
A Theory of Schema La belling

William Havens

Laboratory for Computational Vision
Department of Computer Science

University of British Columbia.
Van couver , Britjsh Columbia

Canada V6T IW5

Techni cal Report 84-16
Revised June, 1985

Abstract
Schema labelling is a representation theory which focuses on composition and specialization

as two major aspects of machine perception. Previous research in computer vision and
knowledge representation have identified computational mechanisms for these tasks. We show
that the representational adequacy of schema knowledge structures can be combined advanta
geously with the constraint propagation capabilities of network consistency techniques. In par
ticular, composition and specialization can be realized as mutually interdependent cooperative
processes which operate on the same underlying knowledge representation. In this theory, a
schema is a generative representation for a class of semantically related objects. Composition
builds a structural description of the scene from rules defined in each schema. The scene
description is represented as a network consistency graph which makes explicit the objects
found in the scene and their semantic relationships. The graph is hierarchical and describes the
input scene at varying levels of detail. Specialization applies network consistency techniques to
refine the graph towards a global scene description. Schema labelling is being used for inter
preting hand-printed Chinese characters [10], and for recognizing VLSI circuit designs from their
mask layouts 12].

1. Introduction

This report describes a synthesis of schema knowledge representations and network

consistency recognition techniques. The combined formalism, called schema labelling, is

a natural union which makes explicit how the objects in the representation correspond

to classes of individuals in the world and how these classes can be manipulated for

machine perception. \Ve believe this correspondence promotes a natural organization

- 2 -

for knowledge which is indigenous to the nature of perception. Consequently, a maJor

goal of this work is epistemological: to characterize how perception is organized and to

transfer that architecture to machine perception. This is, of course, a common goal for

much knowledge representation research within Artificial Intelligence. Marr [38] argued

that the constraints inherent to the perceptual process should be characterized indepen

dently of any particular implementation of that process. Newell [41] advocates studying

knowledge at the "knowledge level" before considering the form of its representation or

how it is to be used. Yet a major aspect of any computational theory of perception is

structural. How should knowledge be organized such tha.t it can be effectively

represented (in some formalism) and efficiently applied to recognition (by some proces

sor)? By studying the particular knowledge necessary for a perception task, we can

hope to inf er its form; to understand its architecture.

Schema labelling is described here from the scene analysis perspective, but the tech

nology is applieable to other Artificial Intelligence domains which can be viewed as

recognition tasks. Previous network consistency methodology bas been applied success

fully to scene analysis research [51,32] and its formal properties are well understood

[33,34]. Related probabilistic relaxation methods have also been carefully studied

[42,22]. However, the technology is mature and has reached its inherent limitations [2-t].

On the other hand, the capabilities of schemas [5] as a computer knowledge representa

tion are still emerging. 1 The term is generic applying to a variety of similar representa

tions including frame systems [39,52,12], scripts [45], plans [1], and schemas [44,23], as

well as related semantic network representations [53,27,48]. In order for any of these

1 We will use the terms "schema" and "schemas" for the singular and plural forms respectively .

Copyright© William Havens

- 3 -

formalisms to constitute an adequate representational language, their semantics must be

formally specified. Hayes [26j has criticized frame systems from this perspective.

,voods [53] analysed the semantics of semantic networks and others have made it more

precise [46,38,11]. \Ve begin by formally specifying a representation for schema label

ling.

1.1. Schema Representations

Schema knowledge representations characterize the perceptual world as composed

of objects, events, situations, and abstract configurations of these objects in space or

time. Knowledge of this world is object-centered, organized into modular units that act

as perceptual models for recognition. Since the icreal" world contains an arbitrarily

large number of identifiable objects, both concrete and abstract, it is advantageous to

group similar individuals into classes. In this theory, a schema is a generative represen

tation for a class of semantically related individuals. The representation is finite but

may describe a class containing an arbitrary number of members. Class membership

may be known or unknown and is not necessarily unique. The representation is also

explicit. so that recognition processes may examine and modify the contents of the

knowledge base. The knowledge representation contains two types of knowledge: gen

eral knowledge about classes known to the system and particular knowledge about the

specific objects appearing in a given scene. This distinction is pervasive in representa

tional formalisms. Object-centered programming languages, beginning historically with

Simula [15] and including Smal1talk[21], KRL[6], PSN[31], KLONE[7], Athena[16], and

others, define a plethora of datatypes for representing general and specific knowledge.

Copyright © William Havens

- 4 -

Likewise, phrase structure grammars utilize a finite set of production rules to represent

a potentially unlimited set of sentences. Each instantiation of a rule represents a partic

ular sentential form found in some sentence. We shall define a schema datatype for

representing both general and particular knowledge.

A schema Knowledge Base (KB) is a static collection of schemas. The KB provides

generic models for the various classes of objects known to the system. Each generic

schema in the KB represents a general class of individuals by specifying its membership

in terms of their semantic relationships with other classes. As well, the theory provides

a generative mechanism for creating new der:'ved schemas from existing generic proto

types. A derived schema represents a particular subclass of the class of its prototype.

It is the task of schema labelling to construct a set of derived schemas to represent the

objects present in the input data. The actual class membership of each derived schema

is constrained by semantic relationships inherited from the prototypes. These schemas

with their mutual constraints form a network consistency graph (NCG) which provides

the out.put description of the input scene. The NCG is modular, structural and

describes the recognized classes and their semantic relationships at multiple levels of

detail.

1.2. Composition and Specialization

Schema labelling is characterized as the intimate interaction of two complementary

processes: composition and specialization. Tsotsos j50] has identified these as two intrin

sic representational axes for recognition. Complex objects in the world have internal

structure and can be rep resented efficiently as specific legal compositions of their const i-

Copyright © William Havens

- 5 -

tuent parts. Each member of such a class of objects is assumed to obey the same set of

composition rules and, consequently, to have a similar structure. This knowledge,

expressed as relationships among a small number of other classes in the knowledge base,

is localized and modular. The resulting hierarchy is often called the composition hierar

chy[35] or part-of hierarchyf 31][8]. Network descriptions of scene objects produced from

this hierarchy retain this hierarchical structure. Recognition processes can exploit this

organization by using a combination of top-down and bottom-up search strategies in

either goal or data-driven modes[23].

The composition hierarchy developed for the Mapsee2[25] sketch understanding sys

tem is shown in Figure 1. In this system, a geographic ·world is composed of Geo

Systems which represent the landmasses and waterbodies which may appear in a sketch

map. Each Geo-System is composed of some combination of Road-Systems, River

Systems, Towns, Shores, Mountain-Ranges, and other interior Geo-Systems. These

schemas a.re, in turn, composed of simpler schemas, finally terminating in the lowest

level primitive objects which appear directly in the input image. In the downward

direction, the hierarchy represents, for example, that River-Systems are composed of

Rivers, Shores, and Bridges. Conversely, in the upward direction, Bridges are part-of

both River-Systems and Road-Systems.

Machine perception can also be characterized as a process of specialization from

general descriptions of a large class towards refined descriptions of particular individu

als. The purpose of specialization is to reduce the overall ambiguity of the scene

description derived from incomplete and erroneous data using imperfect knowledge.

This process cannot proceed by sequential selection of individual object models to

Copyright © William Havens

- 8 -

account for the input data until the right model is found. Attempts to ameliorate this

problem have used various exception handling mechanisms, notably similarity links to

recommend a replacement model on failure[39]149l[30]. However, such mechanisms,

although useful, depend entirely on failure-driven processing and violate the desirable

modularity property. Each model should only contain knowledge about its own set of

possible members and their allowed compositions.

In schema labelling, classes are merged along the specialization dimension. Classes

can be naturally organized using subclass and superclass relationships. \Ve associate a

type or label with each subclass from a finite set of possible labels for the class called its

/abelset. The labelset segments the class into subclasses by type. 2 Each label names a

particular subclass which itself may be a schema present in the KB.

Specialization defines a natural partial ordering of the knowledge base called the

specialization hierarchy or sometimes the IS-A hierarchy. The descendants of each

schema in the hierarchy: called subschemas, represent subclasses of their parent. The

ares from sehema to subschema allow an inheritance of properties and constraints

thereby achieving an economy of representation. If the arcs are interpreted as labels

signifying distinguishing attributes for each subclass, then the hierarchy becomes a

discrimination network. The hierarchy facilitates the associative retrieval of the correct

schema to represent a given scene object by a top-down search of its nodes. It. is an

active process resulting in the construction of the network description of the scene, but

nevertheless an associative retrieval from the KB. Although IS-A is a powerful organi

zational principle for knowledge representation, its imprecise use has been criticised by

2 The subclas5es of a schema are not necessarily disjoint.

Copyright © William Havens

- 7 -

Woods[53] and its multiple meanings recently analysed by Brachman[8].

1.3. Network Consistency

In schema labelling, composition and specialization are inextricably intertwined

processes. Both processes operate on the same knowledge representation to produce a

structural description of the scene as an NCG from rules defined in each schema. The

NCG explicitly depicts the objects found in the scene and their semantic relationships.

The NCG is hierarchical and describes the input scene at varying levels of detail. Each

node in the NCG represents objects either known or hypothesized to exist in the scene.

The k-ary arcs among nodes represent constraints on object labelsets which must be

synthesized for each possible network composition.

Network consistency techniques are used to refine the NCG towards an unambigu

ous labelling for each schema. Network consistency is a direct method for representing

and manipulating ambiguous network descriptions. By applying the constraints (con

ceptually in parallel) to the nodes, the scene description is refined towards a globally

consistent interpretation. Network consistency techniques have been used to great

advantage in computer vision. \Valtz [51] used a network consistency algorithm to

interpret perfect line drawings of children's toy blocks. The NCG was constructed

directly from the input drawing. Picture junctions in the drawing corresponded to

corner models over the labelsets of their connecting edges. Following bis success, Mack

worth [32] showed that network consistency techniques were applicable to task domains

more general than understanding the "blocks world". His original Afapsee program used

network consistenc-y to automatically interpret band-drawn sketch maps of geographic

Copyright © Wllliam Havens

- 8 -

scenes. Network consistency methods have been extended to allow probability measures

to be associated with the labe]sets [42] and generalised to work with algebraic con

straints [9]. Indeed, constraint-based approaches have been prevalent in computer

yision systems [28,49,9,43,4,29]. See [3] for a good review of this technology.

Network consistency has provided a uniform representational framework for scene

analysis [33]. Unfortunately, the paradigm is not a panacea for either scene analysis or

machine perception in general. Havens and Mackworth [24] identify a number of limita

tions of the methodology and show that combining it with schema representations can

enhance their joint descriptive and procedural adequacy. Schema labelling uses a

straightforward combination of schema and network consistency methodology.

1.4. Schema Labelling

An overview of schema labelling is shown in Figure 2. The diagram indicates that

the interaction of composition and specialization produces a network description of the

input scene. Input to the system is derived from a sensor which samples data from the

scene. Segmentation operates on this data and is assumed to produce symbolic image

features such as adYocated by Marr[38] and to be controlled by procedures local to

sehema models[52]. It is not necessary that the segmentation be either complete or error

free. 3 The subsequent input to the composition process consists of the output from seg

mentation plus access to the KB. The task of composition is to match these generic

schemas in the KB to the image features and produce an NCG of derivl'd schemas as

output. The notion of matching used here is analogous to that advocated by Bobrow

~ For other perceptual tasks, segmentation may be as straightforward, for example, :i.~ lexical analysis
in natural language understanding or as difficult as phoneme identification in speech recognition.

Copyright © William Havens

- g -

and Winograd[6]. The schemas in the knowledge base are used to account for the input

data while assigning structure to the output description. The parallels between schema

recognition and formal parsing algorithms have also been described[23].

The partially constructed NCG provides the input data structur_~ for specialization.

The schemas in the NCG represent ambiguously labelled scene objects. Each schema

may have one of a number of possible roles in the global scene description. The rela

tions among schemas asserted during composition provide the constraints necessary to

remove this ambiguity. Specialization can apply network consistency techniques to the

network to produce a global scene description. As well, there is an interchange of con

trol information between composition and specialization. As new schemas are added to

the NCG, their consistency with the current global network consistency must be

checked. By so doing,. the entire network description may be refined. Constraints on

the interpretations of individual schemas ma.y be propagated arbitrarily far in the NCG.

Conversely, when the constraints on a schema completely preclude its possibility of con

tributing to the current network description, then a different composition for the net

work must be attempted. Standard automatic backtracking algorithms or more sophis

ticated control structures can be used [17,28]. In the remainder of this paper, we define

the schema KB and present a method for constructing the NCG to represent the input

scene.

2. Composition

Chomsky's [13] generative paradigm endures as an important organizational princi

ple for knowledge representation. The formalism in which we encode our knowledge

Copyright © William Havens

-10 -

about .a particular domain must be finite yet capable of characterizing an arbitrary

number of inputs. A phrase structure grammar is a well understood .mechaJ1ism for this

purpose. Grammars are generative stTuctural representations for arbitrarily large classes

of strings. Parsing is a recognition task which exploits the Tepresentational adequacy of

gramrnaTs. In particular, the grammar is the knowledge base used by the parsing algo

rithm to construct a hierarchical network description of the input sentence as a parse

tree. The _parse tree ca.ptures the meaning of the sentence by explicitly representing the

linguistic objects and their relationships that appear in a given input sentence. The set

of strings for which parse trees can be constructed constitute the language of the gram-

mar.

In the theory presented here, schema representations have properties similar to

grammars. A schema is a generative and structural representation for a class of semant

ically related individuals. A schema represents this class as the union of a set of subc

lasses which satisfy a specified set of constraints. The constraints limit the membership

of the class (and recursively all of its subclasses) to those individuals which share specific

semantic relationships with other classes, called its components. The theory provides a

mechanism foT generating new schemas from existing ones. Schema labelling is the pro

cess of composing and specializing schemas to represent the , 1arious objects perceived in

the input data. The output is the hierarchical NCG description of these objects and

their mutual relationships.

The KB is finite and static. The schemas m the KB describe general classes of

objects, their m<?mbership, and their allowed relationships with other classes. It will be

convenient to ref er to scbemas by name. FoT this -puTpose we associate a unique

Copyright © William Haven•

\

- 11 -

identifier with each schema. Let the set of names of all the schemas in the KB be an

index set, A . A schema, S,, is in the KB if and only if i EA. The contents of A can

be integer subscripts or any other unique set of elements. Normally, we will want to

associate character string names as the identifiers for schemas.

Likewise, the NCC consists of a set of schemas derived from the KB and intercon

nected by semantic constraints. We will refer to these schemas by a second index set,

Q. S.- is part of the NCC, if, and only if, i E Q. The elements in Q are also unique

identifiers but their names normally will be generated automatically by the system.

Note that the KB is distinct from the NCG which it produces, that is, A n Q = 0.

Every schema in either A or Q has the same form and is represented as:

where

s.- = (mi , P, , a.- , r i , ~ .-)

m,· E A is the prof oiype schema for Si.

Pi is a set of composition rules for constructing Q'i and ri.

O'i c Q is the set. of components contained in Si.

ri is a set of constraints on Ai.

A.- is the labelset for Si.

Every schema S,, i E Q is derived from a prototype, Sm · , m, e A . S, inherits
I

the composition rules, P1 , and labelset, A, , from its prototype. We will use the nota

tion, w (S), to denote the class represented by a schema, S. The class represented by

Si is a particular subclass of Sm :
I

Copyright © William Havens

- 12 -

(1)

Conventionally, smce every schema has a prototype, if Si ts generic, • E A , then

m, = 1. Every generic schema is its own prototype.

The components, O:i, of Si are also schemas in Q. Only derived schemas have

components. If ; E A , then O', = 0. The notion of component is more than a simple

"part of" relationship. The components of Si are those other derived schemas which

have been asserted by composition to be semantically related to S, in the constructed

NCG for the input scene. For a given Q, O:i will contain schemas which are part of S,,

schemas of which S; is a part, and all of the constructed subschemas of S.-.

The class membership of a schema is structured along the specialization dimension.

Ai is a discrete and finite set of labels for Si. Each label, ai E A,, is the name of a

particular subclass, w (Sa -), of S,. Sa - is called a subschema of S.- and may or may not
I I

be explicitly represented in A or Q. w (S,) is represented as the union of all of its

subclasses:

(2)

Specialization edits Ai under the constraints, r i, applied to its components, 0:1 , to

represent w (S,). Editing involves both deletions and substitutions of the labels in A;.

The schemas in A. and their labelsets define the specialization hierarchy for the sys

tem. The specialization hierarchy is a static organization of generic classes into their

subclasses recursively. It is represented by a hierarchy of schemas and subschemas.

Each interior node, ; , in the hierarchy corresponds to a schema, S,, ; E A . The des

cendants of node; i , are the labels, a, E A;. If any node, a, E A , then ai is also an

Copyright © Wllliam Havens

- 13 -

interior node in the hierarchy and its descendants are recursively the labels contained in

Aa .
I

The specialization hierarchy for a class recursively divides the class into smaller and

smaller subclasses. For a finite KB, this process must eventually terminate with single

ton classes or with classes that have no schema representation in A . ,v e shall call both

such indivisible classes atomic classes and represent them only by name as labels in thc.>

labelsets of exi~ting schemas. Atomic classes are the leaf nodes of the specialization

hierarchy which have no composition and their membership is not constrained by rela

tionships with other classes. In general, if i f. A u Q, then w (Si) is unknown. Its

membership is homogeneous and must be considered as a whole. 4 However, if Si 1s

known a priori to represent a singleton class, then

w (Sd = {i} (3)

By convention, individuals are represented only by name as singleton classes.

The constraints, r i , are derived from the generic constraints, rm , defined in the
I

prototype, S
111

• Ea<' h constraint, R/'IJ] Er,., is a relation over the labelsets , Ai, of a
I

set of schemas, j E J, for J ~ A u Q, i E J. Figure 6 below illustrates a. typical set

of constraints for the example which follows. If Si is generic, i E A , then

\fR/'[J] EI\, J ~ A and

R/'[JJ ~ TI A;
j E J

(4)

4 Usually it is unimportant whether the extension of a class is represented in the KB. Instead, the
goal or the system is t.o classify each object present in the input by assigning to it the most spec ialized
subclass possible .

Copyright © William Havens

- 14 -

The composition hierarchy for the KB indicates the possible "'ompositions for every

generic schema in A . It is a hierarchical digraph where each schema 5'.-, i E A is a

node in the hierarchy. The arcs between nodes correspond to the possible components

for each schema. For every constraint, R/'IJ] E f i , there exists a directed arc from

node, ; , to every other node, j e J. The actual composition, Cl'j, for any schema,

S.-, i e Q, will contain components derived from the neighbour nodes of its prototype,

Sm·, in the composition hierarchy. Not all the possible components of Sm will appear
I I

as actual components in any particular composition for S.-.

Analogous to their counterparts in grammars, the composition rules, distributed

among the schemas in A , drive the construct.ion of Q to represent the input scene. ,v e

do not specify a language for the rules explicitly. In Mapsee2, the composition rules

were embedded in Lisp procedures in each schema. For Si, i e Q, the responsibilities

of Pi are twofold: 1) to specify which combinations of other schemas are valid composi

tions for S.- given the features present in the input data; and 2) given an ai, to com-

pile5 new constraints, f i, between its labelset, ~i, and the labelsets of other schemas in

A u Q. Each addition to o.- is a new hypothesis about the role of Si in Q and per

mits new constraints to be asserted on Si, given that hypothesis. In other words, the

composition rules for a schema allow us to constrain the membership of its class as a

function of the membership of other classes to which it is related in the network descrip

tion of the scene.

6 "Compile" is used here in the general sense of "to tabulate" .

Copyright © William Havens

- 15 -

2.1. A Model Railroad

Consider the following hypothetical system to recognize railroad trains from draw

ings. Figure 3 depicts four types of trains. Each train is composed of an engine fol

lowed by a non-empty sequence of cars (called a carset) and ending with an optional

caboose. Trains are classified as either long-haul or short-haul trains. Long-haul trains

can be further specialized to the express and freight subclasses while short-hauls include

freight, local and commuter subclasses. The type of each train is determined from the

mix of cars in its carset, the type of its engine, and whether it has a caboose. Cars may

be typed as either freight-cars or passenger-cars which specialize further to box, flat,

tank and hopper or coach, mail, observation, and saloon respectively. There are two

types of engines: powerful locomotives (locos) and little switchers. The semantic con

straints for each type ~f train are as follows: An express passenger train has a locomo

tive engine pulling a mi.xture of passenger cars. There is no caboose. The commuter

train also consists of a sequence of passenger cars but is pulled by a smaller switcher

engine. The freight train has a locomotive in front of any sequence of freight cars and

ends with a caboose. Finally, the local train is partly passenger and partly freight. It is

a small train containing a mixed carset, pulled by switcher type engine, and may or may

not have a caboose.

The KB for this example contains schemas for the classes described above:6

A= { Train,
LongHaul,
Short.Haul,
Engine,
Car,
Freight.Car,

Copyright © Wllllam Havens

PassCar,
CarSet,
Caboose}

-18-

The definitions or these schemas are elaborated in Figure 4. For example, consider the

definition or the Train schema. Since every schema in A is generic, -Train has no conr

ponents (a = 0) and it is its own prototype (m :: Train). The schema. has two compo

siton rules (P = {p 1, p 2}) which are discussed later in Section2.3. The labelset for

Train lists its two subclasses (A= {LongHaul, ShortHaul }) which are a.lso explicitly

represented as schemas in A . The class, w (Train), is represented as the lillion of all

long-haul and all short-haul trains:

w (Train) = w (LongHauJ) u"' (ShorlHaul) (5)

The schemas in A and their labelsets define the specialization hierarchy for the

railroad. Figure 5 shows this hierarchy for the classes: Train, Car, Engine, and CarSet.

Conceptually, we imagine the specialization hierarchy to be a lattice. The top node is

the general Object schema or which every other schema is a specialization. The single

bottom node is the .Null schema containing no members and being a specialization of all

others. The partial ordering between nodes in the lattice is the subclass relation.

r for the Train schema specifies the semantic constraints known between Train and

the other generic schemas in A . Any schema derived from Train must share these

semantic relationships with these other schemas. The arguments to the constraints in r

are the other schemas in the KB which can be its possible components. For the Train

schema, its possible components are CarSet, Engine, and Caboose. Every legitimate

0 Schemas for the various parts of each car or engine (such as wheel trucks, chassis, couplers, bodies
and fittings) are omitted from this example.

Copyright © William Havens

- 17 -

T.ra.in instance will be composed of some combination of these other schemas. The

entire set of constraints for the railroad KB is given in Figure 6.

The composition hierarchy for the railroad is illustrated in Figure 7. Any Train

must be composed of an Engine instance followed by a single insta11ce of class CarSet

followed optionally by a Caboose. CarSets are composed of a single Car instance or a

Car followed by another CarSet instance, thereby allowing an arbitrary length train.

Significantly, knowledge of composition and specialization are isolated. The Train

schema is a perceptual model for all trains regardless of their actual type. The same

economy of representation also occurs for Engine, Car and CarSet. In this example, the

search for a valid scene composition is made efficient by generalizing individual schemas

(for example, schemas for Local-Train, Freight-Train, Express-Train and Commuter

Train) into a single class (Train). There is no need to back up and try a different

schema if constraints eventually preclude the compatibility of some of its components.

For example, attempting to recognize an instance of a Commuter-Train alone will

succeed only until the first non-passenger car is discovered. The (perhaps considerable)

e.ffort expended so far will be wast.ed unless the mode of the failure can be used to follow

-a similarity link to the correct Local-Train train schema. The complexity of such a

failure-driven reasoning subsystem is not clear and a simpler approach is advocated

here. \\The.never individual classes can be merged into larger classes and the resulting

ambiguity of interpretation represented by network consistency techniques, then the

complexity of recognition is greatly reduced. Mulder [40] is exploring further this

phenomenon in a. program called Mapsee3.

Copyright (s William Havens

- 18 -

Th€> schema definitions for the Short.Haul and LongHaul classes a.re also given in

Figure 4. The constraints defined in the Train schema have corresponding constraints

in its specializations, ShortHaul and LongHaul. They represent a refinement of con

straint along the specialization dimension. For example, R frain [{Train, Car Set}] res

tricts the type of the train (to either ShortHaul or LongHaul) as a function of the type

of the CarSet which it contains (to either PassCarSet, Mi.xedCarSet, or FreightCarSet).

That same constraint is manifest in a more refined form in both subschemas. In the

ShortHaul schema, RsLrtHaul [{ShortHaul, CarSet }] constrains the type of the train to

be either Freight, Local, or Commuter. Likewise for the LongHaul schema,

RL~ngHaul [{LongHaul, CarSet }] specializes this class to Express or Freight.

2.2. Network Descriptions

Each node in the NCG, Q , is a schema representing a particular collection of

objects found in the input scene. The arcs in Q are the semantic constraints which

have been asserted to hold between each node and its components. The task of schema

labelling is to construct Q such that it adequately accounts for all the input data and

every schema in Q is complete. A schema, S 11 , h E Q, is complete if its composition,

o:h, satisfies some rule in Ph and its labelset, ~h 7'= 0, after applying all the constraints

We define a function,

New (m, P, o:, r, ~)
which c-onstructs a new derived schema from its arguments. The new schema has a

unique identifier which is automatically added to Q. Althou~h this function can be

Copyright © Wll!lam Havens

• 10 -

used to construct the nodes in Q , specifying its arguments for a given target class of

objects in the world can be a difficult task. We must collect a finite set of subschemas

to cover the membership of the target class. The subschemas may also have to be con

structed. Next, we have to compile sufficient semantic constraints on these subschemas

to restrict the membership of the new schema to the intended target. To simplify this

task, we assume that each new class can be represented as a derived copy of a generic

schema from A in conjunction with a set of known generic constraints on other sche

mas. To this end, the schemas in A all function as prototypes for the schemas in Q.

Constructing Q is reduced to deriving new schemas from the these prototypes, search

ing for valid compositions, and specializing their memberships to correspond to the

objects actually present in the input data.

Let Sh = New (i, Pi, 0, 0, Ai), i E A 1 h E Q. The new Sh inherits the composi

tion rules, Pi , and la belset, Ai , of its prototype, Si . O! h and r h are initially empty

and w (Sh) is an unidentified su bcla.ss of w (S'i). The constraints, r i, in the prototype

a.re used to construct the new constraints, r 11 , incrementally as new components are

added to o·h. Each generic constraint, R/'[J] er.-, J ~A, can derive a new con

straint, Rhu[H] E r 1i, H ~ Q, by letting Rh'' = R/' and substituting for every j E J a

corresponding k E H such that mk = j.

To decide w (Sh), we are interested in knowing which other schemas to look for as

the possible components for S1i . This knowledge is expressed initially in the composi

tion hierarchy. The set of schemas connected to Si in the composition hierarchy are the

possible components for any particular instantiation of Sh . Search for Sh could proceed

Copyright © Wllliam Havens

- 20 -

"brute force'' by looking for instances of these schemas which are themselves complete.

If no complete composition can be found for s,., then it is a bad hypothesis and can be

deleted from Q . However, more efficient search methods are possible utilizing both

top-down and bottom-up search of the composition hierarchy. In particular, the current

components, 0: h, limit the set of possible components which need be considered. These

issues are closely related to predictive parsing methods [18] but are not considered

further here. For more details see Havens 123].

2.3. Building the Railroad

For convenience, the composition rules for the Train, CarSet, and Engine schemas

are listed together in Figure 8. In this example, we assume a simple top-down, goal

driven control paradigm with automatic backtrack on failure. The top-down paradigm

is popular in logic programming languages such as Prolog [14] and is well understood .

The rules for each schema can be invoked to find an instance of that schema in the

input data . They are called as subgoals by other schemas in order to complete their

own compositions. Each rule returns either a new complete instance on success or

failure otherwise.

Consider the rules, p 1 and p 2 , for the Train schema which, for convenience, have

been expressed in a Prolog-like syntax. Each rule has a single consequent on its /cft

hand-side (LHS) which holds if the conjunction of the predicates on its right-hand-side

(RBS) can be established. The rules are evaluated in left-to-right order with backtrack

on failure. 7 \\' e assume the existence of two functions, endl and end 2, which return the

7 \\'e assume that the implementation language has the capability to reverse side effects made to the
network when backtracking.

Copyright © William Havens

- 21 -

respective ends of a car, engine or caboose. As well, there is a predicate, Coupled, which

is true if the two specified ends are connected in the scene. Rule, pi, produces a Train

composition having an Engine, a CarSet, and a Caboose. Subgoal calls to these schemas

appear as predicates in the RHS of the rule. When the rule is invoked, it initially

creates a new derived schema from its prototype, Train, as described above. The new

schema Is bound to variable, v 1, m the rule. The labelset for v 1 IS

A = {Shor/Haul, LongHaul} indicating that the unrecognized train can be a member of

the general class of all trains. a and I' are both empty and will be incrementally aug

mented as the rule is further evaluated. p 1 then attempts to find schemas for v 2, v 3

and v 4 such that all the predicates in the rest of the RHS remain satisfied. For exam

ple, the subgoal call to the generic Engine schema invokes rule p 5 in that schema pass

ing v 1 as its argument: If p 5 can construct a new Engine (with the Train as a com

ponent), then it is returned to p 1 and bound to variable, v 2, in that rule. v 2 IS now a

new component for the Train which allows p I to assert a new constraint ,

R fra,n [{ Train , Engine }], between A for the Train and A for the new Engine. The

constraint, given in Figure 6, restricts the class of the Train to be LongHaul if the

Engine is a Loco, else a Short.Haul if Engine is a Switcher. Next the predicate, Special

ize, is called with the Train, Engine, and new constraint as its arguments. Speciali:e

adds the Engine to a and the constraint to r for the Train. Specialize then refines the

Train labelset, A, under the new constraint and constructs its subschemas for each con-

sistent label in A, as necessary.8 If A has been refined, then network consistency is pro

pagated throughout Q. If the Train remains consistent, Specialize returns success to

8 Specialize is considered in more detail in Section 3.

Copyright © William Havens

- 22 -

p 1, else it returns failure.

The composition process proceeds, guided by the ru]e, to look for components,

establish new constraints, and call Specialize to refine the incrementally growing net

work. If the RHS of the rule becomes exhausted, then the Train is complete and it is

returned as the va]ue of the subgoal. Otherwise failure is propagated back to its caller.9

The second rule, p 2, represents the alternative composition for the Train schema. No

Caboose is part of this composition. These two ru]es cover all the legitimate composi

tions for the various example train types. The remaining rules, p 3 through p 5, specify

compositions for the CarSet and Engine schemas.

The network, Q, produc-ed for this example is shown in Figure 9. The names of

the schemas were generated by appending a unique integer suffix to the name of each

prototype. The n-ary arcs among nodes are the constraints compiled by the composi

tion rules. Connected to each node is its final labelset, A.

3. Specialization

Net work consistency techniques can provide a powerful engme for specialization.

In schema labelling, each Sh, h E Q, is a node in the NCG. Its labelset, Ah, is the

corresponding domain of possible values for the node. The domain is both discrete and

finite. Finally, the constraints, r h, provide relations among the nodes. Once the NCG

is constructed, an algorithm (such as the arc consistency (AC-3) or path consistency

(PC-2) algorithms of :Mackworth [33]) can be applied to refine the network towards a

correct scene description. Unfortunately, because the constraints are local, neither arc

g In this example, Train is the top-level goal.

Copyright © William Havens

• 23 -

nor path consistency can guarantee a globally consistent network. These algorithms

operate by discarding from each labelset those labels which do not satisfy a local con

straint for some node and therefore cannot possibly be part of any global interpretation.

The methodology neither constructs global interpretations nor ensures their existence.

Search is then required to verify a global solution .10

Freuder [19] has proposed a technique, called k-consistency, for synthesizing solu

tions as a global relation over a set of n-variables given their discrete domains and a set

of k-ary constraints over subsets of those variables, O<k ~n. However, the computa

tional complexity of k-consistency grows exponentially in both space and time with the

number of variables considered. Basically, the algorithm constructs the power set of all

possible relations over the variables (including the desired unique n-ary relation). Seidel

[47] has recently shown its complexity to be O [n"]. Clearly, k-consistency cannot be

used practically to int('rpret scenes containing possibly hundreds of objects (and hence

variables).

Fortunately for schema labelling, the structure of both the composition and special

ization hierarchies can greatly facilitate extending local consistency to global scene

interpretations. They cannot eliminate the necessity of search but can ameliorate con

siderably its complexity.

(I) If the NCG is a tree and, hence, has no cycles, it has been shown recently [34] that

arc consistency alone can establish the existence of a global solution in time

0 (a 3n) and construct all such solutions in time O (an) where a is the uniform

10 See Freuder [rnj for a simple map colouring problem which is both arc and path consistent yet glo-

Copyright © William Havens

size of each variable domain. A composition hierarchy is a knowledge structure

which attempts to organize the world into a tree of decomposable objects. Each

object is limited in its interaction to those other objects which are its component

parts and to those more complex objects of which it is part. Although a practical

composition hierarchy may not be a strict tree, 11 if we can construct Q from this

hierarchy such that it contains as few cycles as possible, then straightfon..-ard arc

consistency can efficiently refine the instances in Q towards a global labelling.

(2) Alternatively, for an arbitrary NCG, if every node has a single label in its domain,

then arc consistency guarantees a unique global solution (which is simply the pro

duct of all the singleton domains). By representing the labelset of each schema as a

specialization hierarchy of other schemas, the number of labels in each labelset can

often be kept very small. In general, the behaviour of AC-3 is O (a 3n 2) for any

graph. By reducing the domain size, a, as much as possible, the behaviour of spe

cialization is again enhanced. A hierarchical arc consistency (RAC) algorithm has

recently been formalised that exploits the structure of hierarchical labelsets [37].

HAC can manipulate entire subsets of a labelset as a single interior label in the

hierarchy thereby frequently obtaining an improvement in efficiency over AC-3.

3.1. Network Consistency

\Ve develop a related form of hierarchical arc consistency for schema labelling by

considering which labels in a derived schema's labelset are consistent under the con

straints applied to its components. For schema, Sh, h E Q, a label, ah E Ah, 1s

bally unsatisfiable .
11 For example, the Mapsee'.? composition hierarchy of Figure 1 has cycles .

Copyright © Wllllam Havens

- 25 -

consistent under Rh11 [J], J ~ o:h U {h }, h E J, if, and only if, it is possible to con

struct an element of Rh" from the prototype, m , of ah a.nd the prototypes, ma , of
ah J

some label, aj E A j, for every other component, j E J. For atomic classPs,

j ft A u Q, we assume that ma. = ai. Atomic classes are their own prototypes. The
J

boolean function, Consistent (ah, R11u[J]L given as Algorithm 1, implements the above

definition:

Consistent provides the basic filtering mechanism necessary for maintaining ron-

sistent labelsets. It need be applied to a labelset whenever it is possible that some label

may no longer be a consistent member. This situation can arise in schema labelling in

two ways: 1) For a schema, S11 , a new constraint, R 11"[J], has been added to rh by com

position, such that J ~ O:h U {h }, or; 2) A labelset, Ag, for a component, g E o:h, has

been refined, removing·one or more of its labels and 3Rh"[J] Ef 11 , g E J. In either

case, some label, ah E Ah, may no longer be consistent. If so, ah must be deleted from

Ah and the consistency of every neighbour, Si, j E Q, such that h E O: j, must also be

checked. For this purpose, we define a recursive procedure, Propagate (j, h), which is

1 Consistent (ah , R hu[J]) boolean
2 Let n = I J I
3 Return (V j E J, h-::/: j, :3ai EA;,

(ma , ... , ma , ... , ma., ... , ma) E Rt)
1 h J n

4 End.

Algorithm 1: Consistent

Copyright © William Havens

- 28 -

listed as Algorithm 2. Given a deletion from !1 11 , Propagate checks the consistency of

A; for every constraint, R}'[JJ E f;, h E J. IC any labels are thus deleted from t:J. 1 ,

the procedure is repeated for each neighbour, Sk, k E Q, j E O:k. '\\'hen Propagate

terminates, the labelset of every schema in Q will be arc consistent under its constraints

or pathologically, every labelset in Q will be empty, indicating an invalid network com

position .

3.2. Subclass Constraints

The task of specialization 1s to refine w (Sh) as much as possible for every

Sh, h E Q. This process can also add new schemas to Q. From equation 2, w (Sh) is

represented as the union of all its subclasses, w (S), for ah E Ah, such that every ah
ah

is consistent. If S is also a schema, a11 E Q , then w (S
4

) can also be expressed in
~ h

I
2
3
4
5
6
7
8
g

10
11
12
13

Propagate (j, h)
Let 6. / = 0
Let change -false
For every ai E Ai,

If for every Rl[J] Er,., h E J, J s;; O:;,
Consistent (a;, R}'[J])

then A/ -A/ +{a;}
else change -trtie

6.--6. · ' J J
If change then

for every k E Q, j E O: k ,

Propagate (k, j)
End.

Algorithm 2: Propagate

Copyright© William Havens

- 27 -

terms of its own labelset, A . In this case, we note that ah can only be a legitimate
ah

label for Sh if it is consistent and A :/- 0. In other words, if w (Sa) is to make any
ah - h

non-empty contribution tow (S1i), then its labelset cannot be empty.

Consequently, we can define within the specialization hierarchy a distinguished sub

class constraint, R,.S l{i, k }], between Si, i EA, and all of its non-atomic subschemas,

Sk , k E A; , k E A :

(6)

The subclass constraints for the model railroad are included in Figure 6. For exam

ple, Rfrain I{ Train, LongHaul }] allows the label, LongHaul, for Train only if its sub

class, LongHaul, has at least one label, either Express or Freight. Likewise for

R frain [{Train, ShortHaul}] where ShortHaul is a legitimate label for Train only if the

ShortHaul subclass also has a non-empty labelset.

3.3. Network Synthesis

Finally, the connection between composition and specialization can be elaborated.

·whenever composition attempts to add a new schema to the network, every schema of

which it is a new component must be specialized. If the augmented network remains

consistent, then composition can proceed further. As a side effect, specialization will

have refined the membership of those schemas constrained (directly or indirectly) by the

new component. On the other hand, if consistency fails from the inclusion of the new

component, then the composition is bad. An alternative network composition must be

attempted. Here we rely on backtracking on failure to search for alternative composi

tions although the theory does not require it.

Copyright © Wllllam Havens

• 28 -

Defined in Algorithm 3 is the boolean procedure, Specialize (h, k, R"u[J]), which is

called from a composition rule in P,. whenever a new component, Sk, is added to a

schema, S", h E Q. Specialize first adds S1c to 01a (in step 2) and its associated new

1
2
3
4
5
6
7
8
g

10

11
12
13
14

15
16
17
18

19
20
21
22
23
24
25
26
27
28
29

Specialize (h, k, Rhu[J]) boolean
O'h +-O'h +{k}
f h +-f h +{Rhu[JJ}
Let change = false
Let Ah' = 0
For every ah E A,.,

If Consistent (ah , R hu[J])
then

Ah -Ah I

If ah E A then
Let SIJ = New (ah, P6h, 0, 0, Aah)

ah +-O'h +{g}
rh - Th+{R/ [{h, g}l}
Let H = J - {h }+{g}
Jf Specialize (g , k, R ;,, (H])

then A1a 1 - A,. 1 +{g}
else change +-true

else-if a,. E Q then
Let g = m

ah

Let H = 1 - {h }+{ah}
If Specialize (a,., k, R

9
u[H])

then Ah 1 -A,. 1 +{ah}
else change +-true

else Ah' +-Ah' +{ah}

If change then
for every j E Q , h E a; ,

Propagate (j, h)
Return (Ah 'I, 0)
End .

Algorithm 3: Specialize

Copyright© WilUam Havens

- 20 -

constraint, Rhu[J], for h ,k E J, to r h (in step 3). As a consequence, the network con

sistency of Q may be disturbed. A new empty labelset, Ah ' , is established for Sh (in

step 5) and every label, ah e Ah , is tested for consistency under the new constraint (in

steps 6 and 7). Ah' is constructed as follows. In order to represent w (Sh), Specialize

must construct all of its subclasses, as subschemas in the specialization hierarchy for S1i

as necessary. Every new component of Sh is also a new component of each subschema.

Likewise, each new constraint in S1i has a parallel but specialized constraint in the

subschema. Also Specialize must establish the subclass relation between Sh and each

of the derived subschemas.

In this implementation, Specialize constructs all subschemas in depth-first order.

Recall that a new derived schema inherits its labelset from its prototype. For each con

sistent label in A1i, there are three possibilites (in steps 9, 17 and 23 respectively):

(1) ah e A implying that w (Sa
11

) has not yet been constructed. Specialize creates a

new copy, Sg, of S a
11

(in step 10) as described in Section 2.2. Sg becomes a new

component of Sh and the subclass relation, Rl, is asserted between the two sche

mas (in steps 11 and 12). Next, Specialize is called recursively on Sg with Sk as

its new component and with a new derived constraint, Ru [HJ, on its labelset, An
a11 ¥

(in steps 13 and 14). If the specialization is successful, then Ah' gets the new

label, g, for its consistent subschema, Sg (by step 15), else the label is omitted and

consistency must be later propagated throughout Q.

(2) In the second case, ah E Q indicating that Sa
11

has already been constructed in a

previous call to Specialize . A new constraint is derived for S ah from its prototype,

Copyright © Wllllam Havens

• 30 •

m , and Specialize recursively called on S with its new component, Sk , and
ah ah

new constraint, Rgu[H] (steps 18 through 20). If successful, then ah is copied into

.6.h 1 (in step 21).

(3) In the last case, ah is a consistent label for Sh but ah is atomic. Since it does not

appear in A , it can not be specialized and w (Sa,.) remains a consistent but unk-

nown subclass of w (Sh). ah is simply copied to Ll1a 1 (in step 23).

After checking every label in .6.1a, the new labelset, Ll1a 1
, is copied back to .6.h (in

step 24). If the labelset has been changed, then network consistency must be pro

pagated to every neighbour schema, S;, such that h E a; (in steps 25 through 27).

Finally, Specialize returns true if the new labelset is non-empty and false otherwise (in

step 28).

In the example network of Figure 9, specialization constructed subschemas,

ShortHaul -10, PassCar -11, PassCar-12 and FreightCar-13 and established the final

labelsets indicated for each schema. The global scene interpretation for the network can

be read by examining each node, its labelset, and the relations among nodes. At top

level, there is a Train -1 schema labelled as a ShortHaul class which contains Engine -2,

Carset -4, Caboose -3, and ShortHaul -10 as its components. The Engine -2 schema is

labelled as a Switcher. Carset -4 is labelled as a MixedCarSet class and contains Car --5

(labelled as a PassCar) and CarSet-6, which contains Car-7 and CarSet -8, and so

forth. At a finer level of detail, the description of Train -1 is specialized to

ShortHaul-10, which is labelled as a Local train. Likewise, Car -5, Car-7 and Car -9

are specialized respectively to PassCar-11, PassCar-12 (both labelled as a Coach) and

Copyright © William Havens

- 31 -

4. Conclusion

Although the machinery developed here is extensive, the task it solves is a difficult

one. How can knowledge about objects in the world be effectively organized and

efficiently applied to ma.chine perception? Indeed, much of the research in knowledge

representation addresses these two issues and neither can be considered in isolation from

the other. \Ve have argued tha.t schema knowledge representations and network con

sistency constraint propagation techniques can be integrated into a coherent design for

machine perception. \Ve presented a formalism for schema representations. Schemas

represent both general and specific classes of objects. Each class is represented as the

union of a set of subclasses contained in the schema's labelset. Each subclass may also

explicitly be represented. Membership in the class is limited by a set of constraints on

the labelset of the schema and the labelsets of its components. A schema KB is a static

collection of generic schemas. We defined a method of deriving new schemas from their

generic prototypes. The goal of schema labelling is to construct a hierarchical structural

description of the input scene as an NCG of derived schemas. The NCG makes explicit

the objeet s recognized in the scene and their relationships at multiple levels of detail.

Schema labelling identifies composition and specialization as two major aspects of recog

nition. Composition constructs the NCG by using a set of composition rules distributed

among the schemas in the KB. Specialization applies network consistency techniques to

refine the membership of each schema to correspond to the objects actually present in

the data.

Schema labelling is currently being evaluated in two experimental domains. The

first experiment applies schema labelling to the interpretation of hand-printed Chinese

Copyright © William Havens

- 32 •

characters [10]. Character recognition is an important but difficult problem. The

tremendous variability in character size, placement, and writing style makes the recogni

tion of band-printed characters difficult for traditional pattern recognition techniques.

In this system, each schema represents a class of structurally similar characters in terms

of its component parts and the spatial constraints that must exist between components.

The composition hierarchy for the system defines schemas for characters, their com

ponents, called radicals, and the basic strokes from which the radicals and characters

are constructed. Segmentation of the input data provides features from which composi

tion can construct schemas for the character, its radicals and their strokes. The spatial

relationships present among features allow composition to assert the constraints among

the schemas in the NCG. A network consistency algorithm is then used to refine the

labelset for each schema towards a unique description for the character.

The second application of schema labelling is the recognition of VLSI circuit

designs from their mask layout specifications [2]. The design of integrated circuits

remains an art despite recent advances in computer aided design techniques. Very

expensive errors proliferate into fabrication despite sophisticated design rule checkers

and circuit simulators. Schema labelling provides an alternate approach by recognizing

an abstract functional desc-ription of the circuit from the topology of the mask layout

for the device. The electrical behaviour of the device is not simulated. Instead, a low

level description of the transistors and their interconnections is extracted and used as

the input data. For this system, the KB contains schemas for high-level logical func

tions (such as registers and adders). These objects are composed of flip-flops and

boolean gates which are, in turn, composed of an interconnected network of transistors

Copyright © Wll!iam Havens

- 33 -

(and possibly other passive devices). Each schema in the KB specifies how the devices

in its class can be implemented from its possible components. Given a particular inter

connection of components, the constraints in the schema limit the class of the device to

the circuit actually implemented in the mask layout.

Acknowledgements

I am grateful to many people in the Laboratory for Computational Vision for their

help in preparing this manuscript, particularly Alan Carter, Rachel Gelbart, Lisa Hig

ham , Alan :Mackworth, Ted Moens, Jan Mulder, and Ray Reiter. This work was sup

ported by NSERC under grants A5502 and SMI-51, and by the University of British

Columbia.

References

1. R. P. Abelson (1975) Concepts for Representing 11undane Reality in Plans, in
Rcprc.sentation and l}nderstanding, D.G. Bobrow & A. Collins (eds.), Academic
P • •' l\.T , , 9-3 30() 1 ess, l,. 1 • , pp._, - u.

2. A. Alon & W. Havens (1984) Recognizing VLSI Circuits from Mask Artwork by
Schema Labelling, Tech. Report 85-1, Dept. of Computer Science, Univ. of Brit
ish Columbia, Vancouver, Canada (in preparation).

3. D. H. Ballard & C. M. Brown (1982) Computer Vision, Prentice-Hall, Englewood
Cliffs, N.J.

4. H. G. Barrow & J.M. Tenenbaum (1976) MSYS: A System for Reasoning about
Scenes, Tech. Note 121, AI Center, SRI International, March 1976.

5. F. C. Bartlett (1932) Remember£ng, Cambridge Univ. Press, Cambridge, England.
6. D. G. Bobrow & T. \Vinograd (1977) An Overview of KRL: A Knowledge

Representation Langiiage, Cognitive Science 1. nn. 1.
7. R. J. Brachman (1079) On the Epistemological Status of Semantic Networks, Asso-

ciative Networl:s, N. Findler (ed.) Academic Press, N.Y., p.3.
8. R. J. Brachman (1982) What ISA is and isn't, Proc. Canadian Soc. for Computa-

tional Studies of Intelligence, Saskatoon, Canada, May 1982, p.212.
0. R. Brooks, R. Cereiner & T . Binford (1979) The ACRONYM Model-Based Vision

System, Proc. JJCAJ-79, Tokyo, Japan, Aug. Hl79, p.105.
10. T. Bult (1985) Schema Labelling Applied to Hand-Printed Chinese Character

Copyright © \Vlllia.m Havens

Recognition, M.Sc. Thesis, Dept. of Comp. Science, Univ. of British Columbia,
Vancouver, Canada (in preparation).

11. N. Cercone & L. Schub rt (1975) Towards a State-Based Conceptual Representa
tion, Proc. 4-IJCAI, Tbilisi, USSR, pp.83-90, Sept. 1975.

12. E. Charniak (1975) Organization and Inference in a Frame-Like System of
Knowledge, Proc. Theoretical Issues in Natural Language Processing, Cam
bridge, Mass., June 1975.

13. N. Chomsky (1957) Syntactic Structures, Mouton and Co.
14. W. Clocksin & C. Mellish (1981) Programming in PROLOG, Springer-Verlag, New

York.
15. 0. Dahl & K. Nygaard (1976) SIMULA - An Algol-Based Simulation Language,

CA CA! 9, Sept. 1976.
16. C. A. Dent & R. G. Smith (1983) A Guide to ATHENA: A Knowledge Representa

tion Language, DREA Tech. Memo 83/G, Dept. of National Defence, Dart•
mouth, N.S., Canada.

17. J. Doyle (Hl70) A Truth Maintenance System, Artificial Intelligence 12, pp.231-
272.

18. J. Earley (1970) An Efficient Context-Free Parsing Algorithm, CAC.M 13, no.2,
pp.04-102.

19. E. C. Freuder (1978) Synthesizing Constraint Expressions, CACM 21, no. 11,
November, 1978, pp.958-966.

20. E. C. Freuder (1976) A Computer System for Visual Recognition using Active
Knowledge, AI-TR345, MIT AI Lab, Cambridge, Mass.

21. A. Goldberg & D. Robson (1983) Smalltalk-BO: The Language and its lmplemenfa•
tion, Addison-,v esley, Reading, Mass.

22 . R. M. Haralick & L. G. Shapiro (1979} The Consistent Labelling Problem: Part I,
IEEE Trans. PA~MI 1, no. 2, April 1979, pp.173-184.

23. W. Havens (1983) Recognition Mechanisms for Schema-Based Knowledge
Represent at ions, Int . Journal Computers and Mathematics 9, no. 1, Pergamon
Press, pp.185-199.

24. \V. Havens & A. Mackworth (1983) Representing Knowledge of the Visual \Vorld,
IEEE Computer 16, no. 10, October, 1983, pp.90-96.

25. \V. Havens, A. Mackworth, & J. Mulder (1985) The Mapsee2 System: Representa
tional Adequacy for Computational Vision, (in preparation).

26. P. Hayes (Hl81) The Logic of Frames, in B. \Vebber & N. Nilsson (eds.) Readings
in Artificial Intelligence, Tioga Publishing, Palo Alto, CA., pp.451-458.

27. G. Hendrix (1975) Expanding the Utility of Semantic Networks through Partition
ing, Proc. 4-/JCAI, Tbilisi, USSR, pp.115-121, Sept. 1975.

28. M. Herman & T. Kanade (1984) The 3D MOSAIC Scene Understanding System:
In cremental Reconstruction of 3D Scenes from Complex Images. C:MU-CS-84-
102, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, PA., Feb.
1984.

29. G. Hinton (1979) Relaxation and its Role in Vision, Ph.D. thesis, Univ. of Edin
burgh, Edinburgh, Scotland, Dec. 1979.

30. Y. Lesperance (1980) Handling Exceptional Conditions in PSN, Proc. Canadian

Copyright © Willlam Havens

- 35 -

Society for Computctional Studies of Intelligence, Victoria, Canada, May 1980,
p.63.

31. H. Levesque & J. Mylopoulos (1979) A Procedural Semantics for Semantic Net
works, in N. Findler (ed.) Associative Networks, Academic Press, N.Y., pJ)3.

32. A. K. Mackworth (1977) On Reading Sketch Maps, Proc. 5-IJCAI, MIT, Cam
bridge, Mass.,pp.598-606, August 1977.

33. A. K. Mackworth (1977) Consistency in Networks of Relations, Artificial Intelli
gence 8, no.1, February, 1977.

34. A. K. Mackworth & E. C. Freuder {1985) The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems, Artificial
Intelligence 25, pp.65-74.

35. A. K. Mackworth & W. S. Havens (1981) Structuring Domain Knowledge for
Visual Perception, Proc. 7-IJCAI, Univ. of British Columbia, Vancouver,
Canada, August 1981, p.625.

36. A. K. Mackworth (1083) Recovering the Meaning of Diagrams and Sketches, Proc.
Graphics Interface '83, Edmonton, Canada, May, 1983, pp.313-317.

37. A. Mackworth, J. Mulder & \V. Havens (1985) Hierarchical Arc Consistency:
Exploiting Structured Domains in Const.raint Satisfa tion Problems, T()ch.
Report 85-7, Dept. of Comp. Science, Unhr. of B.C., Vancouv er , Canada..

38. D. Marr (HJ82) Vision, \V.H. Freeman, San Francisco, CA.
39. M. Minsky (1975) A Framework for Representing Knowledge, in The Psychology of

Computer Vision, P. Winston (ed.) McGraw-Hill, N.Y.
40. J. Mulder (1985) Representing Ambiguity and Hypotheticality in Visual

Knowledge, Ph.D. thesis, Dept. of Computer Science, U. of British Columbia,
Vancouver, Canada (in preparation).

41. A. Newell (1982) The Knowledge Level, Artificial Intelligence 18, no. 87.
42. A. Rosenfeld, R. Hummel, & S. \V. Zucker (1976) Scene Labelling by Relaxation

Processes, IEEE Trans. Sys(ems, Afan, & Cybernetics, SA1C-6, no. 6, June 19i6,
pp.420-433.

43. S. Rubin (1980) Natural Scene Recognition using Locus Search, Computer Graphics
& Image Processing 18, no. ??????

44. D. E. Rumelhart & A. Ortony (1976) The Representation of Knowledge in
:Memory, TR-55, Cent. for Human Info. Processing, Dept. of Psych., Univ. of
Calif. at San Diego, LaJolla, CA.

45. R. C. Schank (1975) The Structure of Episodes in Memory, in Representation and
Understandi11g, D.G. Bobrow & A. Collins (eds.), Academic Press, N.Y., pp.237-
272.

46. L. Schubert (1975) Extending the Expressive Power of Semantic Networks, Proc.
4-IJCAI, Tbilisi, USSR, p.158, Sept. 1075.

47. R. Seidel (1984) On the Complexity to Achieve K-Consistency, unpublished tech.
report, Dept. of Computer Science, Cornell Univ., Ithaca, N.Y.

48. J. F. Sowa {1984) Conceptual Structures: Information Processing in }.find and
]if a chine, Addison-\Vesley, Reading, Mass.

49. J. Tsotsos (1081) Temporal Event Recognition: An Application to Left Ventricular
Performance .Assessment; Proc. JJCA/-81, Vancouver, Canada.

Copyright © " -1lliam Havens

50. J. K . 'fsr11so, (19 4) Representational Axes and Temporal Cooperative Processes1
R !B\ -1R-84-2 1 Dept. of Computer Science, Univ. of Toronto, Toronto,
Canada, April 198-i.

51. D. L. \\raltz (H.172) Generating Semantic Descriptions from Drawings of Scenes
with Shadows, Al-TR-271, M.I.T. A.I. Lab, Cambridge, Mass.

52. T. Winograd (1975) Frame Representations and the Procedural-Declarative Con
t.raversy, in Representation and Understanding, D.G. Bobrow & A. Collins
(eds.)i Academic Press, N.Y., pp.185-210.

53. W. A. Woods (Hl75) What's in a Link: Foundataions for Semantic Network , in
flepreser1latio11 and Understanding, D.G. Bobrow & A. Collins (eds.), Academic
Press N.Y., pp.35-82.

Copyright © Wllllam Havens

Figure 1: Mapsee2 Composition Hierarchy

.,,,1111111,111

Sensor

.. = Data Flow

.. = Control Flow

= Process

0 Knowledge Representation

Figure 2: Overview of Schema Labelling

(a) Long-Haul Freight

(b) Local Train

(c) Express Train

(d) Commuter Train

Figure 3: Example Railroad Trains

•
•

Train :

LongHaul :

ShortHaul:

Engine:

CarSet:

Car:

M -= Train
P = {P1, P~}
Q' =.
r -= {Rirain [{Train, Caraet }],

Rfrain [{Train, Engine}],

R irain [{ Train , Cabooae } I,
R f,ain [{ Train , Longllaul }],

Rf,ain [{Train, ShortHaul }]}
~ = {LongHaul, ShortHaul}

M = LongHaul
p -=.
a, a::.
r - {RL~ngHau1l{LongHaul' CarSet }],

R L~ngHaud { Longl-1 aul , Engine }] ,

RL!ngHaud{LongHaul, Cabooae }]}
A - { Ezpreu , Freight }

M = ShortHaul

p =• a,-•
r - {Rs~ortHaud{ShortHaul' CarSet },

Rst,tHautf{Shortllaul, Engine}],

RsiortHaud{ShortHaul, Cabooae }]}
A -= {Local, Freight, Commuter}

M - Engine

p -•
Q' =.
f - {RE~gint [{Engine, Train}]}
~ -= {Loco, Switcher}

M -= CarSet
p -={p3,p~} a,-•
f - {RJa,set [{ CarSet, Car}],

RJ0 ,se1 I{ CarSet, Car, CarSet }],

RJa,Set [{ CarSet, Car}]}
A. - {FreightCarSet, PaaaCarSet, MizedCarSet}

M - Car
p - • a,_,
r-= {Rt0 ,[{Car, FreightCar }],

PassCar:

Freight Car:

Rl., [{Car, PaaaCar }]}
A = {FreightCar, PaaaCar}

M = PauCar

p =.
O' =.
r = •
A - {Coach, Mail, Obaerve, Saloon }

M -= FreightCar
p

O' -· r - •
A = {Boz, Flat, Tank, Hopper}

Figure 4: Schema Knowledge Base for Model Railroad

8
Figure 5: Specialization Hierarchy for Model Railroad

Rr~ain -

R frain -

Rf,ain -

R f,ain -

RL~ngHaul

RL;ngHaul

RL!ngHaul

RsLrtHaul

RsXortllaul

=

=

-
-

=

{ (LongHaul,Freigh tCarSct) ,(LongHaul,PassCarSet),
(ShortH aul,F reigh tCarSet),(ShortHaul,PassCarSet),(ShortHaul,Mixed CarSet)}

{(LongHaul,Loco),(ShortHaul,Switcher)}

{ (LongHaul, Generic),(ShortHaul, Generic)}

{(LongHaul,Express),(LongHaul,Freight),(ShortHaul,Freight),
(ShortHaul,Local),(ShortHaul,Commuter)} :-

{ (Freigh t,Freigh tCarSet),(Express,PassCarSet)}

{ (Express ,Loco), (Freight ,Loco)}

{ (Freigh t,Generic)}

{(Freight,Freight.CarSet),(Local,MixedCarSet),(Commuter,PassCarSet)}

{ (Freigh t,Switcher) ,(Local,Switcher),(Commuter,Switcher)}

Rs!ortHaul - {(Freight,Generic),(Local,Generic)}

RE~gine -

RJa,Set -

RJa,Set -

R s
Ca, -

{ (Loco,LongHaul),(Switcher ,ShortHaul)}

{(PassCarSet,PassCar),(FreightCarSet,FreigbtCar),
(MixedCarSet,FreiglitCar) ,(MixedCarSet,PassCar)}

{(PassCarSet,PassOar,PassCarSet),(FreigbtCarSet,FreightCar,FreightCarSet),
(MixedCarSet PassCar,MixedCarSet) ,(Mix dCarSet,FreigbtCar,Mixed arSet.),
(Mix ed CarS et,P ass Car ,Freigh tCarSet) ,(Mixed CarSet,Freigh tCar ,P assCarSet)}

{(Freigb tCar ,Box),(FreigbtCar ,Flat),(FreightCar, Tank),
(FreightCar,Hopper),(PassOar,Coach),(PassCar,MaiJ),(PassCar,Observe),
(PassCar,Saloon)}

Figure 6: Constraints for the Railroad

Figure 7: Railroad Composition Hierarchy

p 1: Train [v 1] .,_ Let v 1 = New [Train, PTrai1&, 0, 0, ~Train] /\
Engine [v 2, v 1] /\

Specialize(v 1, t12, RT~ain[{v1, v2}]] /\
Car Set [v 3] /\

Coupled [end 2[v 2], end l[v 3]] /\

Specialize [v 1, v3, Rt,ain[{v1, V3}]] /\
Caboose [v J /\
Coup_l:~ [end 2(v 3], e~d 1[v,4l) I_
Spe cralr ze [v i, ti 4, R Train [{ v 1, ti 4}]].

p 2: Train [v 1] +- Let v l = New [Train , P Train , 0, 0, ~ Train] /\
Engine [v 2, v 1] /\

Specialize [v 1, t1 2 , Rfrain[{v1, v2}]] /\
CarSet [v 3] /\

Coupled [end 2[v 2], end l[v 3]] /\

Specialize [vi, t1 3, Rt,ainHv1, V3}l).

p 3: CarSet [v 1] .,_ Let v 1 = New [CarSet, P CarSet, 0, 0, ~CarSet] /\
Car [v 2] /\

Specialize [v 1, t12, RJa,Set [{ v 1, V2}]] /\
Car Set [v 3] /\

Coupled [end 2[v 2], end l[v 3]] /\

Specialize [v 1, v 3, RJa,sed{ vi, v 2, v 3}]].

p 4: CarSet [v 1] .,_ Let v 1 = New [CarSet, P CarSet, 0, 0, ~CarSet] /\
Car[v 2] I\
Specialize [v 1, v 2, RJa,sed { v 1, v 2}]].

p 5: Engine [v 1, v 2] +- Let v 1 = New (Engine , PEngine , 0, 0, ~ Engine) /\
Specialize [v 1, v 2, RE~gine [{ v 1, v2}l1.

Figure 8: Composition Rules for Railroad

R~hortHaul ~---t Generic
~

t-----i MixedCarSet

----1 MixedCarSet

FreightCarSet

t-----iCoach PassCar ~--t

---coach 1----1 FreightCar

Figure 9: Network Consistency Graph for Local Train

