
A VIEW OF PROGRAMMING LANGUAGES AS
SYMBIOSIS OF MEANING AND CONTROL

by

Paul J. Voda

Technical Report 84-9

May 1984

r
-·-'

May 1984

A View of Programming Languages as Symbiosis or
Meaning and Control.

Paul J. Voda

Department or Computer Science, The University or British Columbia,
6356 Agricultural Road, Vancouver, B.C. Canada V6T 1W5.

A View or Programming Languages as Symbiosis or
Meaning and Control.

Paul J. Yoda

Department or Computer Science, The University or British Columbia,
6356 Agricultural Road, Vancouver, B.C. Canada V6T 1W5.

1. Introductlon.

A computation is a production or a sequence or symbols from another sequence using rewrite
rules . Turing machines, systems or Post, algorithms or Markov, and sequence or states in a
modern electronic computer are examples or the use or rewrite rules. Such generally conceived
rewriting rules usually have no obvious connection to functions being computed. Rewriting sys
tems or computations operating on terms in some formal logical framework are on a higher level
or organization. Examples are lambda calculus, Herbrand-G6del systems or equations or recursive
functions [7], and computation rules or traditional programming languages like Pascal [6J. A com
putation uses rewriting rules as formal identities.

Uninterpreted use or rewriting rules is called operational semantics or a programming language.
The school or denotational semantics rightly criticises this approach as a purely formal one not
shedding much light on what is exactly being computed.

The basic idea of denotational semantics [llJ is to interpret programs into some model as func
tions. A legal program is given a precise meaning as a function from its inputs to its outputs.
Moreover, the operational rewriting rules are shown to be identities preserving meaning. The
problem or using models or denotational semantics (almost invariably models or lambda calculus)
with practical programs is that it is quite difficult to prove even simple properties or programs.
The reason is that the denotational semantics stresses the model-theoretical part and underplays
the importance or derivations within a formal theory.

We propose to explain the semantics or a programming language by means or two formal theories.
One formal theory gives denotations to programs while the other one, which is actually a sub
theory or the first theory, specifies the operations of the computing machine executing the pro
grams in that the computations correspond exactly to proofs in the weaker theory . We are pr~
posing to use formal theories rather than models because we have in mind a practical use or the
theories for computer-assisted verification and transformation or programs. The importance or
semi-automatic transformations can be seen from the intensive research in this area [see for
instance I].

One or the difficulties with formal proofs or programs lies with the needless complexity or pro
gramming languages with assignments to variables. Fortunately the growing acceptance or
declarative programming languages demonstrates that side effects are not essential to a good and
practical programming language. We shall deal in this paper only with declarative languages by
discussing both functional and logic programming languages.

With the decision to concentrate on declarative programming languages we can use a weaker for
mal theory than any formalized lambda calculus. We shall use a theory of pairs, TP,
developed by the author for precisely this purpose [I5J. TP is a first order theory with the power
equivalent to the Peano Arithmetic. It is more appropriate for the needs or programming
languages because it is based on an equivalent of S-expressions or Lisp. Pairs permit a natural
encoding of data structures and programs alike by using equivalents of Lisp forms rather than
somewhat cumbersome G6del numbers or Peano Arithmetic.

- 2-

The domain or the intended interpretation or TP consists or the individual 0 and is closed under
the operation of pairing. Two pairs are equal if the corresponding components are equal, no pair is
equal to 0. The individuals in TP are denoted lby Werals. The term 0 denotes the indh·idual 0. Ir
the terms n and m denote individuals n and m respectively, then I n, m I denotes the ordered
pair composed or n and m. Note that such an use of the term literal corresponds to the use or
the term numeral in Peano Arithmetic. We shall write I a,b,c J as the abbreviation for I a,! b,c J J.
A Lisp-like list composed Crom elements a 1,o 2, ••• , On is written as

!01,02, ... , On,0I

in TP. Note that the literals or TP correspond to S-expressions or Lisp where the atoms consist
only or 0, i .e. or nil. We shall use a standard notation or logic !see for instance lOJ. Boldfaced
letters act as syntactic meta-variables ranging over variables, terms and formulas.

We do not present the axioms or TP here. It is enough to say that they include the induction
axioms over pairs. The paper on TP 115I proves a very general meta-theorem which permits the
introduction into TP by means of conservative extensions functions defined by recursive equa
tions. Such functions can be introduced into TP provided one proves that the arguments or the
recursive invocations descend in a well-founded relation.

TP, being a consistent formal theory, has an intended model satisfied in the domain or pairs. The
model gives precise meaning to all functions and predicates introduced into TP. We shall define
functional programming languages as subclasses oC terms or TP. Thus a function or a functional
programming language can be introduced as a conservative extension or TP by a new function
symbol satisfying its (recuJ'1iive) definition. Similarly, a predicate of a logic programming language,
will be introduced into TP by a predicate symbol. The standard interpretation or TP then gives
th deno tation to the function or predicate. TP can be used for formal, possibly computer
assisted, proofs or properties or programs.

TP gives meaning to declarative programming languages. What about the control? How does the
operational semantics come in? We shall compute by rewriting rules which v.ill be invariant
under the meaning of programs being computed. In other words, we shall use only such rewriting
rules which can be proven theorems in TP. A computation in a programming language will be
underst.ood as a formal proof or certain theorems or TP. Since there will be a one-to-one
correspondence between a computation sequence and a formal proof, we cannot expect to use the
Cull deductive power or TP in the computational proofs. We show on five examples of simple pro
gramming languages bow one can set-up a subtheor11 or TP whose proofs correspond exactly to
computations.

The idea that computations are proofs is certainly not a new one. It was used Cor the first time by
Kleene in his formal systems of general recursive (Herbrand-G8del) equations 171, Computations in
Prolog l21 are by refutations (indirect proofs). Algebraic language OBJ l3J computes by systems of
formal equations.

The novelty of our approach comes from the consistent use of two theories. TP (or a similar
theory) gives meaning to programs, whereas a deductively restricted subth ory S or TP specifies
op erational semantics in that the proofs i.n S correspond exactly to computations. Thus the ques
tions of program termination, complexity, and absence or deadlocks are reduced to the questions
or existence or proofs in S. The questions or operational semantics or programming languages
become proof-theoretical questions.

Here lies the difference between our approach and the standard denotational semantics. The
meaning and control in denotational semantics are inseparable. The program computing a for
mula

P (6) V 5=5

with sequential disjunction will denote the undefined element if the computation or the predicate
P (6) does not terminate. This will happen if the predicate were, for instance, defined by the
recursive equation P (z) - P (z). In our approach the meaning is uncoupled from the control.
The above program denotes a true sentence since the formula is a theorem of TP. The

- 3 -

computation will, however, fail to terminate .

Our approach is reminiscent or Hoare's axiomatic method l5J where one proves only partial
correctness with the need for a separate proof or termination. This separation of concerns has
profound practical consequences. By trying first to prove a program only partially correct, we
simplify the proof by temporarily ignoring the termination. Ir the program cannot be proven
correct, there is no need to go into the generally more difficult questions of termination. In prac
tice the termination is not as important as the complexity or computation. How does a never ter
minating program differ from a program which cannot be computed in a million years? By reduc
ing the problems or termination and complexity to the proof theoretical questions of the existence
of proofs and or their length we are in better position than de~otational semantics which lacks
such tools.

There is an apparent paradox in our strict requirement that the recursive functions are properly
introduced into TP and our acceptance or non-terminating computat.ions. As pointed above, there
is no practical difference between a non-terminating and a terribly inefficient program. On the
other side, if one wants to proue something at all about a program, one bas to make sure that TP
is not rendered inconsistent by permitting "definitions" like P (x) - -, P (x). Everything is
provable in an inconsistent theory .

The subtbeory S or TP specifying a programming language will have as terms (formulas) subsets
or terms (formulas) or a recursive extension or TP. All axioms or S will be required to be
theorems of TP. The rules of inference or S have to be shown to lead from theorems of TP to
other theorems. Thus everything which can be proven in S wilJ have to be a theorem or TP. A
computation is invariant to the meaning.

The axioms and rules or inference or S will be severely restricted in order to facilitate an efficient
implementation of the programming language Son a computer.

For a functional programming language S, the closed term a or S is said to be reducible if
h · a=n for some literal n. In the view or ~TP a= n, the literal n is indeed the result or com
puting the program a . For a logic programming language the formula A is reducible if h A.

In this paper we present five subtheories or TP. Three of these define simple functional program
ming languages. The programming language F serves just as the introduction to the treatment of
control. Programming language N has the applicative order or evaluation, whereas the language L
computes by lazy evaluations. The la.st two languages P and R are logic programming languages.
The language P is a Prolog-like programming language whereas R is based on the author's
language R-Maple intended to overcome some weak points of Prolog and at the same time give
the user the control over the sequential and parallel execution. The discussion or R outlines our
view or the formal treatment or concurrent programs.

In order to simplify the discussion the five languages are stripped down to essential parts. A prac
tical programming language will have to add more constructs into the language but the general
idea remains unchanged . We hope that the five languages sufficiently cover the different compu
tational models used with declarative programming languages.

t. Two Simple Functional Programing Languagea.

Let us start with two simple functional programming languages. The language F uses unres
tricted reductions or functions. The language N uses the normal, or applicative, order of evalua
tions. Arguments are evaluat.ed from left to right before functions are invoked. F is not intended
as a basis for a practical programming language, we shall use it as a simple introduction into the
techniques or restricting proofs. On the other hand, the language N can be easily ext.ended to a
practical programming language.

Since TP is based on pairs we can treat all functions as one-argument only. This greatly simplifies
the treatment or recursive functions within TP. We shall write / (a,b) as the abbreviation for
/ ([a,b J).

Let us assume that functions hd, tl, and if-then-else were introduced into TP with the obvious
properties:

- 4 -

~TP hd (a,b) = a
~ TP ti (a, b) = b
~ TP hd (0) = ti (0) = 0
~ rp (lf O then c else d) = c
~ rP (If I a, b I then c else d) = d

Let us abbreviate hd (a) to a.h . Similarly ti (a) will be abbreviated to a.t.

(1)
(2)
(3)
(4)
(5)

The programs or F are a subclaM or terms, called F-terms, or a recursive extension or TP. F
terms are composed from 0, individual variables, invocations or functions introduced into TP
/ (a), pairing I a,b I, projection functions a.h , a.t and from th e terms or the form
lf a then b et.e c.

All F-formulas are or the form a= b where a and b are F-terms. For each function / in F we
require an identity ~TP / (z)=b where b is a F-term with at most the variable z free.

In the presentation or rules or inference we shall use the notation · · · a · · · to stand for a term
(formula) with one distinguished occurrence or the term or formula a. A repeated use or dots in
the same rule or inference · · · b · · · stands for the same term {formula.) but with the single dis
tinguished occurrence or a replaced by b.

The runctional programming languages F has the following axioms and rules or inference.

a) Initial Axioms a.re formulas or the form a == a where a is a closed F-term.

b) Function Axioms are of the form / (a) == b where a and b are closed F-terms. We
require that we have ~TP / (a)=b for each Function Axiom.

c) Computation Axiom• are the formulas (1), (2), (4), and (5) for any F-term a , b, c, and
d.

d) Replacement Rule.
a= ···b··· , b=c

a= · · ·c · · ·
where b = c is a Computation or a Function axiom.

It is easy to see that all axioms or F are theorems or TP. We have as a meta-theorem or TP the
following one.

Ir ~ rP a = · · · b · · · and ~ TP b = c then ~ TP a = · · · c · · · .

Tbus the Replacement rule does not lead outside or theorems or TP. As a consequence, F is a
deductively restricted subtheory or TP. The computation or a closed F-term a is an attempt to
derive from ~ F a = a the theorem ~F a== n for a literal n.
One can introduce into TP the function len to satisfy the recursive equation

~TP len (z) == lf z then O else I 0, len (z.t) I (6)

This is possible because the recursion descends in pairs. A possible computation or /en (a ,0) for
some constant a is given by the following proof. Each line contains both premises to the Replace
ment Rule . The first one is either an Initial Axiom or the conclusion of the rule applied to the
pr vious line. The second formula is either a Computation or a Function axiom.

len (a ,0) = len (a ,O) len (a ,0) = lf I a ,0 J then O else I 0, len (I a ,0 J .t) J
len (a ,0) = lf I a ,0 J then O else I 0, len (I a ,0 I. I) J

If I a ,0 J then 0 elae I 0, I.en (I a ,0 J .I) J == I 0, len (I a ,0 I .I)I
len (a,0)= I0, len (la ,0J.t)I la ,0J.t=0
len (a ,0) = I 0, len (0) I len (0) = If 0 then O elae I 0, len (0.t) I
len (a ,0) = I 0, lf O then O elae I 0, lcn (0. t) 11 lf 0 then O elae I 0, len {O.t) J = 0
len (a ,0) = I0,0J

Note that we did not include the theorems (3) among the Computation axioms or F. This means
that a term containing O.h cannot be reduced to a literal simply because there are no rules of
inference available. We call such a situation a deadlock. A computing machine should abort the

- 5 -

computation in the case or deadlocks. Note that there is nothing wrong with the inclusion of (3)
among Computation axioms. Actually, it makes the theory or proors in F simpler. One can then
prove the following theorem.

Theorem: Provided that for each runction / or F+(3) the term / (n) is reducible for any
literal ri then any closed F-term is reducible.

The requirement of reducibility or / is a crucial one because we do not make any assumptions
about the form of Functional Axioms other than that they are theorems or TP. The theorem (7) is
an obvious consequence or (6).

~TP len (z) = len (O,z).t (7)

Had we decided to use (7) instead of (6) as the Function Axiom ror the function len we would
never be able to reduce invocations or len because or infinite recursion.

As a practical programming language F has some serious drawbacks. Some meaningrul computa
tions may fail to terminate not only because we admit Function axioms of the form (7). Even
with (6) as the Function axiom ror len the computing machine could stubbornly decide to replace
the recursive calls to len before reducing ir-then-elses. The computing machine can easily tread
into a blind alley. In this respect F is underspeci/ied as a programming language. There is a
great freedom in the order or reductions. Any sensible interpreter or F would have to impose some
order on the reductions. This happens in practice all the time. The situation is clearly unaccept
able because we are forced to define the operational behaviour of F by its concrete interpreter.
The definition or a programming language by its compiler is traditionally considered to be the
gravest sin the designer of a language can commit.

On the other hand, the under-specification or F is not as harmful as in those languages with sidc
effects. The worst thing which can happen, is that an execution may fail to terminate when it
could have. Ir the execution terminates with a literal on the right hand side, then the correct
result must have been computed. One can say that the questions concerning meaning of pro
grams are satisfactorily settled by F. The proof-theoretical questions or complexity or computa
tions are not settled at all. There is no way to give an upper bound to the length or computations
in F.

The second drawback or F as a practical programming language comes rrom the need for substitu
tion. For obvious reasons one cannot store in a machine all instances or Function axioms. Func
tion axioms will have to be stored as / (z) = a. When the interpreter decides to replace the
invocation / (b) it will have to perform the substitution a{.z :=b} or the actual argument bin
the body a or / . The implementation of substitution on the present day computing machinery is
very inefficient.

The drawbacks of F are remedied in the language N. We choose the axioms and rules or inrer
ence so that the executing machine will have at most one derivation rule available at any given
moment. N is a sequential programming language. The impact or concurrent computations will
be studied later on the language R in section (5). The control or N is the applicative order or
execution. Pairs are evaluated from left to right and the argument or a runction invocation is
reduced before the function body is evaluated. Invocations or functions are not by substitution
but by environments which are carried around by computations.

We introduce into TP three auxiliary functions called markers.

do (a,b) = a{z :=b}
keep (a,y) = do (a,11)
done (z) = .z

(8)
(9)

(10)

Note that (8) and (9) are actually definition schemas defining variable binding operators implicitly
binding the distinguished variable z . The variable z is bound in the terms a of do (a,b) and
keep (a,b). The function keep is the same as do and the function done does not seem to do
anything. These functions play an important role in the computations or N. They mark the place
where the computating machine attempts a simplification. do (a,b) can be viewed as a program
counter. The term a is just about to be reduce'd, the value for the variable z occurring in a is b.

- 6 -

The term done (a) carries the results of computations back.

N-terms are just F-terms with the functions do, keep , and done included. Markers are needed
solely for derivations in N. Programmers in N are not permitted to use the markers in their pro
grams. N-formula.s are of the form a = b with 1a and b being N-terms.

The axioms and the rules or inference of N are as follows.

a) Inltlal Axloma are the formulas a = do (a,O) for each closed N-term a not containing the
auxiliary markers.

b) Functlon Axiom• are the formulas / (z)=c for each function / and a suitable N-term c
without markers containing at most the variable z free. We require that we have
l--rP f {z)=c for each Function axiom.

c) Computation Axiom■ are the following ones for each N-terms without markers a, a', b, c,
and e.
Pairing Group.

do (I a,b l,e) = I do (a,e), keep (b,e) J
I don e (a), keep (b,e) J = I a, do (b,e) I
I a, done (b) I = dona (a,b)

If Group.

do (lf a then b else c, e) = lf do (a,e) then keep (b,e) elae keep (c,e)
If done (0) then keep (b,e) elae keep (c,e) = do (b,e)
lf done (a,a') then keep {b,e) elae keep (c,e) = do (c,e)

Projection Group.

do (a.h ,e) = do (a,e).h
done (a,b).h = done (a)
do (a.t ,e) = do {a,e).t
done (a,b).t = done {b)

Turn - around Axiom,.

do (O,e) = done (0)
do (z,e) = done (e)

Argument Axloma. For each function /

do (! (a),e) = / (do (a,e))

d) Replacement Rule.
a= ... b .. ·, b=c

a= · '· C' • •

where b = c is a Computation axiom.

e) Functlon Call Rule.

a= · · · / (done (b)) · · · , / (z) = c
a = · · · do (c,b) · · ·

where f (z) = c is a Function Axiom.

f) Termlnatlon Rule.
a= done (b)

a=b

We leave it to the reader to check that each axiom is a theorem or TP and that an application of
a derivation rule leads from theorems of TP to a theorem of TP. Thus N is a subtheory or TP.

A closed N-term a not containing markers is reducible if from l--N a= do (a,O) one can derive
l--N a=n for some literal ff. Steps in the execution of a in the applicative order correspond
exactly to the proof of reducibility in N.

- 7 -

We shall compute the term /en (a ,0) again. This time let a be an N-term which reduces to b .
N-proors are longer than F-proors because or the "one-track" property of N-proofs. We shall
ommit some obvious lines in the proof. Each line corresponds again to the application of either
the Replacement or the Function call rule. Instead or giving the second premise explicitly we only
indicate the rule and the group of axioms used.

len (a ,0) = do (len (a ,0), 0) Argument a.-xiom and Rep). rule
/en (a ,0) = /en (do (I a ,0 J, 0)) Pairing axiom and Repl. rule
/en (a ,0) = /en (do (a ,0), keep (0,0))

/en (a ,0) = /en (done (b), keep (0,0)) Pairing axiom and Rep). rule
/en (a ,0) = /en (b , do (0,0)) Turn-around axiom and Repl. rule
/en (a ,0) = /en (b , done (0)) Pairing axiom and Repl. rule
len (a ,0) = len (done (b ,0)) Function axiom and Fune. rule
/en (a ,0) = do ((If z then O elae IO, /en (z.t)J), I b ,OJ)

len (a,0)= j0, do (len (z.t), jh,0j)

len (a ,0) = I 0, done (0) J Pairing axiom and Repl. rule
/en (a ,0) = done (0,0) Termination rule
/en (a ,0) = I 0,0 J

One can show by the induction on the proofs in N that whenever done (a) and do (a,e) occur in
an N-proof both terms a and e are literals. This fact enables an efficient implementation of N
using a stack of reduced literals which are elements of pairs and arguments to function invoca
tions.

a. Lazy Evaluation.

Applicative order of evaluation can be wasteful if an argument of a function is not needed in its
computation. Applicative order can also waste the storage. The function call len (append (a , b))
evaluated in the applicative order will require, in addition to the storage for the lists a and b ,
also the storage for the concatenated list although the last will be replaced by the result.

Lazy evaluation is an order of computation which reduces the body of a function before the argu
ments. Arguments are reduced only to the depth needed in the body of the function. There is no
straight-forward adaptation of N to the language L supporting lazy enluation. This is because
the environment e in do (a,e) must be updated once a function call occurring in it is reduced.
The updated environment is shared during the subsequent computations rather than being distri
buted by copying it during the evaluation of pairs and if-then-elses as in N. Actually, an imple
mentation of N will not copy the environments because they will be shared by a pointer. Lazy
evaluation , formulated as the subtheory L, requires the sharing of parts of a term to be visible at
the symbolic level. Here we need a tree with shared nodes. Such a structure is called a dag
(directed acyclic graph). Dags can be introduced into TP with the help or the variable binding
operator let introduced as follows.

(let v:=a In b) = b{v:=a}

The variable v is bound in the term b but free in a. Note that the operator do of N is similar
but the bound variable is explicit in let and implied in do .

The term let z :=/ (6) In I z ,1,z J which is equal to I/ (6),7,/ (6) J permits a single evaluation
of the function / (6) which is then used twice. Leta will be used in groups. We abbreviate
let z :=a In let 11 :=b ln c to let z :=a, 11 :=b In c. Similarly, for longer sequences or bindings
v:=a. A (possibly empty) sequence of bindings will be abbreviated by a greek letter as in
let a In a. For the empty sequence of bindings we set let In a to stand for a.

A bound variable in the sequence of bindings a corresponds to the pointer leading to a shared
object. Although it is possible to have the same variable bound twice or more times we shall
always assume that all variables bound in a are different. This can be assured at the symbolic

- 8 -

level by the systematic renaming of bound variables. In practice a different binding uses a
dilJerent pointer anyway.

A term of L will be simplified in such a way that the bindings will be always kept on the outer
most level. We shall use the marker do (a) to mark the term just being reduced. The marker
wait (v) wiJI l>e used Lo traosrer the control to the evaluation of a binding when the control
reaches a variable.

let o, z:=/ (6), .Bln ···do (z) · · · >
let o, z:=do (/ (6)), .Bin ···wait (z) · · · >

let a, z:=do (8), .Bin ···wait (z) · · · >
let a:, z :=8, ,8 ln · · · do (8) · · ·

This sequence is typical for lazy evaluation. From now on, all references to the variable z will
use the reduced value 8 rather than have to reevaluate the call / (6).

Lazy evaluation proceeds by a constant osciJlation between the evaluation or bodies and bindings.
Although this oscillation adds to the cost or housekeeping in the interpreter one achieves in return
the economy or space not possible with applicative order. As soon as the argument of a function is
partially reduced the function can proceed

len (append (a ,b)) > len (a 1,append (a 21 b)) => !O, len (append (a 21 b))]

La1.y evaluation is shallow in the sense that when the control reaches a pair do (a,b) it does not
evaluate the pair but it reverses. This is not desirable on the outermost level where the evalua
tion would stop aft.er one shallow reduction.

do (append (I a,b],c)) > · · · > do (a, append (b,c))

The markers down and up are used to force the full evaluation on the top level. All four markers
are introduced into TP by trivial definitions to satisfy

do (z) = wait (x) = down (z) = up (z) = z

The terms and formulas or L are exactly the same as in F with the addition or markers let , do ,
wait , down, and up.

The axioms and inrerence rules of L are the following ones.

a) Inltlal Axloma are the formulas a= down (do (a)) for each closed L-tenn a not contain
ing markers.

b) Function Axiom• are the formulas / (z) = a where the L-term a is without markers and
contains at moot the variable z Cree. We require that l-rP / (z) = a.

c) Computation Axioms are the following formulas for any L-terms without markers a, a',
b, and c.
Forclng Group.

down (do (0)) = up (0)
down(do (a,b)) = ldown(do (a)),bJ
lup(a),bJ = la,down(do (b))]
la,up(b)] = up(a,b)

If Group.

do (II a then b else c) = If do (a) then b ebe c
II do (0) then b ebe c == do (b)
If do (a,a') then b else c = do (c)

Projection Group.

do (a.h) = do (a).h
do (a.t) = do (a).t
do (a,b).h = do (a)
do (a,b).t = do (b)

- 9 -

d) Replacement Rule.
a= ···b···, b = c

a= · · ·c · · ·
where b = c is a Computation axiom.

e) Function Call Rule.

a = let a, ~ In · · · do (! (b)) · · · , / (z) = c
a = let a, .z :=b, ~ ln · · · do (c) · · ·

where / (.z) = c is a Function Axiom and all free variables of b have binding occurrences
in a. In order to maintain the uniqueness or bindings we may be forced to rename the vari
able .z to a new variable Y in the binding z:=b and in the term c{.z :=z}. In order to
assure the uniqueness or derivations we stipulate that the sequence or bindings a is the shor
test sequence binding all free variables or the term b.

r) Walt Introduction Rule.

a = let a, u:=b In · · · do (u) · · ·
a = let a, u:=do (b) ln · · · wait (u) · · ·

g) Walt Ellmlnatlon Rules.
a - let a, u:=do (0) ln · · · wait (u) · · ·

a = let a, u:=0 ln · · · do (0) · · ·

a = let a , u:=do (a,b) In · · · wait (u) · · ·
a = let a, v:=a, w:= b, u:=lv,w] ln ···do (v,w) · · ·

where in (1) the introduced variables v and w do not occur in the premiss.

h) Termination Rule.
a = let a In up (b)

a = b
where the L-term b does not contain free variables.

(1)

We leave it to the reader to convince himself that the axioms and the rules or inference do not
lead outside or the theorems or TP. It can be proven by the induction on the proofs or L that the
term up (a) occurring in a proof is always a literal.

A note on so called lazy lists which are currently very fashionable. Lazy evaluation is often
recommended because the argument or a function call can be an infinite, or lazy list, given by a
function term. An infinite list is used-up only partially. We do not have infinite lists in TP. Thus
it is impossible to create a lazy list or, say, all numbers by writing / (0) where
f (.z)=l.z, f (.z+l)J. Such a function can be introduced into TP only at the cost or incon
sistency. Lazy lists are one or those features or programming languages which are easy to use
operationally and hard to explain semantically.

As mentioned before, it is possible to work with a stronger theory which admits infinite lists, but
in the process we will probably lose the basic tool, i.e. the induction over pairs, with which one
proves properties or functions. It is the author's contention that lazy lists are quite esoteric
objects and they can be justified only when one insists on working with a stronger theory than
TP. The possible loss or induction 5eem5 to be a little too high a price to pay. All problems
which can be formulated with lazy lists can be programmed with infinite generators in a logic pro
gramming environment. In the above case one can easily introduce a predicate Nat (z) which
generates natural numbers in a sequence as it is backtracked into. Infinite generators are readily
definable in TP (see section 5).

Another argument in favor or infinite lists goes as follows. Parallel programs gynchronize on list!i
of messages. An operating system is a function which goes into endless recursion, ergo one needs
infinite lists for endless communications. Our answer to this argument is that very rarely, if at all,
an operating system executes longer than, say, 10 years. Ir the operating system does not crash
by then, the machine will certainly become obsolete. Infinite lists are nice to have when

- 10 -

uncoditiooally needed, but an operating system can be also explained as a function recurring on a
list of commands issued by the operator. There is nothing wrong with interpreting the empty list
as a command shutting down the system by terminating the recursion. One can certainly defrue
in TP a list or operator commands which will not be used up in million years.

4. Los1c Programming
Logic programming !see for instance SJ, as originally conceived, strives for a programming
language based on a first order theory such as TP without any special controlling mechanism. In
our view the control is given by a subtheory S. An ideal logic programming then requires that S is
the same as TP. Computations or logic programs are performed by the ruu deductive apparatus or
a first order theory.

It is obvious that such conceived logic programming must remain an unat.tainable ideal because
an unrestricted theorem prover can quickly enter a blind alley. A full theorem prover with back
tracking will be intolerably inefficient. As we have set'n with the functional programming
languages, the idea or control lies in severely restricting the subtheory S so the proofs can be per
formed in an efficient. way .

Prolog is an example or a language computing predicates which severely restricts the computa
tions. We present a language P with Prolog-like computations. The basic theory for the meaning
or P remains TP. We shall reduce predicates in.stead or terms. Similarly as with functions, all
predicates can be de6ned with one argument only. We shall write P (a,b) for P (I a,b I).
Let us define the class or P-formulas as a subset or rormulas or TP. For that we need to define the
class of P-terms. P-terms are composed from variables, introduced constants and functions by
pairing. Prolog uses constants and functions as data structures only. Functions are never com
puted. This means that any function / (z) can be introduced by a defining axiom.

/ (z)= I CJ , z I
where c 1 is a constant unique ror the function / .

Atomic P-rormulas are or the form P (a) where P is an introduced predicate symbol and a is a
P-term. Conjunctive P-formulas are conjunctions of atomic P-formulas. II A and B are conjunc
tive P-formulas then A - B is a P-formula.

A clause is a P-Formula of the form A - P (a) or P (a) where A is a conjunctive P-Formula
and a is a P-term.

We shall abbreviate the simultaneous substitution in a term or formula A

A{v 1:=a1, v 2:=a:z, ... , v,. :=a,.}

by A a. A substitution a is said to uni/ II the P-terms a and b when a a 5 b a. It is easy to see
that if there is a substitution a unifying two P-terms a and b not sharing common variables, then
there is a minimal unifying substitution /3 such that a /3 = b /3. At the same time there is a sub
stitution 1 such that a /3 1 = a a.

Note that it is decidable whether a substitution is a minimal unifying substitution . This permits
the formulation or P as a subtheory or TP because we shall be always able to recognize an axiom
or a rule or inference.

The axioms and rules or inference or P are the following ones.

a) Initial Axiom is a P-formula A - A for a conjunctive P-rorrnula A.

b) Computation Axiom■ are clauses or the rorm A - P (a) or P (a). All Computation
axioms must be theorems or TP.

c) Structural Inference Rule.
(A & B) & C - D

A & (B & C)- D

d) Clause Rules.

P (a) & A - B , C - P (b)
(C & A- B) a

- 11 -

P (a) & A - B, P {b)
(A- B) a

where C - P (b) or P (b) are Computation axioms and a is the minimal unifying substi
tution such that a a = b a.

e) Termlnatlon Rule.
P (a) - B, P (b)

Ba
where P (b) is a Computation axiom and a is the minimal unifying substitution such that
a a= b a.

A _conjunctive P-formula A is said to be reducible if one can deduce from ~P A - A the for
mula ~P A a for some substitution a. Using the fact that substitutions can be composed, it is
not difficult to prove by the induction on the proofs or P that when a computation or A stops by
an application or the Termination rule the substitution a has been effectively round.

It is easy to verify that all axioms are theorems or TP and that the rules or inference lead from
theorems to theorems. The programming language P is only Prolog-like because its interpreter is
underspecified. It computes by replacing atomic P-rormulas in the antecedent from left to right.
In that it agrees with Prolog computations. There are, however , no restrictions on the order in
which Computation axioms are applied. Without the backtracking a computation may lead to a
blind alley. It is not very difficult to remedy this by admitting as Computation axioms disjunc
t.ions or clam,es

{A1 - P (a1)} V {A2 - P (a2)} V · · · {A,. - P (a,.)}

We would have one disjunctive Computation axiom for each predicate symbol P. The derivation
rules would have to be modified in such a way that the alternative clauses would be tried from
left to right. We shall not do it with P because such an ordering or alternatives plays a crucial
role in the computations or the logic programming language R-Maple. R-Maple generalizes the
class or logic computations. It will be explained in the next section.

As an example or a P-computation let us introduce the predicates T and M by the following
defining axioms.

~ TP T (z) +-+ z = b
~TP M (z ,11) +-+ z ,': 0 & (z.h =11 V M (z.t ,11))

(1)
(2)

Here b is a constant. A definition or a two place predicate P (z ,11) +-+ • • • z · · · JI • • • is just
an abbreviation for

P (w) +-+ w ,'= 0 & (· · · w.h · · · w.t · · ·)

The recursive definition or the list membership predicate M is admissible because the recursion
descends in pairs. We have the obvious theorems

~TP T (6)
~TP M (lz,y J,z)
~TP M (11 ,z) - M (I z ,11 J,z)

(3)
(4)
(5)

These theorems will be used as P-clauses in the following P-computation where we attempt to
find a value w sati6fying the formula M (I a ,6 ,c ,0J,w) & T (w) with a and c being some P
terms. We start with the Initial axiom.

M (I a , b , c ,0 I, w) & T (w) - M (I a , 6 , c ,0 I, w) & T (w)

We use the substitution a= {z :=a ,JI :=I 6 ,c ,0 J,z :=w} and the P-clause (5) to obtain

M (I b ,c ,01,w) & T (w) - M (I a ,6 ,c ,0J,w) & T (w)

Next we use the substitution a= {z :==6 ,11 :=I c ,01,w :=6} and the P-clause (4) to obtain

T (b) - M (I a , 6 , c ,0 I, b) & T (b)

The use or the clause (3) in the Termination rule with the identical substitution a = {} leads to

- 12 -

M (la,b,c,0J,b)& T (b).

&. Logic Programming Language R,

R-Maplc permits logical connectives, quantifiers, and if-then-else constructs. lt also permits
_sequential and parallel computations. As a result we have a purely declarative programming
language with no cuts. R-Maple pushes the computational subthe.ory R as close as possible t.o TP.

We shall find it advantageous to rephrase TP as a lerm logic. A term logic !see for instance 4J
does not make a distinction between a term and a formula. Logical connectives and quantifieres
are just functions. We shall need term logic because R will have parallel connectives of conjunc
tion and disjunction which must be first introduced . Logical connectives are given in a traditional
logic and there is no provision for defining new ones. The second advantage or term logic is that
there is no need to distinguish between a predicate and its characteristic function.

In term logic we can write

It a =6 then 6 elae c

instead or

It eq (a ,6) then b elae c

where eq is the characteristic function or identity ==.
eq (w)=z - w=0& z=l V :b,u{w==lz,u J & (z=u & z=0V z=,'y & z=l)}

We do not give here the axiom system for TP rephrased as a term logic. The basic constructs are
just informally explained here. A true formula is a term a equal to 0. Thus O stands for truth. A
non-zero term [a,b J stands for falsehood. In practice we shall use 1 = I 0,0 J to denote falsehood .
Logical connectives or conjunction, disjunction, and negations are just functions satisfying the
obvious identities.

0 V O = la,bJ V O = 0 V [a,b] = 0
[a,b] V !c,d] = 1
0&0=0
la,bJ & 0 = 0 & !a,b] = la,b] & [c,d] = 1
-, 0 = 1
., la,bJ = 0

The identity relation a=b is a function yielding O when a and b are identical and 1 otherwise.
For any term a the term :lz a denotes a function of all free variables in a but z. We have
:ha= 0 if there is a literal n such that a{z :==n} == 0 and lz a=l otherwise. We call a term
a a predicate if it corresponds to a formula of the classically formulated TP. Predicates are equal
to either O or I.

We shall now proceed to formulate the subtheory R of TP. For that we define the following func
tions.

do (z) = z
done (:r.) == z
z ll11=z&y
z orp y = z V u
z :==11 = z ==u
(It z then JJ elae (v,w) a)==z = z =0 8t z ==g V :Jv,w (z =I v,w) & z =•)

Functions do and done are us d in a similar way as in N. Next two functions are connectives or
parallel conjunction and disjunction. Function := i8 called an aaaignment . We trust that the
reader realizes by now that these functions will play only a control role in the deductions of R ,
semantically they are superftuous.

The function if-then-else is defined as a variable binding operator binding the variables v and w
in the term a. Its reduction properties are as follows.

~TP If O then z else (v,w) a = z

I
I

,.

1:
I

• 13 -

r-TP It I b,c J then z else (v,w) a = a{v:=b, w:=c}

Ir-then-else as a variable binding operator disposes with the need or projection functions hd and
ti .

R-terms are composed from O and variables by pairing. Atomic R-predicates are obtained from
R-terms by the identity =, assignment :=, and invocations of predicates P (a). R-predicates are
composed of atomic predicates by conjunctions (both & and I I), disjunctions (both V and
orp), negation, existential quantifiers, markers do and done, and if-then-else. All predicates

P (z.) must be introduced into the theory TP as one place predicates in such a way that
r-TP P (z)=a. & usual, the markers do and done may not be used in R-programs, they are
introduced during computations.

The markers do and done are called processes . They mark the positions where the computation
takes place. The markers can be replaced in any order, possibly in parallel. The marker do goes
down in a R-term in the usual way do (A V B) > do (A) V B. The backward marker done
brings the computed value back. The computed values are either truth values or assignments. The
computation with truth values is straight-forward done (0) V B => done (0) or
done (1) V B > do (B). Parallel connectives / ork the forward marker do creating two
processes do (A I I B) > do (A) I I do (B).
The interesting part or R is the backward shipment of assignments
do (z :=a) > done (z :=a). The general idea is to move this assignment back through enclos
ing disjunctions and conjunctions by employing the associativity and distributivity of the connec
tives until the assignment reaches its existential quantifier.

{(done (z:=a)&A)V B}V C > {done (z:=a)&A}V (BV C)
{(done (z:=a)&A)V B}&C > {done (z:=a)& (A&C)}V (B&C)

When the assignment reaches its quantifier, the quantifier is split for a possible backtrack and
discharged in one side of disjunction.

:lz{(done (z:=a)&A)V B} >
:lz (done (z :=a) & A) V :lzB >

do (A{z :=a}) V :lzB

The assigned value a is used in the formula A and the formula :lz B is kept as a backtrack in the
case the first formula fails. Synchronization or parallel processes is achieved by the use or a
shared variable, say z, in two concurrent processes. One process assigns a value to the variable z
thus awaking the other process which probably will be blocked on the predicate
do (It z then A else (y ,z) B) for which there is no Computation axiom.

R does not provide any rules for moving an assignment back through a negation. Such a program
is considered to be incorrect and the attempted execution deadlocks. The full rules for the moving
or assignments are slightly more complicated because we have to deal with all combinations of
sequential and parallel connectives. An assignment can be moved back through a quantifier on a
different variable. Indeed this movement of assignments through quantifiers permits the powerful
technique of cooperation of concurrent processes by partially instantiated streams as employed for
the first time in Concurrent Prolog l9J.
& an example of an introduced predicate we present the predicate Append concatenating two
lists. We have

r-rP Append (I/ ,s l,r) =
It f then r :=s elae (h ,I) :Ir '{r :-=I h ,r 'I & Append (It ,s J,r ')} (1)

It does not harm to repeat that the above theorem is not a definition of the predicate Append.
Function Append can be introduced into TP to satisfy the theorem (1) only because the recursion
descends in the first list. Io the case of more complicated recursions it is the programmer's respon
sibility to make sure that a recursive "definition" is derivable in TP. & an example of what we
mean by this consider the predicate, or as it is called in R-Maple, a generator Gennum (y ,z)
ge!lerating all numbers z not less than y. We assume that the natural numbers have been

- 14 -

introduced into TP.

~TP Gcnnum (y ,z) = z :=y V 3z {Add (y ,1,z) & Gennum (z ,z)) (2)

Gennum can be used in R in this form. Since the recursion will never terminate, (2) cannot serve
as the defining equation. The predicate can be introduced by an explicit definition

Gennum (y ,z) = y ~z

from which (2) is provable. Incidentally, the predicate Gcnnum is the counterpart of infinite, or
lazy lists (see the discussion in section (3)). TP cannot handle infinite lists but there is no prob
lem with infinite predicates. The typical use or Gennum is as follows.

3w { Gennum (12,w) & P (w)}

The generator will be repeatedly entered to generate the numbers 12, 13, ... until the predicate
P (w) is satisfied.

In order to simplify the presentation or R we compute invocations or predicates by substitutions
rather than by environments. We abbreviate a sequence or existential quantifiers into the form
3oA where o is a sequence or variables. We do not exclude the empty sequence by setting :lA to
stand for A. We shall write and to stand for either sequential or parallel conjunction, similarly
or.

The axioms and inference rules of R are as follows.

a) Initial Axlom1 are of the form A = do {A) lor every R-term A not containing markers.

b) Predicate Axioms are or the form P {z) = A where A is a R-term not containg markers
and having at most the variable z lree. We require that ~TP P (z) = A.

c) Computation Axloma are the following ones for each R-terms A, B, C, a, b, c, and d.
The variable v does not occur in the term a.
Turn-around Group.

do (0) = done (0)
do (1) = done (1)
do (v:=a) = (done (v:=a) & 0) V 1

In (3) the variable v does not occur in a.
Identity Group.

do (0=I a,b J) = done (1)
do (I a,b J=0) = done (1)
do {0=0) = done (0)
do (I a,b J=I c,d J) = do (a=c) & b=d

Negation Group.

do (..,A) = .., do (A)
.., done (0) = done (1)
.., done {1) = done {O)

DlaJunctlon Group.

do (A V B) = do (A) V B
do (A orp B) = do (A) orp do (B)
done (0) or B = done {0)
done (1) V B = do (B)
done (1) orp B = B

(3)

{3o (done (v:=a) and A) or B} or 1 C =
:lo{ done (v :=) and A} or (B or1 C) (4)

A orp B = B orp A (5)

In (4) or= or and ii= B unless or1 = orp . In the latter case or= orp and if
or= V then ii= do (B).
In (5) B has on or the forms done (0), done (1), or :fo{ done (v: =a) and C} or D and A

is not or any or these forms.
Conjunction Group.

do (A & B) = do (A) & B
do (A I I B) = do (A) & do (B)
done (1) and B = done (1)
done (0) & B = do (B)
done (0) I I B = B

- 15 -

{:fo (done (v:= a) and A) O_! B} and1 C - _
3a{ done (v:= a) and (A and1 C)} or (B and1 C)

AIIB=BIIA
(6)
(7)

where in (6) some or the bound variables in o: must be renamed yielding a, v, a, and A
should a free variable or C become bound inside 3a. Also and= and, or= or, A= A
and B = B unless and1 = I I . In the latter case and = I I and or = orp . Ir also
and = & then A = do (A). Similarly, ir or = V then B = do (B).
In (7) B has one or the forms done (0), done (1), or :fo{ done (v:=a) and C} or D and A
is not of any of these forms.
Quantlfler Group.

do (3vA) = 3v do (A)
:Iv do,ie (0) = done (0)
:Iv done (1) = done (1)
:lvffo (done (v:=a) and A) or B} - 3aA{v:=a} or 3vB (8)
3wflo:(done (v:=a) and A) or B} - 3a{done (v:=a) and 3wA} or 3wB (9)
3wflo:(done (v:=a)andA)orB} = 3w,a{done (v:=a)andA}or3wB (10)

In (8) A e A unless and = & . In the latter case A = do (A). In (9) and (10) the vari
able w is different from v. In (9) the variable w does not occur in a, whereas in (10) it does.
It Group.

do (lt O then A else (v , w) B) = do (A)
do (lt I a,b J then A elae (v,w) B) = do (B{v:=a, w:=b})

d) Replacement Rule.
A= ... 9 . .. , B=C

A= ... c .. ,
where B = C is a Computation axiom.

e) Predicate Call Rule.
A= · · · do (P (a)) · · · , P {:r) = B

A-= · · · do (B{:r :=a}) · · ·
where P (:r) = B is a Predicate axiom.

f) Termination Rules.
A= done (0)

A
A= done (1)

-.A

It is straight-forward, though perhaps not so trivial as before, to demonstrate that the axioms and
inference rules or R do not lead outside of TP.

A note on the parallelism of R. Programming languages F and P are underspecified. The execut
ing machine, by adopting a wrong proof strategy, may fail to reduce the program although the
program is reducible. The languages N and L permit at most one reduction. Thus whatever can
be reduced, will be reduced. R is underspecified. The presence of the explicit parallelism allows
multiple markers do and done in programs to be reduced in different order. Each marker
corresponds to a process. A reduction of one process generally kills other processes. For instance
the satisfaction or one operand or a parallel or kills all processes in the other operand. This
underspecification is intentional. A correct concurrent program should be written in such a way

- 16 -

that, no matter in what order the r(:duction goes, a deadlock or an infinite computation does not
occur . This correct.ne s condit-ion can be expressed formally and any proof or correctness or a
parallel program must contain the demonstration that the program will be reduced no matter
which way the computation goes.

The difference between the unintentional non-determinism or underspecified languages F and P
and the intentional non-determinism of underspecified R is that correct R-programs reduce
regardless or the reduction strategy. Programs or R intentionally distribute the do and don e
processes by the judicious use or sequential and parallel connectives and quantifiers. R-programs
are intended not only to protect themselves from the non-determinism, but actually to utilize it
by employing a concurrent hardware. Programs in the underspecified languages F and P must
rely on the benevolence ot the executing machine. A benevolent machine supposedly finds a proor
if there is one. A correct F-program may still fa.ii to reduce on a diabolical F-machine. On the
other band , the programs in R do not make this extra-linguistic assumption on the character or its
computing machine. They are willing to live with a malevolent executing machine provided the
machine does not violate the basic rules of the game, i.e. the machine generates correct proofs or
R.

&. Conclu11lon11.

We have mentioned in section (2) that the proof-theoretical questions are easier to settle if there
are as rew deadlock situations as possible. ThiB means that a tupelesa programming language
(such a.s all or the languages treated in this paper) should be allowed to proceed even if it tries to
perform O.h or a similar operation. The situation in R is more complex and possibilities or
deadlocks arise rrom an incorrectly designed scheme or synchronization or paralJel processes via
assignments to shared variables (two simultaneous assignments to a shared variable, or none at
aU). Deadlocks of the first type can be prevented by imposing a system or decidable types on the
programs. This amounts to imposing suntactic restrictions on the legal $-terms and S-formulas.
The author is presently working on such a scheme. It is actually an adaptation or Pascal-like typ
ing within the framework or TP. It ui the author's belief that the deadlocks occurring from paral
lel processes can be also eliminated by syntactic restrictions on legal terms and formulas or S.
Whal kind or types are sufficient to prevent parallel deadlocks remains a very interesting and
practical research problem.

The problems of termination or programs are harder than the problems of meanings or programs.
A semantically correct program may still fail to terminate. By a semantically correct program we
mean a function or predicate which is introduced as a conservative extension of TP or some other
underlying semantic theory. A programmer willing to demonstrate semantical correctness (also
called partial correctness) must explicitly produce the evidence that bis function or predicate can
be introduced into the theory. lf he wants to prove the termination he bas to demonstrate the
existence of a proof or the program. If the program is a co[lcurrent one, the programmer must
show that any sequence or formulas legal in a proof can be extended to a proof. A sequence or for
mulas is legal in a proof in S when each formula in the sequence is either an axiom or the conclu
sion or a rule or inference applied to the preceding formulaa. This will guarantee that no matter
which way the computing machine goes, it will oot miss a proof if there is one.

We think that the proof-theoretical questions or complexity or computations, absence of
deadlocks, and termination should be formalized either in a suitable meta.-theory or, preferrably,
in TP itsetr. This is to be done by the well-k_nown method of arithmetization of programs and
their proofs. TP is a suitable theory because the G6del numbers are straight-forward. For
instance the term If z then 1 elae [z ,0 J can be assigned the G6del number

(i/ c , (var ,0 J, (co net ,1 I, (pair, (var ,0 I, I conat ,0111
where i/ c var, const , and pair are defined as different constants of TP. The reader will recog
nize that such G6del numbers are similar to forms or Lisp.

Let us denote by r•l the G6del number or the term or formula a or a programming language s. It
is possible to introduce the predicate Reds (z,n,p) into TP. Reds ff•l ,n,p) means that pis

- 17 -

the G8del number or the proof in S or the s-rormula a= n. Thus the program a in the deter
ministic language S terminates iff :Ip , n Reds ff al, n ,P). In the case or a language with parallel
ism one needs a stronger predicate A reds ff Al ,t) satisfied when t is the Godel number or a tree
or all possible derivations or the formula A. If :It A reds ff Al ,t) then the formula A will be pro
ven no matter how the execution goes.

In the further development or the formal theory or termination or S one can proceed to prove
sufficient conditions under which the above predicates are satisfied. Because or the incompleteness
or TP we cannot always hope to have ~TP :Ip ,n Reds ff al ,n ,P) for a sufficiently strong S.
Since the theorems or S are always theorems or TP, S must be consistent and all the formulas

Reds ff al ,n ,P) -+ a=n (1)

are true but generally unprovable in TP. We can strengthen TP by adding (1) as a new axiom
schema. This will enable the development or the full theory or termination or programs in S
within TP.

The class or functions which can be introduced into TP by recursive equations is ca.lied provably
recursive functions. In the view or incompleteness or any sufficiently strong theory, no theory can
admit all recursive functions. For the sake or simplicity we have dealt in this paper only with
functions over pairs. One can introduce higher order functions, i.e. functionals, into TP. The func
tionals which can be introduced are so called t11pe recureive or functionals of finite t11pes !see
for instance 12). The class or functions and functionals definable in TP is the class or functions
definable by transfinite induction up to any ordinal a such that a< t 0 l12,13]. This class encom
passes a huge number or functions. We believe that it includes all the functions and functionals
which are practical to compute. But even ir there were practical functions which need recursion or
higher type than fo, TP can be strengthened by addition or so called reflexion axioms (similar to
(1)) which progressively strengthen the power of TP to any degree required by practical applica
tions.

We hope that we have convinced the reader that our method or two theories, one tor meaning the
other for control, is an eminently workable approach to the problems or the definition or program
ming languages.

Ill Bauer F. et al. Description or the Wide Spectrum Language CIP-L; Research Report, Techn
ical University Munich, May 1Q83.

121 Clocksin W., Mellish C., Programming in Prolog, Springer Berlin 1981.

l31 Goguen, Tardo, An Introduction to OBJ: A Language for Writing and Testing Software
Specifications, In: Specification or Reliable Software, 1979.

14] Hermes H., Term Logic with Choice Opera.tor, Lecture Notes in Ma.thematics, no. 6,
Springer Berlin 1970.

l5J Hoare C. A. R ., An Axiomatic Basis for Computer Programming, CACM, vol. 12. Oct.
1969.

l6J Jensen K., Wirth N ., PASCAL User Manual and Report, Springer Berlin 197 4.

j7J Kleene S., Introduction to Metamathematics; North-Holland, Amsterdam 1971.

ISJ Kowalski R., Logic for Problem Solving; North Holland, Amsterdam 1979.

191 Shapiro E ., A Subset of Concurrent Prolog and its Interpreter, TR3 Institute for New Gen
eration Computer Technology, Jan 1983.

1101 Shoenfield J., Mathematical Logic, Addison-Wesley, 1967.

Ill] Stoy J., Denotational Semantics: The Scott-Strachey Approach to the Mathematical Seman
tics. MIT Press, Cambridge 197i.

l12j Schuette K., Proof Theory, Springer Berlin, 1977 .

l131 Schwichtenberg H., Elimination of Higher Type Levels in Definitions or Primitive Recursive
Functionals by Means or Transfinite Recursion, In: Logic Colloquium '73, Rose and

- 18 -

Shepberdson (eds.), North Holland, Amsterdam 1973.

j14J Voda P . J., R-Maple: A Concurrent Programming Language Based on Predicat~ Logic, Part
I: Syntax and Computation; Technical Report or Dept. Comp. Science UBC, Vancouver
August 1983.

jI5l Voda P. J., A First Order Theory or Pairs, Technical Report of Dept. Comp. Science UBC,
Vancouver May HJ8•t.

