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1. Introduction. 
Although this paper is technically a purely logical paper, its intent is to explicate notion& or (par
tial recursive ) functions, functionals, data and function types, u well as or modules as used in 
modern (i.e. declarative) programming languages. The close connection between logic and seman
tics or certain programming languages bas been recognized for some time now (see for instance 
Kowalsld l61). In a previous paper l17J we have explained declarative programming languages as 
terms and formulas or a first order Theory or Pairs (TP) which is developed in detail in this 
paper. Computation was understood as a proof or the program in a deductively restricted sub
theory or TP. The restriction or the deductive power is necessary so the proof can be efficiently 
carried out by a computing ma.chine. Proofs or correctness or programs amount to the, possibly 
computer-aided, proofs or theorems in TP. The problem or termination or programs amounts to 
the proof-theoretical question or existence or proofs in subtheories or TP. Thefie can be tackled 
within a computer-assisted system provided one arithmetizes the proof theory in a suitable formal 
theory, say TP itself. 

It would seem that we need either a high order theory to accomodate the hierarchies or functions 
and types (such as Martin-Lora theory or constructive types ISi ) or a powerful 6rst order theory 
(some extension or lambda calculus, set theory). But such theories are not completely satisfactory 
because it is abBOlutely essentiaJ, io the parlance or programming languages, to be able to view 
ruoctioos and types as data and vice-versa. This amount& to the necessity or G8del numbering of 
functions, types, and proofs. Any succeHful formal theory for programming languages will have to 
use Gadel numbers to explain compilers, interpreters, and operating systems. All or these work on 
representations (G8del numbers) or functions and types. Ir we realize this, we suddenly see that 
we do not need a strong formal theory. Actually the weakest or the interesting theories - Peano 
Arithmetic (or some or its equivalents) - would do. Functions, functionals, and types can be 
explained by G8del numbere. This is essentially what we attempt to do in this paper 

Logicians are not particulary interested in the concrete formal proofs in a concrete formal theory. 
They are in tereeted in the questions or existence or proofs. Neither are they interested in the 
details or particular encoding into G6del numbers. They are aatis8ed with the knowledge that it is 
possible. Computer scientists care about the details or coding, they are writing programs which 
must be e.xecuted. They al110 should care about formal proofs or programs which can be computer 
generated or at least computer checked. On the other hand, in order to master the complexity or 
the task, computer scientists were forced to design readable notations. Thia is where logic can pos
sibly bene8t Crom computer ecience. 

Theory or pairs, as presented a.nd developed io this paper, concerns objects freely generated lrom 
0 by the operation or pairing. A slightly more complicated domain called aymbolic r:::preaaions is 
used as the universe or the programming language Lisp llOJ. We prefer to call these objects pairs 
because this is what they are mathematically. Pairs are superior to natural numb<;rs in encoding 
lists, trees, runctions, formulas, proors, etc. Although Lisp has beeen around ror a quarter of a 
century and McCarthy and Pet.er lg,12J developed the theory or recursive functions over pairs 
informally, only in recent. yearB bas there been a serious intere&t in the ronnalization or pairs. 
Boyer and Moore (lJ were amongst the first to rormalize domains similar to pairs. The present 
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author developed his rormal.ization at tbe beginning or 1984 without knowing about the work 
done by ·sato l13] and Fefermau j2J in thi! area. The domain or Sato is slightly more complicated 
than ours. Feferman works with second order theories. 

To axiomatize pairs is only the startin1 point. What matters is how one proceeds in introducing 
partial recursive functions, functionals and types into the theory. This is, in our opinion, the main 
contribution or the present paper. We start with a notation for partial recursive functionals over 
pairs. We define the notion of computation or functionals (section 2). In section (3) we present 
the Theory ot Pair& together with 60me initial development. In isection (4) we rormalize the notion 
of computation by introducing a predicate of computability (reducibility) Comp similar to 
:lpT(i, 4, p) or Kleene !SJ. With the help or Comp we shall interpret the functionals into TP. Sec
tion (6) develops the properties or Comp and culminates in the proof of a very general theorem 
which allows to prove the recursive equations tor the recursive functions over pairs. The theorem 
is similar to the set.-tbeoretical theorems or Von Neumann and Tarski (see for instance l71) about 
functions defined by transfinite resp. well-founded inductions. In section (6) we develop a nota. 
tion for ordinals less than £0• Our ordinals include natural numben instead of their being encoded 
into natural numbers. Section (7) introduces the four ba.,ic arithmetic operations over ordinals. 
Since the natural numbers are ordinah, the arithmetic operations over ordinals retain the expected 
properties for numbers. Finally, in section (8) we prove the transfinite induction for all ordinals 
less than £0 and syntactically introduce the recursive functions defined by transfinite induction as 
the special case or the main theorem. 

We plan in the second part of the development of TP to generalize the 6nite types or GM el 141 . 
We intend to develop a system of types finer than the finite types. We shall include cartesian pro
ducts, unions, and generalize the so called polymorphic (parameterized) types of Milner Ill] . Our 
approach to functionabi over finite types dill'ers rrom the standard one in that we attribute 
different types to the same functionals rather than to have a dilJerent functional for each type. 
We then prove the recursive equations for the class of welJ-typed functionals. The theory or types 
will be developed in TP in the detail sufficient for the semantics of typed programming languages. 

In the tbfrd part we plan to utilize the results or the first two parts to give· a aim pie proof or the 
constructive consistency of TP using our functionals. We shall interpret TP into a quantifier free 
subtheory or TP and prove the consistency or the subtbeory . This is essentially the G6del 's 
Dialectica proof [41, but our notation permits the proof to be carried out in a simpler way without 
the detours through auxiliary theories. AB another byproduct, we prove the incompleteness or TP. 
Finally we intend to show how to replace functionals by partial recursive functions and prov that 
all recursive functions which can be proven total in TP (provabl11 recursive functions) c:in be 
introduced by the transfinite induction up to Eo, This is a known result or Gentzen j3J, but again 
we want to present a simpler proor. Thus the third part will be devoted to the proof-theoretical 
questions or TP and perhaps the theory or proofs !see for instance Schuette, Takeutij can benefit 
from our notations. 

I. Reeuralve Functlonala over Pain. 
We are interested in computable functions and functionals over the domain or pairs. Pairs are 
freely generated from 0 by the operation of pairing [_, _j. Thua O iB differrent rrom any pair of 
the fonn I 4, bJ. Two pairs I a, b I and I 4', b'I are equal ill a is equal to a' and b is equal to b'. We 
sbaJJ write I a, b, cj 3.11 the abbreviation for I a, I b, cJ j. Similarly for more elements. From the 
definition ot pain it ebould be obvious that every pair is either O or ia uniquely or the Corm 

I a1, ai, .•. ,a111 OJ (1) 

for n~l. Thus every pair is either the empty list (0) or is a non-empty list of the form (1). the 
pain o, for 1 S iS n are said to be elementa (member&) or the list (1). The empty list 0 ha., no ele
ments. Let us abbreviate the pair I 0, 0 I by l, the pair I 0, 1 J by ~. the pair [ 0, 2 J by 3, etc. 

There ia a well known one-to-one correspondence between pain and natural numbens given by the 
computable bijection m. 

m(0)-=0 

----.. 
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m(lz, 11I) = (m(z)+m(y)+~)(m(z)+m(ll))+m(z)+l 

and thus we can expect computable functions over pairs to be the same as the recursive functions 
(over natural numbers). Since we are interested only in pain we shall henceforth drop the 
qualification "over pairs" and speak simply or recursive functionals and functions. 

Recursive functionals will be defined with the help or certain terms denoting pairs. We shall call 
such terms recuraive term,, or shortly R-terms. R-terms are composed from the constant symbol 
0, the (only) variable n, binary ope.ration or pairing 1- , _), ternary operation tr_ then _ elae _, 
unary operations _.b and _.t or projection, as well aa or the binary operation _•_or function 
application. Each R•term is composed by a 6nite number of applications or the formation rules i 
through vi. 

The constant O is an R-term. 

ii The variable n is an R-term. 

iii Ir a and b are R-terms, so is ! a, b J. 
iv Ir a is an R-term, so are (a.h) and (a.t ). 

v Ir a and b are R-terms, so is (a • b ). 

vi Ir a, b, and c are R-terms, so is (It a then b elae c ). 

The superfluous parentheses will be dropped whenever poesible. Somewhat against the standard 
practice we write a • b • c as a shorthand ror a • (b • c ). 

R-terms composed only by the formation rules i and iii are called literal,. Literals denote the 
correspondingly constructed pairs rrom the domain or pairs. We shall write jf for the literal denot
ing the pair p. An R-term is a ,election from the argument iB' it is obtained rrom the R-term n.t 
at most by the application or the fonnation rules iv. R-terms composed without the rule ii are 
called clo,ed R-terms. Open R-tenns contain at lea.st one occurrence of the variable n. For a pos
sibly open R-term a and a closed R-term b we shall denote by a{ n:=b} the closed R-terrn 
obtained from a by replacing all occurrences or the variable n by the term b. An R-term a will 
be called a function R-term, or shortly RF-term, iff for aU subterms of a of t.he form b • c the 
term b is either n.b or a literal. 

In order to define computations or R-terms we assign names (GMel numbers) to R-terms. This is 
done by a mapping from R-terms to literals. The name of an R-term a is written as r a 1- The 
following symbols will be used as abbreviations for literals 1 through 7 in that order. 

zero, var, laead, tail, pair, if, app (2) 

Naming is defined by the recursion on the construction or R-terms as r ollows ( = is read a.s '' is 
the same term"). 

r 01 = ! zero, o I 
rnl =Ivar, OJ 
rl•, bJl = jpair, r al, rbl I 
fa.bl= !head, fal J 

f a.t 1 = I tau, r a 1 I r tr a then b elae cl = I if, r • l , r b 1, f c 11 
fa• bl= japp, fal, fbl I 

Tbe notation >.a, where a is an R-term is introduced as a shorthand for the literal fa 1- A func
tional is intended to denote a partial recurrive functional over pairs. Because of pairing, all func
tions and functionals can be treated as one argument only. Multiple arguments can be obtained 
from the only one argument by selections. 

Our functions and functionals are not independent entities but rather names or R-terms. This is 
consistent with the standard practice or programming languages derived from Lisp. Functionals 
accept and yield names or functionals as arguments and results. The operation or application 
a • b expects the term a to denote a name of a R-term. 
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A closed R-term will be called computable (reducible) if there is a computation tree encoding its 
computation. Computation trees will be given as literals. We ahall define the (informal) relation 
Ctree(p, q, i) holding whenever Tis a computation tree for the literal pin the environment q. We 
say that a closed R-term a{n:=g) is computable and reduces to the literal ti - shortly 
a{n:=qj > '1- iff 

Ctreeff al, i, lti, tn 
holds for some literal ~- The literal ~ contains the computation trees for the 111bterma or a. Ir 
a"""> ti we say that the term a denote, the pair t1• The relation Ctree ill defined by the follow
ing clauses where the variables z, r, , , t (p0195ibly subscribed) range over pairs. 

Ctree(lzero, OJ, e, IO, 01) (D1) 

Ctree (I uar, 0 I, e, ( e, 0 I) 

Ctree(lpair, z1, ~I, e, !(11, t1J, 1,1, '21, ti, '21) If 
Ctree(z1, e, I ,1, '21) and Ctree(Z:,., e, I t1, '21) 

Ctree((head, .:rJ, e, I0, 0, ,j) It Ctree(.:r, e, I0, sl) 

Ctree(I head, zJ, e, I t1, I t1, '21, •I) If Ctree(i, e, II Ii, '2], ,]) 

Ctree((tail, zl, e, (0, 0, ,j) It Ctree(z, e, IO, ,j) 

Ctree([tail, zl, e, I~ lt1, '21, •I) If Ctree(z, e, llt1, '2], ,J) 

Ctree(I if, z1, ~. Zal, e, I 11, IO, ,j, ti, '21) If 
Ctree(zi, e, IO, -1I) and Ctree(Z:,, e, I 11, '21) 

Ctree(I if, z1, ~ :ral, e, I l1, (( •1, •2I, •I, ti, '21) It 

(D2) 

(D3) 

(D4) 

(DS) 

(D6) 

(D7) 

(D8) 

Ctree(zi, e, ll•i, B,zJ, sl) and Ctree(zs, e, !t1, '21) (D9) 

Ctree(I app, Zi, ~I, e, ( 11, I ri, r2I, I •i, '21, Ii, '21) If 
Ctree(z1, e, ( r1, r2l) and Ctree(Z:,, e, I 11, "z]) and Ctree(ri, I r1, , 1J, ( ti, '21) (D10) 

We can easily convince ourselves that the truth value or the predicate Ctree(p, q, i') is comput
able for any pairs p, q and ,. Namely, if p and i"do not have the form or any or the lert-band 
sides or clauses then the predicate is false. Ir, on the other band, they have the form of one or the 
clauses then the truth value or Otree(p, q, i") is reduced to that of the predicates on the right
hand side or the corresponding clause. In the case or the match with the clauses (Dl) and (02) the 
predicate is true. Third arguments or all predicates Ctree on right.band sides are always proper 
parts of third arguments on left-hand sides. It i11 impossible to decre~ the computation trees 
forever, so the recursion must always terminate. 

The relation or reducibility induces the relation -= of identity over closed R-terms. 

a == b if for aome pair p we have a -> p and b -=> p 
We should be able to demonstrate that the Collowing holds for any reducible closed R-terms a, b, 
c, and d: 

·-· a-=b - b==a 
a-=b & b-=c - a=c 
a==b - c==d where d is c with some occurrences or a replaced by b 
(a, bj.h = a 
I•, bj.t == b 
O.b ,_ O 
0.t= 0 

(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
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provided the R.H.S reduces 

(11) 
(12) 
(13) 

The idea or the variable n should be now obvious. The selection n.t refers to the only argument 
or a functional. The R-term n.h recursively selects the functional >.a. 
A partial recursive functional >.a is said to be defined for the pair p to yield the pair q iff we have 

(>.a) • p > i' (14) 

The partial recursive functional >.a is called a partial recurnve Junction iff a is an RF-term. Par
tial recursive functions do not permit as left arguments ol applications such R-terms as computed 
functions (for instance another applications) and selections from the argument. A partial recur
sive function >.a is called a (tota~ recuraive function iff (14) bolds for all paire p. Note that our 
definition permits the partial recursive functions to invoke functionals. Recursive functions may 
invoke partial functionals provided they use them only in the defined points. Our definition is a 
more liberal one than the standard definition or recursive functions and in this respect it resem
bles the definition or Turing computability. Obviously, we do not gain any additional power from 
our definitions. This can be demonstrated by a standard proof of equivalence, say, or Turing and 
our computability via mutual encodings. 

Ir the reader object& to our identification or partial recursive functions with names of certain R
terms, and thinks it too intensional, we suggest that he defines a function /(z) to be recursive iff 
there is a pair p such that /(i) = p • i' for aU pairs q. Theo p can be vieved both as one or the 
possible names for / and as an algorithm (program) for the computation off In other words, a 
function is recursive if there is a program computing it. 

Let us give some examples or recursive functions. At the same time we devise a notation to 
improve the readabiJity. Consider the literal abbreviated as len 

len =>.It n.t then O elae [O, n.h • n.t.tJ (15) 

Provided that len is a recursive function (as it is) we can employ the reduction property (13) to 
derive 

ten • a = If a then O elae I 0, len • a.t J 

It is easy to see that ten computes the length or the list a. ~ a slight notational improvement we 
can give a name to the recursive invocation and the argument and write 

>.len, r. It z then 0 e1ae [ 0, len • z.t J 

This is just a shorthand for the .km! at the right-hand-side of (15). The next example is a two 
argumented function concatenating two lists. 

cat = ). cat, a: If a.h then a.t elae I a.h.h, cat • I a.h.t, a.t 11 ( 16) 

In order to escape the tedious selections from the argument we can oa.me the arguments explicitly. 

>.cat, [ .:, gJ: If z then g elae I z.h, cat• [ z.t, gl) 

This is again just a shorthand for the right-hand-side or (16). This notation can be naturally 
extended to more arguments or even to more complicated forms or arguments, for instance 
I( z, gJ, z). Next example is the function rev reversing a list. It uses the function cat. 

rev E >. rev, r. It z then O elae cal • I rev • z.t, z.h, 0 I (17) 

AB a further notational convenience we can drop the name of recursive invocations n.h if a !unc
tion is explicitly defined. 

tran,pose = >.! z, g J: I g, zJ !!! >.I n.t.t, n.t.h J 

We should now prove the identities (3) through (13). We would then obtain an informal theory or 
recursive functionals over pairs. Thia "natural" development is, however, not acceptable to us for 
two reasons. 
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1) We have on mind explication or programming languages by formal semantics. In particular 
we want be able to rea.,on about our programs in Cull predicate logic rather than to be res
tricted to identities among terms. Predicate logic will permit a natural discussion not only 
ol closed R-terllll! but also of t~rms containing variables. We alao insist on a formal theory 
because we foresee computer-assisted proofs and transformations or programs. 

2) We are not satisfied with the intennonal character ol our identity =. It is defined only 
among reducible terms. The natural property a=a does not hold if a ia not reducible. 

We shall develop the theory of recursive functionals within the formal framework of the first 
order Theory of Pairs. We shall introduce R-terms as a subset or terms of a conservative exten
sion or TP. Thus R-terms obtain denotations from the standard model or TP rather than from the 
notion or reduction. The identity relation over terms which is now induced by the reduction will 
be interpreted as the natural identity among pairs. 

We shall introduce the predicate or computability Comp into TP u the aritbmetization or the 
informal notion of computability. We show that aU partial recursive lunctionals ca.n be (numeral
wise) represented within TP. We shall investigate two classes of l'unctionals which ca.n be intro
duced into TP, i.e. the defining equations ror functionals can be i,roven with variables instead or 
literals. These are a subclass of recursive (unctions and or functionals of finite types. We shall 
not investigate all functionals in TP lor two reasons. The first reason is a pragmatic one. The 
above two classes seem to be sufficient for the definition ol declarative programming languages. 
The second reason is more l'ierious. Because of the inclompleteness ol TP we will not be able to 
introduce all recursive functions into TP. We will be restricted only to the subclass of provably 
recursive functions. 

3. Theory of P alra u a Formal Flr1t Order Theory. 
The domain or the intended interpretation or TP is the set ol pairs. TP is set up as a first order 
theory using the terminology and notation or Shoenfield 115). In order to keep the proofs ol formal 
theorems short we shall present the proofs in a natural deduction style. Such proofs can be readily 
converted into formal proofs. The language or TP contains - in addition to the symbols for logi
cal connectives, quantifiens, and identity - the constant symbol O denoting the pair 0, the bi.nary 
function symbol !_, _] denoting the operation or pairing, and the binary predicate symbol _ E _ 
denoting the relation or being an element of a list. 

Formation rules for terms are as follows. 

a) constant O is a term, 

b) individual variables a, b, ••• ,m, n, ... ,z, 11, z, possibly primed, are terms, 

c) if a and bare terms, so is I a, b ]. 
For any terms a and b the atomic r ormulas or TP are a==b and a E b. Other formulas are 
formed from atomic rormulaa with the help of connectives and quantifiers in the usual way. We 
shall use some obvious abbreviations, a.a for instance, a,'b for -. a=b and a f b for -. a E b . 
The notion of literals and abbreviations ror pairs is the same as in section (2). The bold faced 
variables are syntactic meta-variables ranging over variables (x, y , ... ), terms (a, b, ... ), and formu
las (A, B, ... ). We let p{x:==a} to stand for the term or formula obtained from the term or for
mula p by replacing all rree occurrences or the variable x by the term a subject to the restriction 
on the free variables becoming bound in the process or substitution. 

The non-logical axioms or TP are the following ones. 

( z, 11I == Ir, v'] - z == z' & 11 == v' 
zf 0 
z E I 11, zJ - z == 11 V z E z 
A{x:==0} & \/x\/y(A & A{x:==y} - A{x:==lx, yl} )-A 

(Un) 
(Meml) 
(Mem2) 

(Ind) 

In (Ind) the variable y does not occur in the formula A. The axiom (Un) establishes the unique
ness or pairing. Note that the implication in the other direction is a logical axiom of equality. 
The Axioms (Meml) and (Mem2) give the properties or the list membership predicate. The 
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schema or axioms or induction says that all pairs are generated from O by pairing in finite number 
of steps. Recalling the informal discussion or pairs in seetion (2) we can (non-<:onstructively) see 
that TP is consistent because its intended interpretation is a model 11atisfying the non-logical 
axioms. 

Note. The operation or pairing can be introduced into Peano Arithmetic. Thus TP can be inter
preted in PA. We shall interpret PA into TP in eection (7). Thus we gain only a notational con
venience by starting with pairs instead of natural numbers. Notational convenience is what the 
art or computer programming is about. We hope that we succeed in convincing a logician reader 
that a good notation for G6del numbering and for - what computer scientists call data structures -
trees, lists, proofs, ordinal numbers etc. can be used with advantage in logic. Although we prefer 
our axiomatization of pairs for technical reasons, we could have stressed the connection to arith
metic by presenting TP as a Generalized Arithmetic. In such a view we start with the number 0 
and have infinitely many successors. We write ,ucc~(y) instead of I z, uJ. Instead of E we could 
have taken the partial order < denoting the relation of "being a predecesaor" as primitive. 

z < I z1, ~ •.• ,zJ 
The axioms (Un) and (Ind) would remain and instead of the membership axioms we would have 
two axioms for < which in PA express the same property. 

-, z < 0 
Z < IUCCy(z) - Z < Z 

Both Generalized Arithmetic and TP are equivalent since E has the following explicit definition. 

z E 11 - lz I z, zJ < 11 

On the other hand, < can be introduced into TP by a slightly more complicated definition which 
we do not give here. 

TP will be developped by conservative extensions. We shall extend TP by new predicate and 
function symbols. This extends the formation rules. We also add new equality axioms for the 
introduced symbols. The properties or introduced symbols are given by defining aziom, which are 
either explicit or contextual (see jt51). 

Lists of TP are actually finite sets where the order and repetition of elements matters. Thus some 
set-theoretical notions are adaptable to lists. For instance, the predicate of being a sublist bas the 
following definition. 

z C 11 - V-z(z E z - z E 11) (DI) 
Because or order and repetition there is not a unique union of lists. However, the existence of 
union lists can be demonstrated. 

(Tl) 

The proof is by induction on z using (Tl) as tbe induction formula A. In order to prove 
A{z:=0} we take z = 11, In order to prove A{z:=I Z1, ~n we use 1.H. to obtain as Z1 a union or 
the lists Z2 and 11· Take z = [ z1, z1 J. We have 

W € Z - W € I Z1, Z1 I - tu= Z1 V ( W € Z:, V W € 11) - W € [ %1, Z:, I V W € 11· 

Let us introduce the relation or being a part of a pair. It ia tbe natural partial order on pairs intro
duced with the help of the auxiliary predicate Cl. 

Cl(m)-VvV-w(lv, wJ Em- ve m& we m) (02) 
z ~ ,- Vm{Cl(m) & 11€ m- zE m} (D3) 

The reflexivity and transitivity of <l follows directly from the definition. 

~ z <l z 
~ z<l11&11Sz-z~z 

The relation of being a proper part is introduced as follows. 

z<111-z~11&z~11 

(T2) 
(T3) 

(D4) 
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As the immediate consequence or (D4) and (T2) we obtain 

~ z <l 11 - z <l 11 V z =- JJ. (T4) 

Before we can prove the antisymmetry or ~ in (TO) we have to prove some auxiliary theorems. 

~ -, z <l O (TS) 

Proof: Observe that Cl(I0, 0I) & (z E (o, 0I - :: = 0). Thus z,.,., 0 V.., z <l 0, i.e . .., z <lo. 
QED. 

Proof:. Assume-. z <l u & -, z <l z. Then there are lists m1 and fflt aach that 

Cl( mi) & J/ E m1 & z f m1 & Cl( "It) & z E "It & z f "It 

(T6) 

Denote by m a union or lists m1 and "It• Coneider m -= ([ J/, zl, ml, Clearly Cl( m ). Since z i m 
we have 

z = ( J/, zl V-, z ~ I J/, zl 
i.e. -, z <l ( JI, z}. QED. 

~ z=-0 V 3JJ]z z == I J/, zl 
The proof is by a straightforward induction on z. 

~ z <l (::, 111 & -, (z, 111 <l z& z <l 111, zl & -, 111, zl <l z 

Directly from (D3) we have z <l I z, 111 & z <l I JI, zl. Thus we have to prove 

z ,': I z, ul & .., I z, ul <l z & z ,': I J/, z} & .., I 11, z) ~ z 

This is proven by induction on z taking A !!!! \J-11 (1) and using (TS) and (T6). 

~ z<l11&11<lz-z-=11 

(T7) 

(TS) 

(1) 

(T9) 

Proot. Clearly it sufliceii t.o show -. (z <l JI .t JI <l z). By (T7) we can consider two cases. a) 
11 - 0. Then (TO) follows from (T6). b) 11 == I 11, wj. Ir also z <I 11 then rrom (T6) we have 
z ~ 11 V z ~ w. Since by (TS) -, J/ g 11 & -. 11 <l u1 we obtain -, 11 <I z from (T3). Thia also means 
-, 11 <I z. QED. 
Provided y does not occur in the formula A we have the principle of complete induction over <l 

~ \J-x{\J-y (y <l x - A{x:==y}) - A} - A. (TIO) 

Proof: Assume the antecedent. Using the schema or induction (Ind) with the rormula 

\J-y (y <l x - A{x:==y}) (2) 

one proves (2) and thus also A because or (T2). 

Functions It_ then _ else ~ _.h, and _.t are introduced by the following contextual defining 
axioms. 

(z == 0 .t z.h == 0) V 311 z == I z.h, 111 
(z == 0 & z.t == 0) V 311 z == I II, ::.t I 
{ z == 0 & (If z then JI elae z) = u} V { z l 0 .t (It z then II elae z) -= z} 

(D5) 
(D6) 
(D7) 

We leave it to the reader to prove the existence and uniqueness conditions justifying the contex
tual definitions. Theorems (Tll) through (T16) are obvious consequences or defining axioms. 

~ (z, uJ.h-= z (Tll) 
~ lz, ul.t == 11 (Tl2) 
~ O.b == 0 (Tl3) 
~ O.t == 0 (T14) 
~ (lfOthen zelae w) == z (Tl5) 
~ (If lz, ul then zelae w) == w (T16) 

We introduce now the concept or provably well-founded relations which play a fundamental ro)P. in 
our introduction or recursive functions over pairs. A binary relation < is said to be provably 
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well-rounded (or shortly just well-Counded) if the schema (Wfind) or induction over the relation 
< can be demonstrated for every Cormula A where )" does not occur. 

~ V-x{ V-7 (7<x - A{x:=7}) - A } - A (Wfind) 

We had to adopt this definition instead or the standard set-theoretical one (saying that every 
non-empty set (list) has a minimal element in the relation) because we cannot quantity over 
infinite lists. 

One can altematively introduce into TP a unary predicate symbol U (undefined) characterized 
only by the equality axiom. 

:,;:,:::11 & U(z) - U(11) 

This is clearly a conservative extension. The relation < can then be defined as well-founded 
whenever the following is a theorem or TP. 

J- V-z{ V-11(u<z- U(11))- U(z)} - U(z) 

The proof or schema (Wfind) can be obtained from the proof or this formula by consistently 
replacing occurrences or U( z) by A in the proof. 

Schema ol theorems (TIO) demonstrates that <l ia a well-founded relation. The following 
theorem will be used later. 

Theorem (T17). If < is a well-founded relation and a ia a term containing free at most 
the variable x then the relation 

7 <'x ++ a{x:=y} < a 

is well-founded. 

Proof: Assume 

V-x{ V-y(7 <'x - A{x:=y}) - A} 
for a formula A not containg the variable 7. By the well-founded induction on <, variable y, 
and the Cormula 

V-x(a<y Va=)" - A) (3) 

one can easily prove (3) and also A alter dropping the quantifier and setting y:-=a. 

4. Computation Tree, and Function Apllcatlon. 

In the previous section we have introduced all functions but the application which are needed to 
interpret R-terms into TP. In this section we define application. We take the operation ol naming 
from section (2) without any changes. In section (3) we have proven by (T3.U) through (T3.16) 
the identities (2.7) through (2.12). The reader will note that we interpret the intensional identity 
between R-ter11111 by the extensional identity of TP. Thus the properties (2.3) through (2.6) hold in 
TP because of the equality axioms and theorems (see (16} ). Before we can introduce the function 
_•_or application, and demonstrate (2.13) by (TS.IO), we have to interpret in TP the notion or 
computations over R-terms. 

We shall now arithmetize tbe informal predicate or being a computation tree as defined in section 
(2). A computation tree for the R-term a in the environment 1 supplying value for the variable n 
will have the Corm 

(1) 

where Ctreeff al, i, ( ii, J2}) holds. An irreducible term bas no computation tree. In order to 
escape the inherent recursiveness in the definition or the predicate Ctree we shall introduce the 
predicate Tree,( m) satisfied it (i) m is a list or computation trees or the form (1) and also (ii) if 
(1) is in m then all computation trees for tbe terms required Cor the computation of a are also in 
m. 

The predicate Tree, bas tbe explicit definition 

Tree,(m) ++ V-z{z Em - (z.b.b == zero & Zero(z, m) V 
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z.h.h - var & Var(:, m) V 
z.h.h == head & Head(:, m) V 
z.h.h ,_ tail & Tail(:, m) V 
z.h.b - pair & Pair(z, m) V 
z.h.h - if & If(:, m) V 
s.h.b - opp & App(z, m) ) } (D1) 

where the auxiliary predicates are introduced aa follows. 

Zero(z, m)- :111 z= llzero, 0), JI, fo, 0)) (D2) 

Var(:, m) - :111 z = II var, 0), 11, I 11, 0)) (D3) 

Head(z, m)-:1:1 :111:lz{z- f!Aead, z1 1, 11, lz.h.b, zll & (z1, 11, zl Em} (D4) 

Tail(:, m)- :1:1 :111:lz{z - [(tail, :1 1, 11, lz.b.t, zll & lz11 II, zl Em} (D5) 

Pair ( z, m) - :1:1 :I~ :ly :l w :lz{ z ... II pair, Zi, ~I, 11, [( w.h, z.h ], w, z]] & 
lz1, JI, w] Em & I~ JI, z) Em} (D6) 

//(:, m) - :lz1 :l~ :l.ia :!11 :lw :lz{z - (I if, : 11 ~ :al, II, ( z.h, w, z)I & 
I Zi, II, w) E m & ( It w.b then ~ e1ae Za, II, z) € m} (D7) 

App(:, m} - :l:1 3~ 3113u :lw :lz{z - II opp, Z1., z-.:1, II, I z.h, v, w, z]) & 
l z1, JI, vJ Em & (~ JI, w) Em & I v.h, l v.b, w.h), z) Em} (D8) 

Note that all seven auxiliary predicates are monotonic in the aec:ond argument. For instance, the 
predicate // satisftes the r ollowing. 

I- mCn & //(z, m) - 1/(z, n) (Tl) 

Similar theorems can be proven for the other predicates. Following is an obvious theorem. 

I- Tree,(m) & lz, II, z) € m - z,',- 0 (T2) 

We could now introduce the predicate Ctree into TP by the following explicit definition. 

Ctree(z, n, t)- 3m(Treee(m) & lz, n, t) Em) 

The predicate Ctree would be the pair-theoretic counterpart or Kleene's number-theoretic predi
cate T !SJ. In case the reader wonders whether the predicate Ctree, defined with an apparently 
unbounded existential quantification, is decidable let us just note that the list m can be always 
constructed from the tree t (see the proof of the theorem (TS.7}). Instead of tbe predicate Ctree 
we shall introduce the semi-decidable predicate of tbe computability Comp obtained by 
unbounded quantification. 

Comp(:, n)- 3t:lm(Treee(m) & lz, n, ti Em) (Dg) 

Note that z is supposed to denote a name (G6del number) of an R-term. 

The literal into which a term reduces should be uniquely determined. We prove a slightly more 
general uniqueness theorem. 

I- Tree,(m) & (z, II, •IE m & (z, 11, •'IE m - , = ,, (T3) 

The proof is by the complete induction on <l taking A I!! (\/-:V-11'+1' T.3) and x e: ,. Let us 
therefore assume A{r.==w} for all w s.t. w <l ,. Also assume the antecedent of (T3). We have 
seven possible values (2.2) for z.h. Let us consider just the cue z.h==app here. By 
App (I z, II, , I, m) and App (I z, JI, •'I, m) we have for some pairs Zi, Z2, v, w, z, v', w', and z': 

z- !opp, z1, z..zl & ,_ !z.b, v, w, zl & 1'== lz'.b, v~ w', z'J (1) 

We alao have 

I Zi, II, vi, I Zi, II, v'J E m 
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Now, v <la and by I.H. we have v=v'. We also have 

r~ 11, wJ, ,~ 11, w'l Em 

Again, w <I a and by 1.H. we have w== w'. Finally, 11·e have 

[ v.h, I v.h, w.h I, z}, I v'.h, I v'.h, w'.b J, z'J E m 

Since v-v', w=w', and z <I a, the induction hypothesis applies and we have z=z'. By (1) also 
,=.a'. Thi& terminates the proof of the case z.h=-app. The other cases are proven similarly. 

Next theorem says that tor any two liata satisfying Trees there is a superlist also satisfying the 
predicate. 

~ Tree,(m) & Tree,(n)- :lp(mCp & nCp & Treu(p)) (T4) 

Proof: Assume the antecedent and take as p any union or Jista m and n guaranteed to exist by 
(T3.l). Assume also z E p. Then z E m V z E n. In any case z.h.h must be one or seven constants 
(2.2), say that z.h.h=i/. Then we have //(z, m) V J/(z, n). Since we have m, nCp we have in 
any case J/(z, p) by the monotonicity theorem (Tl). Other cases are similar. 

~ :lm(Treea(m) & lz, 11, z} Em) & :lm'(Tree,(m') & jz, 11, z'J Em')- z == z' (TS) 

Proof: Assume the conditions of theorem. By (T4) there is a list p such that m, m' C p and 
Trees(p ). Then I z, II, zJ, I z, II, z'I E p and by the uniqueness theorem (T3) we have z = z'. 

Having demonstrated the uniqueness of computation trees we are now in a position to define the 
valuation function val(z, n) denoting the unique value obtained by the computation or the R· 
term named by z in the environment n. Function val will be introduced by a contextual definition 
using the formula (2). 

(-. Comp(z, n) & u=0) V:lm:lt{Treea(m) & lz, n, Ir, tJI Em} (2) 

It is easy to see that for any z, and n there is at least one II satisfying (2). That there is also at 
most one is obvious in case -, Comp (z, n ). We intend to set the value of val(z, n) artificially to O 
ii there is no computation tree for it. In the cue when Comp(z, n) is satisfied, i.e. if there is a 
computation tree for the term named by z, (TS) guarantees that there is at most one II· Thus 
both the existence and uniqueness conditions for II in (2) are satisfied and we are justified in 
defining the valuation function val by the contextual definition (D10). 

(-. Comp(z, n) & val(z, n)=0) V :lm:lt{Tree,(m) & jz, n, I va/(z, n), tll Em} (D10) 

As an immediate consequence we have 

~ Tree,(m) & lz, n, ti Em - t.h = val(z, n) (T6) 

We are now in a position to introduce the operation of application by the explicit definition (D11). 

z • 11 = val(z, I z, 111) (D11) 

Intuitively, when z • 11 is computable then z = >.a for an R-term a and there are lists m and t 
such that 

Treea(m) &; 1ral, l>.a, 111, tl Em 

The function named by z is computable (defined) in argument II if Comp(z, ( z, 11I) is satisfied. We 
introduce a predicate for that. 

Def(z, 11)- Comp(z, lz, yJ) 

The relation of reduction ==> or closed R-terrm can be introduced as follows. 

z > 11- Comp(z, 0) & 11= val(z, 0) 

(D12) 

(D13) 

Note that z is supposed to denote a name or a closed R-term whereas II directly denotes the 
reduced value rather than the name of the corresponding literal. 
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&. Properties of Computable R-terms. 
Here are the basic properties or the predicate Comp. 

I- Comp(lzero, OJ, n) {Tl) 
I- Comp (I var, 0 I, n) {T2) 
I- Comp{lhead, zJ, n) - Comp(z, n) (T3) 
I- Comp(ltail, z), n)- Comp{z, n) {T4) 
~ Comp(lpair, z, u), n) - Comp(z, n) & Comp(u, n) {TS) 
~ Comp ([ ii, z, u, z), n) - Comp (z, n) & Comp{lt val(z, n) then u elH z, n) (T6) 
~ Comp(lapp, z, ul, n)- Comp{z, n) & Comp(u, n) & De/(val(z, n), val(u, n)) (T7) 

Let us prove just ('Ii). The other proofs are similar. 
Proof or(-): Assume Comp(! opp, z, ul, n). Then for certain liats m and t we have 

Tree,(m) & II opp, z, u), n, t] e m 

But then for certain lists v, w, and z we have t-1 z.h, v, w, z] and also 

I z, n, v), I JI, n, w], I v.b, I v.b, w.h J, z] E m 

Thus also 

Comp(z, n) & Comp(y, n) & Comp(v.h, (v.b,_w.hl) 

The last conjunct means De/( v.b, w.b ), but 11.b = val(z, n) and w.h = 1101(11, n ), so we have 
De/( val(z, n ), val(11, n) ). 
Proof or(-): Assume the R.H.S. or (T7). Then ror certain list, m1, v, '"2, w, ms, and z we have 
the following. 

Tree,(mi) & I z, n, vi € m1 
Tree,( '"2) & I 11, n, wl E '"2 
Tree,( ms) & I val(z, n ), I val(z, n ), val(u, n) I, zl E ms 

Note that 11.h = val(z, n) and w.h = val(u, n ). Applying (T4.-t) twice we obtain a list m such 
that 

m1, ~ ms C m & Tree,( m) 
Consider the list 

m = 11 I app, z, 111, n, I z.h, v, w, zl), m) 
It is easy to see that Tree,(m). Thus Comp(I app, z, 11I, n). QED. 

Since the operation of taking one of the union lists is constructive, the list m in the proofs of con
verse implications (-) is obtained constructively. This is used in the proof or the r ollowing 
theorem. 

Theorem (TS): If Ctree(p, i, i) bolds then a pair m such that 

~ Tree,(m) & l'i, i, 71 E m 

can be constructively found. 

The theorem is proven by the informal induction on the construction of the literal T. (TS) says 
that the informal notion or computability is representable within TP. On the other hand, since we 
hope that TP is comistent, everything provable in TP bolds in the standard model. So we can 
generalile (T8) to {T9). · 

Repreeentatlon Theorem (T9): ~ Comp{p, i") & val{p, i) .. '1 ii there is a pair '2 such 
that Ctree (p, i, I '1, i; I ) bolds. 

The Representation theorem says that each partial recursive functional is representable in TP. 
More specifically, the computation or (>.a)• p terminates iJf ~ De/(>.a, p). AU partial recursive 
functionals are literalwise representable in TP. Only a sabclaaa of provably recursive runctiooals 
can be introduced into TP with variables instead of literals which amounts by (T19) to proving 
the functionals total in TP. 
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The weaker notion of representability is sufficient in logic to prove such proof-theoretical results 
as incompleteness etc. A computer scientist insists on the introduction of functionals because only 
then is he able to reason formally about programs and also to transform less efficient programs 
(called in computer science ,pecifications) into equivalent programs which compute faster. Indeed, 
as we see it, the main difference between the use of recursive functions in logic and in computer 
science is that a computer acientist, instead of being satisfied with any de&nition of a recursive 
function, is always looking for such a formulation of the function which can be computed as 
efficiently u p088ible. 

The following theorems about the valuation function val are proven similarly as the theorems (Tl) 
through (T7). 

I
I
I
I
I
I-

val([ zero, 0 I, n) =- 0 
val(I var, 0 J, n) = n 
Comp(lhead, zJ, n) - val(lhead, zl, n) = val(r, n).h 
Comp (I lail, z), n) - ual(I tail, ::], n) - val(z, n ).t 
Comp(lpair, z, vi, n)- val(lpair, z, rl, n}- lvaJ(z, n), val(v, n)I 
Comp(lif, z, 11, zj, n)-

val(I ii, z, 1/, zJ, n) = 1f val(z, n) then ual(v, n) else ual(z, n) 
I- Comp(lapp, z, 11], n)- ual(lapp, z, r], n)- val(z, n} • ual(11, n) 

(TIO) 
(TU) 
(Tl2) 
(Tl3) 
(T14) 

(Tl5) 
(Tl6) 

The following theorem expresses the effects of the repeated use of properties of Comp and val. 

Reflexion Theorem. For any R-tenn a we have 

I- Comp(f al, n)- valff al, n) = a (Tl7) 

The proof is by the induction on the construction of the R-term a. Let us demonstrate just the 
case when a E If b then c elae d. 

It Compff al, n) then by (T6) Compffbl, n) and by I.H. val(fbl, n) c:: b. By (T15) 

val(f a 1, n) == If b then val(f cl, n) elae val(f dl, n) 

II b =- 0 then by (T6) Comp(f cl, n) and by I.H. we have val(f cl, n)- c. The case b ,'- 0 is 
similar. Thus in any case we have 

val ff a 1, n) -= (It b then c eke d ) == a 

Directly from the Reflexion theorem we obtain the Reduction theorem. 

Reduction Theorem: For any cl0t1ed R-term a 

1- r a 1 => :: - a = : (Tl8) 

The counterpart of (2.13) in TP is the theorem about domains of partial recursive functionals. 

Domain Theorem. For any functional >.a we have 

I- De/('>,.a, z) - (>.a) • z - a{ n:=-( >.a, z)} (Tl9} 

Proof: Assume Dt/(>.a, ::). Then Compff al, (>.a, z)). By (D4.11) and Reflection theorem we 
have 

(>.a) • z == val(f a 1, ( >.a, zl) .. a{ n:=I >.a, ::)}. 

The next theorem expresses the 1ulicient conditions for a functional to be provably recursive. 

Theorem on Provabq Recur■lve Functlon&la: For any R-term a and a provably well
founded relation < the following bolda. 

I- 'In{ Vv(v<n.t - De/(n.h, r))- Comp(f al, n)} - De/(>.a, z) (T20) 

Proof: Take an R-term a and a provably well-founded relation < and assume the antecedent. 
Instantiating it with n:=l ')..a, zJ and introducing 'I:: yields 

'lz{ '111(11<.z - De/('>,.a, ll))- De/(>.a, z)}. 

De/(>.a, z) follows from a suitably instantiated schema of (3. Wfind) for the well-founded relation 
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<.QED. 
(T20) ia a powerful theorem but a proor or Comp ff •l, n) can be quite tedious. The Application 
theorem (T21) makes the proor easier. We need first some auxiliary notions. 

We say that the rormula c==O (c ,'= 0) gor,,:rn, an occurrence or the subterm b or an R-term a if 
the occurrence of b occurs in the term d (e) such that If c then d elae e is a subterm or a. The 
gor,,:rning /ormula tor an occurrence or the subterm b of an R-term a is a conjunction of all ror
mulu governing that occurrence of b. The order in which the conjunctions are taken is not 
important but we have to settle ror a particular one. We tab the conjuncts in the order in which 
the above terms c occur in a. U one term includes another one then the smaller one is taken first. 
On the other hand, if there are no lormulu governing the occurrence of a subterm b we take the 
rormula O = O as its governing rormula. 

For an R-term a let us denote by AUde/. the conjunction (in the same order aa above) or all for
mulas G - De/(b, c) where b • c is a aubterm or a and G is its governing formula. Set 
Alldef. = (O==O) if there are no applications in a. Note that Alldef. contains at most the variable 
n free. 

The Application theorem says that an R-term is computable ii all of its applications are defined. 

Appllcatlon Theorem. For any R-term a we have 

I- Comp ff •l, n) - Alldef. (T21) 

The proor is by the induction on the construction or the term a. The cases 0, n, b.h, and b.t are 
straightforward. We prove the last three cases. 

a= [b, cJ. It is easy to see that AUdeJ. - Alldefb .t Alldefc• By (TS) and I.H. we have 

Comp(fal, n) - Compffbl, n) .t Compffcl, n)- AUdefb .t AUd,:fc - AUdef. 

a= If b then c elae d .. After eome reflexion we can see that 

Alldef. - AUdefb .t (b • 0 - AUdefc) .t (b ,' 0 - AUd,:fd) 

Using (T6), Reflexion theorem, and I.H. we have 

Comp(fal, n) - Comp([bl, n) .t Comp(lf b then fcl elM r dl, n)
Alldefb .t (b == 0 - Comp([cl, n) .t (b-,'= 0 - Compff dl, n)
Alldefb .t (b = 0 - AUdefc) .t (b ,', 0 - Alldefd) - AUdef. 

a = b • c. We can easily see that 

Alldef. - AUdefb .t Alldefc .t De/(b, c) 

Using (T7), Reflexion Theorem, and I.H. we have 

Comp(f al, n) - Comp([bl, n) .t Compff cl, n) .t De/(b, c) -
Alldefb .t AUde/c .t De/(b, c) - Alldef. 

For an R-term a and a binary relation < let us denote by Down::, the conjunction (in the usual 
order) or all rormulas G - b< n.t where tbe term n.h • b occurs in a and Gia its governing for
mula. Set Down_< = 0 - 0 it there are no such terms. Down.,< eaye that reeursive calls in the 
term a uee as arguments values less than n.t in the relation <. We are now able to rormulate a 
theorem simpliryiag the proors or provability of recursive functions. 

Theorem on Provabb' Recunlve Functlou. For any RF-term a and a provably weU
lounded relation < such that. all functionals called in a are provably recursive (i.e. for any 
literal b eucb that b • c occurs in a we have I- De/(b, z)) and the arguments or recursion 
are driven down in the relation < (i.e. I- Down.<), the ruaction >.a is provably recursive, 
i.e. the following bolds. 

I- De/(>.a, z) 
I- (>.a) • z =- a{ n:==I >.a, zJ} (T22) 

Proof: Asiume the conditions or the theorem. Ir G is the governing Cormula or an occurrence or 
the term b • c in a the following bolds. 
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~ 'l11(11<n.t - Def(n.h, 11)) & G- Def(b, c) 
This is because there are two possibilities. 

b = n.h. Then from ~ Down.,< we have ~ G - c< n.t. (1) directly follows from this. 

b =/= n.h. Then b must be a literal and (1) follows directly from ~ Def(b, z ). 

Since we have proven (1) for all occurrences or subterms b • c iD a, we also have 

~ 'l11(y<n.t - Def(n.h, y)) - AUdef. 

(1) 

Note that this also includes the case when there are no applications in a. Application theorem 
now applies and alter the introduction of 'In we obtain. 

~ \/n{\/y(y<n.t - Def(n.h, y))- Compffal, n)} 
The theorem is now proven by a simple application of theorems (T20) and (T19). QED. 

We shall now demonstrate that the functions len, cat, and rev defined iD section (2) are provably 
recursive. The formula 

Down.-< = n.t :r- 0 - n.t.t 4 n.t (2) 
is the same one for both a = len and a = rev and is provable by (T3.8). The relation <J is of 
course well-founded (T3.10). The are no auxiliary functions invoked in len. Thus (T22) applies to 
yield 

~ len • z = It z then O else IO, len • z.tJ. (T23) 

We have 

Down~ = n.t.h ,':- 0 - I n.t.h.t, n.t.t I< n.t (3) 

II we take z<11 ++ z.h ~ y.h we can easily prove (3). By (T3.17) we know that < is well
founded. There are no auxiliary functioDB called in cat. Thus (T22) applies to yield alter sP.tting 
z:=I z, 111 

~ Def( cat, z) 
~ cat • I z, yJ = It z then JI else I z.h, cat• I z.t, 111). 

In order to demonstrate 

~ rev• z = It z then O else cat• I rev• z.t, ( z.b, OJI 

(T24) 
(T25) 

(T26) 

we note that for a = rev the property (2) holds and that the function cat invoked in rev is recur
sive by (T24 ). 

Typical applications of the theorem (T22) will contain only invocations of already proven recur
sive functions. Thus one will only have to point out the measure of the argument (in the case of 
cat _.h) and a well-founded relation in which the measure is driven down by the recursive calls. 
More often than not it will be the well-founded ordering < or ordinals defined in next section. 

e. Ordinal Number■• 

In order to introduce provably recursive functionals into TP in Part Il we need provably well
rounded relations admitting descending sequences substantially longer than the ones obtained 
from the relation ~ . Ordinals less than to will supply such relations. We shall now introduce 
these ordinals into TP. The list I a11 42, ••• ,a., OJ will denote the ordinal 

w &i+w 811+ · · · +w •• 

provided all a1 are ordinals and a*1 < ai for all 1 < i< n. 

Ordinals will be introduced with the help of a couple of recursive functions. The functions will 
actually be characteristic functions of predicates we want to introduce into TP. In order to make 
the constant transfer between predicates and their characteristic functions easier we shall adopt 
certain conventions. Let us denote by p the characteristic function of an n-ary predicate p. We 
say that the predicate p is introduced by it, characteri,tic function ii p is a provably recursive 
function a.nd the defining axiom for p ia as follows. 
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(1) 

Some binary predicates (and functions), as for instance <, will be introduced as infix predicates. 
Then we shall write not only a<b instead or< (a, b) but also a < b instead or < • I a, b J. 
We shall also introduce characteristic functions 'v, k , .; , and • for the corresponding con
nectives as well as identity. Since these symbols are already in TP we have to correlate them to 
the characteristic functions by theorems rather than by definitions. 

k = X( z, 11): If z then II elae 1 (Dl) 
'v & XI z, 11J: If z then O else 11 (D2) 
.:. • >.r. It z then 1 elae O (D3) 
-= s x -= , I z, 11J: 

It z then (If 'II then O elae 1) else It 11 then 1 elae z.h-= 'IJ.h k z.t = 'IJ.t (D4) 

The characteristic functions of connectives are obvioaal7 recursive. The function = drives the 
argument of recursion down in the relation <l (the measure is _.h). We have the following 
theorems. 

~ (z k 11) = 0 ++ z - 0 &: 'II= 0 (Tl) 
~ (z 'v 'II) - 0 ++ z - 0 V u .. 0 (T2) 
~ ( .; z) =- 0 ++ .., z-= 0 (T3) 
~ (z= 11)=0++ z= 11 (T4) 

The first three theorems are obvious, (T4) is proven by the ordinary induction on z using 
(A= \/gT4). 

We can generalize the use or these theorems and the property (1) of characteristic functions. Let 
A be a formula without quantifiers consisting at most of the connectives &: , V , -, , and only 
such predicates which have been introduced by their characteristic functions. We call the term a 
the characteristic term or the formula A if a ii as A with the connectives and predicates replaced 
by their dotted counterparts. It is easy to see that ~ A++ a - 0. 

Let us introduce the binary infix predicate < iu of lexicographic ordering or pairs by its charac
teristic function. 

<1,s e X <1n, I z, 11J: 
It 'II then 1 elae It z then O el.le z.h <,,s 'IJ.h 'I./ (z.h = 'IJ,h it. z.t <,,. 'IJ.t) (D5) 

The function <,,s is recursive because it uses only recursive functions and the ugument or 
recursion is di:iven down by the same measure as the argument or ,.;. . ~ can be easily seen the 
relation < 1,s totally orders pairs. It would be nice iJ' the predicate were a well-ordering. Unror• 
tunately this is not the case as can be seen from the following infinite descending chain. 

· · · <1,s !O, 0, 0, w) <1,s jO, 0, wJ <1,s (0, wJ <,rs W (2) 

where w = jl, OJ E IIO, OJ, OJ (see below). Fortunately, the situation can be remedied by lexico
graphically ordering only a subset or pairs called ordinal, le11 than Eo, or shortly just ordinal,. 
Ordinals are pairs containing a subpair I a, h, cl only ii h is not lexicographically greater than a. 
Thus, with the exception or w, no pairs in the chain (2) are or4inals. The unary predicate Ord or 
being an ordinal is introduced by the characteristic function Ord which is easily s~n to be recur• 
1ive. 

(D6) 

The binary infix relations < and S of lexicographic ordering restrict.eel to the ordinals are defined 
by their characteristic (and obviously recunive) functions. 

< e XI z, ul: O~d(z) it. O~d(u) & z <1u 'II (D7) 
~ = ~I z, uJ: z < 'II~ z ~ u (D8) 

We have the following theorems. 

~ Ord(O) 
r Ord(lz, 'Ill)++ Ord(z) & Ord(u) &: u.h<z 

(T5) 
(T6) 
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I- -, z<0 (T7) 
I- 0<I z, vi - Ord(l z, vi) (T8} 
I- lz, 11J<lz', v'l - Ord(l:i:, vi) Ii Ord(lz', v'I) k (z<z'V zz= rk v<v') (T9) 
~ .:S11- z<v V z = V (Tl0) 
I- z<v-., v~z (Tu) 
I- z<11k v<z- z<z (Tl2) 
I- Ord(z) k Ord(v)- z<vV u<zV z-=u (Tl3) 

Proofs: All theorems but (TU) and (T13) are straightforward consequences of definitions. (TU) 
and (T13) a.re proven by induction (3.lnd} on JI using (~z n1), resp. (\/z n3) as induction for
mulas. The reader will note that the auxiliary predicate <,,s is needed to escape the mutual 
recursiveness of predicates Ord and <. 
The relation < is a well-founded relation over pairs, bat anf ortanately it is not provably well
founded. The schema or well-founded induction 

V-x{V-;y(y<z - A{x:==:r}) - A} - A (Wford) 

ia true in the standard model but unprovable in TP. As will be seen in section (8) (Wtord) is prov
able for each literal p substituted for x. However, ii we restrict the rel3tion < to ordinals less 
than certain ordinal by the definition 

z <,, 1J - z<u & u<p (09) 

then (Wtord) with <, instead of < is provable for any ordinal p. This is the main theorem 
(TS.IO) proven in section (8). 

'1. Ordinal Arithmetic. 
We introduce in this section the operations or ordinal addition, subtraction, multiplication, and 
division. The operations specialize to natural numbers. Instead or giving the run proofs or the 
expected properties of arithmetic operations which are mostly done by the ordinary induction 
(3.lnd) we only skekh the proofs by indicating the induction variables and formulas. Since our 
ordinals are repttaented in a variant or a Cantor's normal form, the properties of arithmetic 
operations have to be proven by a rather tedious case analysis. This can be compared to the 
proofs or properties or arithmetic operations from their decimal notation rather than from the suc
cessor representation of natural numbers in PA. 

Ir the reader finds this section not sufficiently detailed be is referred to the standard treatments or 
ordinals in the arithmetic as given in the texts of Takeuti and Schuette jl6,14J. He will find that 
their treatment is even sketchier. On the other band, our constructive treatment of ordinals 
should not be compared to a standard set-theoretical treatment which is more elegant because the 
transfinite induction on ordinals in set theory is readily available from the Axiom or Foundation. 
We are trying to establish the transfinite induction using the ordinary induction over pairs. We 
have done a.II the proofs in this section in detail and we urge a logician reader to attempt at least 
a couple or proors to obtain an insight into the typical work of a computer scientist trying to 
prove properties or bis programs. The tedious case :inalysia or sach proofs comes from the fact 
that the programs are highly optimized and consequently contain many 11- then - elae oper~ 
ton. Indeed our insistence on a formal development of TP is motivated by our desire to have the 
computers perform the tedious work or the mostly mechanical cue analysis. 

The infix operation of ordinal addition ia introduced aa follows. 

+ = >.+, I z, v): It z • O '\/ z.h < g.h then r elae I z.h, z.t+vl 
It ia obvious that the operation is recul'llive. 

~ o+z-= z 
I- z<z.b - I z, ul+z == z 
~ z.h~z - I z, rJ+z =- I z, 11+zJ 

These theorems follow directly from the definition or addition. 

(Dl) 

(Tl) 
(T2) 
(T3) 
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I- Ord(z) IL Ord(u) - Ord(z+u) (T4) 
I- Ord(z) - z+0 = z (TS) 
I- Ord(z) IL Ord(u) & Ord(z) - (z+y)+z = z+(r+z) (T6) 
I- z<z' IL Ord(u) - u+z<u+z' (T7) 
I- Ord(z) IL Ord(u) - z<u-t-z (T8) 
I- z<z' IL Ord(u) - z+uSz'+u (T9) 
I- Ord(z) IL Ord(u) - .i<v+l - zSr (TIO) 

(T4) is proven by the induction on z with A e (T4) using the easy to prove lemma 

I- Ord(z) IL Ord(u) - (z+u).h == z.h V (z+u).h - u.h. (1) 

(TS) is proven by the induction on z with A a (7'5). (T6) is pronn with the help of (1) by the 
induction on z with A = ( ni). (1i) is proven by the induction on u with A = ( 77). (TS) is pro
ven by the induction on u with A s ( 18). (T9) is proven by the induction on z with 
A a (Vz' 71>). (TIO) is proven by the induction on rwith A e (Vz TIO). 

The in&x operation of ordinal subtraction is introduced as follows. 

- = >.-, ( z, ,): If z == O 'i/ u-=- 0 'i/ .:, z.h = Jt.h then z elte z.t-u.t 

Subtraction is obviously a recursive function. 

I- .»--0 .. z IL 0-z == 0 
I- ( z, ul-1 z, zl = ,rz 
I- z1 =r Ui - I z1, ~)-1 u1, u2I = I zi, ~] 

These theorems follow directly from the definition. 

j- Ord(z) IL Ord(u) - Ord(~u) 
I- usz- u+(>-u) = z 

(D2} 

(Tll) 
(Tl2) 
(Tl3) 

(Tl4) 
(TIS) 

(TH) is proven by the induction on z with A a (T14). For the proof of (TIS) we need the 
lemma 

I- Ord(z) & Ord(u) - (~u).hSz.h (2) 

proven by the induction on z with A= Vu (2). The proof of (TIS) is by the induction on u with 
A e (Vz TIS). 

The infix operation or ordinal multiplication is introduced as follows. 

XE >.x, lz, yJ: 
It z = o 'i/ u = o then 0 elH I z.h+u.h, If u.h then z.t elae OJ + zx y.t (03) 

Multiplication is obviously a recursive function. 

j- zX0 = 0 IL OXz-= 0 (Tl6) 
I- zx 10, u] == z+zx u (Tl7) 
I- 0<z IL 0< u - zx I u, z) == I z.h+u, o)+zx z (TIS) 

These theorems follow directly from the de8nition. 

I- Ord(z) IL Ord(u)- Ord(zxu) (Tl9) 
I- Ord(z) IL Ord(u) IL Ord(z) - zx (u+z) - zxr + zx z (T20) 
I- z< z' & 0< u - ux z< ux z' (T21) 
I- z<z'IL Ord(u)- zx,Sz'Xu (T22) 
I- Ord(z)IL Ord(y)IL Ord(z)- (zXy)xz- sx(J,xz) (T23) 

(Tl9) is proven by the induction on y with A== (Tl9). For the proof or (T20), (T21), and (T23) 
we need the lemma 

(3) 

which is proven by the induction on y with A a (3). (T20) is proven by the induction on u with 
A= ('.r.20). (T21) is proven by the induction on z with A a (Vz' r.21). (T22) is proven by the 
induction on y with A = ( r.22). The proof or (T23) requires (3), (T20), and (T21); it is by the 
induction on z with A a (r.23). 
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The infix operation or ordinal division is introduced aa follows. 

/ e "A/, lz, 11J: 
If 0 < JI k 11 < z then I z.h-11.h, OJ+ (If z.h,.;. Jl.h then 7r-JI elae z.t )/11 else 0 (D4) 

In order to prove the division recursive we need the lemma 

I- :r-11 <l z (4) 

which is proven by the induction on JI with A E \Jz (4). Next we note that 

I- z ~ 0 & 11 ~ 0 & z.h = 11.b - ~II <l z 

Thus the recursion in the division drives the measure _.h down in the well-founded relation <l . 

I- z<11- z/11 = 0 (T24) 
I- lz, zj<[z, 111 - lz, ,J/1.:r, zJ = l+{r-z)/1.:r, zJ (T25) 
I- (,11 ~J<[z,., ~J & J11<z1 - f zi, z..zl/1111, '2] == (zi-Jli, O)+z..z/1,1, '2] (T26) 

These theorems follow directly from the definition of division. 

I- Ord(z) & Ord(11) - Ord(z/11) (T27) 
I- Ord(z) & O<r - ,x (z/11)<.i & z<,x (z/,+l) (T28) 

Both theorems are proven by the complete induction over <l (T3.10) on the variable z using the 
theorems themselves aa induction formulas. 

Ordinal notations in Peano arithmetic encode ordinals into natural numbers and thus the finite 
ordinals are different from the corresponding natural numbers. Our ordinals include natural 
numbers and the arithmetic operations over ordinals behave as expected with natural numbers. 
Let us define the first infinite ordinal w and the predicate No( being a natural number as follows. 

well,OJ 
N(z)- z<w 

We have the following properties or natural numbers. 

I- Ord(w) 
I- N(0) 
I- N(I x, y I) - z = 0 & N(y) 
I- N(z) It. N(y) - N(z+,) 
I- N(z) & N(y) - N(7ry) 
I- N(z) & N(11) - N(zx 11) 
I- N(z) & N(11) - N(z/,) 
I- N(z) - z+l = f 0, z) 
I- A{x:=O} & \/x (N(x) & A - A{x:=x+ 1}) It. N(x) - A 

(D5) 
(D6) 

(T29) 
(T30) 
(T31) 
(T32) 
(T33) 
(T34) 
(T35) 
(T36) 
(T37) 

(T29) and (T30) are obvious. For(-) or (T31) we have from N(I z, yJ) immediately z = 0. That 
also N(u) is proven by the induction on JI. For the converse (-) we observe that from 11<w we 
have J,1.b -= 0 and thus Ord(l 0, yj). (T32) i5 proven by the induction on z with A e ( 7'32). (T33) 
requires induction on z with A= (V-11 T.33). (T34) ia proven by the induction on 11 with 
A i5 (7'34). (T35) requires the complete induction over <l on the variable z with A= (7'35). 
(T36) is proven by the induction on z with A = ( 7'36). The schema or the induction over natural 
numbers (T37) is proven by the ordinary induction on x using the induction CormuJa N(x) - A. 

8. Tl'amflnlte Induction and Functlom Deftned by Tl'andnlte Induction. 

In this section we investigate the provability of transfinite induction in TP. We show that 
transfinite induction is provable for any ordinal given aa a literal (T9). The idea of the proof is 
adapted from Schuette (14J. 

In order to simplify the discussion let as use the following abbreviations. 

A(a) a A{x:-a} 
A•(x) = \Jy(y<x - A(y)) 
P a V-x (A• (x ) - A (x ) ) 
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B = Ord(x) - 'fy{Ord(y) & A•(y)- A•(:r+(x, OJ)} 
B(a) a B{x:-a} 
e•(x) = \/y(y<x - B(y)) 
R = 'fx(B•(x)- B(x)) 

We shall also usume that all auxiliary variables I, n, 7 1 w, 1, etc. uaed in this section are all 
different and that they are al5:0 different rrom x and do not occur in the rormula A. 

For ao ordjnal n we call the rormula P - A•(n) the tran.,finile induction up to n. We want to 
show that transfinite induction holds ror any ordinal leas than fo aad trivially also for any literal. 
Preparatory to the proof or (T9) we prove the lemmas (Tl) through (TS). 

l- P&Ord(x)&A•(x)-A•(x+l) {Tl) 

Proot. Assume the antecedent. We immediately obtain A(x). U 7<x+l then by (17.10) 
y<x V 7 = x. Thus in any case A(y ). QED. 

l- B(x)- B(x+l) (T2) 

Proof: Assume B(x ), Ord(x ), Ord(;y ), and A•(y ). First or all note that ii N(l) and 
A•(y+!x, 0jXI) then Ord(:r+lx, Ojxl) and rrom B(.11:) we obtain A•((:r+!x, 0!Xl)+lx, 0j), 
i.e. A•(y+lx, 0jx (l+l)J. Since also A•(:y+(x, 0JX0) the induction on natural numbers (T7.37) 
applies to yield 

N(l)-A.(7+(x, oJxl) (1) 

In order to prove A•(y+(x+l, 0)) aa11ume 1<:r+lx+l, 0I, Ir 1<7 then A(1) rollows from 
A•(7 ), 88Sume therefore that y<s. Then by ('Ii.15) 

a=- ;y+( .. :r) < ;y+lx+l, 0I 

From the monotonicity or addition (17.7) we obtain 

(1-y) < (x+l, OJ == Ix, 0) Xw 

Let a= (1-y )/Ix, OJ then by (17.28) we have 

Ix, OJ Xa S (1-7) < (x, OJ X (a+l) 
Since 

Ix, OJ Xa S (1-7 )<Ix, OJ Xw 

we use the monotonicity or multiplication (T7.21} to derive a<w. Thus also N(a+l) and from (1) 
we have A•(y+jx, 0I X (a+l) ). Now, from 

•-= :r+ (.,.:r) < :r+(x, 0I X (a+l) 
we obtain A(•). QED. 

l- P-R (T3) 

Proot. Assume P. In order to prove R we also uaume e• (x) ror certain x. In order to prove 
B (x) we assume Ord(x ), Ord(y ), and A• (:r) ror certain 7. Finally, in order to prove 
A•(y+!x, 01), we assume 1<:r+lx, OJ for certain 1. We have to prove A(1). Note 8nt that by 
(Tl) we have A•(y+l ). There are two cases. 

a) x =- 0. Then (x, OJ=- 1. Thus •<7+1 and we ban A(a) from A•(7+l). 

b) s -,' 0. U also •SY' then A(•) because of A•(,-+l ). Therefore assume that 7<a. Let 
b = 1-7. We have 0<b and y+b - •<7+lx, OJ, i.e by (T7.7) b<l:c, OJ. Therefore b.h < :c 
and from e•(x) we obtain B (b.b ). From (T2) we have B (b.h+l) and since Ord(b.h+l) and 
Ord()') also A•(>'+I b.h+l, OJ). Applying the monotonicity or addition (T7.7) again 

• =- y+b < 7+lb.h+l, o) 
we obtain A ( 1 ). QED. 

Let us de8ne functions om and maj as tallows. 

om & ~om, z: II z then 0 e1ae (om• z.t, OJ (D1) 
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moj = >..maj, r. It z then 1 else maj • z.h+l (D2) 
Both functions are obviously recursive. We shall abbreviate om• z by Ws, We have the following 
properties. 

I- Wo == 0 (T4) 
I- N(i) - w,+1 = ( Wu OJ (TS) 
I- N(i) - Ord(w,) (T6) 
I- Ord(z) - N(maj • z) &: z<w • .,.. (T7) 

Proof: (T4) and (TS) follow directly from delloitioos. (T6) is proven by the induction over 
natural numbers (T7.37) on the variable z with A e Ord(w,). (T7) ia pronn by the ordinary 
induction over pain (3.Ind) on the variable z with A E ( 77). 

N«;>te that by tbe representation theorem (T5.9) a pair p ia an ordinal ( natural number ) Uf 
Ord(p) reduces to 0, i.e. f- Ord(p); (p < w reduces to 0, i.e. f- N(p)). 

Theorem: For any formula A and any numeral nwe bave 

I- P - A•(w1 ) (TB) 

The proof is by the induction on the construction of numerals. If n !!IE O then I- w; ,_ 0 and 

I- P - A•(w,r) (2) 

holds trivially. Assume therefore (2) for any formula A and for a numeral ;r. We have I- N(n). 
Substituting B for A in (2) yields 

I- R - e• (wjj). 

Since 

I- R &: e•(wi) - B(w1 ) 

we also have 

I- R - B(w .. ) 
and by (T3) also 

I- P - B(wjj)• 

Now from (T6) we have I- Ord(w;r) and since also I- Ord(0) &: A•(o) we have 

I- B(ww) - A•(o+lw., OJ). 
From (TS) we have 

I- B(w.) - A•(w;+1 ). 

Combining this with (3) yields 

I- P - A•(ws.-1'· 

Noting that I- n+ 1 =- I 0, nJ terminates the proof. 

(3) 

Theorem on Tranllflnlte Inductlon. For any formula A and any literal p the following 
bolds. 

(T9) 

Proot. Up is not an ordinal then I- -, z<p and (TO) bolds trivially. Up is an ordinal then by 
(T7) 

I- N(maj • p) &: p<w •• ,. 1 
Because TP is consistent moj • p reduces to a numeral n such that I- p<w;r (T9) now follows 
from I- A•(w1 ) - A•(j;) and (TS). QED. 

It is easy to see that 

I- V-x(P -A•(x)) - \Jx(P - A(x)) 
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The formula P - A (x ) is transfinite induction up to Eo, it is also the formula for the well
Counded induction (6. Wford ). & mentioned in section (6) it is true in the standard interpretation 
yet unprovable in TP. This waa established by Gentzen l3J for PA. The unprovability in TP is a 

• consequence of the equivalence or TP and PA. In the Part ID we shall demonstrate the unprova-
bility directly. · 

The following theorem relates ·the tranaftnite ud well-founded inductions. 

Theorem (TlO): For any literal pthe relation <, is provably well-founded. 

Proof: Take a literal 1 and uy formula A. We want to prove P, - A (x) where P; is as follows. 

P,s V-x{V-7(7 <,x -A(7))-A(x)} 
Since we have 

I- P,- V-x{(x<p'- A•(x))-A(z)} 
I- P; - \/x (., x < p - A (x) ) .t P 

we can use (T9) to obtain 

I- P,- V-x(., x<;;-A(x)) .t V-x(x<;;-A(x)) 

thus in any case I- P;- A(x ). QED. 

The theorem on recursive functions (T5.22) allows· to show functions recursive provided one 
proves that the argument or the recursion is driven down in a well-founded relation. We would 
like to characterize a class or provably recul'!live functions syntactically without relying on proors 
in TP. The class of function. defined 611 tran,finite induction for ordinal, le,a than Eo, or shortly 
T-functions is such a clau. 

We need an auxiliary de&nition. For any RF-term a and literal m let us denote by a' the RF-term 
obtained by the following term identities. 

n'= n 
0'= 0 
lb, cJ'= lb~ c'J 
(b.b )' a b'.h 
(b.t )' E b'.t 
(If b then c elae d )' s If a' then b' elH c' 
(b • c )' = b • c' where b is a literal 
( n.h • c )' a It m • c' < m • n.t then n.h • c' elH o 

T-functions are defined by the following inductive definition. 

1) Functions len and < are T-functions. 

2) Let a be aa RF-term where in all subterma b • c with b a literal, the term b is a T
function. Ir the term a does not contain subterma of the form n.h • c then the function >.a 
is an (explicitly defined) T-function. Ir, on the other hand, a contains subterms of the form 
n.b • c then for a T-function m and a literal pthe function 

>,, It n.t < ptben a' elH 0 

is a T-function. 

3) T-fanctiona are obtained only on the account of the rules 1) and 2). 

We have the following theorem. 

Theorem (TU): All T-functiona are pronbly recursive. 

The proof is by the induction on the conatruction of T-functions. Functions ten and < are prov• 
ably recursive. For the term a from the point 2) ii >.a is an explicit function then take 
< a <1, otherwise let u11 de&ne 

z<u - m • z <, m • 11 

In the former case < is provably well-founded by (T3.10) in the latter case the relation < is 
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provably well-founded by (T3.17) and (TlO). In any case ~ Down~ where b ia either a or 
>. tr n.t < ;;then a ' else O and thus the theorem (TS.22) applies. QED. 

The function m supplies an (ordinal) measure in which arguments ot recursive functions descend . 
The literal p guarantees that we have a provably well-founded relation in which the measure de~ 
cends. 

The question whether there are provably recursive functions p, i.e. such functions that 
I- Def(p, % ), which are not T-tunctions is answered negatively by pointing out that cat is not a 
T-runction. In the part Ill we plan to demonstrate that we do not gain any extra functions, jui;t 
different programs, because tor any provably recursive function jithere ia a T-tunction 'qsuch that 
I- ji• % == g• %. 

O. Conclualon. 
We have presented what, we think, is a simple definition of partial recursive functionals over 
pairs. The elegance or pain permits a very simple form of G6del numbering and consequently a 
simple formulation of the predicate Comp. The simplicity of Comp and val allows a straightfor
ward formulation or theorems about computability u well as a simple interpretation of partial 
recursive functionals into TP. Pa.ire also permit a natural notation ror ordinals less than Eo, 

The author would like to thank hia colleagues Karl Abrahameon and Akira Kanda from the 
Department of Computer Science and especially Andrew Adler from the Department or 
Mathematics for long and fruitful series or d.iacunions and auggest.iona about the domain or pairs. 
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