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Abstract 
Schema labelling is a representation theory which focuses on composition and specialization 

as two major aspects of machine perception. Previous research in computer vision and 
knowledge representation have identified computational mechanisms for these tasks. We show 
that the representational adequacy of schema knowledge structures can be combined advanta­
geously with the constraint propagation capabilities of network consistency techniques. In par­
ticular, composition and specialization can be realized as mutually interdependent cooperative 
processes which operate on the same underlying knowledge representation. In this theory, a 
schema is a generative representation for a class of semantically related objects. Composition 
builds a structural description of the scene from rules defined in each schema. The scene 
description is represented as a network consistency graph which makes explicit the objects 
found in the scene and their semantic relationships. The graph is hierarchical and describes the 
input scene at varying levels of detail. Specialization applies network consistency techniques to 
refine the graph towards a global scene description. Schema labelling is being used for inter­
preting hand-printed Chinese characters [10], and for recognizing VLSI circuit designs from their 
mask layouts 12]. 

1. Introduction 

This report describes a synthesis of schema knowledge representations and network 

consistency recognition techniques. The combined formalism, called schema labelling, is 

a natural union which makes explicit how the objects in the representation correspond 

to classes of individuals in the world and how these classes can be manipulated for 

machine perception. \Ve believe this correspondence promotes a natural organization 
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for knowledge which is indigenous to the nature of perception. Consequently, a maJor 

goal of this work is epistemological: to characterize how perception is organized and to 

transfer that architecture to machine perception. This is, of course, a common goal for 

much knowledge representation research within Artificial Intelligence. Marr [38] argued 

that the constraints inherent to the perceptual process should be characterized indepen­

dently of any particular implementation of that process. Newell [41] advocates studying 

knowledge at the "knowledge level" before considering the form of its representation or 

how it is to be used. Yet a major aspect of any computational theory of perception is 

structural. How should knowledge be organized such tha.t it can be effectively 

represented (in some formalism) and efficiently applied to recognition (by some proces­

sor)? By studying the particular knowledge necessary for a perception task, we can 

hope to inf er its form; to understand its architecture. 

Schema labelling is described here from the scene analysis perspective, but the tech­

nology is applieable to other Artificial Intelligence domains which can be viewed as 

recognition tasks. Previous network consistency methodology bas been applied success­

fully to scene analysis research [51,32] and its formal properties are well understood 

[33,34]. Related probabilistic relaxation methods have also been carefully studied 

[42,22]. However, the technology is mature and has reached its inherent limitations [2-t]. 

On the other hand, the capabilities of schemas [5] as a computer knowledge representa­

tion are still emerging. 1 The term is generic applying to a variety of similar representa­

tions including frame systems [39,52,12], scripts [45], plans [1], and schemas [44,23], as 

well as related semantic network representations [53,27,48]. In order for any of these 

1 We will use the terms "schema" and "schemas" for the singular and plural forms respectively . 
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formalisms to constitute an adequate representational language, their semantics must be 

formally specified. Hayes [26j has criticized frame systems from this perspective. 

,voods [53] analysed the semantics of semantic networks and others have made it more 

precise [46,38,11]. \Ve begin by formally specifying a representation for schema label­

ling. 

1.1. Schema Representations 

Schema knowledge representations characterize the perceptual world as composed 

of objects, events, situations, and abstract configurations of these objects in space or 

time. Knowledge of this world is object-centered, organized into modular units that act 

as perceptual models for recognition. Since the icreal" world contains an arbitrarily 

large number of identifiable objects, both concrete and abstract, it is advantageous to 

group similar individuals into classes. In this theory, a schema is a generative represen­

tation for a class of semantically related individuals. The representation is finite but 

may describe a class containing an arbitrary number of members. Class membership 

may be known or unknown and is not necessarily unique. The representation is also 

explicit. so that recognition processes may examine and modify the contents of the 

knowledge base. The knowledge representation contains two types of knowledge: gen­

eral knowledge about classes known to the system and particular knowledge about the 

specific objects appearing in a given scene. This distinction is pervasive in representa­

tional formalisms. Object-centered programming languages, beginning historically with 

Simula [15] and including Smal1talk[21], KRL[6], PSN[31], KLONE[7], Athena[16], and 

others, define a plethora of datatypes for representing general and specific knowledge. 

Copyright © William Havens 
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Likewise, phrase structure grammars utilize a finite set of production rules to represent 

a potentially unlimited set of sentences. Each instantiation of a rule represents a partic­

ular sentential form found in some sentence. We shall define a schema datatype for 

representing both general and particular knowledge. 

A schema Knowledge Base (KB) is a static collection of schemas. The KB provides 

generic models for the various classes of objects known to the system. Each generic 

schema in the KB represents a general class of individuals by specifying its membership 

in terms of their semantic relationships with other classes. As well, the theory provides 

a generative mechanism for creating new der:'ved schemas from existing generic proto­

types. A derived schema represents a particular subclass of the class of its prototype. 

It is the task of schema labelling to construct a set of derived schemas to represent the 

objects present in the input data. The actual class membership of each derived schema 

is constrained by semantic relationships inherited from the prototypes. These schemas 

with their mutual constraints form a network consistency graph (NCG) which provides 

the out.put description of the input scene. The NCG is modular, structural and 

describes the recognized classes and their semantic relationships at multiple levels of 

detail. 

1.2. Composition and Specialization 

Schema labelling is characterized as the intimate interaction of two complementary 

processes: composition and specialization. Tsotsos j50] has identified these as two intrin­

sic representational axes for recognition. Complex objects in the world have internal 

structure and can be rep resented efficiently as specific legal compositions of their const i-

Copyright © William Havens 
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tuent parts. Each member of such a class of objects is assumed to obey the same set of 

composition rules and, consequently, to have a similar structure. This knowledge, 

expressed as relationships among a small number of other classes in the knowledge base, 

is localized and modular. The resulting hierarchy is often called the composition hierar­

chy[35] or part-of hierarchyf 31][8]. Network descriptions of scene objects produced from 

this hierarchy retain this hierarchical structure. Recognition processes can exploit this 

organization by using a combination of top-down and bottom-up search strategies in 

either goal or data-driven modes[23]. 

The composition hierarchy developed for the Mapsee2[25] sketch understanding sys­

tem is shown in Figure 1. In this system, a geographic ·world is composed of Geo­

Systems which represent the landmasses and waterbodies which may appear in a sketch 

map. Each Geo-System is composed of some combination of Road-Systems, River­

Systems, Towns, Shores, Mountain-Ranges, and other interior Geo-Systems. These 

schemas a.re, in turn, composed of simpler schemas, finally terminating in the lowest 

level primitive objects which appear directly in the input image. In the downward 

direction, the hierarchy represents, for example, that River-Systems are composed of 

Rivers, Shores, and Bridges. Conversely, in the upward direction, Bridges are part-of 

both River-Systems and Road-Systems. 

Machine perception can also be characterized as a process of specialization from 

general descriptions of a large class towards refined descriptions of particular individu­

als. The purpose of specialization is to reduce the overall ambiguity of the scene 

description derived from incomplete and erroneous data using imperfect knowledge. 

This process cannot proceed by sequential selection of individual object models to 

Copyright © William Havens 
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account for the input data until the right model is found. Attempts to ameliorate this 

problem have used various exception handling mechanisms, notably similarity links to 

recommend a replacement model on failure[39]149l[30]. However, such mechanisms, 

although useful, depend entirely on failure-driven processing and violate the desirable 

modularity property. Each model should only contain knowledge about its own set of 

possible members and their allowed compositions. 

In schema labelling, classes are merged along the specialization dimension. Classes 

can be naturally organized using subclass and superclass relationships. \Ve associate a 

type or label with each subclass from a finite set of possible labels for the class called its 

/abelset. The labelset segments the class into subclasses by type. 2 Each label names a 

particular subclass which itself may be a schema present in the KB. 

Specialization defines a natural partial ordering of the knowledge base called the 

specialization hierarchy or sometimes the IS-A hierarchy. The descendants of each 

schema in the hierarchy: called subschemas, represent subclasses of their parent. The 

ares from sehema to subschema allow an inheritance of properties and constraints 

thereby achieving an economy of representation. If the arcs are interpreted as labels 

signifying distinguishing attributes for each subclass, then the hierarchy becomes a 

discrimination network. The hierarchy facilitates the associative retrieval of the correct 

schema to represent a given scene object by a top-down search of its nodes. It. is an 

active process resulting in the construction of the network description of the scene, but 

nevertheless an associative retrieval from the KB. Although IS-A is a powerful organi­

zational principle for knowledge representation, its imprecise use has been criticised by 

2 The subclas5es of a schema are not necessarily disjoint. 

Copyright © William Havens 
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Woods[53] and its multiple meanings recently analysed by Brachman[8]. 

1.3. Network Consistency 

In schema labelling, composition and specialization are inextricably intertwined 

processes. Both processes operate on the same knowledge representation to produce a 

structural description of the scene as an NCG from rules defined in each schema. The 

NCG explicitly depicts the objects found in the scene and their semantic relationships. 

The NCG is hierarchical and describes the input scene at varying levels of detail. Each 

node in the NCG represents objects either known or hypothesized to exist in the scene. 

The k-ary arcs among nodes represent constraints on object labelsets which must be 

synthesized for each possible network composition. 

Network consistency techniques are used to refine the NCG towards an unambigu­

ous labelling for each schema. Network consistency is a direct method for representing 

and manipulating ambiguous network descriptions. By applying the constraints ( con­

ceptually in parallel) to the nodes, the scene description is refined towards a globally 

consistent interpretation. Network consistency techniques have been used to great 

advantage in computer vision. \Valtz [51] used a network consistency algorithm to 

interpret perfect line drawings of children's toy blocks. The NCG was constructed 

directly from the input drawing. Picture junctions in the drawing corresponded to 

corner models over the labelsets of their connecting edges. Following bis success, Mack­

worth [32] showed that network consistency techniques were applicable to task domains 

more general than understanding the "blocks world". His original Afapsee program used 

network consistenc-y to automatically interpret band-drawn sketch maps of geographic 

Copyright © Wllliam Havens 
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scenes. Network consistency methods have been extended to allow probability measures 

to be associated with the labe]sets [42] and generalised to work with algebraic con­

straints [9]. Indeed, constraint-based approaches have been prevalent in computer 

yision systems [28,49,9,43,4,29]. See [3] for a good review of this technology. 

Network consistency has provided a uniform representational framework for scene 

analysis [33]. Unfortunately, the paradigm is not a panacea for either scene analysis or 

machine perception in general. Havens and Mackworth [24] identify a number of limita­

tions of the methodology and show that combining it with schema representations can 

enhance their joint descriptive and procedural adequacy. Schema labelling uses a 

straightforward combination of schema and network consistency methodology. 

1.4. Schema Labelling 

An overview of schema labelling is shown in Figure 2. The diagram indicates that 

the interaction of composition and specialization produces a network description of the 

input scene. Input to the system is derived from a sensor which samples data from the 

scene. Segmentation operates on this data and is assumed to produce symbolic image 

features such as adYocated by Marr[38] and to be controlled by procedures local to 

sehema models[52]. It is not necessary that the segmentation be either complete or error 

free. 3 The subsequent input to the composition process consists of the output from seg­

mentation plus access to the KB. The task of composition is to match these generic 

schemas in the KB to the image features and produce an NCG of derivl'd schemas as 

output. The notion of matching used here is analogous to that advocated by Bobrow 

~ For other perceptual tasks, segmentation may be as straightforward, for example, :i.~ lexical analysis 
in natural language understanding or as difficult as phoneme identification in speech recognition. 

Copyright © William Havens 
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and Winograd[6]. The schemas in the knowledge base are used to account for the input 

data while assigning structure to the output description. The parallels between schema 

recognition and formal parsing algorithms have also been described[23]. 

The partially constructed NCG provides the input data structur_~ for specialization. 

The schemas in the NCG represent ambiguously labelled scene objects. Each schema 

may have one of a number of possible roles in the global scene description. The rela­

tions among schemas asserted during composition provide the constraints necessary to 

remove this ambiguity. Specialization can apply network consistency techniques to the 

network to produce a global scene description. As well, there is an interchange of con­

trol information between composition and specialization. As new schemas are added to 

the NCG, their consistency with the current global network consistency must be 

checked. By so doing,. the entire network description may be refined. Constraints on 

the interpretations of individual schemas ma.y be propagated arbitrarily far in the NCG. 

Conversely, when the constraints on a schema completely preclude its possibility of con­

tributing to the current network description, then a different composition for the net­

work must be attempted. Standard automatic backtracking algorithms or more sophis­

ticated control structures can be used [17,28]. In the remainder of this paper, we define 

the schema KB and present a method for constructing the NCG to represent the input 

scene. 

2. Composition 

Chomsky's [13] generative paradigm endures as an important organizational princi­

ple for knowledge representation. The formalism in which we encode our knowledge 
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about .a particular domain must be finite yet capable of characterizing an arbitrary 

number of inputs. A phrase structure grammar is a well understood .mechaJ1ism for this 

purpose. Grammars are generative stTuctural representations for arbitrarily large classes 

of strings. Parsing is a recognition task which exploits the Tepresentational adequacy of 

gramrnaTs. In particular, the grammar is the knowledge base used by the parsing algo­

rithm to construct a hierarchical network description of the input sentence as a parse 

tree. The _parse tree ca.ptures the meaning of the sentence by explicitly representing the 

linguistic objects and their relationships that appear in a given input sentence. The set 

of strings for which parse trees can be constructed constitute the language of the gram-

mar. 

In the theory presented here, schema representations have properties similar to 

grammars. A schema is a generative and structural representation for a class of semant­

ically related individuals. A schema represents this class as the union of a set of subc­

lasses which satisfy a specified set of constraints. The constraints limit the membership 

of the class (and recursively all of its subclasses) to those individuals which share specific­

semantic relationships with other classes, called its components. The theory provides a 

mechanism foT generating new schemas from existing ones. Schema labelling is the pro­

cess of composing and specializing schemas to represent the , 1arious objects perceived in 

the input data. The output is the hierarchical NCG description of these objects and 

their mutual relationships. 

The KB is finite and static. The schemas m the KB describe general classes of 

objects, their m<?mbership, and their allowed relationships with other classes. It will be 

convenient to ref er to scbemas by name. FoT this -puTpose we associate a unique 

Copyright © William Haven• 



\ 

- 11 -

identifier with each schema. Let the set of names of all the schemas in the KB be an 

index set, A . A schema, S,, is in the KB if and only if i EA. The contents of A can 

be integer subscripts or any other unique set of elements. Normally, we will want to 

associate character string names as the identifiers for schemas. 

Likewise, the NCC consists of a set of schemas derived from the KB and intercon­

nected by semantic constraints. We will refer to these schemas by a second index set, 

Q. S.- is part of the NCC, if, and only if, i E Q. The elements in Q are also unique 

identifiers but their names normally will be generated automatically by the system. 

Note that the KB is distinct from the NCG which it produces, that is, A n Q = 0. 

Every schema in either A or Q has the same form and is represented as: 

where 

s.- = ( mi , P, , a.- , r i , ~ .- ) 

m,· E A is the prof oiype schema for Si. 

Pi is a set of composition rules for constructing Q'i and ri. 

O'i c Q is the set. of components contained in Si. 

ri is a set of constraints on Ai. 

A.- is the labelset for Si. 

Every schema S,, i E Q is derived from a prototype, Sm · , m, e A . S, inherits 
I 

the composition rules, P1 , and labelset, A, , from its prototype. We will use the nota­

tion, w ( S ), to denote the class represented by a schema, S. The class represented by 

Si is a particular subclass of Sm : 
I 

Copyright © William Havens 
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( 1) 

Conventionally, smce every schema has a prototype, if Si ts generic, • E A , then 

m, = 1. Every generic schema is its own prototype. 

The components, O:i, of Si are also schemas in Q. Only derived schemas have 

components. If ; E A , then O', = 0. The notion of component is more than a simple 

"part of" relationship. The components of Si are those other derived schemas which 

have been asserted by composition to be semantically related to S, in the constructed 

NCG for the input scene. For a given Q, O:i will contain schemas which are part of S,, 

schemas of which S; is a part, and all of the constructed subschemas of S.-. 

The class membership of a schema is structured along the specialization dimension. 

Ai is a discrete and finite set of labels for Si. Each label, ai E A,, is the name of a 

particular subclass, w (Sa -), of S,. Sa - is called a subschema of S.- and may or may not 
I I 

be explicitly represented in A or Q. w (S,) is represented as the union of all of its 

subclasses: 

(2) 

Specialization edits Ai under the constraints, r i, applied to its components, 0:1 , to 

represent w (S, ). Editing involves both deletions and substitutions of the labels in A;. 

The schemas in A. and their labelsets define the specialization hierarchy for the sys­

tem. The specialization hierarchy is a static organization of generic classes into their 

subclasses recursively. It is represented by a hierarchy of schemas and subschemas. 

Each interior node, ; , in the hierarchy corresponds to a schema, S,, ; E A . The des­

cendants of node; i , are the labels, a, E A;. If any node, a, E A , then ai is also an 

Copyright © Wllliam Havens 



- 13 -

interior node in the hierarchy and its descendants are recursively the labels contained in 

Aa . 
I 

The specialization hierarchy for a class recursively divides the class into smaller and 

smaller subclasses. For a finite KB, this process must eventually terminate with single­

ton classes or with classes that have no schema representation in A . ,v e shall call both 

such indivisible classes atomic classes and represent them only by name as labels in thc.> 

labelsets of exi~ting schemas. Atomic classes are the leaf nodes of the specialization 

hierarchy which have no composition and their membership is not constrained by rela­

tionships with other classes. In general, if i f. A u Q, then w (Si) is unknown. Its 

membership is homogeneous and must be considered as a whole. 4 However, if Si 1s 

known a priori to represent a singleton class, then 

w (Sd = {i} (3) 

By convention, individuals are represented only by name as singleton classes. 

The constraints, r i , are derived from the generic constraints, rm , defined in the 
I 

prototype, S
111 

• Ea<' h constraint, R/'IJ] Er,., is a relation over the labelsets , Ai, of a 
I 

set of schemas, j E J, for J ~ A u Q, i E J. Figure 6 below illustrates a. typical set 

of constraints for the example which follows. If Si is generic, i E A , then 

\fR/'[J] EI\, J ~ A and 

R/'[JJ ~ TI A; 
j E J 

(4) 

4 Usually it is unimportant whether the extension of a class is represented in the KB. Instead, the 
goal or the system is t.o classify each object present in the input by assigning to it the most spec ialized 
subclass possible . 
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The composition hierarchy for the KB indicates the possible "'ompositions for every 

generic schema in A . It is a hierarchical digraph where each schema 5'.-, i E A is a 

node in the hierarchy. The arcs between nodes correspond to the possible components 

for each schema. For every constraint, R/'IJ] E f i , there exists a directed arc from 

node, ; , to every other node, j e J. The actual composition, Cl'j, for any schema, 

S.-, i e Q, will contain components derived from the neighbour nodes of its prototype, 

Sm·, in the composition hierarchy. Not all the possible components of Sm will appear 
I I 

as actual components in any particular composition for S.-. 

Analogous to their counterparts in grammars, the composition rules, distributed 

among the schemas in A , drive the construct.ion of Q to represent the input scene. ,v e 

do not specify a language for the rules explicitly. In Mapsee2, the composition rules 

were embedded in Lisp procedures in each schema. For Si, i e Q, the responsibilities 

of Pi are twofold: 1) to specify which combinations of other schemas are valid composi­

tions for S.- given the features present in the input data; and 2) given an ai, to com-

pile5 new constraints, f i, between its labelset, ~i, and the labelsets of other schemas in 

A u Q. Each addition to o.- is a new hypothesis about the role of Si in Q and per­

mits new constraints to be asserted on Si, given that hypothesis. In other words, the 

composition rules for a schema allow us to constrain the membership of its class as a 

function of the membership of other classes to which it is related in the network descrip­

tion of the scene. 

6 "Compile" is used here in the general sense of "to tabulate" . 
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2.1. A Model Railroad 

Consider the following hypothetical system to recognize railroad trains from draw­

ings. Figure 3 depicts four types of trains. Each train is composed of an engine fol­

lowed by a non-empty sequence of cars (called a carset) and ending with an optional 

caboose. Trains are classified as either long-haul or short-haul trains. Long-haul trains 

can be further specialized to the express and freight subclasses while short-hauls include 

freight, local and commuter subclasses. The type of each train is determined from the 

mix of cars in its carset, the type of its engine, and whether it has a caboose. Cars may 

be typed as either freight-cars or passenger-cars which specialize further to box, flat, 

tank and hopper or coach, mail, observation, and saloon respectively. There are two 

types of engines: powerful locomotives (locos) and little switchers. The semantic con­

straints for each type ~f train are as follows: An express passenger train has a locomo­

tive engine pulling a mi.xture of passenger cars. There is no caboose. The commuter 

train also consists of a sequence of passenger cars but is pulled by a smaller switcher 

engine. The freight train has a locomotive in front of any sequence of freight cars and 

ends with a caboose. Finally, the local train is partly passenger and partly freight. It is 

a small train containing a mixed carset, pulled by switcher type engine, and may or may 

not have a caboose. 

The KB for this example contains schemas for the classes described above:6 

A= { Train, 
LongHaul, 
Short.Haul, 
Engine, 
Car, 
Freight.Car, 

Copyright © Wllllam Havens 
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CarSet, 
Caboose} 
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The definitions or these schemas are elaborated in Figure 4. For example, consider the 

definition or the Train schema. Since every schema in A is generic, -Train has no conr 

ponents (a = 0) and it is its own prototype (m :: Train). The schema. has two compo­

siton rules (P = {p 1, p 2}) which are discussed later in Section2.3. The labelset for 

Train lists its two subclasses (A= {LongHaul, ShortHaul }) which are a.lso explicitly 

represented as schemas in A . The class, w (Train), is represented as the lillion of all 

long-haul and all short-haul trains: 

w (Train) = w (LongHauJ) u"' (ShorlHaul) (5) 

The schemas in A and their labelsets define the specialization hierarchy for the 

railroad. Figure 5 shows this hierarchy for the classes: Train, Car, Engine, and CarSet. 

Conceptually, we imagine the specialization hierarchy to be a lattice. The top node is 

the general Object schema or which every other schema is a specialization. The single 

bottom node is the .Null schema containing no members and being a specialization of all 

others. The partial ordering between nodes in the lattice is the subclass relation. 

r for the Train schema specifies the semantic constraints known between Train and 

the other generic schemas in A . Any schema derived from Train must share these 

semantic relationships with these other schemas. The arguments to the constraints in r 

are the other schemas in the KB which can be its possible components. For the Train 

schema, its possible components are CarSet, Engine, and Caboose. Every legitimate 

0 Schemas for the various parts of each car or engine (such as wheel trucks, chassis, couplers, bodies 
and fittings) are omitted from this example. 
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T.ra.in instance will be composed of some combination of these other schemas. The 

entire set of constraints for the railroad KB is given in Figure 6. 

The composition hierarchy for the railroad is illustrated in Figure 7. Any Train 

must be composed of an Engine instance followed by a single insta11ce of class CarSet 

followed optionally by a Caboose. CarSets are composed of a single Car instance or a 

Car followed by another CarSet instance, thereby allowing an arbitrary length train. 

Significantly, knowledge of composition and specialization are isolated. The Train 

schema is a perceptual model for all trains regardless of their actual type. The same 

economy of representation also occurs for Engine, Car and CarSet. In this example, the 

search for a valid scene composition is made efficient by generalizing individual schemas 

(for example, schemas for Local-Train, Freight-Train, Express-Train and Commuter­

Train) into a single class (Train). There is no need to back up and try a different 

schema if constraints eventually preclude the compatibility of some of its components. 

For example, attempting to recognize an instance of a Commuter-Train alone will 

succeed only until the first non-passenger car is discovered. The (perhaps considerable) 

e.ffort expended so far will be wast.ed unless the mode of the failure can be used to follow 

-a similarity link to the correct Local-Train train schema. The complexity of such a 

failure-driven reasoning subsystem is not clear and a simpler approach is advocated 

here. \\The.never individual classes can be merged into larger classes and the resulting 

ambiguity of interpretation represented by network consistency techniques, then the 

complexity of recognition is greatly reduced. Mulder [40] is exploring further this 

phenomenon in a. program called Mapsee3. 

Copyright (s William Havens 
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Th€> schema definitions for the Short.Haul and LongHaul classes a.re also given in 

Figure 4. The constraints defined in the Train schema have corresponding constraints 

in its specializations, ShortHaul and LongHaul. They represent a refinement of con­

straint along the specialization dimension. For example, R frain [{Train, Car Set}] res­

tricts the type of the train ( to either ShortHaul or LongHaul) as a function of the type 

of the CarSet which it contains (to either PassCarSet, Mi.xedCarSet, or FreightCarSet). 

That same constraint is manifest in a more refined form in both subschemas. In the 

ShortHaul schema, RsLrtHaul [{ShortHaul, CarSet }] constrains the type of the train to 

be either Freight, Local, or Commuter. Likewise for the LongHaul schema, 

RL~ngHaul [{LongHaul, CarSet }] specializes this class to Express or Freight. 

2.2. Network Descriptions 

Each node in the NCG, Q , is a schema representing a particular collection of 

objects found in the input scene. The arcs in Q are the semantic constraints which 

have been asserted to hold between each node and its components. The task of schema 

labelling is to construct Q such that it adequately accounts for all the input data and 

every schema in Q is complete. A schema, S 11 , h E Q, is complete if its composition, 

o:h, satisfies some rule in Ph and its labelset, ~h 7'= 0, after applying all the constraints 

We define a function, 

New ( m, P, o:, r, ~) 
which c-onstructs a new derived schema from its arguments. The new schema has a 

unique identifier which is automatically added to Q. Althou~h this function can be 

Copyright © Wll!lam Havens 



• 10 -

used to construct the nodes in Q , specifying its arguments for a given target class of 

objects in the world can be a difficult task. We must collect a finite set of subschemas 

to cover the membership of the target class. The subschemas may also have to be con­

structed. Next, we have to compile sufficient semantic constraints on these subschemas 

to restrict the membership of the new schema to the intended target. To simplify this 

task, we assume that each new class can be represented as a derived copy of a generic 

schema from A in conjunction with a set of known generic constraints on other sche­

mas. To this end, the schemas in A all function as prototypes for the schemas in Q. 

Constructing Q is reduced to deriving new schemas from the these prototypes, search­

ing for valid compositions, and specializing their memberships to correspond to the 

objects actually present in the input data. 

Let Sh = New (i, Pi, 0, 0, Ai), i E A 1 h E Q. The new Sh inherits the composi­

tion rules, Pi , and la belset, Ai , of its prototype, Si . O! h and r h are initially empty 

and w ( Sh ) is an unidentified su bcla.ss of w ( S'i ). The constraints, r i, in the prototype 

a.re used to construct the new constraints, r 11 , incrementally as new components are 

added to o·h. Each generic constraint, R/'[J] er.-, J ~A, can derive a new con­

straint, Rhu[H] E r 1i, H ~ Q, by letting Rh'' = R/' and substituting for every j E J a 

corresponding k E H such that mk = j. 

To decide w (Sh), we are interested in knowing which other schemas to look for as 

the possible components for S1i . This knowledge is expressed initially in the composi­

tion hierarchy. The set of schemas connected to Si in the composition hierarchy are the 

possible components for any particular instantiation of Sh . Search for Sh could proceed 
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"brute force'' by looking for instances of these schemas which are themselves complete. 

If no complete composition can be found for s,., then it is a bad hypothesis and can be 

deleted from Q . However, more efficient search methods are possible utilizing both 

top-down and bottom-up search of the composition hierarchy. In particular, the current 

components, 0: h, limit the set of possible components which need be considered. These 

issues are closely related to predictive parsing methods [18] but are not considered 

further here. For more details see Havens 123]. 

2.3. Building the Railroad 

For convenience, the composition rules for the Train, CarSet, and Engine schemas 

are listed together in Figure 8. In this example, we assume a simple top-down, goal­

driven control paradigm with automatic backtrack on failure. The top-down paradigm 

is popular in logic programming languages such as Prolog [14] and is well understood . 

The rules for each schema can be invoked to find an instance of that schema in the 

input data . They are called as subgoals by other schemas in order to complete their 

own compositions. Each rule returns either a new complete instance on success or 

failure otherwise. 

Consider the rules, p 1 and p 2 , for the Train schema which, for convenience, have 

been expressed in a Prolog-like syntax. Each rule has a single consequent on its /cft­

hand-side (LHS) which holds if the conjunction of the predicates on its right-hand-side 

(RBS) can be established. The rules are evaluated in left-to-right order with backtrack 

on failure. 7 \\' e assume the existence of two functions, endl and end 2, which return the 

7 \\'e assume that the implementation language has the capability to reverse side effects made to the 
network when backtracking. 
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respective ends of a car, engine or caboose. As well, there is a predicate, Coupled, which 

is true if the two specified ends are connected in the scene. Rule, pi, produces a Train 

composition having an Engine, a CarSet, and a Caboose. Subgoal calls to these schemas 

appear as predicates in the RHS of the rule. When the rule is invoked, it initially 

creates a new derived schema from its prototype, Train, as described above. The new 

schema Is bound to variable, v 1, m the rule. The labelset for v 1 IS 

A = {Shor/Haul, LongHaul} indicating that the unrecognized train can be a member of 

the general class of all trains. a and I' are both empty and will be incrementally aug­

mented as the rule is further evaluated. p 1 then attempts to find schemas for v 2, v 3 

and v 4 such that all the predicates in the rest of the RHS remain satisfied. For exam­

ple, the subgoal call to the generic Engine schema invokes rule p 5 in that schema pass­

ing v 1 as its argument: If p 5 can construct a new Engine (with the Train as a com­

ponent), then it is returned to p 1 and bound to variable, v 2, in that rule. v 2 IS now a 

new component for the Train which allows p I to assert a new constraint , 

R fra,n [ { Train , Engine } ], between A for the Train and A for the new Engine. The 

constraint, given in Figure 6, restricts the class of the Train to be LongHaul if the 

Engine is a Loco, else a Short.Haul if Engine is a Switcher. Next the predicate, Special­

ize, is called with the Train, Engine, and new constraint as its arguments. Speciali:e 

adds the Engine to a and the constraint to r for the Train. Specialize then refines the 

Train labelset, A, under the new constraint and constructs its subschemas for each con-

sistent label in A, as necessary.8 If A has been refined, then network consistency is pro­

pagated throughout Q. If the Train remains consistent, Specialize returns success to 

8 Specialize is considered in more detail in Section 3. 
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p 1, else it returns failure. 

The composition process proceeds, guided by the ru]e, to look for components, 

establish new constraints, and call Specialize to refine the incrementally growing net­

work. If the RHS of the rule becomes exhausted, then the Train is complete and it is 

returned as the va]ue of the subgoal. Otherwise failure is propagated back to its caller.9 

The second rule, p 2, represents the alternative composition for the Train schema. No 

Caboose is part of this composition. These two ru]es cover all the legitimate composi­

tions for the various example train types. The remaining rules, p 3 through p 5, specify 

compositions for the CarSet and Engine schemas. 

The network, Q, produc-ed for this example is shown in Figure 9. The names of 

the schemas were generated by appending a unique integer suffix to the name of each 

prototype. The n-ary arcs among nodes are the constraints compiled by the composi­

tion rules. Connected to each node is its final labelset, A. 

3. Specialization 

Net work consistency techniques can provide a powerful engme for specialization. 

In schema labelling, each Sh, h E Q, is a node in the NCG. Its labelset, Ah, is the 

corresponding domain of possible values for the node. The domain is both discrete and 

finite. Finally, the constraints, r h, provide relations among the nodes. Once the NCG 

is constructed, an algorithm (such as the arc consistency (AC-3) or path consistency 

(PC-2) algorithms of :Mackworth [33]) can be applied to refine the network towards a 

correct scene description. Unfortunately, because the constraints are local, neither arc 

g In this example, Train is the top-level goal. 
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nor path consistency can guarantee a globally consistent network. These algorithms 

operate by discarding from each labelset those labels which do not satisfy a local con­

straint for some node and therefore cannot possibly be part of any global interpretation. 

The methodology neither constructs global interpretations nor ensures their existence. 

Search is then required to verify a global solution .10 

Freuder [19] has proposed a technique, called k-consistency, for synthesizing solu­

tions as a global relation over a set of n-variables given their discrete domains and a set 

of k-ary constraints over subsets of those variables, O<k ~n. However, the computa­

tional complexity of k-consistency grows exponentially in both space and time with the 

number of variables considered. Basically, the algorithm constructs the power set of all 

possible relations over the variables (including the desired unique n-ary relation). Seidel 

[47] has recently shown its complexity to be O [n" ]. Clearly, k-consistency cannot be 

used practically to int('rpret scenes containing possibly hundreds of objects (and hence 

variables). 

Fortunately for schema labelling, the structure of both the composition and special­

ization hierarchies can greatly facilitate extending local consistency to global scene 

interpretations. They cannot eliminate the necessity of search but can ameliorate con­

siderably its complexity. 

(I) If the NCG is a tree and, hence, has no cycles, it has been shown recently [34] that 

arc consistency alone can establish the existence of a global solution in time 

0 ( a 3n ) and construct all such solutions in time O (an) where a is the uniform 

10 See Freuder [rnj for a simple map colouring problem which is both arc and path consistent yet glo-
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size of each variable domain. A composition hierarchy is a knowledge structure 

which attempts to organize the world into a tree of decomposable objects. Each 

object is limited in its interaction to those other objects which are its component 

parts and to those more complex objects of which it is part. Although a practical 

composition hierarchy may not be a strict tree, 11 if we can construct Q from this 

hierarchy such that it contains as few cycles as possible, then straightfon..-ard arc 

consistency can efficiently refine the instances in Q towards a global labelling. 

(2) Alternatively, for an arbitrary NCG, if every node has a single label in its domain, 

then arc consistency guarantees a unique global solution (which is simply the pro­

duct of all the singleton domains). By representing the labelset of each schema as a 

specialization hierarchy of other schemas, the number of labels in each labelset can 

often be kept very small. In general, the behaviour of AC-3 is O ( a 3n 2) for any 

graph. By reducing the domain size, a, as much as possible, the behaviour of spe­

cialization is again enhanced. A hierarchical arc consistency (RAC) algorithm has 

recently been formalised that exploits the structure of hierarchical labelsets [37]. 

HAC can manipulate entire subsets of a labelset as a single interior label in the 

hierarchy thereby frequently obtaining an improvement in efficiency over AC-3. 

3.1. Network Consistency 

\Ve develop a related form of hierarchical arc consistency for schema labelling by 

considering which labels in a derived schema's labelset are consistent under the con­

straints applied to its components. For schema, Sh, h E Q, a label, ah E Ah, 1s 

bally unsatisfiable . 
11 For example, the Mapsee'.? composition hierarchy of Figure 1 has cycles . 
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consistent under Rh11 [J], J ~ o:h U {h }, h E J, if, and only if, it is possible to con­

struct an element of Rh" from the prototype, m , of ah a.nd the prototypes, ma , of 
ah J 

some label, aj E A j, for every other component, j E J. For atomic classPs, 

j ft A u Q, we assume that ma. = ai. Atomic classes are their own prototypes. The 
J 

boolean function, Consistent (ah, R11u[J]L given as Algorithm 1, implements the above 

definition: 

Consistent provides the basic filtering mechanism necessary for maintaining ron-

sistent labelsets. It need be applied to a labelset whenever it is possible that some label 

may no longer be a consistent member. This situation can arise in schema labelling in 

two ways: 1) For a schema, S11 , a new constraint, R 11"[J], has been added to rh by com­

position, such that J ~ O:h U {h }, or; 2) A labelset, Ag, for a component, g E o:h, has 

been refined, removing·one or more of its labels and 3Rh"[J] Ef 11 , g E J. In either 

case, some label, ah E Ah, may no longer be consistent. If so, ah must be deleted from 

Ah and the consistency of every neighbour, Si, j E Q, such that h E O: j, must also be 

checked. For this purpose, we define a recursive procedure, Propagate (j, h ), which is 

1 Consistent ( ah , R hu[J]) boolean 
2 Let n = I J I 
3 Return (V j E J, h-::/: j, :3ai EA;, 

( ma , ... , ma , ... , ma., ... , ma ) E Rt) 
1 h J n 

4 End. 

Algorithm 1: Consistent 
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listed as Algorithm 2. Given a deletion from !1 11 , Propagate checks the consistency of 

A; for every constraint, R}'[JJ E f;, h E J. IC any labels are thus deleted from t:J. 1 , 

the procedure is repeated for each neighbour, Sk, k E Q, j E O:k. '\\'hen Propagate 

terminates, the labelset of every schema in Q will be arc consistent under its constraints 

or pathologically, every labelset in Q will be empty, indicating an invalid network com­

position . 

3.2. Subclass Constraints 

The task of specialization 1s to refine w (Sh) as much as possible for every 

Sh, h E Q. This process can also add new schemas to Q. From equation 2, w (Sh) is 

represented as the union of all its subclasses, w ( S ), for ah E Ah, such that every ah 
ah 

is consistent. If S is also a schema, a11 E Q , then w ( S
4 

) can also be expressed in 
~ h 

I 
2 
3 
4 
5 
6 
7 
8 
g 

10 
11 
12 
13 

Propagate ( j, h ) 
Let 6. / = 0 
Let change -false 
For every ai E Ai, 

If for every Rl[J] Er,., h E J, J s;; O:;, 
Consistent (a;, R}'[J]) 

then A/ -A/ +{a;} 
else change -trtie 

6.--6. · ' J J 
If change then 

for every k E Q, j E O: k , 

Propagate (k, j) 
End. 

Algorithm 2: Propagate 
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terms of its own labelset, A . In this case, we note that ah can only be a legitimate 
ah 

label for Sh if it is consistent and A :/- 0. In other words, if w (Sa ) is to make any 
ah - h 

non-empty contribution tow (S1i ), then its labelset cannot be empty. 

Consequently, we can define within the specialization hierarchy a distinguished sub­

class constraint, R,.S l{i, k }], between Si, i EA, and all of its non-atomic subschemas, 

Sk , k E A; , k E A : 

(6) 

The subclass constraints for the model railroad are included in Figure 6. For exam­

ple, Rfrain I{ Train, LongHaul }] allows the label, LongHaul, for Train only if its sub­

class, LongHaul, has at least one label, either Express or Freight. Likewise for 

R frain [ {Train, ShortHaul}] where ShortHaul is a legitimate label for Train only if the 

ShortHaul subclass also has a non-empty labelset. 

3.3. Network Synthesis 

Finally, the connection between composition and specialization can be elaborated. 

·whenever composition attempts to add a new schema to the network, every schema of 

which it is a new component must be specialized. If the augmented network remains 

consistent, then composition can proceed further. As a side effect, specialization will 

have refined the membership of those schemas constrained ( directly or indirectly) by the 

new component. On the other hand, if consistency fails from the inclusion of the new 

component, then the composition is bad. An alternative network composition must be 

attempted. Here we rely on backtracking on failure to search for alternative composi­

tions although the theory does not require it. 

Copyright © Wllllam Havens 



• 28 -

Defined in Algorithm 3 is the boolean procedure, Specialize (h, k, R"u[J]), which is 

called from a composition rule in P,. whenever a new component, Sk, is added to a 

schema, S", h E Q. Specialize first adds S1c to 01a (in step 2) and its associated new 

1 
2 
3 
4 
5 
6 
7 
8 
g 

10 

11 
12 
13 
14 

15 
16 
17 
18 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Specialize (h, k, Rhu[J]) boolean 
O'h +-O'h +{k} 
f h +-f h +{Rhu[ JJ} 
Let change = false 
Let Ah' = 0 
For every ah E A,., 

If Consistent ( ah , R hu[J]) 
then 

Ah -Ah I 

If ah E A then 
Let SIJ = New (ah, P6h, 0, 0, Aah) 

ah +-O'h +{g} 
rh - Th+{R/ [{h, g}l} 
Let H = J - {h }+{g} 
Jf Specialize ( g , k, R ;,, (H]) 

then A1a 1 - A,. 1 +{g} 
else change +-true 

else-if a,. E Q then 
Let g = m 

ah 

Let H = 1 - {h }+{ah} 
If Specialize (a,., k, R

9
u[H]) 

then Ah 1 -A,. 1 +{ah} 
else change +-true 

else Ah' +-Ah' +{ah} 

If change then 
for every j E Q , h E a; , 

Propagate (j, h) 
Return (Ah 'I, 0) 
End . 

Algorithm 3: Specialize 
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constraint, Rhu[J], for h ,k E J, to r h (in step 3). As a consequence, the network con­

sistency of Q may be disturbed. A new empty labelset, Ah ' , is established for Sh (in 

step 5) and every label, ah e Ah , is tested for consistency under the new constraint ( in 

steps 6 and 7). Ah' is constructed as follows. In order to represent w (Sh), Specialize 

must construct all of its subclasses, as subschemas in the specialization hierarchy for S1i 

as necessary. Every new component of Sh is also a new component of each subschema. 

Likewise, each new constraint in S1i has a parallel but specialized constraint in the 

subschema. Also Specialize must establish the subclass relation between Sh and each 

of the derived subschemas. 

In this implementation, Specialize constructs all subschemas in depth-first order. 

Recall that a new derived schema inherits its labelset from its prototype. For each con­

sistent label in A1i, there are three possibilites (in steps 9, 17 and 23 respectively): 

(1) ah e A implying that w (Sa
11

) has not yet been constructed. Specialize creates a 

new copy, Sg, of S a
11 

(in step 10) as described in Section 2.2. Sg becomes a new 

component of Sh and the subclass relation, Rl, is asserted between the two sche­

mas (in steps 11 and 12). Next, Specialize is called recursively on Sg with Sk as 

its new component and with a new derived constraint, Ru [HJ, on its labelset, An 
a11 ¥ 

(in steps 13 and 14). If the specialization is successful, then Ah' gets the new 

label, g, for its consistent subschema, Sg (by step 15), else the label is omitted and 

consistency must be later propagated throughout Q. 

(2) In the second case, ah E Q indicating that Sa
11 

has already been constructed in a 

previous call to Specialize . A new constraint is derived for S ah from its prototype, 
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m , and Specialize recursively called on S with its new component, Sk , and 
ah ah 

new constraint, Rgu[H] (steps 18 through 20). If successful, then ah is copied into 

.6.h 1 (in step 21). 

(3) In the last case, ah is a consistent label for Sh but ah is atomic. Since it does not 

appear in A , it can not be specialized and w (Sa,.) remains a consistent but unk-

nown subclass of w (Sh). ah is simply copied to Ll1a 1 (in step 23). 

After checking every label in .6.1a, the new labelset, Ll1a 1 
, is copied back to .6.h (in 

step 24). If the labelset has been changed, then network consistency must be pro­

pagated to every neighbour schema, S;, such that h E a; (in steps 25 through 27). 

Finally, Specialize returns true if the new labelset is non-empty and false otherwise (in 

step 28). 

In the example network of Figure 9, specialization constructed subschemas, 

ShortHaul -10, PassCar -11, PassCar-12 and FreightCar-13 and established the final 

labelsets indicated for each schema. The global scene interpretation for the network can 

be read by examining each node, its labelset, and the relations among nodes. At top­

level, there is a Train -1 schema labelled as a ShortHaul class which contains Engine -2, 

Carset -4, Caboose -3, and ShortHaul -10 as its components. The Engine -2 schema is 

labelled as a Switcher. Carset -4 is labelled as a MixedCarSet class and contains Car --5 

(labelled as a PassCar) and CarSet-6, which contains Car-7 and CarSet -8, and so 

forth. At a finer level of detail, the description of Train -1 is specialized to 

ShortHaul-10, which is labelled as a Local train. Likewise, Car -5, Car-7 and Car -9 

are specialized respectively to PassCar-11, PassCar-12 (both labelled as a Coach) and 
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4. Conclusion 

Although the machinery developed here is extensive, the task it solves is a difficult 

one. How can knowledge about objects in the world be effectively organized and 

efficiently applied to ma.chine perception? Indeed, much of the research in knowledge 

representation addresses these two issues and neither can be considered in isolation from 

the other. \Ve have argued tha.t schema knowledge representations and network con­

sistency constraint propagation techniques can be integrated into a coherent design for 

machine perception. \Ve presented a formalism for schema representations. Schemas 

represent both general and specific classes of objects. Each class is represented as the 

union of a set of subclasses contained in the schema's labelset. Each subclass may also 

explicitly be represented. Membership in the class is limited by a set of constraints on 

the labelset of the schema and the labelsets of its components. A schema KB is a static 

collection of generic schemas. We defined a method of deriving new schemas from their 

generic prototypes. The goal of schema labelling is to construct a hierarchical structural 

description of the input scene as an NCG of derived schemas. The NCG makes explicit 

the objeet s recognized in the scene and their relationships at multiple levels of detail. 

Schema labelling identifies composition and specialization as two major aspects of recog­

nition. Composition constructs the NCG by using a set of composition rules distributed 

among the schemas in the KB. Specialization applies network consistency techniques to 

refine the membership of each schema to correspond to the objects actually present in 

the data. 

Schema labelling is currently being evaluated in two experimental domains. The 

first experiment applies schema labelling to the interpretation of hand-printed Chinese 
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characters [10]. Character recognition is an important but difficult problem. The 

tremendous variability in character size, placement, and writing style makes the recogni­

tion of band-printed characters difficult for traditional pattern recognition techniques. 

In this system, each schema represents a class of structurally similar characters in terms 

of its component parts and the spatial constraints that must exist between components. 

The composition hierarchy for the system defines schemas for characters, their com­

ponents, called radicals, and the basic strokes from which the radicals and characters 

are constructed. Segmentation of the input data provides features from which composi­

tion can construct schemas for the character, its radicals and their strokes. The spatial 

relationships present among features allow composition to assert the constraints among 

the schemas in the NCG. A network consistency algorithm is then used to refine the 

labelset for each schema towards a unique description for the character. 

The second application of schema labelling is the recognition of VLSI circuit 

designs from their mask layout specifications [2]. The design of integrated circuits 

remains an art despite recent advances in computer aided design techniques. Very 

expensive errors proliferate into fabrication despite sophisticated design rule checkers 

and circuit simulators. Schema labelling provides an alternate approach by recognizing 

an abstract functional desc-ription of the circuit from the topology of the mask layout 

for the device. The electrical behaviour of the device is not simulated. Instead, a low­

level description of the transistors and their interconnections is extracted and used as 

the input data. For this system, the KB contains schemas for high-level logical func­

tions (such as registers and adders). These objects are composed of flip-flops and 

boolean gates which are, in turn, composed of an interconnected network of transistors 
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(and possibly other passive devices). Each schema in the KB specifies how the devices 

in its class can be implemented from its possible components. Given a particular inter­

connection of components, the constraints in the schema limit the class of the device to 

the circuit actually implemented in the mask layout. 

Acknowledgements 

I am grateful to many people in the Laboratory for Computational Vision for their 

help in preparing this manuscript, particularly Alan Carter, Rachel Gelbart, Lisa Hig­

ham , Alan :Mackworth, Ted Moens, Jan Mulder, and Ray Reiter. This work was sup­

ported by NSERC under grants A5502 and SMI-51, and by the University of British 

Columbia. 

References 

1. R. P. Abelson (1975) Concepts for Representing 11undane Reality in Plans, in 
Rcprc.sentation and l}nderstanding, D.G. Bobrow & A. Collins (eds.), Academic 
P • •' l\.T , , 9-3 30() 1 ess, l,. 1 • , pp._, - u. 

2. A. Alon & W. Havens (1984) Recognizing VLSI Circuits from Mask Artwork by 
Schema Labelling, Tech. Report 85-1, Dept. of Computer Science, Univ. of Brit­
ish Columbia, Vancouver, Canada (in preparation). 

3. D. H. Ballard & C. M. Brown (1982) Computer Vision, Prentice-Hall, Englewood 
Cliffs, N.J. 

4. H. G. Barrow & J.M. Tenenbaum (1976) MSYS: A System for Reasoning about 
Scenes, Tech. Note 121, AI Center, SRI International, March 1976. 

5. F. C. Bartlett (1932) Remember£ng, Cambridge Univ. Press, Cambridge, England. 
6. D. G. Bobrow & T. \Vinograd (1977) An Overview of KRL: A Knowledge 

Representation Langiiage, Cognitive Science 1. nn. 1. 
7. R. J. Brachman (1079) On the Epistemological Status of Semantic Networks, Asso-

ciative Networl:s, N. Findler (ed.) Academic Press, N.Y., p.3. 
8. R. J. Brachman (1982) What ISA is and isn't, Proc. Canadian Soc. for Computa-

tional Studies of Intelligence, Saskatoon, Canada, May 1982, p.212. 
0. R. Brooks, R. Cereiner & T . Binford (1979) The ACRONYM Model-Based Vision 

System, Proc. JJCAJ-79, Tokyo, Japan, Aug. Hl79, p.105. 
10. T. Bult (1985) Schema Labelling Applied to Hand-Printed Chinese Character 

Copyright © \Vlllia.m Havens 



Recognition, M.Sc. Thesis, Dept. of Comp. Science, Univ. of British Columbia, 
Vancouver, Canada (in preparation). 

11. N. Cercone & L. Schub rt (1975) Towards a State-Based Conceptual Representa­
tion, Proc. 4-IJCAI, Tbilisi, USSR, pp.83-90, Sept. 1975. 

12. E. Charniak (1975) Organization and Inference in a Frame-Like System of 
Knowledge, Proc. Theoretical Issues in Natural Language Processing, Cam­
bridge, Mass., June 1975. 

13. N. Chomsky (1957) Syntactic Structures, Mouton and Co. 
14. W. Clocksin & C. Mellish (1981) Programming in PROLOG, Springer-Verlag, New 

York. 
15. 0. Dahl & K. Nygaard (1976) SIMULA - An Algol-Based Simulation Language, 

CA CA! 9, Sept. 1976. 
16. C. A. Dent & R. G. Smith (1983) A Guide to ATHENA: A Knowledge Representa­

tion Language, DREA Tech. Memo 83/G, Dept. of National Defence, Dart• 
mouth, N.S., Canada. 

17. J. Doyle (Hl70) A Truth Maintenance System, Artificial Intelligence 12, pp.231-
272. 

18. J. Earley (1970) An Efficient Context-Free Parsing Algorithm, CAC.M 13, no.2, 
pp.04-102. 

19. E. C. Freuder (1978) Synthesizing Constraint Expressions, CACM 21, no. 11, 
November, 1978, pp.958-966. 

20. E. C. Freuder (1976) A Computer System for Visual Recognition using Active 
Knowledge, AI-TR345, MIT AI Lab, Cambridge, Mass. 

21. A. Goldberg & D. Robson (1983) Smalltalk-BO: The Language and its lmplemenfa• 
tion, Addison-,v esley, Reading, Mass. 

22 . R. M. Haralick & L. G. Shapiro (1979} The Consistent Labelling Problem: Part I, 
IEEE Trans. PA~MI 1, no. 2, April 1979, pp.173-184. 

23. W. Havens (1983) Recognition Mechanisms for Schema-Based Knowledge 
Represent at ions, Int . Journal Computers and Mathematics 9, no. 1, Pergamon 
Press, pp.185-199. 

24. \V. Havens & A. Mackworth (1983) Representing Knowledge of the Visual \Vorld, 
IEEE Computer 16, no. 10, October, 1983, pp.90-96. 

25. \V. Havens, A. Mackworth, & J. Mulder (1985) The Mapsee2 System: Representa­
tional Adequacy for Computational Vision, (in preparation). 

26. P. Hayes (Hl81) The Logic of Frames, in B. \Vebber & N. Nilsson (eds.) Readings 
in Artificial Intelligence, Tioga Publishing, Palo Alto, CA., pp.451-458. 

27. G. Hendrix (1975) Expanding the Utility of Semantic Networks through Partition­
ing, Proc. 4-/JCAI, Tbilisi, USSR, pp.115-121, Sept. 1975. 

28. M. Herman & T. Kanade (1984) The 3D MOSAIC Scene Understanding System: 
In cremental Reconstruction of 3D Scenes from Complex Images. C:MU-CS-84-
102, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, PA., Feb. 
1984. 

29. G. Hinton ( 1979) Relaxation and its Role in Vision, Ph.D. thesis, Univ. of Edin­
burgh, Edinburgh, Scotland, Dec. 1979. 

30. Y. Lesperance ( 1980) Handling Exceptional Conditions in PSN, Proc. Canadian 

Copyright © Willlam Havens 



- 35 -

Society for Computctional Studies of Intelligence, Victoria, Canada, May 1980, 
p.63. 

31. H. Levesque & J. Mylopoulos (1979) A Procedural Semantics for Semantic Net­
works, in N. Findler (ed.) Associative Networks, Academic Press, N.Y., pJ)3. 

32. A. K. Mackworth (1977) On Reading Sketch Maps, Proc. 5-IJCAI, MIT, Cam­
bridge, Mass.,pp.598-606, August 1977. 

33. A. K. Mackworth ( 1977) Consistency in Networks of Relations, Artificial Intelli­
gence 8, no.1, February, 1977. 

34. A. K. Mackworth & E. C. Freuder {1985) The Complexity of Some Polynomial 
Network Consistency Algorithms for Constraint Satisfaction Problems, Artificial 
Intelligence 25, pp.65-74. 

35. A. K. Mackworth & W. S. Havens (1981) Structuring Domain Knowledge for 
Visual Perception, Proc. 7-IJCAI, Univ. of British Columbia, Vancouver, 
Canada, August 1981, p.625. 

36. A. K. Mackworth (1083) Recovering the Meaning of Diagrams and Sketches, Proc. 
Graphics Interface '83, Edmonton, Canada, May, 1983, pp.313-317. 

37. A. Mackworth, J. Mulder & \V. Havens (1985) Hierarchical Arc Consistency: 
Exploiting Structured Domains in Const.raint Satisfa tion Problems, T()ch. 
Report 85-7, Dept. of Comp. Science, Unhr. of B.C., Vancouv er , Canada.. 

38. D. Marr (HJ82) Vision, \V.H. Freeman, San Francisco, CA. 
39. M. Minsky (1975) A Framework for Representing Knowledge, in The Psychology of 

Computer Vision, P. Winston (ed.) McGraw-Hill, N.Y. 
40. J. Mulder (1985) Representing Ambiguity and Hypotheticality in Visual 

Knowledge, Ph.D. thesis, Dept. of Computer Science, U. of British Columbia, 
Vancouver, Canada (in preparation). 

41. A. Newell (1982) The Knowledge Level, Artificial Intelligence 18, no. 87. 
42. A. Rosenfeld, R. Hummel, & S. \V. Zucker (1976) Scene Labelling by Relaxation 

Processes, IEEE Trans. Sys( ems, Afan, & Cybernetics, SA1C-6, no. 6, June 19i6, 
pp.420-433. 

43. S. Rubin (1980) Natural Scene Recognition using Locus Search, Computer Graphics 
& Image Processing 18, no. ?????? 

44. D. E. Rumelhart & A. Ortony (1976) The Representation of Knowledge in 
:Memory, TR-55, Cent. for Human Info. Processing, Dept. of Psych., Univ. of 
Calif. at San Diego, LaJolla, CA. 

45. R. C. Schank (1975) The Structure of Episodes in Memory, in Representation and 
Understandi11g, D.G. Bobrow & A. Collins (eds.), Academic Press, N.Y., pp.237-
272. 

46. L. Schubert (1975) Extending the Expressive Power of Semantic Networks, Proc. 
4-IJCAI, Tbilisi, USSR, p.158, Sept. 1075. 

47. R. Seidel ( 1984) On the Complexity to Achieve K-Consistency, unpublished tech. 
report, Dept. of Computer Science, Cornell Univ., Ithaca, N.Y. 

48. J. F. Sowa {1984) Conceptual Structures: Information Processing in }.find and 
]if a chine, Addison-\Vesley, Reading, Mass. 

49. J. Tsotsos (1081) Temporal Event Recognition: An Application to Left Ventricular 
Performance .Assessment; Proc. JJCA/-81, Vancouver, Canada. 

Copyright © " -1lliam Havens 



50. J. K . 'fsr11so, (19 4) Representational Axes and Temporal Cooperative Processes1 
R !B\ -1R-84-2 1 Dept. of Computer Science, Univ. of Toronto, Toronto, 
Canada, April 198-i. 

51. D. L. \\raltz (H.172) Generating Semantic Descriptions from Drawings of Scenes 
with Shadows, Al-TR-271, M.I.T. A.I. Lab, Cambridge, Mass. 

52. T. Winograd (1975) Frame Representations and the Procedural-Declarative Con­
t.raversy, in Representation and Understanding, D.G. Bobrow & A. Collins 
(eds.)i Academic Press, N.Y., pp.185-210. 

53. W. A. Woods (Hl75) What's in a Link: Foundataions for Semantic Network , in 
flepreser1latio11 and Understanding, D.G. Bobrow & A. Collins (eds.), Academic 
Press N.Y., pp.35-82. 

Copyright © Wllllam Havens 



Figure 1: Mapsee2 Composition Hierarchy 
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Sensor 

.. = Data Flow 

.. = Control Flow 

= Process 

0 Knowledge Representation 

Figure 2: Overview of Schema Labelling 



(a) Long-Haul Freight 

(b) Local Train 

(c) Express Train 

(d) Commuter Train 

Figure 3: Example Railroad Trains 

• 
• 



Train : 

LongHaul : 

ShortHaul: 

Engine: 

CarSet: 

Car: 

M -= Train 
P = {P1, P~} 
Q' =. 
r -= {Rirain [{Train, Caraet }], 

Rfrain [{Train, Engine}], 

R irain [{ Train , Cabooae } I, 
R f,ain [{ Train , Longllaul } ], 

Rf,ain [{Train, ShortHaul }]} 
~ = {LongHaul, ShortHaul} 

M = LongHaul 
p -=. 
a, a::. 
r - {RL~ngHau1l{LongHaul' CarSet }], 

R L~ngHaud { Longl-1 aul , Engine } ] , 

RL!ngHaud{LongHaul, Cabooae }]} 
A - { Ezpreu , Freight } 

M = ShortHaul 

p =• a,-• 
r - {Rs~ortHaud{ShortHaul' CarSet }, 

Rst,tHautf{Shortllaul, Engine}], 

RsiortHaud{ShortHaul, Cabooae }]} 
A -= {Local, Freight, Commuter} 

M - Engine 

p -• 
Q' =. 
f - {RE~gint [{Engine, Train}]} 
~ -= {Loco, Switcher} 

M -= CarSet 
p -={p3,p~} a,-• 
f - {RJa,set [{ CarSet, Car}], 

RJ0 ,se1 I{ CarSet, Car, CarSet }], 

RJa,Set [{ CarSet, Car}]} 
A. - {FreightCarSet, PaaaCarSet, MizedCarSet} 

M - Car 
p - • a,_, 
r-= {Rt0 ,[{Car, FreightCar }], 



PassCar: 

Freight Car: 

Rl., [{Car, PaaaCar }]} 
A = {FreightCar, PaaaCar} 

M = PauCar 

p =. 
O' =. 
r = • 
A - {Coach, Mail, Obaerve, Saloon } 

M -= FreightCar 
p .... 

O' -· r - • 
A = {Boz, Flat, Tank, Hopper} 

Figure 4: Schema Knowledge Base for Model Railroad 
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Figure 5: Specialization Hierarchy for Model Railroad 



Rr~ain -

R frain -

Rf,ain -

R f,ain -

RL~ngHaul 

RL;ngHaul 

RL!ngHaul 

RsLrtHaul 

RsXortllaul 

= 

= 

-
-

= 

{ (LongHaul,Freigh tCarSct) ,(LongHaul,PassCarSet ), 
(ShortH aul,F reigh tCarSet ),(ShortHaul,PassCarSet ),(ShortHaul,Mixed CarSet)} 

{(LongHaul,Loco),(ShortHaul,Switcher)} 

{ (LongHaul, Generic),( ShortHaul, Generic)} 

{(LongHaul,Express),(LongHaul,Freight),(ShortHaul,Freight), 
(ShortHaul,Local),(ShortHaul,Commuter)} :-

{ (Freigh t,Freigh tCarSet ),(Express,PassCarSet)} 

{ (Express ,Loco), (Freight ,Loco)} 

{ (Freigh t,Generic)} 

{(Freight,Freight.CarSet),(Local,MixedCarSet),(Commuter,PassCarSet)} 

{ (Freigh t,Switcher) ,(Local,Switcher ),( Commuter,Switcher)} 

Rs!ortHaul - {(Freight,Generic),(Local,Generic)} 

RE~gine -

RJa,Set -

RJa,Set -

R s 
Ca, -

{ (Loco,LongHaul),(Switcher ,ShortHaul)} 

{(PassCarSet,PassCar),(FreightCarSet,FreigbtCar), 
(MixedCarSet,FreiglitCar) ,(MixedCarSet,PassCar)} 

{(PassCarSet,PassOar,PassCarSet),(FreigbtCarSet,FreightCar,FreightCarSet), 
(MixedCarSet PassCar,MixedCarSet) ,(Mix dCarSet,FreigbtCar,Mixed arSet.), 
(Mix ed CarS et,P ass Car ,Freigh tCarSet) ,(Mixed CarSet,Freigh tCar ,P assCarSet)} 

{(Freigb tCar ,Box ),(FreigbtCar ,Flat ),(FreightCar, Tank), 
(FreightCar,Hopper),(PassOar,Coach),(PassCar,MaiJ),(PassCar,Observe), 
(PassCar,Saloon)} 

Figure 6: Constraints for the Railroad 



Figure 7: Railroad Composition Hierarchy 



p 1: Train [ v 1] .,_ Let v 1 = New [Train, PTrai1&, 0, 0, ~Train] /\ 
Engine [ v 2, v 1] /\ 

Specialize(v 1, t12, RT~ain[{v1, v2}]] /\ 
Car Set [ v 3] /\ 

Coupled [end 2[v 2], end l[v 3]] /\ 

Specialize [v 1, v3, Rt,ain[{v1, V3}]] /\ 
Caboose [ v J /\ 
Coup_l:~ [ end 2( v 3], e~d 1[ v,4l) I\_ 
Spe cralr ze [ v i, ti 4, R Train [ { v 1, ti 4}]]. 

p 2: Train [ v 1] +- Let v l = New [ Train , P Train , 0, 0, ~ Train ] /\ 
Engine [ v 2, v 1] /\ 

Specialize [v 1, t1 2 , Rfrain[{v1, v2}]] /\ 
CarSet [ v 3] /\ 

Coupled [end 2[v 2], end l[v 3]] /\ 

Specialize [vi, t1 3, Rt,ainHv1, V3}l). 

p 3: CarSet [ v 1] .,_ Let v 1 = New [ CarSet, P CarSet, 0, 0, ~CarSet] /\ 
Car [v 2] /\ 

Specialize [v 1, t12, RJa,Set [{ v 1, V2}]] /\ 
Car Set [ v 3] /\ 

Coupled [end 2[v 2], end l[v 3]] /\ 

Specialize [ v 1, v 3, RJa,sed{ vi, v 2, v 3} ]]. 

p 4: CarSet [ v 1] .,_ Let v 1 = New [ CarSet, P CarSet, 0, 0, ~CarSet] /\ 
Car[v 2] I\ 
Specialize [ v 1, v 2, RJa,sed { v 1, v 2}]]. 

p 5: Engine [ v 1, v 2] +- Let v 1 = New (Engine , PEngine , 0, 0, ~ Engine ) /\ 
Specialize [v 1, v 2, RE~gine [{ v 1, v2}l1. 

Figure 8: Composition Rules for Railroad 



R~hortHaul ~---t Generic 
~ 

t-----i MixedCarSet 

----1 MixedCarSet 

FreightCarSet 

t-----iCoach PassCar ~--t 

---coach 1----1 FreightCar 

Figure 9: Network Consistency Graph for Local Train 


