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ABSTRACT 

Prolog is a programming language based on predicate logic. Its successor, 

Concurrent Pro 1 og, was designed to meet the needs of a .. multiprocessing 

environment to the extent that it may be desirable as a succinct lar.guage for 

writing operating systems. Here, we demonstrate the feasibility of 

implementing a distributed interpreter for Concurrent Prolog using traditional 

programming tools under a multiprocess structuring methodology. We will 

discuss the considerations that must be made in a distributed environment and 

how the constructs of the language may be implemented. In particular, several 

subtle pitfalls associated with the implementation of read-only var,~bles and 

the propagation of new bindings will be illustrated. In addition, a 

modification to Shapiro's treatment of read-only variables is propcsed in an 

attempt to "clean up 11 the semantics of the language. 

(The discussion will centre around a primitive version of an inter;::"'eter for 

the language written in Zed (a language similar to C) on an Unix-like operating 

system, Verex. Although a brief introduction of Prolog and Concurrent Prolog 

will be given, it is assumed that the reader is familiar with the paper A Subset 

of Concurrent Prolog and Its Interpreter by E.Y. Shapiro [Shapiro83].) 
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1.0. INTRODUCTION 

There are currently three major classes of programming languages. These are: 

1. Procedural (von Neumann) Languages 

2. Functional Languages 

3. Logic Programming 

Procedural languages such as Pascal, Algol, Fortran, Cobol, and PL/I have 

"side-effects" as their underlying theme. 

• A variable is assi gned a value. 

• A variable may be bound to zero or more values. 

• A program is a description of a sequence of actions or procedures to be 

performed ( hence the name II procedural 11). 

Functional languages (the most predominate being LISP) are based on Church's 

Lambda-Calculus. They are (ideally) characterized by: 

• No side-effecting 

• Values return via functions only (rather than side-effects on "global" 

variables) 

• Exactly one value is returned by a function 

• Programs resemble the definition of desired computations. 

Logic programming languages are primarily based on predicate-calculus. Major 

characteristics of logic programming include: 
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• No side-effecting 

• Programs resemble clauses/axioms of first-order logic and are simply 

statements of facts. 

• The computation of a program can be considered as invoking a mechanical 

theorem prover to assert the desired goal. 

• "Results" of a computation are obtained by instantiating the unbound terms 

of a logical relation (predicate). 

1.1 MOTIVATION FOR LOGIC PROGRAMMING 

The major advantages of logic programming languages over the other two classes 

can be seen by comparing the above list of attributes: 

• Programs written in both functional and logic languages resemble the 

definition of the problem rather than the algorithm from a procedural 

language. Intuitively, it appears easier to state the definition of a 

problem than to devise the algorithm to solve it. 

• Since logic programs are simply lists of facts, they can be verified more 

easily. One need simply examine each statement, independent of all other 

statements, and decide whether it is a correct representation of the 

domain. For a procedural 1 anguage, we must a 1 so understand a 11 the 

inter-dependencies between each statement. 
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• A variable in a procedural or functional language may be assigned zero or 

more times. It is the responsibility of the programmer to initialize any 

variable before using it in a computation and to assure that variables are 

not assigned inadvertently. In a logic program, a variable may be bound at 

most once. Hence, we need not worry about some errant portion of code 

invalidating a legitimate value. Furthermore, an axiom still holds even if 

one of the variable is uninitialized; the result of the computation would 

then be expressed as a relationship to the variable (eg.father(x), y+l) 

rather than concrete va 1 ues such as John or 3. 

• For those who have noted that the differences stated so far between a 

functional language and a logic language are only minor ones, it is 

suggested that logic programming is, in fact, more powerful. Since a logic 

program 11 returns 11 values via arguments of a predicate, a 11 procedure 11 may 

return a set of values whereas a function, by its definition, may return . 
exactly one value. Also, since logic languages are simply statements, there 

may be similar statements (each defining a specific case of the problem); 

if more than one statement can result in the success of the goa 1 ( i e. 

multiple solutions), then the choice of statements is random. A goal 

invoked several times may result in several indeterminate results. 

As the desire for verifiable programs increases and the cost of computing power 

decreases, logic programming is gaining much interest. Prolog (PROgramming in 

LOGic) [Kowalski74] [Warren77] is a programming language which is considered 

to fall into this category. This thesis examines the feasibility of applying 

Prolog in a multiprocessing environment by implementing a distributed 
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interpreter for a variant of the language, Concurrent Pro.log, introduced by 

Shapiro [Shapiro83]. 

In the next chapter, an overview of Sequential Prolog is presented, including a 

discussion of its bad points along with the good. Chapter Threeintroduces the 

features of Shapiro's Concurrent Prolog. The target system, Verex, is described 

in Chapter Four followed by Chapter Five which discusses the problems and 

design decisions of the implementation. An evaluation of the interpreter is 

presented with performance measurements in the concluding chapter. 
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2.0 SEQUENTIAL PROLOG 

A program in Prolog [Kowalski74] [Warren77] [Nilsson80] is a set of 

11 statements 11 of the form 1 

P <- Ql & Q2 & & Qn. 

and can be viewed in two ways: 

1. as an implication rule where QI, Q2, ... , Qn are the antecedents and P is 

the consequent , 

2. as a procedure declaration with Pas the head of the procedure and Ql, Q2, 

... , Qn as the body. 

Append ( *listl, nil, *listl ). 

Append ( *headl.*taill, *list2, *headl.*sublist) 

<- Append ( *taill, *list2, *sublist) . 

Figure 1. Sample Prolog Code - Append ( listl, list2, result). 

In the above example, only the definition of append is given: 

l 

When the second list is empty, the result is simply the first list. 

We wi ll use the syn tax from Prolog/MTS [Goebel80] and augment it where 
necess ary. (The in f ix operator 11

•
11 is the con struct or predi cate which can 

be thoug ht of as a co ncatenation symbol.) 
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2. Otherwise, the new list is simply the head (or first element) of the first 

list followed by the list formed by the concatenation of the tail (or 

remainder) of the first list with the second list. 

There were no statements instructing the interpreter how to construct a new 

list. The definition of the problem~ itself the program. 

2. 1 PROCEDURAL SEMANTICS OF PROLOG 

From the programmer's point of view, there are two major differences between 

Prolog and a procedural language: 

1. There may be multiple "procedure declarations" with the same name. When a 

procedure P is to be executed, a two-way pattern matching scheme called 

unification is first used to pick which procedure is to be invoked. Then, 

execution proceeds recursively with each 11 statement 11 in the body of the 

chosen declaration. (The system is said to have resolved [Robinson65) from 

the head of the clause to the system consisting of the terms in the body of 

the clause.) If one of these statements causes program failure, the system 

backtracks to the nearest decision point and a new choice is tried. 

2. A formal argument of a procedure may either be an input parameter or an 

output parameter even though there is no specific indicator (such as the 

reserved word VAR in Pascal to designate a 11 value-result 11 parameter). The 

choice need not be made in advance. Instead, the choice is determined at 
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procedure invocation, allowing some programs to be ran 11 backwards 11
• For 

example, the procedure ADD (x,y,z) may be ran as 

• ADD ( 1, 2, z) to yield a value of 3 for z 

• ADD ( x, 3, 5) to yield a value of 2 for x 

• ADD ( 1, y, 1) to yield a value of O fory. 

This two-way capability is a powerful one in that it turns uni-purpose 

procedures into multi-purpose ones. 

I P I .. p I Q I P->Q .. p or Q 
I_I_ I_ I 
I I I I 
I T I F I T I T T 
I T I F I F I F F 
I F I T I T I T T 
I F I T I F I T T 
I 
I Figure 2. Comparison of (P->Q) with (-.P or Q) 
I 

Top-Level Goal<- P (*x). 

Database of Axioms 

P (*x) <- Q (*x) & R (*x). 

Q (1). 

Q (2). 

R (2). 

R ( 3). 
Q (1~ 

Figure 3. Sample And-Or Solution Tree 

R (•x) 

R (2i 
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2.2 DECLARATIVE SEMANTICS OF PROLOG 

Wearing our logicians' caps, the Prolog interpreter is a theorem prover working 

on a a subset of first-order logic known as Horn Clauses. These are clauses 

with exactly one negation. (Recall that P -> Q is equivalent to (~P or Q) as in 

Figure 2 on page 7). Each clause or implication rule is a statement about what 

is true about the domain at hand rather than a description of how ··to compute the 

solution. 

A 11 solution 11 is obtained by specifying a clause (possibly with unknowns) as the 

goal and asking Prolog to find an instance of the unknowns for which the goal 

can be asserted. Prolog must backchain from the goal using the "reverse" of 

Modu s Ponens (implication). In order to assert the goal Q, in P -> Q, one must 

assert P, recursively. If P can be asserted then Q must have a truth value of 

TRUE otherwise TRUE-> FALSE yielding FALSE will invalidate the definition of 

P -> Q as an axiom. On the other hand, if P cannot be asserted, we cannot 

comment on the truth value of Q2
; FALSE-> TRUE and FALSE-> FALSE both yield 

TRUE. 

Thus, computation amounts to searching an And-Or Soluti on Tree (see Figure 3 on 

page 7) for a path from the root to one of its leaves. Or-nodes indicate where 

more than one possible axiom (disjunct) may contribute to the solution. 

And-nodes of the tree 11 tie 11 together the conjuncts of an axiom. (For each 

2 
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conjuct, a sub-path must be found spanning the height of the subtree rooted at 

the And-node.) The tree is obtained by the following sequence: 

1. Take the goal as the root (an Or-Node) 

2. Find all axioms in the database whose heads are potentially unifiable with 

the goa 1 and create an And-Node for each, 11 tyi ng 11 them to the root. 

3. For each of these axioms, treat each term in its body as a new subgoal and 

recursively create subtrees for them. If an axiom does not have have a 

body, it is known as a base or ground axiom and forms a leaf of the tree. 

(The tree is, of course, an implicit one; that is it is never generated but is 

implicit in the execution of the interpreter with conjunctions implied by 

sequential solution of brother-goals and disjunctions implied by 

backtracking.) 
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2.3 ASSOCIATED PROBLEMS WITH PROLOG 

So far, I have claimed Pro log to be a "logic programming language". In 

reality, it is only a good approximation. In order to have true logic 

programming we need true parallelism in trying all choices (disjuncts) and in 

solving all conjuncts. Prolog is merely a sequential simulation of this 

process. It accomplishes disjunction by backtracking (where necessary) and 

conjunction by sequentially resolving each conjunct. Whenever a disjunct 

proves unsuccessful, any bindings made by that path is undone and an 

alternative path is tried. (As in first order logic, a disjunction fails when 

all of its disjuncts fail.) After solving one conjunct, the next subgoal in 

the conjunction is attempted. (A conjunction fails when any of its conjuncts 

fails.) 

This sequential simulation can either be inefficient using breadth-first 

searching or susceptible to non-termination (even when the goal is provable!) 

if depth-first searching repeatedly picks an errant path as its first choice. 

The strategy employed by Prolog is that of depth-first search supplemented by 

some control constructs to eliminate some of the duplication of effort between 

axioms. These constructs are the "cut" operator, a specific order of execution 

and the introduction of side-effects by allowing creation / destruction of 

axioms: 

Order of Execution Prolog has chosen to define a specific order of execution: 

the database is searched in order of axiom entry and 

conjuncts are solved from left to right. The specific 

search order allows knowledge gained from one axiom to 
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11 flow 11 to another in the database. Consider two axioms 

P <- Q & R and P <- -.Q & R, in that order. If Q causes 

failure, the second axiom will still necessarily solve ~Q. 

By relying on the order of search, the second axiom may be 

rewritten as P <- R to avoid the duplication of effort. 

Axiom Creation and Destruction 

The "Cut" Operator 

Axiom creation and destruction in Prolog is analogous in 

power to the inclusion of EVAL as a program-callable 

function in Lisp. In an interpretive system, they allow 

using user-generated data interchangeably with program 

source code. In Prolog, however, a major use of these 

constructs is to maintain state information - using axioms 

as a form of static variables and defeating the advantage of . 
the single-binding logical variable. 

The 11 cut 11 
(

11
/

11
) operator allows the program to direct the 

execution of Prolog. Since the Prolog interpreter usually 

has an II If I can so 1 ve the prob 1 em, don I t worry about how I 

go about computing it II attitude, a major objection to the 

language is that it lacks the control which is essential in 

exploiting the knowledge built into the programs. Thus, 

the cut is used to give more control back to the programmer 

and to direct the interpreter away from irrelevant choices. 
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On encountering a 11 cut 11
, all backtracking information is 

discarded. All choices made at the time will never be 

undone. The interpreter commits itself to the current 

search path. Traditionally, the 11 NOT 11 predicate has been 

implemented using the 11 cut11 and relies on the ordering of 

axioms as: 

Not ( *x ) <- "'x & / & FA! L. 

Not ( "'x ) . 

If x can be asserted, then the interpreter commits to the 

choice of the first 11 Not 11 axiom and subsequently causes 

failure. Otherwise, the second is chosen and the "Not 11 

succeeds. 

We have discussed the common usages of each of the three control constructs but 

not only are they beyond the scope of first-order logic, their use 

significantly reduces the verifiability of the software. They force the 

programmer to correctly sequence axioms and to understand the rel at i onshi ps 

between one axiom and another. Worst of all, the intent of a 11 cut 11 is often 

obscure and eliminates the 11 two-way 11 aspect of procedures. In addition, these 

constructs rely on assumptions which virtually eliminate the possibility of 

porting the same program to a distributed system. 
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3.0 INTRODUCING ... CONCURRENT PROLOG! 

To address some of the criticisms of Sequential Prolog, Shapiro, in his paper A 

Subset of Concurrent Prolog and Its Interpreter, introduces a variant of Prolog 

which is endowed with the elegance of multi-process structuring and raises the 

possibility of using a logic-programming language for the development of 

operating systems. Below, we briefly examine the properties of Concurrent 

Prolog and how it qualifies for its intended role of a systems programming 

language . 

Shapiro lists four essential elements for a concurrent programming language: 

concurrency, communication, synchronization, and indeterminacy. Concurrent 

Prolog supports these as follows: 

Concurrency 

Communication 

By simultaneously solving the terms of a conjunction. Each 

term in the body of an axiom can be regarded as a 

program/procedure invocation. By executing each program with 

a separate (possibly, virtual) processor, each becomes a 

Concurrent Prolog process. 

Via the unification of shared variables. When a term with an 

unbound variable, say P(x), is unified with a term having a 

constant as the corresponding argument, say P(3), information 

is being communicated from the latter process to the former. 

Synchronization Is accomplished by the introduction of Read-Only variables . 

A process having a read-only variable must block itself until 

Introducing ... Concurrent Pro log! 13 



the variable has been instantiated by some other process. (We 

will discuss read-only variables further in a following 

section.) 

Indeterminacy By simultaneously exploring all paths which may provide a 

solution to the goal. Assuming random allocation of 

processing power (due to different speeds of actual 

processors, random processor allocation, etc.) and multiple 

solutions to a goal, the actual solution returned is a 

function of time. 

14 
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3.1 GUARDS, CLEAN UP THESE CUTS! 

We have already mentioned that one of the biggest criticisms of Sequential 

Prolog is the use of the cut symbol ( 11
/

11
). Its range and asymmetry often lead to 

obscure programs. Shapiro recognizing that the control aspect of the cut must 

be included in a concurrent language, to help synchronize processes, decided to 

provide a cleaner version called the commit operator ( 11 111
). An example on the 

use of the commit operator is given in Figure 6 on page 17. 

The commit operator is patterned much after the guarded-if of [Dijkstra76]. It 

splits the body of an axiom into two parts: the guard and the main body 

(Figure 5 on page 16). In trying a particular axiom as an alternative, the 

interpreter must solve its guard before solving the body and once the guard of 

one of the disjuncts is solved, all brother-disjuncts are abandoned . . 

The reason that the commit is a cleaner operator than the cut is due to its 

symmetry. The asymmetry appears in two forms: 

1. In Prolog, choices of a disjunction are tried sequentially (usually from 

left to right in the current subtree). When the cut operator is 

encountered, Prolog commits to the current path. All branches on one side 

of this path have already failed and the cut "kills" the remaining branches 

on the other side. 

Introducing ... Concurrent Prolog! 15 



H <- GI & G2 & ... & Gm I Bl & 82 & ... & Bn. 

Here His the head of the clause, 

GI, G2, ... , Gm are the guards of the clause, and 

Bl, 82, . . . , Bn are the terms in the body of the clause . 

When no guards are required, the axiom may be written as 

H <- 81 & 82 & ... & Bn. 

Figure 5. Sample Axiom for Concurrent Prolog 

In Concurrent Prolog, all guards are executed in parallel and the commit 

operator effectively 11 kills 11 the branches on both sides of the current 

path. 

2. A cut has an effect only when it is executed. If two alternatives exist 

with only one containing a cut, the second alternative is, in effect, a 

default. It is this default assumption that renders the program useless in 

a concurrent system. Because of the differences in ( virtual) processor 

speeds, the default may be mistakenly chosen even if the first alternative 

would have succeeded. The commit operator, however, forces every 

alternative to be guarded by some (possibly empty) clause. The success of a 

goal will always necessitate the elimination its brother alternatives. 
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Database 

1. a (*x) <- bl (*x) 
2. a (*x) <- b2 (*x) 
3. bl (*x) <- d (*x) 
4. b2 (*x) <- d (*x) 
5. d ( 1). 
6. C ( 1). 

Top-Level Goal 

<- a (*x). 

C ( *x). 
C (*x). 
fail. 
true. 

Figure 6. Example of the Commit Operator 

In solving the top-level goal in Concurrent Prolog, resolution 
may proceed with axioms Al and A2 in parallel. The guard in 
Al must be reduced using axiom A3 while the guard in A2 must 
use axiom A4. Suppose A3 solves d (*x) with d (1) before A4 
can solve its guard. A3 commits but the scope of committment 
is local and the choice between Al and A2 is NOT affected. 
Thus when A3 fails and causes the failure of Al, the 
interpreter is free to solve the system using A2. 

As an analogy, 11 A cut is to a commit as an if-then-else is to a guarded-if". 

Dijskstra argues that every alternative should be associated with a guard 

instead of having a default philosophy of the if-then-else. He points out that 

the lack. of symmetry of the i f-then-e 1 se may 1 ead to errant choices in 

concurrent system. Here, Shapiro uses the same arguments for the use of the 

commit operator over the cut. 

3.2 READ-ONLY VARIABLES 

The second extension to Sequential Prolog is the introduction of read-only 

variables. A variable designated as read-only is the synchronization mechanism 
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between two processes. Read-only variables classify processes into writers and 

reader s . A process trying to unify an unbound variable in another process with 

a value can be thought of as a writer process while the latter process as the 

reader. The read-only annotation ("?") indicates that the current process 

cannot write to the variable. The reader process must wait until the variable 

has been instantiated by some other process before proceeding further with the 

unification. 

Formally, if X? is a read-only variable and Y is any variable then Shapiro 

defines the unification of X? with Y as follows: 

1. If X? has been instantiated 3 and Y has been instantiated then unification 

proceeds as usual with the bindings of X and Y. 

2. If X? has been instantiated and Y unbound then Y becomes instantiated with 

the binding of X. 

3. If X? is unbound and Y has been instantiated then unification fails until 

X? becomes instantiated by some other process sharing X without the 

read-only annotation. 

3 
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In the context of read-only variables, we only require that the predicate 
name or principal functor be determined for a variable to be considered 
instantiated . This was a design decision in Concurrent Prolog to allow for 
partially determined messages. 

When two variables are uninstantiated but are bound to each other, they are 
said to reference each other. 



4. If X? is unbound and Y is unbound then unification succeeds with X and Y 

referencing 4 each other. Moreover, Y inherits the read-only property from 

X? . 

Two points need to be considered with this definition. First, the definition 

makes the success or failure of unification time-dependent. Unification may 

fail at a given time due to read-only variables but may succeed at a later time. 

In actual practice, a process may unify the two terms repeatedly or eliminate 

the busy-wait by implementing the third case in a manner such that the process 

owning Y must block or suspend until X? has been instantiated. 

Second, the definition of the last case (X? unbound with Y unbound) is a 

somewhat controversial one. It states that after unifying 'a term such as P (x?) 

with the head of 

P ( *y ) <- G ( *y ) . . . I ... . 
the variable y i nherit s the read-only property and the interpreter is allowed 

to continue to reduce the remainder of the axiom. Several questions concerning 

this scheme need to be addressed: 

• If the primary intent of read-only variables is to synchronize processes by 

suspending a process until all of its read-only variables are instantiated, 

is it desirable to allow unification with an unbound variable to succeed 

and continue? 

• Applying Shapiro's definition recursively, if the variable y later becomes 

bound to some other unbound variable, the latter variable should also 
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inherit the read-only property. Is it desirable to propagate the read-only 

property throughout the solution tree? 

• Shapiro suggests the use of read-only variables in the head of axioms 

causing these variables to be strictly output variables. (Such axioms are 

eliminated from further consideration if the corresponding argument in the 

goal is a literal.) That is, an axiom of the form 

20 

p ( x?, *y) <- ... 

may only be invoked by a goal of the form 

<- P ( *x, *y ) . or 

<- P ( *x, literal ). 

BUT not of the form 

<- P (literal, *y ). 

At the top-level this strategy may be acceptable but elsewhere in the tree, 

a read-only variable in the head of a clause may cause the read-only 

property to propagate (possibly several levels) up the tree, not only down 

it. The upward propagation may cause a process which was previously 

unblocked to become suspended. For example, if in 

P ( *x) <- Q ( *x) & R ( *x ). 

Q ( *y) <- s ( *y ). 

S ( z? ) <-

R ( 1 ) . 

<- P ( *x ) . 

Q (*x) is solved prior to R (*x) being solved, then the process trying to 

unify R (*x) with R (1) will suspend due to the variables y and x 



inheriting the read-only property from z. Is this form of "dynamic 

suspension" desirable? 

It is likely that the answers to all of the above questions are all 11 N0 11
• 

• It is much simpler to implement a unification algorithm that suspends when 

attempting to unify an unbound read-only variable with .another unbound 

variable; there is no need to propagate the read-only property up or down 

the tree. 

• The concept of suspending the process until the instantiation of the 

read-only variable is a more natural definition. 

• It is not clear what forms of problems require the additional properties 

specified by Shapiro. 

• More important, one of the major virtues of logic programming is that one 

statement or axiom may be inspected independently of the other axioms in 

the database. One should be able to determine whether the unification of a 

term containing an unbound read-only variable with the head of a given 

axiom will result in suspension without having to "trace" the outcome of 

the axiom. 

Hence, the remainder of this paper shall replace the last part of Shapiro's 

definition with 

• If X? is unbound and Y is unbound then unification suspends until X? 

becomes instantiated. 
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3.3 PERPETUAL PROCESSES 

In Sequential Prolog, a primary use of axiom creation and deletion was to save 

state information. In a concurrent language, this scheme is no longer 

necessary; a process that stays activated throughout the life of the program 

never 11 forgets" its own state. (The operating system would, at least, restore 

the state when it reactives the process.) 

In Concurrent Prolog, a perpetual process is simply an axiom that resolves to 

itself with possibly different arguments. 

eg. P ( x.y) <- P ( y ). 

Any local variables would then be the state of the process. The resolution of 

the original axiom can be considered to be a state transition. (In our example, 

a state transition takes place in which the state changes, say, from x toy.) 

With such a simple, well-understood construct, Concurrent Prolog can thus be . 
extended to capture the elegance of an object-oriented language and the 

definitive power of state transition diagrams. 
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4.0 OVERVIEW OF TARGET MACHINE/ENVIRONMENT 

It has been suggested that Concurrent Prolog can be used as a multi-processing 

systems programming language. In order for this idea to become reality, the 

interpreter will necessarily require and provide the same multi-tasking 

capabilities found in conventional operating systems. Because of this 

systems-language/operating systems duality, it may be advisable to construct 

the interpreter using the same design principles! 

One school of thought [Cheri ton79 .1,81] advocates the use of mult ;-process 

structuring: 

"Multi-process structuring is the use of several processes to structure 

programs. The term process is used to mean an entity that executes 

actions sequentially and deterministically. A process can logically 

execute concurrently with other processes .... " 

The Verex operating system [Cheriton79.2], a descendent of Thoth 

[Cheriton79.l], is based on this design principle. It provides inexpensive or 

light-weight processes: 

• low overhead process creation/ destruction, 

• low overhead process switching, and 

• inexpensive interprocess communication. 
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Send ( id, message) 

Sends the message to the process identified by 
id and blocks until the destination process 
acknowledges with a reply 

id= Receive (message) 

Blocks until a message is received from any process 
and returns the sender 1 s id and the contents of the 
message buffer 

id= Receive ( message, specific_id) 

Similar to the above except the invoking process 
is blocked until a message is received from the 
specified id 

Reply ( message, id) 

Acknowledges the sender identified by id with 
the contents of the invoker 1 s message buffer (the 
invoker does NOT become blocked) 

Forward ( message, from_id, to_id) 

Forwards the message received from from_id 
to the process to_id. To the process 
to_id, it would be as if from_id had 
sent the message directly (Note that the invoking 
process may have alter the message before forwarding it.) 

Figure 7. Verex Communication Primitives 

Furthermore, Verex provides process communication via blocking messages (see 

Figure 7 on page 24). Processes communicate with fixed-length messages; the 

sender of the message is blocked until the receiving process acknowledges the 

message with a reply. Cheriton argues that this is a more natural and more 

powerful form of interprocess communication: 

• Other than for synchronization purposes, processes often have a 

requirement to communicate data. On non-message-based systems, one must 
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first use semaphores, etc. to synchronize the readers and writers of the 

message buffers and then perform the actual transfer of data, making 

communications awkward. It is more natural to associate a message with the 

synchronization mechanism. 

• The Verex communication scheme can, in fact, be used to simulate 

semaphores. Hence, it is as powerful as a semaphore-based scheme. 

• Blocking-Sends are a natural part of the Remote Procedure Call or Server 

concept. A conventional program wishing a subtask to be performed invokes a 

procedure; a Verex process wishing the help of a server simply sends a 

message and is unblocked when the server has fulfilled the request with a 

reply. 

• Since the sender is automatically blocked, there can be at most one 

outstanding message per process. 5 The operating system need not concern 

itself with the problems of dynamically allocating new message buffers. 

By exploiting low-overhead processes, it has been demonstrated that Cheriton's 

concepts are both feasible and attractive: 

• [Cheriton79.l] designed and implemented the portable multi-user operating 

systems Thoth and Verex. 

• [Lockhart79] furthered the work of Cheriton, by designing a verifiable 

system kerne 1 . 

5 Concurrency is accomplished via multiple processes rather than multiple 
messages. 
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• [Deeri ng83] mapped the state-trans it ion di a grams of the X. 25 protocol 

specifications onto Verex processes, and thus significantly improved the 

verifiability of his implementation. 

• [Boyle82] designed and implemented a distributed version of Verex and 

showed that Cheriton's design can indeed be implemented on a 

multi-processor system. In fact, a complete distributed version of Verex, 

called the V-system, was implemented at Stanford [Cheriton83]. 

For the implementation of the Concurrent Prolog interpreter, the Verex system 

seems well suited for the task. It's two most attractive features, inexpensive 

creation/destruction and low-overhead process switching makes the system ideal 

for simulating the breath-first searching necessary for Concurrent Prolog. 
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5.0 DESIGN OF THE INTERPRETER 

Two major criteria govern the design of the Concurrent Prolog interpreter: 

1. Recognizing that a distributed system will necessarily incur more 

overhead, due to process scheduling and process switching _for example, the 

interpreter must minimize storage and execution time in order to provide 

the maximum computing power for the resolution process. 

2. The design must not preclude the interpreter from being distributed over 

several physical processors and multiple address-spaces. 

5.1 REPRESENTATION OF AXIOMS 

When designing any database, the representation of the data and its 

relationships is of primary concern. In the case of Concurrent Prolog, the 

problem is even more critical (if we are to consider the requisite duplication 

of data across multiple address spaces). We must find a representation which 

will optimize both storage requirement and execution time. 

Usually, it is a trade-off between execution speed and memory size: increasing 

the amount of redundant data and increasing storage needs will usually increase 

execution speed, and vice versa. Luckily, there are at least two optimizations 

available to us. 
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5. 1. 1 Compacted Representation of Axioms 

COR ptr 

info 

~ 
Figure 8. A Lisp CONS-cell 

First, we can improve on the representation of tree-like structures such as 

Lisp expressions and, in our case, Prolog axioms by converting explicit 

information to implicit knowledge. In particular, explicit CAR and CDR links 

(Figure 8) to the next item should be replaced by contiguous storage of 

information whenever possible. In this implementation of Concurrent Prolog, 

such links have been removed where possible. Succeeding elements are placed 

contiguously; the cell at position i has an implicit CDR pointing to position 

(i+l). The structure normally pointed to by the CAR of a cell is now inserted 

11 in-line 11
• For a single-cell element, nothing has changed. But sub-trees now 

appear in-line with a indicator at the front of the sub-tree pointing to the 

cell immediately following the last cell occupied by the sub-tree (see Figure 9 

on page 29). This compaction scheme reduces our overhead in three ways: 

1. Storage is not wasted for links. 
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P ( x, Q ( y, z ) ). 

Lisp Representation: 

Compacted Representation: 

p 

Q 

X Q 

y z 

y z 

Figure 9. Compacted/ Cont i guous Representation of Axioms 

2. Execution cycles are not required to dereference links (nor to page-in a 

larger workina set under a virtual memory system). 

3. Main memory becomes less fragmented. Allocation is done in blocks instead 

of in small cell-size chunks. (Less fragmentation will likely result in 

increased performance of any garbage-collection scheme and decrease paging 

activity.) 
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5. 1.2 Structure-Sharing 

The second improvement to our representation is a technique known as 

structure-sharino (see Figure 10 on page 31). This is a scheme developed by 

Boyer and Moore [Boyer,Moore72] [Warren77] for Sequential Prolog which is also 

applicable to Concurrent Prolog in minimizing both storage and execution time. 

The technique divides an axiom into two parts: the invariant part (or the 

skeleton of the axiom) and the variables of the axiom. 

The variables in the skeleton are replaced by 11 place-holders 11
• The first 

unique variable is replaced with a 11 011
, the second with a 11 111

, and so on. The 

replacement numbers are, in fact, offsets into a vector of the variables of the 

axiom. So, an axiom fs now represented as pointers to two vectors: a skeleton 

vector and a vector of variables. This representation has the following 

advantages: 

• The separation of skeleton and variables allows the non-changing skeleton 

to be shared between processes residing in the same address space; thus 

storage is reduced by not having to duplicate axioms with common skeletons. 

• When one of the variables become instantiated, only one location has to be 

updated even if the variable appears more than once in the axiom. Also, 

addi ti ona 1 storage is not required for subsequent appearances of the 

variable. 
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Axiom P (*x) <- Q (*y) & R ("'::) & S ("'x). 

Skeleton 

Variables I P (□) <- Q (1) & R (2) & S (□i I 

... -
--+ 

r 

1 r 

0 

1 

2 

Figure 10. Structure Sharing : Skeleton and Variables of An Axiom 

• If the duplication of an axiom is necessary within the same address space, 

the requirements in both storage and time is proportional only to the 

number of variables in the axiom. The cells in the skeleton need not be 

duplicated, only the adaress of the skeleton need to be copied. 
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5.2 UNIFICATION UNDER OUR REPRESENTATION 

For the most part, unification is simply two-way pattern matching: 

• Two atomic terms match only if they have the same value . (Or in our case, 

each atomic value is given a unique id/address and we need only match 

id Is.) 

• Two structures (eg. cons(a,b)) match only if each corresponding 

sub-structures or sub-terms match recursively. 

• If one of the terms is an unbound variable and the other is an atomic value 

or a structure, then that value is assigned to the variable. (For a 

structure, the actual value assigned may simply be a pointer/identifier of 

the form 

Struct (struct_num, offset) 

or a gg [Lee84] of the form 

Struct ( process_id, struct_num, offset) 

where process_id is the identifier of the proces~ attempting to solve the 

structure in question, struct_num is a unique identifier for an axiom and 

offset is the position of the subterm relative to the beginning of the 

structure. 

• If one or both of the terms is an instantiated variable, then unification 

proceeds as above using the binding of the variable(s). 

The only case that normal pattern-matching fails to handle is when both terms 

are unbound variables. 

Consider the terms: 
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Unifying P ( *a, *b, *b) with P ( *c, *c, 2) would yield 

a = Ref ( b ) 

b = Ref ( C ) 

0 
C = Ref ( a ) 

match a with c match o wt th c 

and finally a=b=c=2 

I 
I 
l 

1mpl1c1t reference i 

oetween a ana o 

Figure 11. Reference Loops - Unifying Two Unbound Variables 

P ( *a, *b, *b) and 

P ( •c, •c, 2 ). 

We would like unification to yield a=2, b=2, and c=2 but (if matching is done in 

left to right order) we would need to unify two unbound variables. We need a 

pattern-matcher that would 11 remember 11 the relationships between a, b, and c. 

Initially, a references b, then a and b reference c. If any one of these 

variables subseQuently become instantiated, then all three variables need to be 

instantiated. A straight forward implementation is to link the three variables 

together into a circular-list, a reference-loop, by assigning indicators such 

as Ref(b)', Ref(c), and Ref(a) to variables a, b, and c, respectively (see 

Figure 11). 

' In the actual implementation, the variables would be represented similar to 
that of a structure (eg. Ref (struct_num, offset)). 
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When a variable in one reference loop later becomes bound to a variable in a 

different reference loop, the two loops are merged into one single loop. The 

ordering within the new loop is unimportant but a self-reference test must be 

made to ensure that they are indeed two distinct loops. As an example, unifying 

P ( *a, "'a ) with P ( *b, "'b ) will yield "two" loops joining~ and band an 

attempt to merge the loops will likely require a great deal of computer time. 

One should note that a loop is preferred over a simply-linked list such as 

those used in [Warren77], [Levy84], and [Lee84]. When one of the variables in 

the loop becomes instantiated, a traversal of the loop will make sure all 

variables in the loop are updated. In a simply-linked list such as 

P? -> Q -> R, if a variable in the middle of the list, say Q, gets instantiated 

only the variables in the tail of the list are updated. P, in this case, will 

still not have a binding and may lead to deadlock if the remaining variables 

have read-only annotations. 
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5.3 DIVISION OF WORKLOAD BETIVEEN PROCESSES 

A logical division of tasks is to take the And-Or solution tree (described in a 

previous section) and create a process for each node in the tree (see Figure 12 

on page 36). For each And-node (conjunction of the terms of a clause), create 

an And-process (or Clause-orocess). For each Or-node (a choice of solutions in 

solving a goal), create an Or-process (or Goal-p ro cess ). 

5.3. 1 Goal Process (Or-Node) 

When invoked with a·Concurrent Prolog process (a term in Sequential Prolog), a 

goal-process executes as follows: 

1. It searches through the axioms database for axioms whose head is 

potentially unifiable with the given term. The searching algorithm may be 

expedited using the predicate name or principal functor as the primary key 

and the arity of the predicate as the secondary key. 

2. For each of these axioms, it creates a clause-process and invokes it with 

the given term and the trial axiom. 

3. It then waits for one of the clause-processes to commit (i.e. solve the 

guard clause). 

4. If one of the clause-processes does commit, then the goal-process waits' for 

this child to successfully solve the body. If and when the child process 

reports success, the goal process, in turn, reports success to its parent. 
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I 
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I 
I 
I 
I 
I Figure 12. 
I 
I 
I 

P ("Y) Clause Process 

Q (1i Q (2~ 

Clause Processes 

Process Tree from An And-Or Tree: (compare with Figure 3 on 

page 7) 

5 . At any time, a child process which does not contribute to the solution of 

the goal is destroyed and resources allocated to it reclaimed. 

5.3.2 Clause Process (And-node) 

A clause process is responsible for the solution of a specific term, T such as 

cons (a,b), with a specific axiom, 

H <- Gl & G2 & ... & Gm Bl & 82 & ... & Bn. 

where His the head of the axiom, Gl through Gm are the guards, and Bl througn 

Bn are the terms of the body. 
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1. It first makes local copies of T and the given axiom, so that any bindings 

it generates will not affect other brother clause-processes. Note that if 

one of the variables references another structure which has unbound 

variables, that structure must also be copied. Care must be taken to avoid 

recursively copying the same axioms. For example, if we unified 

1. P ( *a, Q ( 1 ) ) . with 

2. P ( R ( 1 ) , *b ) . 

variable a would be bound to a subexpression within axiom Al while variable 

b would be bound to a subexpression within axiom A2. If the implementation 

copies the entire axiom instead of only the variables in question, then a 

loop exists between Al and A2. and a naive implementation would try to 

create copies of Al and A2 indefinitely. A simple solution is to modify the 

copying mechanism to return a mapping between original axioms and their 

copies. Prior to allocating a new copy of an axiom, a check. of the current 

map must be made to determine whether the axiom has already been 

duplicated. (More on the use of the map in the Mutual Exclusion section.) 

2. It tries to unify T' with H', then for each of the guards, it spawns a 

goal-process. 

3. When all of the goal-processes report success, the clause-process commits 

and reports to its parent goal-process. 

4. After solving the guards, a goal-process is generated for each of 81 1 

through Bn' and the clause-process again waits. 
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5. When all of its children have reported success, it reports back to its 

parent. Otherwise, when any child fails, it reports failure. 
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5.4 DEALING WITH SUCCESSES/COPING WITH FAILURES 

If a goa 1-process commits or terminates successfully, the parent 

clause-process must make public any instantiations made by the goal-process. 

First, the scratch-copy from the goal-process must be unified with the global 

copy from clause-process. Here, only the variables need be unified but direct 

copying is not sufficient: a brother goal-process may have already instantiated 

a variable to some particular value and this value must be matched with those 

from the reporting process for consistency. If unification fails, then all 

child goal-processes must be destroyed along with the failure of the 

clause-process. 

If unification succeeds, any new information must be made public to ALL the 

descendents of the clause-process. In addition, if the success of the reporting 

process causes the clause-process to commit or to complete then a report must, . 
in turn, be made to the parent of the clause-process. 

The problem of broadcasting new instantiations is not a trivial one. Suggested 

solutions include: 

Ignore Broadcasting All-Together 

We may choose to avoid broadcasting and allow the descendents of the clause 

process to continue with old information; when descendents commit then let 

unification filter out incompatible solutions from conjuncts as failure of the 

7 This is the same solution (called "Delayed Propagation") suggested by 
[Levy84]. 
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clause. 7 On the surface, it seems that the only draw back to this scheme is late 

detection of inconsistent bindings. But this solution will only work if there 

are no read-only variables. With the introduction of read-only variables, this 

scheme may lead to deadlock. For example, if the axiom at the clause-process is 

P (*a)<- Q (*a) & R ( a? ). 

and the only axioms that are potentially unifiable with Q and Rare 

Q ( 2 ) . and 

R ( 2 ). 

We would like the resulting computation to succeed with a=2. But when Q commits 

with a=2, the clause-process updates its copy of a and continues waiting for R 

to finish computing but by the definition of read-only variables, the 

goal-process solving R(a?) remains blocked waiting for the instantiation of a? 

before continuing. 

Let the Parent Clause-Process Handle the Broadcasting 

When a goal-process reports with new information, the clause-process can first 

update the global copy of the variables and then signal each of its descendents 

(except for the one that initiated this chain of actions) to update their 

copies. The problem is again one of deadlock. If two child processes report 

simultaneously, both would be blocked waiting for reply. The child that is 

serviced first is happy but when the clause-process tries to broadcast to the 

second child, both child and parent become blocked waiting for each other to 

reply (Figure 13 on page 41) 
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Figure 13. Deadlock: Broadcast by Parent Clause-Process I 
I 

let the Reoortino G~al-Process Handle the Broadcasting 

The clause-process may supply the reporting child with a list of children to 

signal. A similar situation as for the above scheme arises when two or more 

goal-processes try to broadcast to each other (Figure 14 on page 42). The 

problem is that information must be passed both ways: child processes must 

report upwards and broaacast information must travel downwards. This necessity 

violates the well-known rule-of-thumb (eg. [Lockhart79] [Deering82] in a Verex 

environment) that only child-processes should use the blocking send primitive 

and parent-processes should only use the non-blocking receive primitive to 

communicate; that is, 11 send 11 up the process tree - never down. 
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Create a Broadcast Server 

As explained in the previous scheme, the problem lies in messages being sent 

both up and down the process tree. What is needed is a mechanism in which the 

parent clause-process can initiate information down the tree without becoming 

blocked. By exploiting the Verex philosophy of creating multiple servers, there 

appears to be such a mechanism. 

When a clause-process receives a report from a child, it creates a server 

process. The broadcast server is given a list of processes and an updated copy 

of the clause-process' axiom and is expected to broadcast to each of the given 

processes in turn . The clause-process remains free to handle other tasks. 
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Let 1 s examine, again, the case of simultaneous reports. The clause-process 

receives one of the reports, updates its axiom, unblocks the reporting child 

and delegates the responsibility of broadcasting to a new server. It then is 

free to accept a subseauent report and create a second broadcast server 

(Figure 15 on page 43). The clause-process is not blocked waiting for 

broadcasting to complete and neither is the reporting process. Even if multiple 

broadcast servers exist at one time, no deadlock. can result since no process 

issues a blocking send to these servers. It is the broadcaster that issues the 

send primitive and all its receivers are guaranteed to become unblocked in a 

bounded period of time (needed for a new server to be created). 

Broadcasterl 

0 Goal 

I\ 
Childl Ch1102 Chlldl 

Goal 

\ 
Child2 

Broaacasterl Broaocaster2 

Goal 0 
Childl ChJl02 

Two Children Report Goal Repl ys Childl Goal Repl ys Child2 

At Same Time and Creates Broadcaster! and Creates Broadcaster2 

---~ Non-0l0Cl<lng Reply 
_...,.►► BlocKlng Sena 

Figure 15. Creating a Broaacast Server 
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Propaoation By Request 

Yet another possible solution [Levy84] [Lee84] is to broadcast only to 

processes which have been suspended or have child-processes suspended waiting 

for the instantiation of a read-only variable. 

Levy's scheme employs a queue of read-only variables. Whenever a process must 

wait for the instantiation of a variable, it first puts a request in the queue 

with the variable's identifier and its own process identifier and then suspends 

itself. When a process instantiates a read-only variable, it must 11wak.e-up 11 all 

processes associated with the variable. 

Lee suggests that a process should make a direct request via a 11 need-binding 11 

message to its parent. 

• If the parent's copy of the variable has been instantiated, it will allow 

the requesting process to continue with the new bindings. 

• If the variable is unbound and the variable has the read-only annotation, 

then the parent process waits until one of its other committing 

child-processes instantiates the requested variable. 

• If the variable is unbound and the variable is non-read-only, then the 

requesting process is allowed to continue but is required to poll the 

parent until the variable becomes instantiated. 
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• Finally, if the variable references a variable higher-up in the process 

tree then the parent is forced to issue a need-binding message of its own. 

Either scheme will probably work ... prov1ding enough book-keeping information 

is available. Consider the system of processes 

1. p ( *x, *y ) <- Q ( *x, *y ) & •.•• 

2. Q ( *z, *z ) <- R ( z? ) & .... 

3. R ( 1 ) • 

4. <- p ( *x, *y ). 

In trying to unify R (z?) with R (1), process 3 sends a need-binding message for 

z to its parent, process 2. But since z references both x and y, it now must 

send a need-binding message for instantiation of either of x or y. Continuing 

up a "degenerate" tree, the overhead in book-keeping will match that of using a 

broadcast server. 
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5.5 MUTUAL EXCLUSION CONS10ERATIONS 

In the two previous sections,it was mentioned that a scratch copy of the axiom 

was made by the clause-process. The procedure was necessitated by the need to 

keep uncommitted values local to the trial process. A more general problem, 

when dealing with~ multiprocessing system, is mutua l exclu sion - the problem 

of updating shared data. 

Ignoring the problems of multiple address spaces, there is little need to 

duplicate the axioms database. Normally, there is no mutual exclusion problems 

associated with the database, since it is read-only. Additions are performed 

usually at the shell- or top- level when no clause- or goal- processes are 

present. But when we begin allowing Concurrent Prolog programs to generate new 

axioms, we would then need to introduce a database server or associate some 

mutual exclusion mechanism (eg. semaphores) with the axioms to synchronize the . 
creation and reading of axioms. We will examine this topic further in a later 

section . 

A more pressing problem is the mutual exclusion of the scratch-copy axioms 

between clause- and goal- processes. Consider the conjunction 
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P (*a) & Q (*a) being committed with the two axioms 

P ( *b ) <- Assign ( *b, 2 ). (note empty guard) 

Q ( *c ) <- Assign ( *t:, 3 ). (Assume Assign instantiates the first 

variable with that of its second argument.) 



p (-a) <- ... 
Goal Process l 

Q (-t>) <- ..• 
Goal Process 2 

After Goal Processes 
Commit 

Figure 16. Mutual Exclusion Problems of "Cross-Layer" Reference 
loops: If both Goal Processes 1 and 2 commit and their local 
copies of x are linked together as a reference loop, the 
variable 11 x11 becomes 11 shared 11 by all three processes and 
mutual exclusion mechanisms must be incorporated to prevent 
simultaneous updates to x. 

In theory, both (empty) guards are solved simultaneously. We can remove the 

obvious conflict by making the parent clause-process (at and-node) serialize 

the two committals to yield a reference loop of a, b, c. But by creating an 

explicit loop, we would then be vulnerable to concurrent updates of the loop by 

the two child "Assign" goal-processes (see Figure 16). One possible solution 

requires that we associate a semaphore with each loop and store its id in each 

cell of the loop. Every update and query must first secure the semaphore for 

this particular loop. 

An alternative to such a complex mutual exclusion scheme is to eliminate the 

critical section (the loop) all-together by removing interorocess links. In 

the process of removing interprocess links, however, we must be careful not to 

remove intraorocess links. Consider the following: 

1. P ( •x, "'y ) <- Q ( "'x, •y ) & R ( "'y ) . 
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2. Q(*x,*x). 

3. R(l). 

4. <-P(*x,"y) . 

We would like the result to be P (1,1). Hence, in unifying the local copy of 

Q (*x,*y) in axiom Al with Q (*x,*x) in axiom A2, we must keep the intraprocess 

links between *x to *yin Al. We must use the mapping between original axioms 

and their duplicates (obtained from the copying mechanism) to reproduce any 

local-copy to local-copy references in the global copy (Figure 17). Only 

references that can be translated using the 11 copy-map 11 should be duplicated. 

Any other references should be ignored. 

I 
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I o c 
I 
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I 
I 
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*x 
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5.6 READ-ONLY VARIABLES 

Read-only variables have already been discussed in the implementation of 

broadcast servers and the avoidance of mutual exclusion conflicts. Here, we 

will try to tie up the loose ends of their implementation. 

A process trying to unify an unbound read-only variable to some concrete value 

must first wait for the variable to be instantiated. To eliminate busy-waits, 

the process should somehow block itself until instantiation. An initial idea is 

to have a process (such a Name-Server) be responsible for all read-only 

variables. The owning process would send a request to the server to instantiate 

the variable. The server would flag the variable as being requested. When some 

other process instantiates the variable and recognizes the flag, it would send 

a message to the server which would then unblock the original requester. The 

problem with this suggestion is that because of mutual exclusion 

considerations, cross-layer links have been removed. Unless a process shares 

and instantiates the requested variable, the variable can never be reached via 

a reference link and the requester will wait indefinitely. 

The solution currently implemented is to make use of new information as soon as 

it become available. When some other process instantiates a variable and 

commits to it, its parent process will make the value public via a broadcast 

server. The information will eventually filter down the tree to the process 

owning the read-only variable (which is now waiting only for a message from a 

broadcast server). If the message is not an instantiation of the read-only 

variable, then the process continues waiting after updating its copy of the 

axiom. 
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5. 7 SUPPORTING DYNAMIC DATABASES 

As mentioned in preceeding sections, the database of axioms will usually be 

static. Except for the initial loading of the axioms, we rarely require the 

power of axiom-creation and destruction since state information may be 

maintained via perpetual processes. Hence no mutual exclusion mechanisms were 

needed for the database to synchronize accesses from multiple processes. 

Once in a while, however, we would like to exploit the fact that data may be 

used as part of the executable source code. For example, a professor may have 

access to a Prolog interpreter but is instructing a course on a form of logic 

which has a super-operator called 11 S11 which is simply a composition of the 

normal logical operators. He requires an interpreter for a programming 

language called 11 S_Logic 11 which will accept normal Prolog source plus the 11 S11 

operator. One solution is to write the S Logic interpreter on top of the Prolog - . 
interpreter. The S_Logic interpreter will need to read in an $_logic axiom, 

expand the axiom wherever it encounters the 11 S11 operator, and then pass the new 

axiom to Prolog. The S_logic interpreter will necessarily create new Prolog 

axioms when it loads the S_logic database. 

By allowing a program to dynamically create and destroy axioms, we now need to 

synchronize the queries on the database with the addition and deletion of 

axioms. In line with the Verex philosophy, we may create a Database Server to 

serialize these requests. 

The server wi 11 be re qui red to supply three major services in addition to 

routine maintenance of the database: 
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1. Find a list of axioms whose head is potentially unifiable with a given 

predicate. 

2. Add an axiom to the database. 

3. Delete a specified axiom from the database . (eg. Delete the first axiom 

whose head is potentially unifiable with a given predicate). 

A process requiring one of these services will request it via a message to the 

database server. The client process will then block itself until the request 

has been fulfilled. 

Note that service #1 now returns all of the axioms that are potentially 

unifiable instead of only the first axiom of the list. The server should 

actually create a copy of these axioms to prevent another client from making 

additions or deletions while the first client is manipulating the list. That 

is, a process querying the database should work with a II snapshot" of the 

database taken at the time of query. This is consistent with the view that an 

Or-node "creates" all its descendants in parallel. 
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6.0 EVALUATION AND CONCLUSIONS 

We have successfully implemented a 11 fi rst-attempt 11 interpreter has been 

successfully implemented on the (multi-user) Verex Operating System running on 

a TI/990. The interpreter is an experimental one and lacks the power and 

elegance of those from Edinburgh [Kowalski74] [Warren77], Waterloo [Lee84], 

and Vancouver [Goebe 180]. It lacks almost a 11 of the necessary 11 buil t-i n11 

predicates (eg.math. predicates) of a production interpreter and only has 

syntax resembling that of Lisp (Figure 18 on page 54). In addition, a look at 

the performance characteristics (eg. Figure 19 on page 55) indicates that it is 

still premature to consider using the current system to support any substantial 

piece of Concurrent Prolog program: the maximum number of processes that may be 

active at one time is too low; there is currently no garbage collection of 

processor memory (except for the processor stacks) when a process fails•, and 

the execution speed is slow . 

• Garbage collection was omitted from the current implementation because it 
is considered as part of the normal cycle of resource reclaimation when a 
process is destroyed. 
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<identifier> 

<atom> 

::= a sequence of 1 to 30 characters from 
the set [ 'A' .. 'Z', 'a' .. 'z', 1 0 1 

•• '9' J 

::= <identifier> 

<normal variable> ··= *<identifier> 

<readonly variable> ··=?<identifier> 

I 

<variable> 

<variable list> 

<function> 

<argument> 

<arg list> 

<predicate name> 

<term> 

<term list> 

<guard> 

<head> 

<body> 

<axiom> 

<query> 

examples 

::= <normal variable> I <readonly variable> 

::= <variable> I <variable> <variable list> 

::= ( <atom> [ <variable list> J ) 

::= <atom> I <variable> I <function> 

::= <argument> I <argument> <arg list> 

: := <atom> 

( <predicate name> [ <arg list> J ) 

<term> I <term> <term list> 

::= ( GUARD <term list>) 

: := <atom> 

: := <term list> 

. ·= 

( :- <head> [ <guard> J <body> ). I 
(<head>). 

( : - <head> ) . 

I (append nil *12 *12). 
I ( (append ( cons *h *t) *12 ( cons *h *rest)) 
I (append *t *12 *rest ) 
I ) 
I 
I 
I 
I Figure 18. BNF description of Syntax Accepted by Current Interpreter 
I 
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Database of Axioms 

Merge ( *xs, nil, *xs ) . 

Merge ( nil, *ys, *ys ) . 

Merge ( *x.*xs, *ys, *x.*zs ) <- Merge ( xs?, *ys' *zs ) . 

Merge ( *xs, *y.*ys, *y.*zs ) <- Merge ( *xs, ys?, *zs ) . 

Top-Level Goal 

<- Merge (al.bl.cl.nil, a2.b2.c2.nil, *z ). 

Performance Measurements 

Fifteen invocations of the top-level goal required about 

430 resolutions 

27 seconds of real time 

under light-load conditions. 

This translates roughly to 23 resolutions per second. 

A trace of the execution of the program later showed that over fifty 

percent of the CPU time was spent in message passing . 

Figure 19 . Performance Measurement on a Bounded-Wait Merge 
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6. 1. 1 Possible Optimizations 

Noting that over fifty percent of the execution time is spent in process 

communication,• the following optimization is suggested: 

9 

1 D 
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In the current system, a process that commits to a path must broadcast (via 

its parent process and a broadcast server) to all sibling p_rocesses which 

will, in turn, broadcast to all their descendants. If we examine this 

procedure, we find that only the parent need be informed; the remaining 

processes need only be informed if the committing process has changed a 

variable which will influence their outcome. Recalling cross-layer 

reference loops were removed due to mutual-exclusion considerations, the 

optimization simplifies to the following rule: 

1. When a process commits, it always informs its parent process. 

2. The parent process tries to unify the new variables with its copy of 

the axiom. 

3. If the unification fails, the committing process is deleted as before. 

4. If the unification succeeds and one or more variables of the parent 

process was instantiated then the parent process creates a broadcast 

server as before. If, however, none of the variables changed then 

broadcasting is complete. 

One should keep in mind that portions of this time are used to invoke 
various server s of the operating system (eg. process creation and 
destruction, memory allocation , file system services). 

The current version of the Verex Operating System supports only about 30 
processes. 



We can apply a similar optimization to relieve the problem of a limited number 

of available processes. 10 Recall that when a process resides on the solution 

path, it cannot be destroyed since it may contain variables in its address 

space which contribute to the solution. Destruction of the process will result 

in the destruction of its local memory space. We are free to destroy processes 

which do not contribute to the solution. So when a parent process successfully 

unifies the axiom from a reporting child process with its. own axiom and 

determines that no new information was gained, it may release that subtree of 

processes to be used by some other part of the solution tree. This solution, 

however, is only a temporary measure since the described situation is not too 

common. What is needed is an increase in the number of allowable processes in 

the operating system. 

6. 1.2 Summary 

Despite the interpreter's current limitations, it has allowed us to examine the 

implications of the constructs of Concurrent Prolog in terms of system 

requirements and has demonstrated, to a certain extent, the feasibility of 

implementing a distributed interpreter for the language. From this work, 

several points came to light: 

• The semantics of the language can be made cleaner with a minor modification 

to the behaviour of the interpreter when attempting to unify an unbound 

read-only variable with an unbound non-read-only variable. 
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• New bindings should be propagated throughout the tree as soon as they 

become available instead of delaying them. Delayed propagation [Levy84] is 

possible only if read-only variables are treated outside of the normal 

scheme. 

• Due to the above desire to instantiate read-only variables at the earliest 

stage, reference 1 oops were introduced in preference over the normal 

simply-linked list implementation. 

• To minimize the possibility of deadlock, a broadcast server should be 

created to propagate new bindings to child-processes. The use of an extra 

server will server the dependency loop between parent and child processes. 

• In order to avoid child processes from affecting each other, each child 

clause process must make a scratch-pad copy of the axiom. This procedure . 
will necessarily entail recursively copying the subexpressions bound to 

variables. A mapping between the original subexpressions to the 

scratch-pad copies will aid in the copying process. 

• To avoid deadlock and mutual exclusion problems, interprocess pointers (or 

tags [Lee84]) should not be used to form reference-loops. But in 

eliminating these references, one must be sure to duplicate intraprocess 

references. That is, if a child process creates a reference between two 

variables in its local copy and later commits, this reference must be 

duplicated in the parent's copy. The mapping from the copying mechanism 

wi 11 be useful in determining whether the reference is interprocess or 

intraprocess. 
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Future work on this interpreter should include a re-implementation using 

separate address-spaces for each process (i.e. different teams) and 

optimizations such as a Copy-on-demand [Levy84] scheme to reduce the number of 

subexpressions that are duplicated. Hopefully further examination of the 

implementation obstacles will open up the full potential of the language and 

clarify its desired semantics. 
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