelines to protocol design and evaluation were
presented.

It is hoped that our experience in measuring and tuning TCP will be of
use to others running the same system as well as to designers and
implementers of protocols for local area networks.

APPENDIX A: A DETERMINISTIC MODEL FOR FLOW CONTROL IN TCP

The following analysis assumes that the input queue is never empty; that
is, there are always some data to send.

' ·l

'.!
T
!
,i
.1
'!
' I

t ;,

i
I
i

320 S.T. CHANSON, K. RAVJNDRAN, ANDS. ATKINS

If we let

TDAT = Mean packet processing time including interfacing to the client
layer

TACK= Mean processing time on an acknowledgement packet,

then TDAT > TACK, because

l. the data-dependent processing, such as copying, checksumming, and
manipulation of memory buffers, need not be performed for the
acknowledgement packet;

2. the acknowledgement packet does not reach the client interface.

TDAT and TACK are specified with respect to "reference machine." Let

NW = mean number of packets in the system
KS= speed fator for the sending machine
KR= speed factor for the receiving machine
KN= speed factor for the Ethernet layer.

For the reference machine, the speed factor is 1.0. Thus for a machine
with a speed factor K, K.TDAT and K.TACK are the protocol-processing
times for the data and acknowledgement packets, respectively. Lel

ws = size of the window at the most recent update
NP= number of packets cleared from the receiver socket buffer

since the last window update

Two cases arc considered.

Cast 1. Sender slower than receiver (Ks > KR)

Example, SUN to VAxl/750

When the NPth packet has been received, the window as seen by the
sender is given by

W = WS - NP - (KR+ KN)/Ks. (Al)

The last term represents the number of packets that are already in the
network.

Mean proportion of traffic at Jhe input queue of the receiver
= KRl(KS + KR+ KN). (A2)

Since the acknowledgement packet has to traverse the downstream
path against the incoming traffic, which has higher priority over the
outgoing traffic, the time for the acknowledgement packet to reach the
input queue of the sender is given by _

T' = (KR/[KS +KR+ KN]).NW.KR.TDAT +(KR+ KN).TACK. (A3)

ARPANET TRANSMISSION CONTKOL PHOTOCOL 3il

If the sender gets the update before or just as its window closes, then the
flow will be continuous, and there will be no choking. This condition can
be mathematically expressed as

T' < = [ws - NP - (KR+ KN)/Ks].KS.TDAT.

From (A3),

NP<= {[ws - (KR+ KN)/Ks)] - KR••2.Nw/[(KS +KR+ KN)·Ks]
- (KR+ KN).TACKl(KS.TDAT)}. (A4)

The control traffic is minimized if the right- and left-hand sides are equal.

Case 2. Sender faster than receiver, that is, KS< KR

Example, VAXI 1/750 to SUN

The mean proportion of packets at the receiver input queue
== KRl(KS +KR+ KN). (AS)

An acknowledgement packet is sent by the receiver to the sender after
the receipt of NP packets since the last window update. The time taken for
this acknowledgement packet to reach the sender to enable transmission
of a subsequent data packet and for this data packet 10 arrive al the
receiver should be just sufficient for ,the receiver to complete processing
the remaining (ws - NP) packets. This will minimize the control traffic
without idling the slow receiver. Mathematically, the above time is given
by

T" =(KR+ KN+ KS).TACK + [KRl(KS +KN+ KR)J.NW.KR.TDAT

+(KS+ KN).TDAT. (A6)

Since

T" < = (ws - NP).KR.TDAT

therefore

NP< = {ws - [KR.Nw/(KR + KN+ KS)]

- [(KR+ KN + KS).TACKl(KR.TDAT)] - (KS+ KN)/KR}. (A 7)

Equations (A4) and (A 7) provide some general guidelines for determin­
ing the value of NP which can easily be mapped onto the TCP control
parameter. A numerical example ts presented below.

The parameters for SUN and VAX 11/750 are (the SUN is taken as the
reference machine)

K(SUN) = 1.0, K(VAX) = 0.9
KN= 0.066, TDAT = 14 msec, TACK= 6 msec.

' I[
1::

' !

.?
l

322 S.T. CHANSON, K. RAVINDRAN, ANDS. ATKINS

Case 1. VAX to SUN transfer
Apply equation (A 7):

NP<= ws - 1.02 - 0.8426 - 0.966 with NW= 2.0 (approx.)
=ws-2.829.

This implies that a cushion of 2.829 buffers is needed al the receiver lo
keep the SUN running continuously with a minimal How of acknowledge­
ment packets.

With ws = 15 buffers, a(SUN) = 0.81,
With ws = 8 buffers, a(suN) = 0.65.

Case 2. SUN to VAX transfer

Apply Equation (A4)
NP< = WS - 0.966 - 0.824 - 0.414 with NW= 2.0

=ws-2.204.

This implies that a cushion of 2.204 buffers is to be provided at the
receiver to keep a continuous flow of packets.

With ws = 15 buffers, a(vAX) = 0.853,
With ws = 8 buffers, a(VAX) = 0.7245.

APPENDIX B: DESCRIPTION OF LNTP
(LOCAL NETWORK TRANSPORT PROTOCOL)

A brief description of the new protocol is given below (the connection
set-up and close-down sequences are not described he1·e; please refer
to c29> for details):

B.1 Protocol structure
The structure of the packets handled by the protocol is as shown in figures
B.l and B.2.

I SRC I DSTN I PKT I LEN I SEQ I RETX I DATA I CHK I
I PORT I PORT I ID I I NO I CNT I I SUM I

Fig. B.l. Structure ofa DATA and DATA+ PRMPT packet

I SRC I DSTN I PKT I SEQ I CHK
I PORT I PORT I ID I NO I SUM

Fig. 8.2. Structure of a control packet

ARl'ANliT TRANSMISSION CONTROL l'ROTOCOL 3!!3
Let us denote lhe componenls of a packet by a "C"-like structure

pkt= struct
{
SRCPORT
DSTNPORT
PKTID
LEN
SEQNO
RETXCNT
DATA
CKSUM
}

16 bits;
16 bits;
4 bits;
12 bits;
4 bits;
4 bits;
(LEN) bytes;
16 bits;

pkt.SRCPORT --> Port address associated with the sending peer
pkt.DSTNPORT --> Pon address associated with the receiving peer
pkt.PKTID--> Packet identifier. Identifies DATA, DATA +

pkt.LEN-->
pkt.SEQNO -->

pkt.RETXCNT -->
pkt.DATA-->
pkt.CKSUM -->

PRMPT & PRMPT from sender; RETXMT,
RESUME, HOLD from receiver
Data length in octets
Sequence number of the data packet from sender.
Wrap around occurs afler every MAX_SEQNO
packets. From the receiver, this is one plus lhe se­
quence number of the packet last received correctly
Retransmission count of a data packet (zero initially)
Data

· Checksum of the entire packet, including header

The variables describing the protocol machine are

MAX_SEQNO -->

Sender
SND.NXT-->
SND.UNA-->

Ntx-->

Maximum sequence number space (16)

Sequence number of the next packet to be sent
Sequence number of the first packet in the sender
waiting to be acknowledged
Sender's threshhold in the protocol window

The following entities are also defined

1. A timer associated with the DAT A + PRMPT & PRMPT packets in the
flow control region.

2. A timer at the sender on every outgoing packet (TS) in the non-flow
controlled region; it is reset on the arrival of either the next outgoing

324 S.T. CHANSON, K. RAVINDRAN, ANDS. ATKINS

data packet (it restarts the timer) or an acknowledgement packet.
Similarly there is a timer (TR) at the receiver on eve,-y incoming packet;
it is restaned by the arrival of the next incoming data packet. Tbe
expiry of TS generates a DATA+ PRMPT from the sender. The expiry
of TR generates an acknowledgement at the receiver. The timer values
are chosen such that

TS > EIT(DAT) + TR + EIT(ACK),

where Err is the end-to-end transfer time for a packet. TR has to be
chosen appropriately. The rationale behind this timer structure is that
for stream traffic, the next outgoing/incoming packet resets TSITR so
that no extra network traffic is generated. For interactive type traffic
the timer values satisfying the above inequality will guard against pos­
sible deadlocks that might arise owing to packet losses.

3. A queue containing assembled packets waiting to be transmitted.

Receiver

RCV.NXT-->
RCV.CNS-->

NTRI -->
NTR2-->

Sequence number of the next packet to be received
Sequence number of the first packet in the receiver
waiting to be consumed
Threshhold value when the window decreases
Threshhold value when the window increases
(NTR2 < NTRI)

The sending peer can be in one of three states:

l. NORMAL state
2. PRMPT_SENT state
3. HOLD state.

In the NORMAL state only data packets flow to the receiving peer. The
transition to PRMPT _SENT when the window size becomes less than
NTX provokes a control packet. In this state the protocol can still accept
packets from the client layer and send DATA+ PRMPT packets. In the
HOLD state no packet is sent except those provoked by RETXMT(n) con­
trol packet.

The type of packets from the sending peer are

1. DAT A packets
2. DATA+ PRMPT packet
3. PRMPT control packet.

ARPANET TRANSMISSION CONTROL PROTOCOL 325

The function of the PRMPT packet is to force an acknowledgment packet
from the receiving peer.

The receiving peer can exist in one of three states:

I. NORMAL state
2. RETXMT _SENT state
3. HOLD_SENT state.

In the NORMAL state, packets are accepted without generating any
acknowledgment unless an out-of-order packet arrives which provokes
an immediate RETXMT(n) control packet. Packets are still accepted by
the protocol in the HOLO_SENT state until the window closes.

Three types of packets may be sent by the receiving peer:

I. RETXMT(n) packet
2. RESUME(n) packet
3. HOLD (n) packet,

where n - I is the sequence number of the last packet that has been
received correctly. Their functions are as follows:

RETXMT(n)--> Retransmits packet of sequence number n. This is sent
when an out-of-order packet arrives at this layer. The
arrived packet is buffered.

RESUME(n)--> Resumes transmission starting from packet of sequence
· number 11. This is used when sufficient window space is
available to re-enable the sending peer. Also this is sent
in response lO a PRMPT control packet when packets up
to n - I have been received correctly and the receiver
is expecting packet n.

HOLD(n)--> Instructs the sending peer to hold transmission until
instructed to resume. This is sent when the window size
falls below a threshhold.

B 1.1 Error recovery
The recovery from the various error conditions are performed as indi­
cated:

Out-of-order packets--> By means of RETXMT control packets used to
initiate selective retransmissions and sequence
numbers assigned to packets

326 S.T. CHANSON, K. RAVINDltAN, ANOS. ATKINS

Damaged packets--> By means of checksum validation and
RET XMT packets

Duplicates--> By means of RETX_CNT assigned to packets

B 1.2 Flow control
This is achieved by means of PRMPT packets from the sender, and HOLD
and RESUME packets from the receiver.

T he sender's window is defi ned as

SND.NXT <= sequence number< SND. UNA.

Sender's window size (SWS) = MAX_SEQNO - (SND.NXT

SND.UNA).
Two regions are defined:

sws < NTX ... Region 1
SWS > = NTX ... Region 2

No How control is initiated from the sender in Region I . Once the sender
enters Region 2, it initiates flow control measures maintaining the data
flow at the same time until the protocol stops when the window is filled.

The receiver's window is defined as

RCV.NXT <= sequence number< RCV.CNS.

Rec~iver's window size (RWS) = MAX_SEQNO - (RCV.NXT
RCV.CNS).

Two regions are defined for RWS:

< NTR 1 .•. Region 1
>= NTRl ... Region 2

when in the NORMAL state, and
< NTR2 ... Region 1

> = NTR2 ... Region 2
when in the HOLD_SENT state.

(In all cases, NTR2 < NTRl <MAX_SEQNO.)

The point at which flow conttol takes effect

= [Time at which RWS crosses NTRI]
or

[Time at which SWS crosses NTX]

The hysteresis (NTRl - NTR2) is needed to absorb any transient surge in

,;?

327

packet arrivals when the sender moves from the HOLD state to the
NORMAL state, thereby avoiding any ping-pong effect.

REFERENCES

(I) S.R. Bunch and J.D. Day, "Control structure overhead in TCP," IEEE Computtr
Nttworlting Symposium, May 1980, 121-7

(2) "DARPA Internet program protocol specifications," Transmiuio11co11trolprotocol. uc793,
Information Sciences Institute, use, CA, Sept. 1981

(3) "DARPA Internet program protocol specifications," J,iurmt protocol. RFC791, Informa­
tion Sciences Institute, use, CA, Sept. 1981

(4) David D. Clarke, M odularit:, and tfficit,u;:y i11 protocol impkmmtation, uc8 I 7, MIT Lab for
Computer Science.July 1982

(5) C.J. Bennett and A.J. Hinchley, "Measurements of the Transmission control protocol,"
Computer Networks, 2 (1978), 396-408

(6) E. Anhur, G.L. Chesson, and B. W. Stuck., MTheoretical performance analysis of sliding
window link level flow control for a local area network," Proc. of 1h, 81/a Data Com,n.
Symposium, Oct. 1983, 95-100

(7) L. Kleinrock, "Certain analytic results for time-shared processors," Proc. lFIP Congress
1968. Amsterdam: North-Holland, 838-45

(8) D.R. Cheriton MLocal networking and internetworking in the V-System," Proc. of t/at8t/a
Dala Comm. Symposium, Oct. 1983, 9-16

(9) Hideyuki Tokuda and Eric G. Manning, "An interprocess communication model for
distributed software testbed," Proc. of tht ACM SIGCOMM 'BJ s,-posiu11t, March 1983,
205-12

(JO) 3coM Corporation, Multibw Ethnntt Conlrolkr refnniu lfllJnual, May 1982.
(11) 3coM Corporation, Unibw Ethnmt Controlkr rtftnu:t manual, 1982
(12) Digitial Equipment Corporation, Nttworlts and Communications Catalog, Summer 1984
(13) Mail distributions from ARPANET TCPliP mailing list, Sc:pt.-Oct. 1984
(14) B.W. Lampson, M. Paul.and 11.J. Siegart, Distribul1dS:,stt111S:arclaittctureandimpltmenta­

tion. Springer-Verlag, 1981
(15) A.Z. Spector, "Performing remote operations efficiently on a Local computer

network," CACM, 25: 4 (April 1982), 246-60
(16) J.F. Shoch, and J.A. Hupp, "Measured performance of an Ethernet Local computer

network," CACM, 23: 12 (Dec. 1980), 711-21
(17) M. Marathe, and 8. Hawe, "Predicted capacity of Ethernet in a university environ­

mentt /nlroduclion to Local Area Networlts, llEC publications, 1982, 145-59
(18) E.E. Balkovich, and J .A. Morse, "Performance of distribuced software implemented by

a contention bus," Proc. of Symp. on Data Comm., ACM SJGCOMM, Nov. 1981, 39-45
(19) J.R. Spirn, J. Chien, and W. Hawe, "Bursty traffic local network modelling," IEEE

Journal on Selected Areas in Communications, sAc-2: I (Jan. 1984), 250-7
(20) R.P.A. Collinson, "The Cambridge Ring and UNIX," Software practice and experience,

12: 12 (Dec. 1982), 583-94
(21) International Standards Organisation, Opm S:,sttms lnttrconMction, 1sofrc97/scl6,

June 1982
(22) D. Ferrari, Compuur S:,sttms Pnfonnance Evaluation. Englewood Cliffs, NJ: Prentice­

Hall, 1978
(23) J.F. Schoch, etal., "Evolution of the Ethernet local computer network.," u:u Computer,

15: 8 (Aug. 1982), 10-27
(24) R.M. Metcalfe, and D.R. Boggs, "Ethernet: distributed packet switching for local

computer networks," CACM, 19: 7 (July 1976) 395-404

328 S.T. CHANSON, K. llAVINl>RAN, ANDS. ATKINS

(25) D.R. Boggs, ct al., ''Pl.IP: an internetwork architecture," IEEt: Trans. on Communica­
tions, COM-28: 4 (April 1980), fil2- 23

(26) R.M. Needham, and A..J. llcrbcn, TM Cnntb1lllge lJi,trib11trd <:0111/1uti11g Sy1tr111.
Addi,on-Wcslcy Pub. Co., 19112

(27) l.W. Cotton, "Technologies for Local area computer networks," Computer Networks,
Nonh-Holland Pub. Co., 4 (1980), 197- 208

(28) S. Chanson, K. Ravindran, and S. Atkins, "LNTP - An efficient transport protocol for
Local Arca Networks," Technical Report TR85-4, Dept. of Computer Science, Univer­
sity of British Columbia, Dec. 1984

1~.h, SAMUEL T. CHANSON is an associale professor in the

}
Department of Computer Science at the University of
British Columbia, Vancouver, BC, Canada. Prior 10

:l joining u BC he was an assistant professor in the School
j of Electrical Engineering at Purdue University, W.

· j Lafayette, Indiana. He holds the s sc degree in
. ~ Electrical Engineering from Hong Kong University,

the M sc and PH o degrees in Computer Science from the University of
California at Berkeley. He has published in IEEE transactions and many
other joumaJs and conference proceedings. His research inLerests in­
clude computer communications, especially local area networks, per­
formance evaJuation of centraJized and distributed computing systems,
and operating system designs.

K. RAVINDRAN received his B F~G degree in Electronics
and Communications Engineering in 1976 and MENG
degree in Automation in 1978, both from the Indian
Institute of Science, Bangalore. From 1978 to 1982 he
was a Systems Engineer at the ISRO Satel!ite Centre,
Bangalore. Currently, he is working towards his PH o
degree in the Dept. of Computer Science at the Uni­

versity of British Columbia, Vancouver, BC, Canada. His research
interests include the design and performance evaluation of distributed
systems, computer networks, and real-time systems.

·· .
?
. ,
".<

329

STELL-\ ATKINS recently joined the Faculty of Computer
Science at Simon Fraser University, British Columbia,
teaching computer networks and operating systems.
She has done postgraduate studies at Warwick Univer­
sity, England, and is completing her PHD at the
University of British Columbia on the subject of excep­
tion handling in distributed operating systems. In

Canada Ms Atkins has worked with a computer consultant, specializing
in technical computing for the forest industry and in computer simula­
tion models. Her research interests are in the areas of multiple-process
operating systems, computer communications, and local area networks.

