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Abstract 

In [4] the reflexive structures in the category of numeration were studied. It 
was shown that every numerated reflexive set forms a "numeration model of >.­
calculus". In this short note we formalize the concept of numeration models of 
>.-calculus, and study several interesting subclasses. Even though the class of 
numeration models does not coincide with the class of numerated reflexive sets, 
we can show that the class of numeration models with ">.-definability" property 
is equivalent to the class of numerated reflexive sets with ">.-representability" 
property. Through this we observe relation between >.-definability and accepta­
bility of numerations discussed in (5]. 
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§1. >.-calculus 

The A-calculus developed by Church (2) is the following formal system: Let 

V be a countable set of variables. 

Definition 1.1. (A-terms) 

1. If xEV then x is a >.-term 

2. If M and Lare A-terms then so is (ML) 

3. If xEV and M is a >.-term then so is (>.x.M). 

We denote the set of all >.-terms by T. 

[I 

We assume a natural meaning of a A-term occurring in some other A-term. 

An occurrence of a variable x in M is bound if it is inside a pa.rt of M of the form 

(>.x.M). Otherwise it is free. For any terms M, L and a variable x, the result of 

substituting L for each free occurrence of x in M (and changing bound variables 

to avoid clashes) is denoted by M[x:=L). 

The calculus has the following three reduction rules: 

Reduction Rules 

x is not bound in M and 
(o):(Az . .M) - (Ay.M[r.=y)) 71 does not occur in M 

(,8):((Xz . .M)L) - M[r.=LJ 

(fJ):(Az.Mz) - M x does not occur m M. 

[I 
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By Godel numbering variables and >.-terms we can realize constructions of 

>.-terms as a system of recursive functions. Let v:N-+ V and r.N-+ T be com­

putable bijections. The syntax of >.-terms corresponds to the following system of 

recursive functions: 

is-va,( n) ~ 'T{n)EV 

is-apply(_n) ~ 'T{n) = (ML) for some M,LET 

is-abst( n) ~ 'T{n) = (>.x.M) for some xEV and MET. 

1( inc(n)) = v(n) 

is-va,(n) ~ v( va,(n)) = 1(n) 

is-apply(_n) ~ 1{ apply(_ rato,(n),rand(n))) = 1(n) 

is-abst(n) ~ 1{ abst( bound(n)),body(_n))) = 1(n). 

§2. NUMERATION MODELS OF X-CALCULUS 

Definition 2.1. (Ersov /3}}. 

A numeration (of a set X) is a surjection 1:N -+ X. A morphism Crom a 

numeration 11:N-+ X1 to another 12:N-+ X2 is a function f:X1 -+ X2 such that 

for some recursive function r1, l,1 = , 2·r/' Such r1 is called a realization off. In 

ca.se r1 is primitive recursive, we say f is primitive. 

[I 

It can readily be seen that numerations and morphisms Corm a category. 

(See Ersov [3]). 
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Let 1:N -+ X be a numeration such that for some numeration 

ii:N-+ Hom(_i,'r), ')''.::::ii in the category of numerations. Let v:N -+ V be the 

computable bijection discussed in §1. Furthermore let (4':1-+1i,'t:1i-+1) be the 

isomorphism pair. 

An environment (or valuation) is a primitive morphism from v to '1· We 

write Env to denote the set of all environments. Using a Godel numbering 

<'¢.-> of primitive recursive functions N -+ N, we can introduce a numeration 

u:N -+ Env as follows: 

ui = p where r = '¢· p ,. 

It can readily be seen that updating an environment 

p[r.=d](z) = if x=z then d else p(z) 

where xEV and dEX has a realization, i.e. 

for some recursive function update: !V'3-+N. In other word, updating operation is 

a morphism from u X v X ')' to u. 

Definition 2. 2. 

Let ')' be as above. We say 1 is a numeration model of >.-calculus iff the fol­

lowing interpretation function e: 

{( 7{ n),ui) := if is-var( n) then u,{ 7{ n)) 

else if is-appllA_ n) then 
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4>( e( 1{ rat or( n),ui))( e( 1{ rand( n)),ui)) 

else if i&---abs~ n) then 

llf(XxEX.e( 1{ bod1/._ n)),ui['T{ bound( n)):=x])) 

is well-defined and it is a morphism from T X u to 1· 

[I 

It is important to notice that since e is a morphism from TXu to 1, 

>.xeX.e('T{body(n)), ui['T{bound(n)):=x]) is a morphism from 1 to 1 realized by 

>. mEN. re( body( n), update( i, bound( n), m)). Thus 

'11(>.xeX.e( 1{ body( n)), ui['T{ bound( n)):=x))) 

IS defined. Furthermore the next theorem supports the relevance of this 

definition: 

Theorem 2.9. 

Let 1 be a numeration model of >.-calculus with an interpretation morphism 

f T><u-7, then we have: 

'T{n) ~ 'T{m) implies for all iEN, e('T{n),ui) = e('T{m),ui) 

where 1{ n) ~ 1{ m) means that 1{n) can be reduced to 'T{m) by one of the reduc­

tion rules of >.-calculus. 

[I 

The proof of this theorem is standard and we omit it. 



Definition 2.4. 

A numeration model 1 is >.-representable iff there is a recursive function rep: 

N-+N such that 

1( n) = e( 1{ rep( n)),u i) for all iEN. 

A >.-representable numeration model 1 is >.-definable iff there is a recursive func­

tion def such that if a morphism f: 1-+1 is realized by a recursive function <Pm 

then 

.1{1(n)) = e((1{de.l{m))1{rep(n))),ui) for alliEN 

where <<Pi> is a Godel numbering of partial recursive functions. 

[I 

Note. In a >.-representable numeration model 1: N-+X, every element of X can 

be represented by a closed >..-term. If 1 is >.-definable then every morphism 1-+1 

can be defined by some closed }..-term. Outstanding point here is that we can 

obtain such >.-term from a Godel number of a recursive function which realizes 

the morphism. 

§3. NUMERATED REFLEXIVE SETS 

We outline results of (4). Main results are as follows: First, a reflexive 

structure in the category of numeration provides a numeration model of >.­

calculus. Second, these structures are exactly constructive extensional combina­

tory algebras. 
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Definition 9.1. 

Let 11: N--+X1 and 12: N--+X2 be numerations. A numberation 

1: N--+Hom(11,12) is aecepta6/e iff there are recursive functions realize, numerate: 

N--+N such that 

(1) r'Y(11) = </>,eaJize(11) 

(2) if ¢> 11 realizes/: 11--+12 then 1{numerate(n)) = f. 

[I 

It can readily be seen that (I) is equivalent to the existence of a (universal) 

recursive function U: /IP--+N such that 

Also it is known that all acceptable numerations of Hom( 11,12) are recursively 

isomorphic (see [5]). This means that there is at most one acceptable numeration 

of Hom( 11,12). Thus we write (11--+12) to denote the acceptable numeration of 

Hom(11,12), if any. 

Definition 9. 2. 

A numerated reflexive 8et (NRS) is a numeration 1: N--+X satisfying: 

(I) The acceptable numeration b--+1): N--+Hom(1,1) exists. 

(2) 1 ::: b--+1) in the category of numerations. D 

It can readily be seen that no non-trivial NRS is finite. 
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Proposition 9. 9. 

If 1: N--+-X is an NRS then it is a numeration model of A-calculus. 

[I 

The converse of 3.3 does not hoM. The existence of an interpretation mor­

phism is not strong enough to prove that 1t is acceptable. 

We can given an algebraic characterization of NRS's. A countable applica­

tive system is an algebra (X, ·) where · is a binary operation over a countable set 

X. The set T(X) of terms (using countably many variables Xo,x1, ... ) over (X,·) is 

inductively defined as follows: 

x, E 7lX) 

aEX~ aE7lX) 

A,BE1lX) ~ (A·B)E7lX). 

We assume that · associates to the left, also we drop · if it does not cause confu­

sion. To denote that a term A has variables x0,x1, •.• ,xn, we write A(.7,o,x1, ... ,xn). 

Let p: N--+-T(X) be a Godel numbering of terms. 

Definition 9.4. 

A realizably extensional combinatory algebra (RECA) is a 4-tuple (X, · ,1,P) 

such that: 

(1) (X,·) is a countable applicative system 

(2) 1: N--+-X is a numeration 

(3) · is a morphism from "'(X.')' to ')'. 
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{4) There is a recursive function >. such that if p(n) = A(x1, ... ,xn) then 1(>.(n)) 

= f is a unique element of X satisfying: 

/'111···1/n = A(x1:=yi, .. ,,xn:=1Jn) 

where A(x1:=y1, ... ,xn:=yn) is the result of substituting 1J; for :z; m A 

{I <i<n). 

(5) If for all dEX, d1·d = "2·dthen d1 = "2· 

[I 

Definition 9. 5. 

An RECA (X, · ,7,p) is computationally complete iff there is a recursive func­

tion alg such that if ¢,. realizes f: 7-7 then o-( alg(n)) is a term with a free vari­

able, say x and 

Az) = (o-(alg(n)))(x:=z) 

[I 

Proposition 9. 6. ( Characterization Theorem I) 

(1) If (X,·,1,p) is a computationally complete RECA then 1 is a NRS, where 

(1-1):N-Hom(7,7) is defined by {1-+1)(n) = •b(n)) where • maps ele­

ments of X to functions X-+X defined by •(x)(y) = x-y. 

(2) If 1: N-+X is a NRS with an isomorphism pair •:7-+(7-1), '1':(1-+1)-+7) 

then (X,·,1,p) is a computationally complete RECA where · is defined by: 

x·y = 4>(x)(y). 

[I 



This proposition is a numeration version of Barendregt's result [l]. It is very 

important to notice that the class of computationally complete RECA's (or 

equivalently NRS's) is not the same as the class of numeration models. This indi­

cates a difference between numeration models and set theoretical models. As 

shown in Barendregt [l], in set theoretical case, models of >..-calculus are the same 

as extensional combinatory algebras. This difference is due to the following rea-

sons: 

(1) 1:::: 1t being a numeration model 1s not strong enough to imply 

1t: N-+Hom{1,1) being acceptable. 

(2) To obtain the corresponding numerated extensional combinatory algebra 

from ,t, it is crucial to have acceptability of ,t. 

(3) To obtain a numeration model from a RECA, it is crucial to assume the 

computational completeness of the RECA. 

§4. CHARACTERIZATION OF >.-DEFINABLE NUMERATION 

MODELS 

Even though we can not show good characterization of numeration models of 

>.-calculus, we can nicely characterize >.-definable models as a sub-class of NRS's. 

Definition ,l.1. 

A NRS 7 is >..-representable iff there is a recursive function rep:N-+N such 

that: 
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1( n) = {( 7( rep( n)),O',) for all iEN. 

where { is the interpretation morphism which makes 1 a numeration model or >.­

calculus. 

[I 

Theorem 4- e. 

Ir a numeration 1 IS a X-definable numeration model then it is a >.­

representable NRS. 

Proof. It is sufficient to show that if 1 is a X-definable numeration model then 1t 

(remember (4>:1-1t, i':1f-.1) is an isomorphism pair) is acceptable. We have: 

1t( m)( -rt n)) 

= 4>('}{r.(m)))('}{n)) 

= ~( e( 7( rep· r.( m)),u.-) )( e( 7( rep( n)),u .-)) 

= e(7(apply(rep·r-t(m), rep(n))),ui) 

= '}{ re( appl!t_ rep· rt,( m), rep( n)),i)) 

= '}{V(m,n)) 

for some recursive function U: l'-1--.N. Let 'Pm realize a morphism f: ,_.,, We 

have: 

J{'}{n)) = e((7(deJ{m))7(rep(n))),tri) 

= ~( {( 7( de){ m)),O"i))( {( 7( rep( n)),O"i) 

= ~b( re( de){ m),1)))( -rt n)) 

= 1t(r1 ·re(deJ{m),i))('}{n)) 



Due to the extensionality 

/= 1t(r•·ridc/(m),,)) 

= 11( numerate( m)) 
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for some recursive function numerate: N-+N. Thus 1t is acceptable. 

Theorem 4.s. 

[I 

Ir 1 is a >.-representable NRS then it is a >.-definable numeration model of 

>.-calculus. 

Proof. Let 1 ......, ( 7-+7) be a >.-representable NRS. By 3.3 ')' is a numeration 

model of >.-calculus. Let <Pm be a recursive function which realizes a morphism f: 

7-+1. Since 1 is a NRS we have: 

I= ( 1-+1)( numerate( m)). 

Therefore 

4.>(/) = "'t(r•·numerate(m)) 

= e( 7{ rep· r· · numerate( m)),u ,). 

Thus 

A"'t(n)) = 4.>(i'(/))("'t(n)) 

= 4.>(e( 7( rep·r.· numerate( m)),u,)( e(T{rep( n)),u,)) 

= e(( 7( rep· r•·numerate( m))7{ rep( n))),u,) 

= e(( 1( de}l m))7{ rep( n))),u,) 



- 13 -

for some recursive function def: N-+-N. Therefore 1 is A-definable. 

[I 

Corollary 4.4- (Characterization Theorem Il) 

A numeration 1 is a A-definable numeration model iff it is a A-representable 

NRS. 

[I 

It is important to observe that we have established the following relationship 

between acceptability of 1t and A-definability of a numeration model "/ of A· 

calculus: 

(I) If 1 is A-definable then 1t is acceptable. 

(2) If 1t is acceptable and 1 is X-representable then 1 is X-definable. 

This correspondance supports the relevance of the concept of acceptable numera­

tions of morphism spaces discussed in (5]. 

By adding an extra condition to computationally complete RECA, we can 

characterize X-definable numeration models. A computationally complete RECA 

(X,·,1,p) is X-representable iff there is a recursive function rep: N-+-N such that 

Theorem 4.5. (Characterization Theorem ID) 

A numeration 1: N-+-X is a X-definable numeration model iff (the correspond­

ing) (X,·,1,p) is a X-representable computationally complete RECA. 

[I 
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Unfortunately, there is no known numeration model which is >.-definable. 

The language of >.-calculus is too weak to represent all computable elements of 

D00 of Scott [6]. 

One possible solution to this problem is to enrich the language by introduc­

ing finite constant symbols. Then by adding interpretation of these constant 

symbols to { we can define the concept of numeration models of this enriched >.­

calculus. It is easy to observe that all results or §2, §3, and §4 hold for the 

enriched >.-calculus. Furthermore it can readily be seen that a numeration model 

due to the computable elements of D00 (as discussed in [4]) is >.-definable for a 

suitably enriched >.-calculus (see (6) for details). 

Of course by introducing countably infinite constant symbols and providing 

a constant symbol for each element of a NRS x: N-X, we can make x >.­

representable for the expanded >.-calculus. But this contradicts to the fundamen­

tal role of >.-calculus, which is to define functions via application and abstraction 

and to reason about these functions. 



ADDENDUM 

· It is known that by G8del numbering the term model 

of Church-Barendregt using Godel numbering T of A-terms, 

we can obtain a numeration model of A-calculus (see [4] or 

Visser [7]). But this model is not A-definable because an 

equivalence class [t] with t being an open term can not be 

represented by a closed term, in general. 



.. 
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