
f

THE DESIGN OF A DISTRIBUTED INTERPRETER
FOR CONCURRENT PROLOG

by

Chun Man Tam

Technical Report 84-18

November, 1984

ABSTRACT

Prolog is a programming language based on predicate logic. Its successor,

Concurrent Pro 1 og, was designed to meet the needs of a .. multiprocessing

environment to the extent that it may be desirable as a succinct lar.guage for

writing operating systems. Here, we demonstrate the feasibility of

implementing a distributed interpreter for Concurrent Prolog using traditional

programming tools under a multiprocess structuring methodology. We will

discuss the considerations that must be made in a distributed environment and

how the constructs of the language may be implemented. In particular, several

subtle pitfalls associated with the implementation of read-only var,~bles and

the propagation of new bindings will be illustrated. In addition, a

modification to Shapiro's treatment of read-only variables is propcsed in an

attempt to "clean up 11 the semantics of the language.

(The discussion will centre around a primitive version of an inter;::"'eter for

the language written in Zed (a language similar to C) on an Unix-like operating

system, Verex. Although a brief introduction of Prolog and Concurrent Prolog

will be given, it is assumed that the reader is familiar with the paper A Subset

of Concurrent Prolog and Its Interpreter by E.Y. Shapiro [Shapiro83].)

Abstract iii

The Design of a Distributed Interpreter for Concurrent Prolog

by

CHUN MAN TAM

B.Sc., The University of British Columbia, 1981

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SC I ENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Computer Science

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September, 1984

© Chun Man Tam, 1984

1

; i

1.0

1.1

Introduction

Motivation for Logic Programming

2.0 Sequential Prolog

2.1 Procedural Semantics of Prolog

2.2 Declarative Semantics of Prolog

2.3 Associated Problems with Prolog

3. 0 Introducing ... Concurrent Prolog !

3.1 Guards, Clean Up These Cuts!

3.2 Read-Only Variables

3.3 Perpetual Processes

4.0 Overview of Target Machine/Environment

5.0 Design of the Interpreter

5.1 Representation of Axioms

5. 1.1 Compacted Representation of Axioms

5 .1. 2 Structure-Sharing

5.2 Unification Under Our Representation

5.3 Division of Workload Between Processes

CONTENTS

1

2

5

6

8

10

13

15

17

22

23

27

27

28

30

32

35

5.3.1 Goal Process (Or-Node) 35

5.3.2 Clause Process (And-node) 36

Contents v

5.4 Dealing with Successes/Coping with Failures

5.5 Mutual Exclusion Considerations

5.6 Read-Only Variables

5.7 Supporting Dynamic Databases

6.0 Evaluation and Conclusions

6.1.1 Possible Optimizations

6 . 1. 2 Summary

7. 0 References

vi

39

46

49

50

53

56

57

61

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

LIST OF ILLUSTRATIONS

1. Sample Prolog Code - Append (listl, list2, result).

2. Comparison of (P->Q) with (~P or Q)

3. Sample And-Or Solution Tree

4. Concurrent Prolog Equivalents of A Conventional Language

5. Sample Axiom for Concurrent Prolog

6. Example of the Commit Operator

7. Verex Communication Primitives

8. A Lisp CONS-cell

5

7

7

14

16

17

24

28

Figure 9. Compacted/Contiguous Representation of Axioms 29

Figure 10. Structure Sharing: Skeleton and Variables of An Axiom 31

Figure 11. Reference Loops - Unifying Two Unbound Variables 33

Figure 12. Process Tree from An And-Or Tree 36

Figure 13. Deadlock: Broadcast by Parent Clause-Process 41

Figure 14. Deadlock: Broadcast by Reporting Process 42

Figure 15. Creating a Broadcast Server 43

Figure 16. Mutual Exclusion Problems of "Cross-Layer" Reference Loops 47

Figure 17. Publicizing References . 48

Figure 18. BNF description of Syntax Accepted by Current Interpreter 54

Figure 19. Performance Measurement on a Bounded-Wait Merge 55

List of Illustrations vii

viii

ACKNOWLEDGEMENTS

I would like to thank the many professors that I have had the pleasure of

meeting during my years at the University of British Columbia especially those

who have introduced me to the fields of logic programming and operating

systems. In particular, I would like to thank my supervisor, Dr. H. Abramson,

and A. Kusalik for their guidance and helpful comments in the researching this

thesis.

Acknowledgements ix

X

1.0. INTRODUCTION

There are currently three major classes of programming languages. These are:

1. Procedural (von Neumann) Languages

2. Functional Languages

3. Logic Programming

Procedural languages such as Pascal, Algol, Fortran, Cobol, and PL/I have

"side-effects" as their underlying theme.

• A variable is assi gned a value.

• A variable may be bound to zero or more values.

• A program is a description of a sequence of actions or procedures to be

performed (hence the name II procedural 11).

Functional languages (the most predominate being LISP) are based on Church's

Lambda-Calculus. They are (ideally) characterized by:

• No side-effecting

• Values return via functions only (rather than side-effects on "global"

variables)

• Exactly one value is returned by a function

• Programs resemble the definition of desired computations.

Logic programming languages are primarily based on predicate-calculus. Major

characteristics of logic programming include:

Introduction 1

• No side-effecting

• Programs resemble clauses/axioms of first-order logic and are simply

statements of facts.

• The computation of a program can be considered as invoking a mechanical

theorem prover to assert the desired goal.

• "Results" of a computation are obtained by instantiating the unbound terms

of a logical relation (predicate).

1.1 MOTIVATION FOR LOGIC PROGRAMMING

The major advantages of logic programming languages over the other two classes

can be seen by comparing the above list of attributes:

• Programs written in both functional and logic languages resemble the

definition of the problem rather than the algorithm from a procedural

language. Intuitively, it appears easier to state the definition of a

problem than to devise the algorithm to solve it.

• Since logic programs are simply lists of facts, they can be verified more

easily. One need simply examine each statement, independent of all other

statements, and decide whether it is a correct representation of the

domain. For a procedural 1 anguage, we must a 1 so understand a 11 the

inter-dependencies between each statement.

2

• A variable in a procedural or functional language may be assigned zero or

more times. It is the responsibility of the programmer to initialize any

variable before using it in a computation and to assure that variables are

not assigned inadvertently. In a logic program, a variable may be bound at

most once. Hence, we need not worry about some errant portion of code

invalidating a legitimate value. Furthermore, an axiom still holds even if

one of the variable is uninitialized; the result of the computation would

then be expressed as a relationship to the variable (eg.father(x), y+l)

rather than concrete va 1 ues such as John or 3.

• For those who have noted that the differences stated so far between a

functional language and a logic language are only minor ones, it is

suggested that logic programming is, in fact, more powerful. Since a logic

program 11 returns 11 values via arguments of a predicate, a 11 procedure 11 may

return a set of values whereas a function, by its definition, may return .
exactly one value. Also, since logic languages are simply statements, there

may be similar statements (each defining a specific case of the problem);

if more than one statement can result in the success of the goa 1 (i e.

multiple solutions), then the choice of statements is random. A goal

invoked several times may result in several indeterminate results.

As the desire for verifiable programs increases and the cost of computing power

decreases, logic programming is gaining much interest. Prolog (PROgramming in

LOGic) [Kowalski74] [Warren77] is a programming language which is considered

to fall into this category. This thesis examines the feasibility of applying

Prolog in a multiprocessing environment by implementing a distributed

Introduction 3

interpreter for a variant of the language, Concurrent Pro.log, introduced by

Shapiro [Shapiro83].

In the next chapter, an overview of Sequential Prolog is presented, including a

discussion of its bad points along with the good. Chapter Threeintroduces the

features of Shapiro's Concurrent Prolog. The target system, Verex, is described

in Chapter Four followed by Chapter Five which discusses the problems and

design decisions of the implementation. An evaluation of the interpreter is

presented with performance measurements in the concluding chapter.

4

2.0 SEQUENTIAL PROLOG

A program in Prolog [Kowalski74] [Warren77] [Nilsson80] is a set of

11 statements 11 of the form 1

P <- Ql & Q2 & & Qn.

and can be viewed in two ways:

1. as an implication rule where QI, Q2, ... , Qn are the antecedents and P is

the consequent ,

2. as a procedure declaration with Pas the head of the procedure and Ql, Q2,

... , Qn as the body.

Append (*listl, nil, *listl).

Append (*headl.*taill, *list2, *headl.*sublist)

<- Append (*taill, *list2, *sublist) .

Figure 1. Sample Prolog Code - Append (listl, list2, result).

In the above example, only the definition of append is given:

l

When the second list is empty, the result is simply the first list.

We wi ll use the syn tax from Prolog/MTS [Goebel80] and augment it where
necess ary. (The in f ix operator 11

•
11 is the con struct or predi cate which can

be thoug ht of as a co ncatenation symbol.)

Sequential Prolog 5

2. Otherwise, the new list is simply the head (or first element) of the first

list followed by the list formed by the concatenation of the tail (or

remainder) of the first list with the second list.

There were no statements instructing the interpreter how to construct a new

list. The definition of the problem~ itself the program.

2. 1 PROCEDURAL SEMANTICS OF PROLOG

From the programmer's point of view, there are two major differences between

Prolog and a procedural language:

1. There may be multiple "procedure declarations" with the same name. When a

procedure P is to be executed, a two-way pattern matching scheme called

unification is first used to pick which procedure is to be invoked. Then,

execution proceeds recursively with each 11 statement 11 in the body of the

chosen declaration. (The system is said to have resolved [Robinson65) from

the head of the clause to the system consisting of the terms in the body of

the clause.) If one of these statements causes program failure, the system

backtracks to the nearest decision point and a new choice is tried.

2. A formal argument of a procedure may either be an input parameter or an

output parameter even though there is no specific indicator (such as the

reserved word VAR in Pascal to designate a 11 value-result 11 parameter). The

choice need not be made in advance. Instead, the choice is determined at

6

procedure invocation, allowing some programs to be ran 11 backwards 11
• For

example, the procedure ADD (x,y,z) may be ran as

• ADD (1, 2, z) to yield a value of 3 for z

• ADD (x, 3, 5) to yield a value of 2 for x

• ADD (1, y, 1) to yield a value of O fory.

This two-way capability is a powerful one in that it turns uni-purpose

procedures into multi-purpose ones.

I P I .. p I Q I P->Q .. p or Q
I_I_ I_ I
I I I I
I T I F I T I T T
I T I F I F I F F
I F I T I T I T T
I F I T I F I T T
I
I Figure 2. Comparison of (P->Q) with (-.P or Q)
I

Top-Level Goal<- P (*x).

Database of Axioms

P (*x) <- Q (*x) & R (*x).

Q (1).

Q (2).

R (2).

R (3).
Q (1~

Figure 3. Sample And-Or Solution Tree

R (•x)

R (2i

Sequential Prolog 7

2.2 DECLARATIVE SEMANTICS OF PROLOG

Wearing our logicians' caps, the Prolog interpreter is a theorem prover working

on a a subset of first-order logic known as Horn Clauses. These are clauses

with exactly one negation. (Recall that P -> Q is equivalent to (~P or Q) as in

Figure 2 on page 7). Each clause or implication rule is a statement about what

is true about the domain at hand rather than a description of how ··to compute the

solution.

A 11 solution 11 is obtained by specifying a clause (possibly with unknowns) as the

goal and asking Prolog to find an instance of the unknowns for which the goal

can be asserted. Prolog must backchain from the goal using the "reverse" of

Modu s Ponens (implication). In order to assert the goal Q, in P -> Q, one must

assert P, recursively. If P can be asserted then Q must have a truth value of

TRUE otherwise TRUE-> FALSE yielding FALSE will invalidate the definition of

P -> Q as an axiom. On the other hand, if P cannot be asserted, we cannot

comment on the truth value of Q2
; FALSE-> TRUE and FALSE-> FALSE both yield

TRUE.

Thus, computation amounts to searching an And-Or Soluti on Tree (see Figure 3 on

page 7) for a path from the root to one of its leaves. Or-nodes indicate where

more than one possible axiom (disjunct) may contribute to the solution.

And-nodes of the tree 11 tie 11 together the conjuncts of an axiom. (For each

2

8

[Reiter79] suggests the use of the Closed World Assumption to treat the
failure to find a solution as negation and, thereoy, assigning the truth
value of FALSE to Q.

conjuct, a sub-path must be found spanning the height of the subtree rooted at

the And-node.) The tree is obtained by the following sequence:

1. Take the goal as the root (an Or-Node)

2. Find all axioms in the database whose heads are potentially unifiable with

the goa 1 and create an And-Node for each, 11 tyi ng 11 them to the root.

3. For each of these axioms, treat each term in its body as a new subgoal and

recursively create subtrees for them. If an axiom does not have have a

body, it is known as a base or ground axiom and forms a leaf of the tree.

(The tree is, of course, an implicit one; that is it is never generated but is

implicit in the execution of the interpreter with conjunctions implied by

sequential solution of brother-goals and disjunctions implied by

backtracking.)

Sequential Prolog 9

2.3 ASSOCIATED PROBLEMS WITH PROLOG

So far, I have claimed Pro log to be a "logic programming language". In

reality, it is only a good approximation. In order to have true logic

programming we need true parallelism in trying all choices (disjuncts) and in

solving all conjuncts. Prolog is merely a sequential simulation of this

process. It accomplishes disjunction by backtracking (where necessary) and

conjunction by sequentially resolving each conjunct. Whenever a disjunct

proves unsuccessful, any bindings made by that path is undone and an

alternative path is tried. (As in first order logic, a disjunction fails when

all of its disjuncts fail.) After solving one conjunct, the next subgoal in

the conjunction is attempted. (A conjunction fails when any of its conjuncts

fails.)

This sequential simulation can either be inefficient using breadth-first

searching or susceptible to non-termination (even when the goal is provable!)

if depth-first searching repeatedly picks an errant path as its first choice.

The strategy employed by Prolog is that of depth-first search supplemented by

some control constructs to eliminate some of the duplication of effort between

axioms. These constructs are the "cut" operator, a specific order of execution

and the introduction of side-effects by allowing creation / destruction of

axioms:

Order of Execution Prolog has chosen to define a specific order of execution:

the database is searched in order of axiom entry and

conjuncts are solved from left to right. The specific

search order allows knowledge gained from one axiom to

10

11 flow 11 to another in the database. Consider two axioms

P <- Q & R and P <- -.Q & R, in that order. If Q causes

failure, the second axiom will still necessarily solve ~Q.

By relying on the order of search, the second axiom may be

rewritten as P <- R to avoid the duplication of effort.

Axiom Creation and Destruction

The "Cut" Operator

Axiom creation and destruction in Prolog is analogous in

power to the inclusion of EVAL as a program-callable

function in Lisp. In an interpretive system, they allow

using user-generated data interchangeably with program

source code. In Prolog, however, a major use of these

constructs is to maintain state information - using axioms

as a form of static variables and defeating the advantage of .
the single-binding logical variable.

The 11 cut 11
(

11
/

11
) operator allows the program to direct the

execution of Prolog. Since the Prolog interpreter usually

has an II If I can so 1 ve the prob 1 em, don I t worry about how I

go about computing it II attitude, a major objection to the

language is that it lacks the control which is essential in

exploiting the knowledge built into the programs. Thus,

the cut is used to give more control back to the programmer

and to direct the interpreter away from irrelevant choices.

Sequential Prolog 11

On encountering a 11 cut 11
, all backtracking information is

discarded. All choices made at the time will never be

undone. The interpreter commits itself to the current

search path. Traditionally, the 11 NOT 11 predicate has been

implemented using the 11 cut11 and relies on the ordering of

axioms as:

Not (*x) <- "'x & / & FA! L.

Not ("'x) .

If x can be asserted, then the interpreter commits to the

choice of the first 11 Not 11 axiom and subsequently causes

failure. Otherwise, the second is chosen and the "Not 11

succeeds.

We have discussed the common usages of each of the three control constructs but

not only are they beyond the scope of first-order logic, their use

significantly reduces the verifiability of the software. They force the

programmer to correctly sequence axioms and to understand the rel at i onshi ps

between one axiom and another. Worst of all, the intent of a 11 cut 11 is often

obscure and eliminates the 11 two-way 11 aspect of procedures. In addition, these

constructs rely on assumptions which virtually eliminate the possibility of

porting the same program to a distributed system.

12

3.0 INTRODUCING ... CONCURRENT PROLOG!

To address some of the criticisms of Sequential Prolog, Shapiro, in his paper A

Subset of Concurrent Prolog and Its Interpreter, introduces a variant of Prolog

which is endowed with the elegance of multi-process structuring and raises the

possibility of using a logic-programming language for the development of

operating systems. Below, we briefly examine the properties of Concurrent

Prolog and how it qualifies for its intended role of a systems programming

language .

Shapiro lists four essential elements for a concurrent programming language:

concurrency, communication, synchronization, and indeterminacy. Concurrent

Prolog supports these as follows:

Concurrency

Communication

By simultaneously solving the terms of a conjunction. Each

term in the body of an axiom can be regarded as a

program/procedure invocation. By executing each program with

a separate (possibly, virtual) processor, each becomes a

Concurrent Prolog process.

Via the unification of shared variables. When a term with an

unbound variable, say P(x), is unified with a term having a

constant as the corresponding argument, say P(3), information

is being communicated from the latter process to the former.

Synchronization Is accomplished by the introduction of Read-Only variables .

A process having a read-only variable must block itself until

Introducing ... Concurrent Pro log! 13

the variable has been instantiated by some other process. (We

will discuss read-only variables further in a following

section.)

Indeterminacy By simultaneously exploring all paths which may provide a

solution to the goal. Assuming random allocation of

processing power (due to different speeds of actual

processors, random processor allocation, etc.) and multiple

solutions to a goal, the actual solution returned is a

function of time.

14

Procedure

Procedure Call

Binding Mechanism

Process

System

Process State

Communication

Process Synchronization

Axiom

Solving a Goal

Unifi cat ion

Unit Goal

Conjunction of Goals

Value of Arguments

Unification of Shared Variables

Read-Only Variables

Figure 4. Concurrent Prolog Equivalents of A Conventional Language

3.1 GUARDS, CLEAN UP THESE CUTS!

We have already mentioned that one of the biggest criticisms of Sequential

Prolog is the use of the cut symbol (11
/

11
). Its range and asymmetry often lead to

obscure programs. Shapiro recognizing that the control aspect of the cut must

be included in a concurrent language, to help synchronize processes, decided to

provide a cleaner version called the commit operator (11 111
). An example on the

use of the commit operator is given in Figure 6 on page 17.

The commit operator is patterned much after the guarded-if of [Dijkstra76]. It

splits the body of an axiom into two parts: the guard and the main body

(Figure 5 on page 16). In trying a particular axiom as an alternative, the

interpreter must solve its guard before solving the body and once the guard of

one of the disjuncts is solved, all brother-disjuncts are abandoned . .

The reason that the commit is a cleaner operator than the cut is due to its

symmetry. The asymmetry appears in two forms:

1. In Prolog, choices of a disjunction are tried sequentially (usually from

left to right in the current subtree). When the cut operator is

encountered, Prolog commits to the current path. All branches on one side

of this path have already failed and the cut "kills" the remaining branches

on the other side.

Introducing ... Concurrent Prolog! 15

H <- GI & G2 & ... & Gm I Bl & 82 & ... & Bn.

Here His the head of the clause,

GI, G2, ... , Gm are the guards of the clause, and

Bl, 82, . . . , Bn are the terms in the body of the clause .

When no guards are required, the axiom may be written as

H <- 81 & 82 & ... & Bn.

Figure 5. Sample Axiom for Concurrent Prolog

In Concurrent Prolog, all guards are executed in parallel and the commit

operator effectively 11 kills 11 the branches on both sides of the current

path.

2. A cut has an effect only when it is executed. If two alternatives exist

with only one containing a cut, the second alternative is, in effect, a

default. It is this default assumption that renders the program useless in

a concurrent system. Because of the differences in (virtual) processor

speeds, the default may be mistakenly chosen even if the first alternative

would have succeeded. The commit operator, however, forces every

alternative to be guarded by some (possibly empty) clause. The success of a

goal will always necessitate the elimination its brother alternatives.

16

Database

1. a (*x) <- bl (*x)
2. a (*x) <- b2 (*x)
3. bl (*x) <- d (*x)
4. b2 (*x) <- d (*x)
5. d (1).
6. C (1).

Top-Level Goal

<- a (*x).

C (*x).
C (*x).
fail.
true.

Figure 6. Example of the Commit Operator

In solving the top-level goal in Concurrent Prolog, resolution
may proceed with axioms Al and A2 in parallel. The guard in
Al must be reduced using axiom A3 while the guard in A2 must
use axiom A4. Suppose A3 solves d (*x) with d (1) before A4
can solve its guard. A3 commits but the scope of committment
is local and the choice between Al and A2 is NOT affected.
Thus when A3 fails and causes the failure of Al, the
interpreter is free to solve the system using A2.

As an analogy, 11 A cut is to a commit as an if-then-else is to a guarded-if".

Dijskstra argues that every alternative should be associated with a guard

instead of having a default philosophy of the if-then-else. He points out that

the lack. of symmetry of the i f-then-e 1 se may 1 ead to errant choices in

concurrent system. Here, Shapiro uses the same arguments for the use of the

commit operator over the cut.

3.2 READ-ONLY VARIABLES

The second extension to Sequential Prolog is the introduction of read-only

variables. A variable designated as read-only is the synchronization mechanism

Introducing ... Concurrent Prolog! 17

between two processes. Read-only variables classify processes into writers and

reader s . A process trying to unify an unbound variable in another process with

a value can be thought of as a writer process while the latter process as the

reader. The read-only annotation ("?") indicates that the current process

cannot write to the variable. The reader process must wait until the variable

has been instantiated by some other process before proceeding further with the

unification.

Formally, if X? is a read-only variable and Y is any variable then Shapiro

defines the unification of X? with Y as follows:

1. If X? has been instantiated 3 and Y has been instantiated then unification

proceeds as usual with the bindings of X and Y.

2. If X? has been instantiated and Y unbound then Y becomes instantiated with

the binding of X.

3. If X? is unbound and Y has been instantiated then unification fails until

X? becomes instantiated by some other process sharing X without the

read-only annotation.

3

18

In the context of read-only variables, we only require that the predicate
name or principal functor be determined for a variable to be considered
instantiated . This was a design decision in Concurrent Prolog to allow for
partially determined messages.

When two variables are uninstantiated but are bound to each other, they are
said to reference each other.

4. If X? is unbound and Y is unbound then unification succeeds with X and Y

referencing 4 each other. Moreover, Y inherits the read-only property from

X? .

Two points need to be considered with this definition. First, the definition

makes the success or failure of unification time-dependent. Unification may

fail at a given time due to read-only variables but may succeed at a later time.

In actual practice, a process may unify the two terms repeatedly or eliminate

the busy-wait by implementing the third case in a manner such that the process

owning Y must block or suspend until X? has been instantiated.

Second, the definition of the last case (X? unbound with Y unbound) is a

somewhat controversial one. It states that after unifying 'a term such as P (x?)

with the head of

P (*y) <- G (*y) . . . I
the variable y i nherit s the read-only property and the interpreter is allowed

to continue to reduce the remainder of the axiom. Several questions concerning

this scheme need to be addressed:

• If the primary intent of read-only variables is to synchronize processes by

suspending a process until all of its read-only variables are instantiated,

is it desirable to allow unification with an unbound variable to succeed

and continue?

• Applying Shapiro's definition recursively, if the variable y later becomes

bound to some other unbound variable, the latter variable should also

Introducing ... Concurrent Prolog! 19

inherit the read-only property. Is it desirable to propagate the read-only

property throughout the solution tree?

• Shapiro suggests the use of read-only variables in the head of axioms

causing these variables to be strictly output variables. (Such axioms are

eliminated from further consideration if the corresponding argument in the

goal is a literal.) That is, an axiom of the form

20

p (x?, *y) <- ...

may only be invoked by a goal of the form

<- P (*x, *y) . or

<- P (*x, literal).

BUT not of the form

<- P (literal, *y).

At the top-level this strategy may be acceptable but elsewhere in the tree,

a read-only variable in the head of a clause may cause the read-only

property to propagate (possibly several levels) up the tree, not only down

it. The upward propagation may cause a process which was previously

unblocked to become suspended. For example, if in

P (*x) <- Q (*x) & R (*x).

Q (*y) <- s (*y).

S (z?) <-

R (1) .

<- P (*x) .

Q (*x) is solved prior to R (*x) being solved, then the process trying to

unify R (*x) with R (1) will suspend due to the variables y and x

inheriting the read-only property from z. Is this form of "dynamic

suspension" desirable?

It is likely that the answers to all of the above questions are all 11 N0 11
•

• It is much simpler to implement a unification algorithm that suspends when

attempting to unify an unbound read-only variable with .another unbound

variable; there is no need to propagate the read-only property up or down

the tree.

• The concept of suspending the process until the instantiation of the

read-only variable is a more natural definition.

• It is not clear what forms of problems require the additional properties

specified by Shapiro.

• More important, one of the major virtues of logic programming is that one

statement or axiom may be inspected independently of the other axioms in

the database. One should be able to determine whether the unification of a

term containing an unbound read-only variable with the head of a given

axiom will result in suspension without having to "trace" the outcome of

the axiom.

Hence, the remainder of this paper shall replace the last part of Shapiro's

definition with

• If X? is unbound and Y is unbound then unification suspends until X?

becomes instantiated.

Introducing ... Concurr~nt Prolog! 21

3.3 PERPETUAL PROCESSES

In Sequential Prolog, a primary use of axiom creation and deletion was to save

state information. In a concurrent language, this scheme is no longer

necessary; a process that stays activated throughout the life of the program

never 11 forgets" its own state. (The operating system would, at least, restore

the state when it reactives the process.)

In Concurrent Prolog, a perpetual process is simply an axiom that resolves to

itself with possibly different arguments.

eg. P (x.y) <- P (y).

Any local variables would then be the state of the process. The resolution of

the original axiom can be considered to be a state transition. (In our example,

a state transition takes place in which the state changes, say, from x toy.)

With such a simple, well-understood construct, Concurrent Prolog can thus be .
extended to capture the elegance of an object-oriented language and the

definitive power of state transition diagrams.

22

4.0 OVERVIEW OF TARGET MACHINE/ENVIRONMENT

It has been suggested that Concurrent Prolog can be used as a multi-processing

systems programming language. In order for this idea to become reality, the

interpreter will necessarily require and provide the same multi-tasking

capabilities found in conventional operating systems. Because of this

systems-language/operating systems duality, it may be advisable to construct

the interpreter using the same design principles!

One school of thought [Cheri ton79 .1,81] advocates the use of mult ;-process

structuring:

"Multi-process structuring is the use of several processes to structure

programs. The term process is used to mean an entity that executes

actions sequentially and deterministically. A process can logically

execute concurrently with other processes "

The Verex operating system [Cheriton79.2], a descendent of Thoth

[Cheriton79.l], is based on this design principle. It provides inexpensive or

light-weight processes:

• low overhead process creation/ destruction,

• low overhead process switching, and

• inexpensive interprocess communication.

Overview of Target Machine/En-vi ronment 23

Send (id, message)

Sends the message to the process identified by
id and blocks until the destination process
acknowledges with a reply

id= Receive (message)

Blocks until a message is received from any process
and returns the sender 1 s id and the contents of the
message buffer

id= Receive (message, specific_id)

Similar to the above except the invoking process
is blocked until a message is received from the
specified id

Reply (message, id)

Acknowledges the sender identified by id with
the contents of the invoker 1 s message buffer (the
invoker does NOT become blocked)

Forward (message, from_id, to_id)

Forwards the message received from from_id
to the process to_id. To the process
to_id, it would be as if from_id had
sent the message directly (Note that the invoking
process may have alter the message before forwarding it.)

Figure 7. Verex Communication Primitives

Furthermore, Verex provides process communication via blocking messages (see

Figure 7 on page 24). Processes communicate with fixed-length messages; the

sender of the message is blocked until the receiving process acknowledges the

message with a reply. Cheriton argues that this is a more natural and more

powerful form of interprocess communication:

• Other than for synchronization purposes, processes often have a

requirement to communicate data. On non-message-based systems, one must

24

first use semaphores, etc. to synchronize the readers and writers of the

message buffers and then perform the actual transfer of data, making

communications awkward. It is more natural to associate a message with the

synchronization mechanism.

• The Verex communication scheme can, in fact, be used to simulate

semaphores. Hence, it is as powerful as a semaphore-based scheme.

• Blocking-Sends are a natural part of the Remote Procedure Call or Server

concept. A conventional program wishing a subtask to be performed invokes a

procedure; a Verex process wishing the help of a server simply sends a

message and is unblocked when the server has fulfilled the request with a

reply.

• Since the sender is automatically blocked, there can be at most one

outstanding message per process. 5 The operating system need not concern

itself with the problems of dynamically allocating new message buffers.

By exploiting low-overhead processes, it has been demonstrated that Cheriton's

concepts are both feasible and attractive:

• [Cheriton79.l] designed and implemented the portable multi-user operating

systems Thoth and Verex.

• [Lockhart79] furthered the work of Cheriton, by designing a verifiable

system kerne 1 .

5 Concurrency is accomplished via multiple processes rather than multiple
messages.

Overview of Target Machine/Environment 25

• [Deeri ng83] mapped the state-trans it ion di a grams of the X. 25 protocol

specifications onto Verex processes, and thus significantly improved the

verifiability of his implementation.

• [Boyle82] designed and implemented a distributed version of Verex and

showed that Cheriton's design can indeed be implemented on a

multi-processor system. In fact, a complete distributed version of Verex,

called the V-system, was implemented at Stanford [Cheriton83].

For the implementation of the Concurrent Prolog interpreter, the Verex system

seems well suited for the task. It's two most attractive features, inexpensive

creation/destruction and low-overhead process switching makes the system ideal

for simulating the breath-first searching necessary for Concurrent Prolog.

26

5.0 DESIGN OF THE INTERPRETER

Two major criteria govern the design of the Concurrent Prolog interpreter:

1. Recognizing that a distributed system will necessarily incur more

overhead, due to process scheduling and process switching _for example, the

interpreter must minimize storage and execution time in order to provide

the maximum computing power for the resolution process.

2. The design must not preclude the interpreter from being distributed over

several physical processors and multiple address-spaces.

5.1 REPRESENTATION OF AXIOMS

When designing any database, the representation of the data and its

relationships is of primary concern. In the case of Concurrent Prolog, the

problem is even more critical (if we are to consider the requisite duplication

of data across multiple address spaces). We must find a representation which

will optimize both storage requirement and execution time.

Usually, it is a trade-off between execution speed and memory size: increasing

the amount of redundant data and increasing storage needs will usually increase

execution speed, and vice versa. Luckily, there are at least two optimizations

available to us.

Design of the Interpreter 27

5. 1. 1 Compacted Representation of Axioms

COR ptr

info

~
Figure 8. A Lisp CONS-cell

First, we can improve on the representation of tree-like structures such as

Lisp expressions and, in our case, Prolog axioms by converting explicit

information to implicit knowledge. In particular, explicit CAR and CDR links

(Figure 8) to the next item should be replaced by contiguous storage of

information whenever possible. In this implementation of Concurrent Prolog,

such links have been removed where possible. Succeeding elements are placed

contiguously; the cell at position i has an implicit CDR pointing to position

(i+l). The structure normally pointed to by the CAR of a cell is now inserted

11 in-line 11
• For a single-cell element, nothing has changed. But sub-trees now

appear in-line with a indicator at the front of the sub-tree pointing to the

cell immediately following the last cell occupied by the sub-tree (see Figure 9

on page 29). This compaction scheme reduces our overhead in three ways:

1. Storage is not wasted for links.

28

P (x, Q (y, z)).

Lisp Representation:

Compacted Representation:

p

Q

X Q

y z

y z

Figure 9. Compacted/ Cont i guous Representation of Axioms

2. Execution cycles are not required to dereference links (nor to page-in a

larger workina set under a virtual memory system).

3. Main memory becomes less fragmented. Allocation is done in blocks instead

of in small cell-size chunks. (Less fragmentation will likely result in

increased performance of any garbage-collection scheme and decrease paging

activity.)

Design of the Interpreter 29

5. 1.2 Structure-Sharing

The second improvement to our representation is a technique known as

structure-sharino (see Figure 10 on page 31). This is a scheme developed by

Boyer and Moore [Boyer,Moore72] [Warren77] for Sequential Prolog which is also

applicable to Concurrent Prolog in minimizing both storage and execution time.

The technique divides an axiom into two parts: the invariant part (or the

skeleton of the axiom) and the variables of the axiom.

The variables in the skeleton are replaced by 11 place-holders 11
• The first

unique variable is replaced with a 11 011
, the second with a 11 111

, and so on. The

replacement numbers are, in fact, offsets into a vector of the variables of the

axiom. So, an axiom fs now represented as pointers to two vectors: a skeleton

vector and a vector of variables. This representation has the following

advantages:

• The separation of skeleton and variables allows the non-changing skeleton

to be shared between processes residing in the same address space; thus

storage is reduced by not having to duplicate axioms with common skeletons.

• When one of the variables become instantiated, only one location has to be

updated even if the variable appears more than once in the axiom. Also,

addi ti ona 1 storage is not required for subsequent appearances of the

variable.

30

Axiom P (*x) <- Q (*y) & R ("'::) & S ("'x).

Skeleton

Variables I P (□) <- Q (1) & R (2) & S (□i I

... -
--+

r

1 r

0

1

2

Figure 10. Structure Sharing : Skeleton and Variables of An Axiom

• If the duplication of an axiom is necessary within the same address space,

the requirements in both storage and time is proportional only to the

number of variables in the axiom. The cells in the skeleton need not be

duplicated, only the adaress of the skeleton need to be copied.

Design of the Interpreter 31

5.2 UNIFICATION UNDER OUR REPRESENTATION

For the most part, unification is simply two-way pattern matching:

• Two atomic terms match only if they have the same value . (Or in our case,

each atomic value is given a unique id/address and we need only match

id Is.)

• Two structures (eg. cons(a,b)) match only if each corresponding

sub-structures or sub-terms match recursively.

• If one of the terms is an unbound variable and the other is an atomic value

or a structure, then that value is assigned to the variable. (For a

structure, the actual value assigned may simply be a pointer/identifier of

the form

Struct (struct_num, offset)

or a gg [Lee84] of the form

Struct (process_id, struct_num, offset)

where process_id is the identifier of the proces~ attempting to solve the

structure in question, struct_num is a unique identifier for an axiom and

offset is the position of the subterm relative to the beginning of the

structure.

• If one or both of the terms is an instantiated variable, then unification

proceeds as above using the binding of the variable(s).

The only case that normal pattern-matching fails to handle is when both terms

are unbound variables.

Consider the terms:

32

Unifying P (*a, *b, *b) with P (*c, *c, 2) would yield

a = Ref (b)

b = Ref (C)

0
C = Ref (a)

match a with c match o wt th c

and finally a=b=c=2

I
I
l

1mpl1c1t reference i

oetween a ana o

Figure 11. Reference Loops - Unifying Two Unbound Variables

P (*a, *b, *b) and

P (•c, •c, 2).

We would like unification to yield a=2, b=2, and c=2 but (if matching is done in

left to right order) we would need to unify two unbound variables. We need a

pattern-matcher that would 11 remember 11 the relationships between a, b, and c.

Initially, a references b, then a and b reference c. If any one of these

variables subseQuently become instantiated, then all three variables need to be

instantiated. A straight forward implementation is to link the three variables

together into a circular-list, a reference-loop, by assigning indicators such

as Ref(b)', Ref(c), and Ref(a) to variables a, b, and c, respectively (see

Figure 11).

' In the actual implementation, the variables would be represented similar to
that of a structure (eg. Ref (struct_num, offset)).

Design of the Interpreter 33

When a variable in one reference loop later becomes bound to a variable in a

different reference loop, the two loops are merged into one single loop. The

ordering within the new loop is unimportant but a self-reference test must be

made to ensure that they are indeed two distinct loops. As an example, unifying

P (*a, "'a) with P (*b, "'b) will yield "two" loops joining~ and band an

attempt to merge the loops will likely require a great deal of computer time.

One should note that a loop is preferred over a simply-linked list such as

those used in [Warren77], [Levy84], and [Lee84]. When one of the variables in

the loop becomes instantiated, a traversal of the loop will make sure all

variables in the loop are updated. In a simply-linked list such as

P? -> Q -> R, if a variable in the middle of the list, say Q, gets instantiated

only the variables in the tail of the list are updated. P, in this case, will

still not have a binding and may lead to deadlock if the remaining variables

have read-only annotations.

34

5.3 DIVISION OF WORKLOAD BETIVEEN PROCESSES

A logical division of tasks is to take the And-Or solution tree (described in a

previous section) and create a process for each node in the tree (see Figure 12

on page 36). For each And-node (conjunction of the terms of a clause), create

an And-process (or Clause-orocess). For each Or-node (a choice of solutions in

solving a goal), create an Or-process (or Goal-p ro cess).

5.3. 1 Goal Process (Or-Node)

When invoked with a·Concurrent Prolog process (a term in Sequential Prolog), a

goal-process executes as follows:

1. It searches through the axioms database for axioms whose head is

potentially unifiable with the given term. The searching algorithm may be

expedited using the predicate name or principal functor as the primary key

and the arity of the predicate as the secondary key.

2. For each of these axioms, it creates a clause-process and invokes it with

the given term and the trial axiom.

3. It then waits for one of the clause-processes to commit (i.e. solve the

guard clause).

4. If one of the clause-processes does commit, then the goal-process waits' for

this child to successfully solve the body. If and when the child process

reports success, the goal process, in turn, reports success to its parent.

Design of the Interpreter 35

I
I
I
I
I
I
I
I
I
I
I
I Figure 12.
I
I
I

P ("Y) Clause Process

Q (1i Q (2~

Clause Processes

Process Tree from An And-Or Tree: (compare with Figure 3 on

page 7)

5 . At any time, a child process which does not contribute to the solution of

the goal is destroyed and resources allocated to it reclaimed.

5.3.2 Clause Process (And-node)

A clause process is responsible for the solution of a specific term, T such as

cons (a,b), with a specific axiom,

H <- Gl & G2 & ... & Gm Bl & 82 & ... & Bn.

where His the head of the axiom, Gl through Gm are the guards, and Bl througn

Bn are the terms of the body.

36

1. It first makes local copies of T and the given axiom, so that any bindings

it generates will not affect other brother clause-processes. Note that if

one of the variables references another structure which has unbound

variables, that structure must also be copied. Care must be taken to avoid

recursively copying the same axioms. For example, if we unified

1. P (*a, Q (1)) . with

2. P (R (1) , *b) .

variable a would be bound to a subexpression within axiom Al while variable

b would be bound to a subexpression within axiom A2. If the implementation

copies the entire axiom instead of only the variables in question, then a

loop exists between Al and A2. and a naive implementation would try to

create copies of Al and A2 indefinitely. A simple solution is to modify the

copying mechanism to return a mapping between original axioms and their

copies. Prior to allocating a new copy of an axiom, a check. of the current

map must be made to determine whether the axiom has already been

duplicated. (More on the use of the map in the Mutual Exclusion section.)

2. It tries to unify T' with H', then for each of the guards, it spawns a

goal-process.

3. When all of the goal-processes report success, the clause-process commits

and reports to its parent goal-process.

4. After solving the guards, a goal-process is generated for each of 81 1

through Bn' and the clause-process again waits.

Design of the Interpreter 37

5. When all of its children have reported success, it reports back to its

parent. Otherwise, when any child fails, it reports failure.

38

5.4 DEALING WITH SUCCESSES/COPING WITH FAILURES

If a goa 1-process commits or terminates successfully, the parent

clause-process must make public any instantiations made by the goal-process.

First, the scratch-copy from the goal-process must be unified with the global

copy from clause-process. Here, only the variables need be unified but direct

copying is not sufficient: a brother goal-process may have already instantiated

a variable to some particular value and this value must be matched with those

from the reporting process for consistency. If unification fails, then all

child goal-processes must be destroyed along with the failure of the

clause-process.

If unification succeeds, any new information must be made public to ALL the

descendents of the clause-process. In addition, if the success of the reporting

process causes the clause-process to commit or to complete then a report must, .
in turn, be made to the parent of the clause-process.

The problem of broadcasting new instantiations is not a trivial one. Suggested

solutions include:

Ignore Broadcasting All-Together

We may choose to avoid broadcasting and allow the descendents of the clause

process to continue with old information; when descendents commit then let

unification filter out incompatible solutions from conjuncts as failure of the

7 This is the same solution (called "Delayed Propagation") suggested by
[Levy84].

Design of the Interpreter 39

clause. 7 On the surface, it seems that the only draw back to this scheme is late

detection of inconsistent bindings. But this solution will only work if there

are no read-only variables. With the introduction of read-only variables, this

scheme may lead to deadlock. For example, if the axiom at the clause-process is

P (*a)<- Q (*a) & R (a?).

and the only axioms that are potentially unifiable with Q and Rare

Q (2) . and

R (2).

We would like the resulting computation to succeed with a=2. But when Q commits

with a=2, the clause-process updates its copy of a and continues waiting for R

to finish computing but by the definition of read-only variables, the

goal-process solving R(a?) remains blocked waiting for the instantiation of a?

before continuing.

Let the Parent Clause-Process Handle the Broadcasting

When a goal-process reports with new information, the clause-process can first

update the global copy of the variables and then signal each of its descendents

(except for the one that initiated this chain of actions) to update their

copies. The problem is again one of deadlock. If two child processes report

simultaneously, both would be blocked waiting for reply. The child that is

serviced first is happy but when the clause-process tries to broadcast to the

second child, both child and parent become blocked waiting for each other to

reply (Figure 13 on page 41)

40

I
r

I. ,

-- --- '
I
I

0 Goal 0 Goal 0
I

Goal I

\ I /\ 1/\ I
I
I

Childl Child2 0,ildl Child2 Childl Chil02 I

Two C111lcJren Report Goal Replies to DeaOlOCK when I
I

At same Tlme cn1101 Goal Broadcasts I
to Ch1102 I _, Non-OlocKing Reply (Deadlock) I

> BlOCK1ng Send I
I
I
I

Figure 13. Deadlock: Broadcast by Parent Clause-Process I
I

let the Reoortino G~al-Process Handle the Broadcasting

The clause-process may supply the reporting child with a list of children to

signal. A similar situation as for the above scheme arises when two or more

goal-processes try to broadcast to each other (Figure 14 on page 42). The

problem is that information must be passed both ways: child processes must

report upwards and broaacast information must travel downwards. This necessity

violates the well-known rule-of-thumb (eg. [Lockhart79] [Deering82] in a Verex

environment) that only child-processes should use the blocking send primitive

and parent-processes should only use the non-blocking receive primitive to

communicate; that is, 11 send 11 up the process tree - never down.

Design of the Interpreter 41

I
I
I
! 0~ 0 Goal 0 I Goal
I /\ 1/\ \ I
I
i
I Childl Ct1ild2 Childl Ch1102 Chilcll Ctlil02
I cn11a1 Broaacasts I Two cnuaren Report Goal Replles to
I to cn110 2
I At same Time Chlldl

(Deadlock) l
I ► Non-blocK1ng Reply
I ~ Bl0CK1ng Sena I

I Figur-e 14. Deadlock: Broadcast by Reporting Process
I

Create a Broadcast Server

As explained in the previous scheme, the problem lies in messages being sent

both up and down the process tree. What is needed is a mechanism in which the

parent clause-process can initiate information down the tree without becoming

blocked. By exploiting the Verex philosophy of creating multiple servers, there

appears to be such a mechanism.

When a clause-process receives a report from a child, it creates a server

process. The broadcast server is given a list of processes and an updated copy

of the clause-process' axiom and is expected to broadcast to each of the given

processes in turn . The clause-process remains free to handle other tasks.

42

Let 1 s examine, again, the case of simultaneous reports. The clause-process

receives one of the reports, updates its axiom, unblocks the reporting child

and delegates the responsibility of broadcasting to a new server. It then is

free to accept a subseauent report and create a second broadcast server

(Figure 15 on page 43). The clause-process is not blocked waiting for

broadcasting to complete and neither is the reporting process. Even if multiple

broadcast servers exist at one time, no deadlock. can result since no process

issues a blocking send to these servers. It is the broadcaster that issues the

send primitive and all its receivers are guaranteed to become unblocked in a

bounded period of time (needed for a new server to be created).

Broadcasterl

0 Goal

I\
Childl Ch1102 Chlldl

Goal

\
Child2

Broaacasterl Broaocaster2

Goal 0
Childl ChJl02

Two Children Report Goal Repl ys Childl Goal Repl ys Child2

At Same Time and Creates Broadcaster! and Creates Broadcaster2

---~ Non-0l0Cl<lng Reply
_...,.►► BlocKlng Sena

Figure 15. Creating a Broaacast Server

cn1102 may now Receive

rrom Broaacasterl ana

Childl may Receive from

Broac:icaster2

Design of the Interpreter

I

I
I
I
I
I
I

. !
I

l
I
I
I

I
I
I
I
I
I
I
I
I
I
!
'

43

Propaoation By Request

Yet another possible solution [Levy84] [Lee84] is to broadcast only to

processes which have been suspended or have child-processes suspended waiting

for the instantiation of a read-only variable.

Levy's scheme employs a queue of read-only variables. Whenever a process must

wait for the instantiation of a variable, it first puts a request in the queue

with the variable's identifier and its own process identifier and then suspends

itself. When a process instantiates a read-only variable, it must 11wak.e-up 11 all

processes associated with the variable.

Lee suggests that a process should make a direct request via a 11 need-binding 11

message to its parent.

• If the parent's copy of the variable has been instantiated, it will allow

the requesting process to continue with the new bindings.

• If the variable is unbound and the variable has the read-only annotation,

then the parent process waits until one of its other committing

child-processes instantiates the requested variable.

• If the variable is unbound and the variable is non-read-only, then the

requesting process is allowed to continue but is required to poll the

parent until the variable becomes instantiated.

44

• Finally, if the variable references a variable higher-up in the process

tree then the parent is forced to issue a need-binding message of its own.

Either scheme will probably work ... prov1ding enough book-keeping information

is available. Consider the system of processes

1. p (*x, *y) <- Q (*x, *y) & •.••

2. Q (*z, *z) <- R (z?) &

3. R (1) •

4. <- p (*x, *y).

In trying to unify R (z?) with R (1), process 3 sends a need-binding message for

z to its parent, process 2. But since z references both x and y, it now must

send a need-binding message for instantiation of either of x or y. Continuing

up a "degenerate" tree, the overhead in book-keeping will match that of using a

broadcast server.

Design of the Interpreter 45

5.5 MUTUAL EXCLUSION CONS10ERATIONS

In the two previous sections,it was mentioned that a scratch copy of the axiom

was made by the clause-process. The procedure was necessitated by the need to

keep uncommitted values local to the trial process. A more general problem,

when dealing with~ multiprocessing system, is mutua l exclu sion - the problem

of updating shared data.

Ignoring the problems of multiple address spaces, there is little need to

duplicate the axioms database. Normally, there is no mutual exclusion problems

associated with the database, since it is read-only. Additions are performed

usually at the shell- or top- level when no clause- or goal- processes are

present. But when we begin allowing Concurrent Prolog programs to generate new

axioms, we would then need to introduce a database server or associate some

mutual exclusion mechanism (eg. semaphores) with the axioms to synchronize the .
creation and reading of axioms. We will examine this topic further in a later

section .

A more pressing problem is the mutual exclusion of the scratch-copy axioms

between clause- and goal- processes. Consider the conjunction

46

P (*a) & Q (*a) being committed with the two axioms

P (*b) <- Assign (*b, 2). (note empty guard)

Q (*c) <- Assign (*t:, 3). (Assume Assign instantiates the first

variable with that of its second argument.)

p (-a) <- ...
Goal Process l

Q (-t>) <- ..•
Goal Process 2

After Goal Processes
Commit

Figure 16. Mutual Exclusion Problems of "Cross-Layer" Reference
loops: If both Goal Processes 1 and 2 commit and their local
copies of x are linked together as a reference loop, the
variable 11 x11 becomes 11 shared 11 by all three processes and
mutual exclusion mechanisms must be incorporated to prevent
simultaneous updates to x.

In theory, both (empty) guards are solved simultaneously. We can remove the

obvious conflict by making the parent clause-process (at and-node) serialize

the two committals to yield a reference loop of a, b, c. But by creating an

explicit loop, we would then be vulnerable to concurrent updates of the loop by

the two child "Assign" goal-processes (see Figure 16). One possible solution

requires that we associate a semaphore with each loop and store its id in each

cell of the loop. Every update and query must first secure the semaphore for

this particular loop.

An alternative to such a complex mutual exclusion scheme is to eliminate the

critical section (the loop) all-together by removing interorocess links. In

the process of removing interprocess links, however, we must be careful not to

remove intraorocess links. Consider the following:

1. P (•x, "'y) <- Q ("'x, •y) & R ("'y) .

Design of the Interpreter 47

2. Q(*x,*x).

3. R(l).

4. <-P(*x,"y) .

We would like the result to be P (1,1). Hence, in unifying the local copy of

Q (*x,*y) in axiom Al with Q (*x,*x) in axiom A2, we must keep the intraprocess

links between *x to *yin Al. We must use the mapping between original axioms

and their duplicates (obtained from the copying mechanism) to reproduce any

local-copy to local-copy references in the global copy (Figure 17). Only

references that can be translated using the 11 copy-map 11 should be duplicated.

Any other references should be ignored.

I
I
I

Before Publicizing

I o c
I
I o <
I
I
I Q (
I

*x,

*XI '

*x,

*y)

*y'

*x

I Figure 17.
I

48

X y

) x'---- y'
\ I

\/
) X

Publicizing References

After Publicizing

X ---- y

x'---- y'
\ I

\/
X

5.6 READ-ONLY VARIABLES

Read-only variables have already been discussed in the implementation of

broadcast servers and the avoidance of mutual exclusion conflicts. Here, we

will try to tie up the loose ends of their implementation.

A process trying to unify an unbound read-only variable to some concrete value

must first wait for the variable to be instantiated. To eliminate busy-waits,

the process should somehow block itself until instantiation. An initial idea is

to have a process (such a Name-Server) be responsible for all read-only

variables. The owning process would send a request to the server to instantiate

the variable. The server would flag the variable as being requested. When some

other process instantiates the variable and recognizes the flag, it would send

a message to the server which would then unblock the original requester. The

problem with this suggestion is that because of mutual exclusion

considerations, cross-layer links have been removed. Unless a process shares

and instantiates the requested variable, the variable can never be reached via

a reference link and the requester will wait indefinitely.

The solution currently implemented is to make use of new information as soon as

it become available. When some other process instantiates a variable and

commits to it, its parent process will make the value public via a broadcast

server. The information will eventually filter down the tree to the process

owning the read-only variable (which is now waiting only for a message from a

broadcast server). If the message is not an instantiation of the read-only

variable, then the process continues waiting after updating its copy of the

axiom.

Design of the Interpreter 49

5. 7 SUPPORTING DYNAMIC DATABASES

As mentioned in preceeding sections, the database of axioms will usually be

static. Except for the initial loading of the axioms, we rarely require the

power of axiom-creation and destruction since state information may be

maintained via perpetual processes. Hence no mutual exclusion mechanisms were

needed for the database to synchronize accesses from multiple processes.

Once in a while, however, we would like to exploit the fact that data may be

used as part of the executable source code. For example, a professor may have

access to a Prolog interpreter but is instructing a course on a form of logic

which has a super-operator called 11 S11 which is simply a composition of the

normal logical operators. He requires an interpreter for a programming

language called 11 S_Logic 11 which will accept normal Prolog source plus the 11 S11

operator. One solution is to write the S Logic interpreter on top of the Prolog - .
interpreter. The S_Logic interpreter will need to read in an $_logic axiom,

expand the axiom wherever it encounters the 11 S11 operator, and then pass the new

axiom to Prolog. The S_logic interpreter will necessarily create new Prolog

axioms when it loads the S_logic database.

By allowing a program to dynamically create and destroy axioms, we now need to

synchronize the queries on the database with the addition and deletion of

axioms. In line with the Verex philosophy, we may create a Database Server to

serialize these requests.

The server wi 11 be re qui red to supply three major services in addition to

routine maintenance of the database:

50

1. Find a list of axioms whose head is potentially unifiable with a given

predicate.

2. Add an axiom to the database.

3. Delete a specified axiom from the database . (eg. Delete the first axiom

whose head is potentially unifiable with a given predicate).

A process requiring one of these services will request it via a message to the

database server. The client process will then block itself until the request

has been fulfilled.

Note that service #1 now returns all of the axioms that are potentially

unifiable instead of only the first axiom of the list. The server should

actually create a copy of these axioms to prevent another client from making

additions or deletions while the first client is manipulating the list. That

is, a process querying the database should work with a II snapshot" of the

database taken at the time of query. This is consistent with the view that an

Or-node "creates" all its descendants in parallel.

Design of the Interpreter 51

52

6.0 EVALUATION AND CONCLUSIONS

We have successfully implemented a 11 fi rst-attempt 11 interpreter has been

successfully implemented on the (multi-user) Verex Operating System running on

a TI/990. The interpreter is an experimental one and lacks the power and

elegance of those from Edinburgh [Kowalski74] [Warren77], Waterloo [Lee84],

and Vancouver [Goebe 180]. It lacks almost a 11 of the necessary 11 buil t-i n11

predicates (eg.math. predicates) of a production interpreter and only has

syntax resembling that of Lisp (Figure 18 on page 54). In addition, a look at

the performance characteristics (eg. Figure 19 on page 55) indicates that it is

still premature to consider using the current system to support any substantial

piece of Concurrent Prolog program: the maximum number of processes that may be

active at one time is too low; there is currently no garbage collection of

processor memory (except for the processor stacks) when a process fails•, and

the execution speed is slow .

• Garbage collection was omitted from the current implementation because it
is considered as part of the normal cycle of resource reclaimation when a
process is destroyed.

Evaluation and C·onclusions 53

<identifier>

<atom>

::= a sequence of 1 to 30 characters from
the set ['A' .. 'Z', 'a' .. 'z', 1 0 1

•• '9' J

::= <identifier>

<normal variable> ··= *<identifier>

<readonly variable> ··=?<identifier>

I

<variable>

<variable list>

<function>

<argument>

<arg list>

<predicate name>

<term>

<term list>

<guard>

<head>

<body>

<axiom>

<query>

examples

::= <normal variable> I <readonly variable>

::= <variable> I <variable> <variable list>

::= (<atom> [<variable list> J)

::= <atom> I <variable> I <function>

::= <argument> I <argument> <arg list>

: := <atom>

(<predicate name> [<arg list> J)

<term> I <term> <term list>

::= (GUARD <term list>)

: := <atom>

: := <term list>

. ·=

(:- <head> [<guard> J <body>). I
(<head>).

(: - <head>) .

I (append nil *12 *12).
I ((append (cons *h *t) *12 (cons *h *rest))
I (append *t *12 *rest)
I)
I
I
I
I Figure 18. BNF description of Syntax Accepted by Current Interpreter
I

54

Database of Axioms

Merge (*xs, nil, *xs) .

Merge (nil, *ys, *ys) .

Merge (*x.*xs, *ys, *x.*zs) <- Merge (xs?, *ys' *zs) .

Merge (*xs, *y.*ys, *y.*zs) <- Merge (*xs, ys?, *zs) .

Top-Level Goal

<- Merge (al.bl.cl.nil, a2.b2.c2.nil, *z).

Performance Measurements

Fifteen invocations of the top-level goal required about

430 resolutions

27 seconds of real time

under light-load conditions.

This translates roughly to 23 resolutions per second.

A trace of the execution of the program later showed that over fifty

percent of the CPU time was spent in message passing .

Figure 19 . Performance Measurement on a Bounded-Wait Merge

Evaluation and Conclusions 55

6. 1. 1 Possible Optimizations

Noting that over fifty percent of the execution time is spent in process

communication,• the following optimization is suggested:

9

1 D

56

In the current system, a process that commits to a path must broadcast (via

its parent process and a broadcast server) to all sibling p_rocesses which

will, in turn, broadcast to all their descendants. If we examine this

procedure, we find that only the parent need be informed; the remaining

processes need only be informed if the committing process has changed a

variable which will influence their outcome. Recalling cross-layer

reference loops were removed due to mutual-exclusion considerations, the

optimization simplifies to the following rule:

1. When a process commits, it always informs its parent process.

2. The parent process tries to unify the new variables with its copy of

the axiom.

3. If the unification fails, the committing process is deleted as before.

4. If the unification succeeds and one or more variables of the parent

process was instantiated then the parent process creates a broadcast

server as before. If, however, none of the variables changed then

broadcasting is complete.

One should keep in mind that portions of this time are used to invoke
various server s of the operating system (eg. process creation and
destruction, memory allocation , file system services).

The current version of the Verex Operating System supports only about 30
processes.

We can apply a similar optimization to relieve the problem of a limited number

of available processes. 10 Recall that when a process resides on the solution

path, it cannot be destroyed since it may contain variables in its address

space which contribute to the solution. Destruction of the process will result

in the destruction of its local memory space. We are free to destroy processes

which do not contribute to the solution. So when a parent process successfully

unifies the axiom from a reporting child process with its. own axiom and

determines that no new information was gained, it may release that subtree of

processes to be used by some other part of the solution tree. This solution,

however, is only a temporary measure since the described situation is not too

common. What is needed is an increase in the number of allowable processes in

the operating system.

6. 1.2 Summary

Despite the interpreter's current limitations, it has allowed us to examine the

implications of the constructs of Concurrent Prolog in terms of system

requirements and has demonstrated, to a certain extent, the feasibility of

implementing a distributed interpreter for the language. From this work,

several points came to light:

• The semantics of the language can be made cleaner with a minor modification

to the behaviour of the interpreter when attempting to unify an unbound

read-only variable with an unbound non-read-only variable.

Evaluation and Conclusions 57

• New bindings should be propagated throughout the tree as soon as they

become available instead of delaying them. Delayed propagation [Levy84] is

possible only if read-only variables are treated outside of the normal

scheme.

• Due to the above desire to instantiate read-only variables at the earliest

stage, reference 1 oops were introduced in preference over the normal

simply-linked list implementation.

• To minimize the possibility of deadlock, a broadcast server should be

created to propagate new bindings to child-processes. The use of an extra

server will server the dependency loop between parent and child processes.

• In order to avoid child processes from affecting each other, each child

clause process must make a scratch-pad copy of the axiom. This procedure .
will necessarily entail recursively copying the subexpressions bound to

variables. A mapping between the original subexpressions to the

scratch-pad copies will aid in the copying process.

• To avoid deadlock and mutual exclusion problems, interprocess pointers (or

tags [Lee84]) should not be used to form reference-loops. But in

eliminating these references, one must be sure to duplicate intraprocess

references. That is, if a child process creates a reference between two

variables in its local copy and later commits, this reference must be

duplicated in the parent's copy. The mapping from the copying mechanism

wi 11 be useful in determining whether the reference is interprocess or

intraprocess.

58

Future work on this interpreter should include a re-implementation using

separate address-spaces for each process (i.e. different teams) and

optimizations such as a Copy-on-demand [Levy84] scheme to reduce the number of

subexpressions that are duplicated. Hopefully further examination of the

implementation obstacles will open up the full potential of the language and

clarify its desired semantics.

Evaluation and Cdnclusions 59

60

7 .0 REFERENCES

[Aho77] Aho, A.V., and Ullman, J.D. Principles of Compiler Design
Addison-Wesley, 1977

[Boyle82] Boyle, P.O. The Design of a Distributed Kernel for a
Multiprocessor System M.Sc. Thesis, University of British
Columbia, Vancouver, 1982

[Boyer,Moore72] Boyer, R.S. and Moore, J.S. The Sharing of Structure in
Theorem Proving Programs, Machine Intelligence 7 (ed.
Meltzer & Michie), Edinburgh UP. 1972.

[Brinch Hansen75] Bri nch Hansen, P. The Programming Language Concurrent
Pascal IEEE Transactions on Software Engineering
SE-1(2):199-207, 1975

[Cheriton79.1] Cheriton. D.R. Multi-process Structuring and the Thoth
Operating System Technical Report 79-5, University of
British Columbia, Vancouver, 1979 (Reprint of the author's
Ph.D. thesis from the University of Waterloo)

[Cheriton79.2] Cheriton. D.R. Interactive Verex Technical Report 79-1,
University of British Columbia, Vancouver, 1979

[Cheriton79.3] Cheriton, D.R., and Steeves, P.J. The Zed Reference
Manual Technical Report 79-~, University of British
Columbia, Vancouver, 1979

[Cheriton81] Cheriton, D.R. Distributed I/0 Using an Object-Based
Protocol Technical Report 81-1, University of British
Columbia, Vancouver, 1981

[Deering82] Deering, S.E. Multi-Process Structuring of X.25 Software
Technical Report 82-11, University of British Columbia,
Vancouver, 1982

[Dijkstra76] Dijkstra, E.W. A Discipline of Programming Prentice-Hall,
1976

[Goebel80] Goebel, R. PROLOG/MTS Users' Manual Technical Manual
80-25, University of British Columbia, Vancouver, 1980

[Kowalski74] Kowalski, R.A. Logic For Problem Solving DCL Memo 75, Dept
of A.I., Edinburgh, 1974

[Kusalik84] Kusalik, A.J. Bounded-Wait Merge in Shapiro's Concurrent
Prolog New Generation Computing, 2 (1984), Ohmsha and
Springer-Verlag, 1984

[Lee84] Lee, R.K.S. Concurrent Prolog in a Multi-Process
Environment Institute for Computer Research Report 24,

References 61

[Levy84]

[lockhart79]

[Nilsson80]

[Reiter79]

[Robinson65]

[Shapiro83]

[Warren77]

62

University of Waterloo, September 1984 (Reprint of the
author's M.Sc. thesis at the University of Waterloo)

Levy, J. A Unification Algorithm for Concurrent Prolog
Proceedings of the Second International Logic Programming
Conference, Uppsola, Sweden, July 1984

Lockhart, T.W. The Design of A Verifiable Operating
System Kernel Technical Report 79-15, University of
British Columbia, Vancouver, 1979

Nilsson, N.J. Principles of Artificial Intelligence
Tioga, 1980

Reiter, R., On Close World DataBases, (1979) Readings in
Artificial Intelligence (ed. Webb & Nilsson), Tioga, 1981

Robinson, J.A. A Machine Oriented Logic Based on the
Resolution Princip l e JACM 12, 1965.

Shapiro, E.Y. A Subset of Concurrent Prolog and Its
Interpreter Technical Report TR-003, ICOT-Institute for
New Generation Computer Technology, 1983.

Warren, D.H.D. Implementing Prolog - Compiling Predicate
Logic Programs DAI Research Reports 39,40, University of
Edinburgh, 1977

