
LNTP - An Efficient Transport Protocol
for Local Area Networks

Samuel T. Chanson, K. Ravindran & Stella Atkins

February 1985
Technical Report 85-4

ABSTRACT

As interests in local area networks (LANs) grow so is the demand for
protocols that run on them. It is convenient and a common practice to adopt
existing transport protocols that had been designed for long haul networks
(LHNs) for use in LA.Ns. DARPA's Transmission Control Protocol/Internet
Protocol (TCP /IP) for example, is available in 4.2 BSD UNIX for interface to
Ethernet and other LANs. This is not desirable from a performance stand­
point as the control structure is usually much more complex than is neces­
sary, and LANs and LHNs have very different characteristics. Though there
exists simpler transport protocols such as the User Datagram Protocol (UDP),
most do not provide adequate flow control which, because of the much higher
channel speed is critical in the LAN environment.

This paper discusses the unique characteristics and requirements of
LANs and describes a new transport level protocol (LNTP) specifically
designed for use on LANs. The fundamental philosophy in the design of
LNTP is simplicity. Any features irrelevant to the LAN environment is not
included. As well, LNTP uses a simple but effective def erred flow control
mechanism which is activated only when the traffic intensity exceeds some
value. This protocol has been implemented and runs under 4.2 BSD UNIX in
place of TCP /IP. Detailed comparisons between LNTP, TCP and a few
other protocols are given in the paper. Measurement data showed an
improvement in network throughput rate of at least 30% over that of TCP.
The problem of internet communication is also addressed.

LNTP - an Efficient Transport Protocol for Local Area Net....-:::.:-:ks

Samuel T. Chanson, K. R avindran & Stella Atkins

Dept. of Computer Science,
University of British Columbia.

Vancouver, B.C., Canada V6T lWS

1.0 Introduction.

Local area networks (LANs) have soared in popularity in the last few years.

As a consequence, there is increased demand for protocols that run on LANs. I:

is convenient and a common practice to use transport level protocols designed for

long haul networks (LHNs) in a LAN environment. For example, the Transmis­

sion Control Protocol {TCP), which is a transport layer protocol designed for

ARP ANET is available in 4.2 BSD UNIX for interface to Ethernet and other

local area network technologies. This is not desirable from a performance stand­

point since the control structure is usually much more complex than is necessary

for LANs resulting in unnecessary overhead. This is because LHNs often have to

deal with unreliable and hostile subnets. Furthermore, the underlying network i::;

of low bandwidth (typically Q.6 Kb/sec) constituting the slowest. component in ::

transport connection. Thus the packet transfer rate is critically dependent on th 3

capacity of the physical transport media rather than the transport protocol. As :i

consequence performance is seldom a major consideration in designing protocob

for LHNs.

LANs, on the other hand are characterized by high channel speed (typicallj'

10 MB/Sec.), low transmission error rate and a controllable environment. Mens~

urements on large scale Ethernet installations (16, 17] indicate that the underly­

ing network is seldom a bottleneck. Since the bottleneck now shifts to the higher

level protocols and LAN users are usually less tolerant of packet delay, th2

efficiency of these high level protocols becomes an important design issue.

- 2 -

We have carried out extensive measurement experiments on the performance

of TCP as implemented in BSD 4.2 UNIX running on VAXes and SUN worksta­

tions connected by an Ethernet(ll]. We concluded that much of the protocol

overhead and error recovery mechanisms are unnecessary or unsuitable for local

area communication and that the throughput and mean packet delay time can be

significantly improved if the protocol is simplified. We designed and imple­

mented a highly efficient protocol called LNTP (Local Network Transport Proto­

col) which takes into consideration the characteristics or LANs. LNTP runs under

4.2 BSD UNIX replacing TCP /IP for local communication. When packets are

destined for other networks supporting TCP or some other protocol, the protocol

can be implemented at the gateway. Since the majority of the packets in a LAN

are for local consumption [16], this scheme greatly improves the network

throughput rate as well as the mean packet delay time.

This paper describes the new protocol LNTP and compares it with TCP /fP
and HDLC. Measured performance characteristics of LNTP and TCP are also

presente~.

2.0 Design philosophy of LNTP:

The fundamental philosophy in the design or LNTP was simplicity. In add­

tion to improving understandability and ease of maintenance, the objective was

to reduce the protocol processing time. Thus we set out to design a new protocol

that only included features strictly required in a single LAN operating environ­

ment. The design was guided by two considerations:

(i) What protocol features are not to be included !

Our decision was that any feature irrelevant to a single LAN environment

should not be included. Functions that are needed only in rare occasions,

particularly if they can be easily achieved by the application programs are

- 3 -

also not to be included.

(ii) What features are to be included and/or emphasised ?

Our decision was that the characteristics of the underlying network and

that of the application environment are to be exploited.

In the following discussions on LNTP, features that are included and/or excluded

are cited in light of the above considerations. A complete description of the pro­

tocol in terms of specifications and state diagrams is given in appendix-A.

2.1 LNTP supported features

Broadly speaking, internet congestion and error control, routing, service

options provided to high level protocols and certain functions that handle dam­

aged packets found in a typical LHN protocol (4, 5} are not included as they are

irrelevant in a LAN environment. Even checksumming is specified as an option

since the error rates of the communication medium are negligible [8, Q, 10). The

only mandatory error control feature of LNTP is the selective retransmission

scheme to ha.ndle packet loss due to buffer overflows. Consistent with the charac­

teristics of a single LAN environment, the peer address (16-bit address space)

does not include internet component. Furthermore, since the probability of out­

of-order delivery and duplicates is negligible [14), the sequence number space is

made small (4-bits).

To reduce the state information required to maintain a connection (which

simplifies the control structure leading to reduced processing overhead), the

sender and receiver are logically separated and the send and receive channels are

completely decoupled. A consequence of this decision is that a receiver is unable

to piggyback control information on reverse data packets to the sender, a feature

commonly supported by LHN protocols [4,6) to conserve communication

bandwidth. However, network bandwidth is not a scarce resource in a LAN.

- 4 -

Moreover, our measurement results show piggybacking is rare due to the unavai­

lability of reverse data packet at the right time. Thus in view of the simplicity

and reduced processing overhead, LNTP is a.symmetric in send and receive.

2. 2 Flow control

Since LAN bandwidth is several orders of magnitude higher than that of

LHN, network load seldom exceeds 40% of the network capacity even for very

large scale LANs with heavy usage. Measured figures on an Ethernet installation

[16] consisting of 120 Alto machines, two time-sharing systems (TENEX), gate­

ways, file and print servers showed that the maximum load as observed over a 6-

minute interval was 7.9% and the average load was 0.8% of the Ethernet capa­

city of 2.94 Mb/sec. The corresponding figures over an observation interval of 1

second were 32.4% and 2.7% respectively. (17] reported measurement data on an

existing university time-sharing environment extrapolated to that for a large scale

Ethernet-based LAN supporting the same environment. The network utilization

for 1000 users with heavy network disk usage was no more than 30%.

Thus the physical transport channel itself is almost never the bottleneck.

The only delay is virtually the propagation delay which is small compared to pro­

tocol processing times. Thus flow control is a strong requirement for LAN end­

to-end protocols. Without it, it is easy for a fast machine to swamp a slower

machine. The flow control in LNTP was designed with this in mind and forms an

integral part of the protocol specification. In contrast, flow control is seldom a

central design issue in LHN protocols.

Our measurements on TCP /fP over Ethernet [11] also indicated that the

sender wa.s frequently blocked for want of window space; furthermore, the

amount of control packet traffic was high (up to 50% o! the packets were control

packets). The flow control mechanism in LNTP maximises the parallel opera­

tions of the sender and receiver, and minimises the number of control packets

- 5 -

that has to be exchanged. The prov1S1on to send/accept packets even in the

PRMPT _SENT /HOLD _SENT (see appendix-A for LNTP specifications) states

reduces the probability of choking the protocol. The concept of threshold in the

window space reduces the control traffic (no control before the threshold is

exceeded). Because of the deterministic nature of packet delays, a mathematical

model can be formulated for a proper threshold to be set as a function of the sys­

tem parameters to maximise the network throughput rate.

2.3 Timer structure

Every outgoing data packet initiates a timer which is reset either by the

next outgoing data packet (the timer is also restarted) or by the arrival of an

acknowledgement. When the timer expires (T
8

), the packet is retransmitted.

There is an associated timer at the receiver which is reset and restarted by every

incoming packet; on time out (Tr), an explicit acknowledgement is sent. The

timer values Ts and Tr must be chosen to satisfy the inequality

where Ett is the packet end-to-end transfer time. This timer scheme has lowci

overhead than the traditional one in most protocols. For stream traffic, the next

outgoing/incoming packet resets T /T so that no extra network traffic is gen-
s r

erated. For interactive type traffic, the timers guard against possible deadlocks

that might arise due to packet loss. This simpler scheme is not suitable for LHNs

because the variance of Ett is high in such systems necessitating the choice of a

large value for T which makes the scheme inefficient. In any case, a tight ine-s

quality is less meaningful in multihop networks. Another motivation behind the

design of this timer structure is that management of multiple logical timers

though usually realised by a single physical timer is more complex than managing

a single timer. This is because each timeout event results in a complex sequence

of actions [3J. This LNTP implements a single logical timer; in contrast, almost

- 6 -

all other protocols specify a separate timer for each outstanding packet though

some implementations cut corners in this.

9.0 Comparing TCP and LNTP.

This section describes the major differences in between TCP /IP and LNTP.

The differences directly lead to a simpler structure and lower protocol overhead

for LNTP.

9.1 Process addressing.

TCP [4] was designed to handle internetwork communications. The address

of the communicating processes reflect this, being characterized by the triple

<process port number, host address, network address>.

The local address component (process port number) IS 16 bits while the

internet component is 32 bits for a 48-bit address. LNTP uses a 16-bit process

address that is assigned uniquely to communicating processes across the entire

LAN. The underlying address mapping mechanisms might either subdivide this

address in to

< Local process port number, Host number >

or use this address as an index into a table providing the above information; the

subdivision is installation-dependent. For example, in a LAN consisting of 30

nodes, a 5-bit host number field could be used which means that up to 2048 pro­

cess ports may be assigned for LNTP in a single node.

However, in the current implementation of LNTP under UNIX 4.2 BSD, a

24-bit address field is used consisting of

< 16-bit process port number, 8-bit host number >

- 7 -

to ensure compatibility with UNIX's assignment of l&-bit process port ids.

9.2 Packet fragmentation and reassembly.

The Internet Protocol (IP) [5] which provides network layer support to TCP

offers network-dependent data fragmentation to match the underlying network,

and the subsequent reassembly procedures at the TCP input level. The reassem­

bly procedures involve examination of the IP header fields to identify the frag­

ment numbers to facilitate in-place assembly, detection and elimination of

reassembly deadlocks, and coalescing the fragments to enable high level process­

mg.

For internal communication within a single LAN, the underlying physical

network characteristics are known and fixed. Hence, for efficiency reason the

fragmentation/reassembly feature was not included in LNTP where segments are

generated directly in sizes that match those of the physical network.

9. 9 Sequence number management.

TCP uses a byte level sequence number scheme which entails two types of

overhead:

(i) A large sequence number field (32 bits) in the segment.

(ii) High overhead in sequence number management.

Typically, when a segment arrives, checks are made to determine if the

sequence number space of the segment overlaps that of the previous one

or if there is a gap between the two sequence number spaces. Further­

more, the segment length implied by the sequence number must tally

with that specified by the IP level call.

- 8 -

The above overhead is eliminated in LNTP by providing small, packet level

sequence numbers (4-bit sequence number). This replacement is justified on the

following grounds:

(i) The advantage of a large sequence number space in TCP is to provide a

large recycling interval to easily identify duplicates and out-of-order

deliveries common in multihop networks, but highly unlikely in a single

LAN (14}.

(ii) Since a TCP segment can potentially be fragmented at the local IP layer

and the intervening gateways and since TCP does not provide segment

level identification, a TCP segment can potentially be delivered as multi­

ple segments at the remote peer. So a byte level identification makes the

process of coalescing the segments into a stream easier. In a single LAN,

such features are seldom needed.

(iii) Byte level sequence number based windowing might lead to small win­

dows resulting in excessive fragmentation of the stream (11] unless a rea­

sonable lower limit is placed on the segment size.

We note, however, that byte level sequence numbering maps well to provide

a byte stream interface to the client. A packet level sequence numbering scheme

such as that used in LNTP requires mapping of the packets into byte streams

and vice versa at the client - protocol interface should the client require a strear.1

interface. However, this mapping is performed at one point only and the over­

head involved is relatively low.

9.,1 Error Control.

The error rate in LANs is extremely low, of the order of 1 in 1011 to 1012 (0,

10]. The only common type of packet loss is the discarding of packets due to

buff er overflows. LNTP provides selective retransmission based on the RETXMT

control packet which handles this type of packet loss efficiently. On the other

- g -

hand, TCP provides a more general timeout-based retransmission scheme whicl:

is more complex.

TCP /IP uses double checksums, one in the TCP and one- in the IP layer.

The TCP level checksum is provided for end-to-end error control while the IP

level checksum enhances internet datagram reliability. LNTP uses an optional

16-bit checksum that can provide end-to-end error detection capability between

the transport level entities should the system designer choose to include it in the

packet structure.

TCP /IP also provides a self-destruction mechanism for each packet in the

form of a time-to-live (TIL) option. This option prevents a packet sent long ago

from suddenly reappearing, fouling up the current data stream. A TTL field is

specified (typically two minutes) when a segment is created , and is decremented

at each network hop. When this field reaches zero, the packet is destroyed. Such

a feature is useful only in a multihop LHN, and so is not incorporated in LNTP.

9.5 Data stream options.

TCP provides two options (URG and PUSH) to handle specialized data

streams. Applications requiring these facilities occur infrequently in a local area

network environment. Furthermore, clients requiring such service can ensily build

his own. None of these options are incorporated in LNTP.

TCP /TP also provides for options offering different qualities of service. This

is specified in terms of traffic priority, delay and throughput characteristics thnt

can be tolerated by the user. Based on these service options, packet handling and

service scheduling at the intermediate hops are de~ermined. These features are

relevant only in LHNs and are not incorporated in LNTP.

9. 6 Flow control.

- 10 -

In contrast to the elaborate window mana.gement scheme used in TCP 14] ,

LNTP provides three flow control packets whose functions are simple and

straightforward:

PRMPT: request information on the latest in-sequence packet received.

HOLD(n): stop sending (acknowledges up to packet n-1).

RESUME(n): start sending (acknowledges up to packet n-1).

TCP uses a data segment in an indirect way to solicit an acknowledgement

from the receiver. It sends a dummy segment by deliberately placing the sequence

number of the octet outside the receive window. On discovering that the sequence

number falls outside of its window, the receiver sends a window update to

"correct" the sender. These complexities are avoided by the clean and tight

semantics attached to the LNTP control packets.

The flow control of LNTP works as follows. Thresholds are defined in the

windows or the sender and the receiver. On the sender side, as long as the

number of outstanding ·packets is less than its threshold (which should be true

most of the time in normal operation) the sender does not initiate control. Once

the threshold is exceeded at the availability of the next data packet, the sender

initiates control by piggybacking the PRMPT control on the data packet. Simi­

larly on the receiver side, as long as the number of packets waiting to be con­

sumed is below its threshold, the receiver does not acknowledge (unless an out­

or-order packet arrives, which causes a RETXMT(n) to be sent, or unless the

receiver is prompted by the sender). This def erred flow control scheme reduces

the volume or control packets flowing in the network. When its threshold is

exceeded, the receiver sends a HOLD(n) to suspend transmission. The receiver

accepts any packets that might be in transit before the HOLD control arrives at

its destination. This r eature maximizes the parallel operations of the sender and

the receiver and minimizes packet loss. Furthermore, the ability or a heavily

loaded receiver (by unrelated host activities) to directly suspend the sender from

sending more packets provides a certain degree of adaptation to the load at the

- 11 -

receiver's end. When the receiver exits from the flow-controlled region, a hys­

teresis is provided in the sequence number space to absorb the sudden surge of

packets that might be sent by the sender when it is unblocked. This eliminates

the possibility of the receiver oscillating in and out of the flow-controlled region,

a phenomenon commonly known as the ping-pong effect.

Such explicit measures for flow control are notably absent from TCP. In

fact, the receiving TCP silently discards packets when its receive window is full

unless the sender solicits a window update.

4.0 Comparison of LNTP and HDLC (High Level Data Link Control).

Even though LNTP and HDLC, level 2 of X25 as adopted by CCITT [6]

operate at different levels in the ISO reference model of Open Systems Intercon­

nection [12) (LNTP at the transport level and lIDLC at the link level), there are

common grounds with r:espect to their internal structures on which comparisons

can be made.

lIDLC provides an error-free point-to-point link on top of an imperfect phy­

sical channel by providing link level error and flow control. This link is used by

the packet layer (level 3 of X.25) to manage logical channels. As a link level

protocol, HDLC does not provide logical channel numbers, and the packet layer

extends HDLC to provide logical channels between nodes. However, the error and

flow control functions as seen by the network client (e.g., transport layer) are in

fact built upon those of HDLC with the packet layer providing its own channel

level flow control. A transport layer should operate on top of X25 to provide

end-to-end error and flow controls for each virtual circuit independently since an

X.25 packet could traverse a series of nodes before reaching the transport station.

Thus, in effect, there are multiple levels of error and flow control, both stepwise

and end-to-end, in X25 based systems. This is a significant difference between

the X.25 and LAN environments.

- 12 -

In a LAN environment, most of the packets reach the receiving transport

station in a single hop except for a small number of internet packets. A single

layer of error and flow control at the transport level is therefore sufficient to

maintain end-to-end reliability.

Having pointed out the structural differences between X25 and LAN-based

systems, let us compare HDLC and LNTP with respect to their internal struc­

tures (and not their functional services). (N.B., X.25 and HDLC are used inter­

changeably in this paper as X.25 merely extends the services provided by HDLC.)

(i) Packet size.

X.25 uses 128 or 256-byte packet length whereas LNTP packets can be

up to 2048 bytes (the length is specified as part of the header). The

larger packet size is used since packet transport efficiency is directly

related to the packet size [llj.

(ii) Error control.

X.25 error control IS built upon timer-based and receiver-initiated

retransmissions. The arrival of an out-of-sequence packet provokes a

REJ(n) frame from the receiver which triggers retransmissions of all

frames from sequence number n. A sender timeout associated with a

frame 'n' again triggers retransmissions. Though the earlier versions of

HDLC supported SREJ(n) (selective reject) the CCITT-adopted version

does not support it. LNTP supports a timer-based retransmission and a,

selective retransmission (by means of the RETX?vfT(n) packet) schemes.

(iii) Flow control.

HDLC uses the standard sliding window scheme for flow control. It does

not exchange windows at any time but uses fixed window sizes at the

sender and receiver (typically 2 and 1 respectively). LNTP too, as can

be inferred from Section 3.6, uses a form of the sliding window scheme

but takes the full sequence number space as the window sizes at both

the sender and receiver. Windows (range of valid sequence numbers)

- 13 -

are not explicitly exchanged even though the dispatch of a RESUME

after a HOLD would allow the sender to estimate the receiver's window.

Note however that the window or acceptable sequence numbers increases

as packets are consumed by the client at the receiver and, that unlike

most sliding window schemes, the sender is not constrained by the

receiver's window size that was indirectly available to it when a

RESUME arrived; instead, the activities initiated by the sender are

solely based on its local window. This scheme increases the degree of

parallel operations at the sender and receiver nodes. The threshold

scheme also allows hysteresis to be implemented easily by setting a

lower threshold when the state goes from HOLD_SENT to NORMAL.

This avoids frequent ping-ponging between the two states.

5.0 A word about NCP (Network Control Protocol).

NCP [7} is a transport level protocol that was used in the initial versions of

ARPANET. It is no longer being supported. NCP assumes an underlying reliable

subnet on which it provides the notion of connections between end points. It does

not use any acknowledgement, and assumes that the packets injected into the

subnet will arrive error-Cree and in the right order to the end stations.

Significantly, it lacks flow control. (The buffer allocation mechanism is done on a

host-to-host and not on a per connection basis.)

In a LAN environment, though damaged packets can be practically ruled

out, flow control is an important requirement. A fast sender, for example, can

overflow a slow receiver. Thus any possible adaptation of NCP for LANs requires

a flow control mechanism to be added.

6.0 LNTP implementation

6.1 Implementation structut·e

- 14 -

The protocol describes the one way flow of information from one peer to

another. The complete transport layer consists of an implementation of two

complementary instances of the protocol running almost independently with the

interactions between the two occurring in the disconnect phase. The. bidirec­

tional session level interactions are handled by the two instances independently in

terms of error and flow control. In other words, there are two logical channels

below the session level interface each handling data flow in one direction.

On a close-down request at the session level, the protocol instance that han­

dles the sending at the local end of the connection enters the DISCONNECTING

state after a series of operations described in section A.2.3, then sends a DREQ to

the remote peer. The receiver at the other end sends a DCONF, and the protocol

moves to a STOP state. At the same time, the remote sender starts a disconnect

operation going through identical steps. When the other protocol instance also

moves to a STOP state, the session level disconnect is confirmed.

The generalised implementation structure is given in Figure 6.1. The client

resides above the session layer interface. The functions of the multiplexor are

(i)

(ii)

Connection set-up.

Creation of LNTP , LNTP and the demultiplexor on successful connec-
s r

tion set-up.

The function of the demultiplexor is to route incoming packets to LNTP s or

LNTP r based on the packet type.

In UNIX 4.2 BSD I 1), the session level interface is provided in the form of

abstract objects called sockets that are supported by type-specific or client­

specified protocols. Three types of sockets are supported:

(i) Stream sockets

Supported by TCP /IP. LNTP support has been added to this type of

sockets.

- 15 -

(ii) Datagram sockets

UDP (User Datagram Protocol) provides the transport service above

IP. Both are datagram protocols.

(iii) Raw sockets

Supported by IP.

Figure 6.2 gives the protocol implementation environment provided in UNIX 4.2

BSD together with the interactions between the protocol and the various system

modules. All vendor supplied protocols are implemented within the kernel for

performance reasons. The performance tradeoffs involved in alternative imple­

mentation structures are discussed elsewhere [3]. LNTP too is implemented

within the kernel at the same functional level as TCP /IP (Figure 6.3); and the

implementation makes extensive use of the timer facilities, the queue disciplines

and the memory management features provided by the kernel [2].

6.£ Protocol performance

A preliminary implementation of LNTP in the 4.2 BSD UNIX kernel running

on a SUN workstation has been made. The protocol was tested in a software

loop back mode, and its performance compared to TCP /IP running under identi­

cal conditions [11). In this mode of operation, the client and the server processes

reside on the same machine. A steady stream of data flows Crom the client to the

server. UNIX 4.2 BSD supports a software loopback interface at the network

interface level which mimicks a physical network and echoes back the data to the

receiver. Figure 6.4 compares the maximum throughput rate (as a function of

packet sizes) for TCP /IP and LNTP. All system and workload parameters were

identical. The results show LNTP to be better by about 30%. This improvement

is basically due to the simplicity in the control structure resulting in lower proto­

col overhead for LNTP. However, since flow control cannot be adequately tested

in the software loopback mode, the full impact of the new design cannot be

- 16 -

determined until a machine-to-machine transfer is effected. This requires Ethernet

support for LNTP. The implementation is under way.

7. 0 Future plans

Ethernet support is being provided by assigning a unique identifier for

LNTP in the Ethernet type field, and providing an appropriate protocol

scheduler. The performance or the protocol for both stream and interactive

applications will be studied. The contributions to performance improvement due

to simplicity, modified flow control and control traffic will be studied. The deter­

ministic model for flow control developed in [11) will be extended to compute the

optimal threshold values.

Our long term plan is to create a separate address domain exclusively for

local network communications. Currently, UNIX 4.2 BSD defines many types of

address domains in which sockets reside [I]. The most important or them are

(i) UNIX sockets

Sockets created m this domain are for local interprocess communica­

tion (IPC), and are implicitly stream type sockets. UNIX internal

protocols are used for the operation of these sockets.

(ii) INTERNET sockets

Sockets created in this domain are for remote IPC (though in princi­

ple, this can be used for local communications as well). They are sup­

ported by TCP /IP and UDP.

In the current implementation, LNTP is used as another protocol support for the

internet sockets. This means that internet addresses are generated by the socket

layer, but are not fully used by LNTP since the packets are assumed to be loc:11.

To remove the anamoly between the semantics of internet sockets and the actual

support provided by LNTP, the new address domain will provide address

- 17 -

generation for hosts on the local network only. The sockets in this address

domain will be supported by LNTP while internet sockets will continue to be

supported by TCP /IP and UDP. The proposed structure is shown in Figure 7.1.

8. 0 Conclusions

We have described LNTP, a new transport protocol for LANs. This protocol

was designed with the characteristics of LANs in mind. Consequently, it is far

more efficient than protocols originally designed for LHNs but adopted to be used

on LANs. The design philosophy of LNTP was outlined, and the protocol itself

was compared with some other popular protocols. A preliminary version of LNTP

was implemented in 4.2 BSD UNIX, and its performance under the software loop­

back mode was measured and compared to that of TCP /IP running under the

same environment. Initial results showed about 30% improvement in maximum

throughput rate.

Since LNTP is a protocol supporting communications within the local net­

work only, packets intended for other networks must use an internet protocol

such as the IP [5] at the gateway. Since the majority of the packets in a LAN are

for local consumption, this scheme improves the overall network throughput rate.

Session
interface

Link
interface

-18-

I

-> Direction or data 8ow

•·-> Direction of control Oow

Figure 6.1 A generalised implementation structure.

-19-

Schedule

FSM - Finite state machine

Figure 6.2 Protocol implementation environment

provided by UNIX 4.2 BSD

-20-

Figure 6.3 Implementation structure of LNTP

in UNJX 4.2 BSD

0
0
00

~ ...
0 -.
to:)

- s
u .. ~
C1
en ..___ 0
en 00 _. ... --,,&J

~ 0
C - ..,.

_.
= C. 0 - c:~ - eo,
t:.O

· ::,
0 0,. o' - C'l ' -e-.. I

8 9 -
i

C

, ,
,o ,

250

-21-

Local IPC with UNIX internal protocols

-------0 ---------------() - -E>- - ----_ .. --.. ..
0

Local IPC with LNTP support

- _ ..6 Local IPC with TCP /T.P (tuned) support

Loc:l) IPC with TCP /'fP (untuned) support

IPC - lnterproc:f'SS communic:itiou

500 750 1000 12W 1500

Client level packet size (bytes)

Figure 6.4 Performance comparison between LNTP,

TCP /IP and UNIX internal protocols

1750

-22-

Figure 7.1 Proposed address domain for LNTP

- 23 -

References

1. S.J.Leffier, R.S.Fabry, and W.N.Joy, A 4.2 BSD Inter process commun:'­

cation primer, Comp. Syst. Res. group, Univ. of California, Berkeley,
Draft of Mar. '83.

2. S.Leffier, W.Joy, and R.Fabry, 4.e BSD Networking implementaticn
notes, Comp. Syst. Res. group, Univ. of California, Berkeley, Draft or
Sept. '83.

3. D.D.Clarke, Modularity and efficiency in protocol implementation, RFC
817, MIT Lab. for Computer Science, July '82.

4. DARPA Internet program protocol specifications, Transmission control
protocol, RFC 7Q3, Information Sciences Institute, USC, CA, Sept. '81.

5. DARPA Internet program protocol specifications, Internet protocol, RFC
7Gl, Information Sciences Institute, USC, CA, Sept. '81.

6. Intl. Telephony and Telegraphy Consultative Committee, Recommenda­
tions X.25/interface between Data Terminal Equipment (DTE) and Data

Circuit Terminating Equipment (DCE) operating in packet mode on Pub­
lic Data Networks, CCI'IT Orange Book, Vol.7, '80.

7. J.B.Postel, An informal compan·son of three protocols, Computer Net­
works, North-Holland Pub. Co., vol.3, '7Q, pp.67-76.

8. R.Metcalfe, and D.Boggs, Ethernet: distributed packet switching for local
computer networks, CACM, vol.19, no.7, July '76, pp.395-404.

9. D.Clark, K.Pogran, and D.Reed, An introduction to Local Area Net­
works, IEEE Proc., vol.66(11), Nov.'78, pp.1497-1517.

10. I.W.Cotton, Technologies for Local Area Computer Networks, Computer
Networks, North-Holland Pub. co., vol.4, '80, pp.197-208.

11. S.T.Chanson, K.Ravindran, and S.Atkins, A performance evaluation of
the ARPANET TCP in a LAN environment, accepted for publication in
INFOR journal.

12. Intl. Organization for Standardization, Reference model of Open Systems

Interconnection, ISO/TC97 /SC16/ Draft Intl. Standard, ISO/DIS/7498,
'82.

- 24 -

13. D.R.Cheriton, Local networking and internetworking in the V-system,
Proc. of the 8th Data Commn. Symp., ACM SIGCOMM, Oct.'83, pp.9-16.

14. J.A.Stankovic, A perspective on Distributed Computer Systems, IEEE
Trans. on Computers, vol.C-33, no.12, Dec.'84, pp.1102-1115.

15. A.Z.Spector, Performing remote operations efficiently on a Local com­
puter network, CACM, vol.25, no.4, April IQ82, pp.246-260.

16. J.F .Shoch, and J.A.Hupp, Measured performance of an Ethernet Local
computer network, CACM, vol.23, no.12, Dec.H)80, pp.711-721.

17. M.Marathe, and B.Hawe, Predicted capacity of Ethernet in a university
environment, Introduction to Local area Networks, DEC publication,
1982, pp.145-159.

18. A.S.Tanenbaum, Computer Networks, Prentice-Hall Inc., IQ81.

- 25 -

Appendix-A

Description of LNTP

A brief description of LNTP is given below in terms of the packet structure
and the functional components of the protocol. The finite state machine represen­
tation of the protocol during the different phases of a connection is given in the
diagrams in Figures A.I to A.5.

A.1 Packet structure

The structure of LNTP packets is denoted by a 'C'-like structure

pkt= struct

{

SRCADRS 16 bits ;

DSTNADRS 16 bits ;

PKTID 4 bits;

CHKOPT 1 bit

LEN 11 bits;

SEQNO 4 bits ;

RETXCNT 4 bits ;

DATA <LEN> bytes;

CHKSUM 16 bits;

}

pkt.SRCADRS - > Port address associated with the sending peer

pkt.DSTNADRS - > Port address associated with the receiving peer

Usually these address fields decompose into a host identifier and a locally

unique port identifier.

pkt.PKTID - > Packet identifier. The different types of packets are

DATA, DATA + PRMPT, PRMPT, RESUME, HOLD,

RETXMT, CREQ, CCONF, DREQ and DCONF.

pkt.CHKOPT -->

pkt.LEN->

pkt.SEQNO ->

- 26 -

Indicates whether the packet includes a checksum.

Data length in bytes

Sequence number of the data packet from sender. \Vrap

around occurs after every MAX_SEQNO packets. For a

control packet sent by the receiver, the value or this field

is one plus the sequence number of the in-sequence packet

last received correctly.

pkt.RETXCNT - > Retransmission count of a data packet (zero initially).

pkt.DATA-->

pkt.CKSUM -->

Data field oC length pkt.LEN bytes

l's complement checksum or the entire packet, including

header, if checksum option is exercised; else 0.

The variables describing the protocol machine are :

MAX_SEQNO -- > Maximum sequence number space (16)

Sender:

SND.NXT -- > Sequence number or the next packet to be sent

SND. UNA -- > Sequence number of the first packet in the sender waiting to

be acknowledged

Ntx -- > Sender's threshhold in the protocol window

Two timers are defined (it is the same timer used differently at two

different times):

(i) A timer is associated with the packets in the flow controlled region at the

sender

(ii) Each of the outgoing packets at the sender also resets and restarts a timer

(which expires after Ts) in the non flow-controlled region. The timer is

reset (but not restarted) by an acknowledgement packet. Similarly there

is a timer at the receiver which is reset and restarted by each incoming

packet (the receiver timer expires after Tr). The expiry or T
9

provokes a

DATA + PRMPT Crom the sender. The expiry of Tr causes the receiver

to send an acknowledgement. Ts and Tr must be chosen to satisfy the

inequality

- 21-

where Ett is the packet end-terend transfer time.

Receiver:

RCV.NXT --> Sequence number of the next packet to be received

RCV.CNS - > Sequence number of the first packet in the receiver waiting to

be consumed

Threshold value when the window decreases

Threshold value when the window increases

(Ntr2 < Ntrl)

A. 2 Functional components

The protocol is divided into three phases:

(i) Connection set-up

(ii) Execution

(iii) Close-down

A.2.1 Connection set up phase

The connection set up phase is fairly standard. A connect request may come

from one of the two sources:

(i) local client as indicated by event CCR

(ii) Remote peer in a CREQ packet

The connection set up dialogue is best illustrated by the state diagram in Figure

A.I. The timer CTMOUT handles loss of CREQ and CCONF packets. The peer

that accepts the connection in response to CREQ sends a CCONF, confirming

the connection.

A. 2. 2 Execution phase

- 28 -

This is concerned with the orderly transfer of data from the sender to the

receiver. The figures in A2 and A.3 give a detailed state diagram representation

of this phase. Figure A.2 is the state diagram or the normal flow control in the

execution phase, assuming no error or lost packets. Figure A.3 is the error control

component superimposed on the flow control, and is initiated by the receiver

when it receives an out-of-order packet.

The sending peer can be in one or three states :

(i) NORMAL state

(ii) PRMPT_SENT state

(ii) HOLD state

In the NORMAL state, only data packets flow to the receiving peer. The transi­

tion to PRMPT_SENT when the window size becomes less than Ntx provokes a

PRMPT control packet. In this state the protocol can still accept packets from

the client layer and send DATA+ PRMPT packets. In the HOLD state, no pack­

ets are sent except those provoked by RETXMT(n) control packet.

The type of packets the sending peer may send are:

(i) DATA packets

(ii) DATA+ PRMPT packet

(iii) PRMPT control packet

The function or the PRMPT packet is to force an acknowledgement packet from

the receiving peer.

The receiving peer can exist in one of three states:

(i) NORMAL state

(ii) RETXMT_SENT state

(iii) HOLD_SENT state

In the NORMAL state, packets are accepted without generating any ack­

nowledgement unless an out-of-order packet arrives which provokes an immediate

RETXMT(n) control packet. The receiver continues to accept packets in the

HOLD _SENT state until its window closes.

Three types of packets may be sent by the receiving peer:

(i) RETXMT(n) packet

(ii) RESUME(n) packet

(iii) HOLD(n) packet

where 'n - I' is the sequence number of the last packet that has been received

correctly. Their functions are:

RETXMT(n) -->Advises sender to retransmit packet or sequence number 'n'.

This is sent when an out-of-order packet arrives at this layer.

The out-of-order packet is buffered.

RESU1vfE(n) --> Advises sender to resume transmission starting from the

packet with sequence number 'n'. This is used when sufficient

window space is available to reenable the sending peer. This

is also sent in response to a PRMPT control packet when

packets up to 'n • 1' have been received correctly and the

receiver is expecting packet 'n'.

HOLD(n) -> Instructs the sending peer to hold transmission until instructed

to resume. This is sent when the window size falls below a

threshhold.

A. 2. 9 Close down phase

- 30 -

Before both peers can enter the DISCONNECTING state for the actual

disconnect sequence, they must be brought to a consistent state. The protocol

defines a FLUSIIlNG state which is an intermediate state between the current

state when the disconnect request arrives and the DISCONNECTING state. It is

illustrated in Figure A.4. The disconnect request itself might originate from the

local process (DRC) or from the remote peer (DREQ packet). There are three

situations that the protocol might be in when a disconnect request arrives:

(i) Packets pending to be sent -

These are sent with PRMPT piggybacked on the last data packet.

(ii) No data pending but packets are being held waiting to be acknowledged.

PRMPT packets are sent to elicit acknowledgement.

(iii) No packet waiting to be sent or acknowledged.

In this case, the protocol immediately moves to the DISCONNECTING

state, in which the sender sends a DREQ to the receiver and moves to

the CLOSED state.

The protocol enters the FLUSIIlNG state in cases (i) and (ii). The rest of the

disconnect phase is standard, and handled in a way similar to the connection

set-up phase. It is illustrated in Figure A.5. The peer which accepts the discon­

nect request sends a DCONF packet confirming disconnection. Timeout

(DTMOUT) is provided to guard against loss of control packets.

A.S Error recovery:

Recovery from various error conditions is performed as indicated :

Out-of-order packets - > RETXMT control packets are used to initiate selective

retransmissions (missing packets are detected usmg

sequence numbers assigned to packets).

- 31 -

Damaged packets -- > RETXMT packets (error is detected by checksum

validation).

Duplicates -> Discard packets (error is detected by RETX_CNT

assigned to packets).

Lost packets-> RETXMT packets (error is detected by timeouts pro­

vided in the different phases).

A.4 Flow control:

This is achieved by means of PRMPT packets from the sender, and HOLD

and RESUME packets from the receiver.

The sender's window is defined as :

Sender's window size (SWS) = MAX_SEQNO - (SND.NXT - SND.UNA)

(N.B., modulo arithmetic is used in the computation of sequence numbers and

window sizes with MAX_SEQNO as the modulus).

Two regions are defined :

SWS < Ntx

SWS >= Ntx

... Region 1

... Region 2

No flow control is initiated from the sender in Region 1. Once the sender enters

Region 2 it initiates fl.ow control measures while maintaining the data flow at the

same time until the protocol stops when the window is filled.

The receiver's window is defined as :

RCV.NXT <= sequence number< RCV.CNS

Receiver's window size (RWS) = MAX_SEQNO - (RCV.NXT - RCV.CNS)

Two regions are defined for RWS:

< Ntrl ... Region 1

>= Ntrl ... Region 2

- 32 -

when in the NOR~.1AL state, and

< Ntr2 ... Region 1

> = Ntr2 ... Region 2

when in the HOLD_SENT state

(In all cases, Ntr2 < Ntrl < MAX_SEQNO)

The point at which flow control takes effect

= I Time at which RWS crosses Ntrl]

or

I Time at which SWS crosses Ntx I
whichever occurs first

The hysteresis (Ntrl - Ntr2) is needed to absorb any transient surge in packet

arrivals when the sender moves from the HOLD state to the NORMAL state,

thereby avoiding any ping-pong effect.

A.5 Connection surveillance

This is provided by means of a simple asynchronous protocol running on top

of LNTP at both the sender and receiver. The protocol periodically exchanges

AYT (synonym for "Are You There?") control packets in a symmetric fashion

to ascertain the connection is alive. Absence of A YT from the other end after

repeated tries results in a forcible shutdown of the connection.

-33-

Figure A.~ Connection set up phase

I

Sender

+CCR

-CREQ

+CREQ
-CCONF

+CTMOUT
-CREQ

~

A\VAIT
ONNEC

~\ -CCONF,F.
+CR~NORMAL

-CCO;"-.°F

+ = packet received
- = packet sent

connect confirm packet

+CTMOUT
~CREQ

connect request from local client

connect request from remote peer

Receiver

+CTMOUT

+CREQ +CCOI\'F

-CCONF \

CCOI\'F

CCR

CREQ

CTMOUT timer to handle loss of CREQ and CCO~r p:M:kets.

CCONF

CONS

D

DP
HOLD
PCP

+RES
-D

PKT

PTMOUT

RES

-34-
Figure A.2 Execution phase with flow control

Sender

____ +PKT

+PT
-PCP ---

-D

+HOLD

+HOLD
+RES

+PKT

+ = packet received
-= packet sent

consume request Crom receiver's client

dat3 packet

+DP
+PCP
-RES

+D
+PCP

Receiver

+D +DP
-HOLD -HOLD

data + prompt packet Crom sender to receiver, to force an acknowledgement.

bold p3cket Crom receiver to sender, to prevent further transmissions.

prompt control p3Cket Crom sender to receiver, to force an acknowledgement.

data packet Crom sender's client.

prompt timer for sender.

resume packet Crom receiver to sender, to acknowledge last corred packet.

. , .

'
i
J

+CO~?)
-RES

i
!

,

CONS

D

DP
HOLD
PCP
RES

RTMT
RTXT

-35-

Figure A.3 Execution ph~e with error recovery (but no flow control)

1'RTXT
-D

Sender

'tRTXT
-P

+RTXT
-D

1-RTXT
~-D
HOLDING

+ = packet received
-= packet sent

consume request from receiver's client

data packet

+CONS
-RES

Receiver

t
•DP
-RTXT

data + prompt packet from sender to receiver, to force an ad;nowl~gement.

hold packet from receiver to sender, to prevent further transmissions.

prompt control packet Crom sender to receiver, to force an ackoowl~gement.
resume packet from receiver to sender, to acknowledge 13St correct packet.

retransmit timer, oae for each lost packet at the receiver.

retransmit packet, Crom receiver to sender.

MIT
+RTMT
-RTXT

+DRC

\

Sender

FLUSHING

tr +RES +RES .op

-36-

Figure A.4 Flushing phase

+ = packet received
-= packet sent

-DREQ

\

Receiver

..OREQ

+DREQ

+DREQ

........__ ____ -:
+DTMOUT
-DREQ

DRC
DREQ

DTMOUT

D
DP
HOLD

PCP
RES

disconnect request Crom local client

disconnect request from remote peer

timer to handle loss of DREQ and DCONF p:i.cket3

data packet

data + prompt packet from sender to reeeivtr, to force an acknowledgement.

hold packet from receiver to sender, to prevent further tr:1nsmissions.

prompt control packet from sender to receiver, to force an acknowledgement.

resume pa.cl.et from receiver to sender, to a.cknowledge la.st correct p3Clcet.

+DREQ

DCO~'F
DRC

DREQ

DTMOUT

-37-

Figure A.6 Disconnect phase

Sender

+DREQ
~CO~'F

+ = packet received
· = packet sent

disconnect confirm p3cket

disconnect request from loc3l client

diaconn~t request rrom remote peer

-DCONF

timer to h3!1dle Joss or DREQ and DCOr-.-"F p3Ckets

Receiver

+DREQ
-DCOl\'F

