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ABSTRACT 

A Gapping Grammar (GG) has rewriting rules or the form: 

a 1, gap(z1), a2, gap(~), ... , a11-1, gap(z11-1), a"-+ /3 

a, f VNLJ Vr 

G = { gap(xi), gap(Zi), ... , gap(x11-1)} 

/3 E Vi,, LJ Vr LJ G' 

where V r and V N are the terminal and non-terminal vocabularies or the Gapping 
Grammar. Intuitively, a GG rule allows one to deal with unspecified strings of 
terminal symbols called gape, represented by z1,z.i, ... ,z,,_1, in a given context of 
specified terminals and non-terminals, represented by a 11a2, ... ,a 11, and then to dis
tribute them in the right hand side /3 in any order. GG's are a generalization of 
Fernando Pereira's Extrapoeition Grammare where rules have the form (using our 
notation): 

a 1, gap(x1), a2, gap(X:i), ... ,gap(x,._1),a11 -+ /3, gap(x1), gap(X:?), ... , gap(zn-1) 

i.e., gaps are rewritten io their sequential order in the rightmost positions or the 
rewriting rnle. In this paper we motivate GO's by presenting grammatical exam
ples where XGs are not adequate and we describe and discuss alternativ imple
mentations or GGs in logic. 

1. Introduction 
A grammar is a finite way or specifying a language which may consist or an infinite number 

or "sentences". A logic grammar has rules that can be represented as Horn clauses. Such logic 
grammars can conveniently be implemented by the logic programming language Prolog: grammar 
rules are translat d into Prolog rules which can then be executed for either recognition o( sen
tences or the language specified, or (with some care) for generating sentences of the language 
specified. 

Since the development or the first logic grammar formalism by A. Colmerauer in 1975 (Col
merauer,1975), and or the first sizeable application or logic grammars by V. Dahl in 1977 
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(Dahl,1977), several variants or logic grammars have been proposed, sometimes motivat d by ease 
or implementation (Defi11ite Clause Grammars, DCGs, jPereira&Wanen ,1980]), sometimes by a 
need for more general rules with more expressive power (Extraposition Grammars, XGs, 
!Pereira,19811), sometimes with a view towards a general treatment or some language processing 
problem such as coordination (Modifier Structure Grammars, MSGs, [Dahl&McCord,to appear!) , 
or or automating some part or the grammar writing process, such as the automatic construction or 
pars trees and internal representations (MSGs, op.cit; Definite Clause Translation Grammars, 
DCTGs, jAbramson,19841). Generality and expressive power seem to have been the main con
cerns underlying all these efforts. 

In this paper we present another logic grammar formalism called Gapping Grammars, GGs, 
which we believe to be the most general to date. We examine three possible implementations, and 
discuss the adequacy or GGs for certain language processing problems that cannot be ex.pressed as 
easily in any other formalism. 

GG rules can be considered as meta-rules which represent a s t (possibly infinite) or ordi
nary grammar rules. They permit one to indicate where intermediate, unspecified substrings can 
be skipped, lert unanalysed during one part of the parse and possibly reordered by the rule's 
application for later analysis by other rules. For instance, the GG rule: 

A, gap(X), B, gap( Y), C -+ 

gap( Y), C, B, gap(X) 

can be applied successfully to either or the following strings: 

A,E,F,B,D, C 

with gaps X= E Fand Y= D, and 

A,B,D,E,F, C 

with gaps X = /J and Y = D E F. Application or the rule yields 

DCBEF 

and 

DEFCB 

respectively. We can therefore think or the above GG rule as a shorthand for, among others, the 
two rules: 

A, E, F, B, D, C-+ D, C, B, E, F 

A, B, D, E, F, C-+ D, E, F, C, B 

The idea or gapping grammars, as well as or the compiler imp.lementation scheme shown 
below in Section 3.1 was developed in 1981 by V. Dahl as a result of examining Fernando 
Pereira's work on Extraposition Grammars, and finding the formalism limited, mainly with 
respect to the problem of treating coordinated constructs. During a 1982 visit to the University 
or Kentucky by V. Dahl, these ideas were tested in joint work with Michael McCord, but were 
later suspended in favour of a more promising approach to the coordination problem (see 
IDahl&McCord ,to appear!). We (Dahl & Abramson) now resume this research, no longer with a 
view towards treating coordination, but because the formalism itself bas some rather interesting 
aspects. 

Gapping grammars are interesting in the first place because each meta-rule, somewhat like a 
restricted version or VanWijngarden's two-level grammars which were used in the definition or 
Algol 68 !Van Wijngarden , 19751, represents infinitely many specific rules: eaeh gap can be satisfied 
by many strings or terminals; to specify each or these unstructured substrings might require 
infinitely many grammar rules in other formalisms. Gapping grammars therefore cover a wide 
variety or rewriting situations using very few rules. 
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Secondly, there seems to be some psychological basis to the idea or focusing on the next 
relevant substring during analysis and leaving a1ll intermediate one suspended in the background 
or consciousness, to be brought back into the focus or attention later, possibly repositioned with 
other more closely related substrings. When parsing discontinuous constituents, for instance as in 
the course and colloquial sentences "Desmond knocked the girl with green eyes down" as opposed 
to "Desmond knocked the girl with green eyes up", the human hearer will probably suspend his 
attention from the intermediate string "the girl with green eyes" until the completing substring to 
"Desmond knocked", i.e., "down" or "up", is heard, repositioned, and comprehended within its 
interrupted context. 

A third argument for sometimes not specifying which constituents should be intermediate 
between two substrings is the fact that there is some empirical linguistic evidence in support of 
the existence of categories intermediate between lexical and phrasal categories [Radford,1981] . 
While these aren't clearly captured as traditional categories in linguistic theory, it is possible to 
computationally account for them simply by perceiving and naming them as gaps. 

t. Background, Motivation, and Definition ot Gapping Grammars. 

Logic grammars originated with A. Colmerauer's Prolog implementation or Metamorphosis 
Grammars as an alternative notation for logic programs. They consist of rewriting rules where the 
non-terminal symbols may have arguments, and rule application may therefore involve 
unification. For instance, a rule such as: 

np(X) -+ name(X) 

can be applied to the strings np(4) and np(anne) yielding, respectively, name(4) and name(anne) 
but cannot be applied to either of the strings np or np(x,y). The left hand side or a normalized 
Metamorphosis Grammar rule must start with a non-t rminal symbol, but may be followed by a 
sequence or terminals (terminal symbols are written between /and/), whereas the right hand side 
may contain any sequence or terminals and non-terminals, as in: 

a, [b], [cJ-+ [bl, a, [c] 

(Unnormalized Metamorphosis Grammars may contain rules beginning with a terminal, followed 
possibly by other terminals and non-terminals; there is no loss of generality, however, in restrict
ing oneself to normalized MGs. See !Colmerauer,1978].) Definite Clause Grammars, DCGs, are a 
simplification of MGs in that rules are allowed only a single non-terminal on the left hand side, as 
in: 

verb_phraee(X) -+ verb(X, Y), objec~ Y) 

Extraposition Grammars (XGs) allow the interspersing or gaps in the left hand side,and 
these are routinely rewritten in their sequential order at the rightmost end or the rule, as in: 

rel_marker, gap(X), trace -+ 

rel_pronoun, gap(X}1 

In an XG rule, symbols on the left hand side following gaps represent left-extraposed elements 
(e.g., "trace" above marks the position out of which the "noun_phrase" category is being moved 
in the relativization process). 

Let us briefly examine the step-by.:step rewriting or a sentence with a relative clause to 
understand how the gapping rule above works. Our complete grammar is: 

sentence-> np, vp 

1We use our nota.tion for consistency. Pereira.'a nota.tion for gap(X) is written • .. . • in the left ha.nd Bide a.nd 
simply left implicit on the right. 



np -> proper_name 
np -> det, noun, relative 
np -> trace 

vp -> verb, np 
vp -> verb 

relative -> !I 
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relative-> rel_marker, sentence 

rel_marker,gap(X),trace -> 
rel_pronoun,gap(X) 

det -> !theJ 

noun -> !house! 

rel_pronoun -> !thatJ 

proper_name -> UackJ 

verb -> lbuilt.J 

Applying these rules as graphed below, we analyse "the house that jack built" from np: 

np 

I 
det-noun-re l ntive 

I I -I -~1 
the house reJ mnrker sentence 

I 
I 

I 
rr 
proper name ver h np 
I - I I 

,lock hui I trace 

r-7 

rel pronoun j nck l:n.1il t 

I 
tha t 

where the gap is "jack built". Notice that by adding appropriate symbol arguments to the rules, 
we can carry the antecedent's representation all the way to the constituent from which it was 
moved. Also notice that the same grammar, but with a larger lexicon, serves to analyse, for exam
ple, the sentence "the women who built the house", this time with an empty gap, and with the 
trace derived from the first np in the relative sentence. 

Th us, XGs allow us to describe left-extraposition phenomena powerfully and concisely, and 
to arrange for the desired representations to be carried on to the positions from which something 
h_as been extraposed . 

1.1. Motivation. 

1.1.1. Left extrapoaltlon with more than one gap. 

While XGs have the expressive power just shown, the restriction on how gaps are rearranged 
poses some expressive constraints even within the framework or lert-extrapositioo. Consider for 
instance the noun phrase: 

the man with whose mother john left 

We can consider this noun phrase as the result of left-extraposing two substrings from: 

the man I john left with !theJ mother !of the man]I 
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where "of the man" is left-extraposed before "the", and subsumed with it into "whose", and the 
whole complement is extra posed to the left or "john left". 

Ir we wanted to capture these movements in a single rule (which seems a practical way, 
since they are all related), we might express it through the somewhat simplistic but illustrative 
rule: 

np(X), gap( Y), prep, det, gap( Z), prep( of), np(X) 

- np(X), prep, fwhoee/, gap( Z), gap( Y) 

where X stands for the internal representation that is built up from the noun phrase being 
analysed. A derivation graph for this example would look roughly like: 

sentence 

I 
I I 

np(X) sent ence 
I 

I I 
np. verb comp I. 

prep np 

I 
john left I I I 

det noun comp 

y 

I I I I np (X) prep whose mother 

th) man J th 

I 
j I 

prep(of) np(W) 

· !ii f l JO n le t 

Notice that the gapping rule's application unifi es the internal representation X for "the man" with 
the representation W of the rightmost complement. The result of one partial analysis thus 
spreads to cover all implicit occurrences of the same substring. 

t.l.t. Equivalent, preferred gapping formulation■• 

Fernando Pereira gives the following XG for the language { a"b"c"}: 

t.l.t.l. Grammar 1. 
s -> as, bs, cs. 

as-> IJ. 
as, gap(X), xb -> laJ, as, gap(X). 

bs -> IJ. 
bs, gap(X), xc - > xb, lbl, bs, gap(X). 

cs-> IJ. 
cs-> xc, !cl, cs. 

Other formulations or grammars which use gaps are conceivable, however, and it should be up to 
the grammar writer to choose a formulation unconstrained by fixed reordering rules. The follow
ing GG, ror example, describes the same language: 



2.1.2.2. Grammar 2. 
s -> as, bs, cs. 

as-> II-
as -> xa, !al, as. 

bs -> IJ. 
xa, gap(X), bs -> gap(X), [bj, bs, xb. 

cs-> 11-

xb, gap(X), cs-> gap(X), !cJ, cs. 
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In Grammar 1, symbols such as xb can be considered as marks for b's which are being left
extraposed. In Grammar 2, such marks can be seen as right-extraposed. Whereas in this particu
lar example our choice may just be a matter or personal preference, there are cases in which 
movement is more naturally thought or in terms of right rather than left-extraposition (as in "The 
man is here that I told you about"). There also may be efficiency reasons to prefer a rigbt
extraposing formulation: in the first implementation below or GGs, Grammar 2 above works fas
ter than Grammar 1. 

2.1.3. Interaction between dlft'erent gapping rules. 

Consider the language { a"b"'c"d"'} which can be described by the following GG: 

s -> as, bs, cs, ds. 

as-> IJ. 
as, gap(X), xc -> [aj, as, gap(X). 

bs -> IJ. 
bs, gap(X), xd -> [bj, bs, gap(X). 
cs-> li-
es-> xc, [cl, cs. 

ds -> IJ. 
ds -> xd, ldJ, ds. 

This is a perfectly good GG. XGs cannot, however, be used in this situation because oC the XG 
cons raint on the nesting oC gaps: two gaps must either be independent, or one gap must lie 
entirely within the other. 

3. Implementation• of GG■• 

3.1. A Complier: beautiful but dumb. 
Typically, logic grammars are translated into Prolog programs by augmenting each non

terminal symbol with two arguments: one argument Xwhich represents the input string yet to be 
parsed, and the other argument Y which represents what is left of the input string after the rule 
being applied has consumed some of it. We then say that the string X - Y (read as "X minus Y) 
can be recognized as belonging to the category denoted by the non-terminal. Thus, a rule such 
as: 

aentence - name, verb. 

is translated into a Prolog clause: 

aentence(Xi,X11 ) -

name(X1,X2), verb(X2,X11) (a) 

meaning roughly: "there is a sentence in the string X1 - X11 iC there is an initial substring X1 - X2 
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that can be parsed as a name and is CoUowed by a substring X2 - X3 that can be parsed as a 
verb". 

Terminal symbols do not give rise to Prolog predicates, but become inst ad involved in the 
specification or the input and output strings being manipulated by the non-terminals. For 
instance, the rules 

name - fmaryj. 

verb - {laughs}. 

can be translated into the unit clauses: 

name(fmar,AXJ,X) -

verb({laughslXJ,X) -

(b) 

(c) 

where (b) means roughly: "a name is recognfaed in any input string which begins with 'mary', 
yielding an output string which is the remainder or the input string after consuming 'mary'". 

Thus, with respect to rules ( a), ( b), and ( c), a query such as: 

sent enc e(f ma ry, la ughs/,{/) 

will unify X1 with fmary,laughs/ and X3 with //, proceed to consume a name rrom X 11 yielding 
X2 = {la-ughs/ , and then consuming a verb from X2, yielding X3 = fj. The string X1 - Xa, i.e., 
fmary,laughsj - {], bas been recognized as a sentence. 

Let us now consider a graphical representation of this translation process, where non
terminals are viewed as labeled arcs connecting nodes representing phrase boundaries. Rules ( a), 
( b ), and ( c) above can then be represented as follows: 

/ame"'\. 
~ 

[maryj X) X 

verb 

6ugh\ 
[ I aughs I X J X 

Normalized MG rules accept a sequence or terminals after the single non-terminal head on 
the left hand side (since more than one non-terminal would result in a non-Horn clause). The 
translation or such a rule to Prolog may be represented graphically by adding more arcs to the 
upper part or the graph. The rule 

A, {bj, fcj - D, {e}, F 

would translate as indicated by: 

[b ,c I X3) b [c I X3) 

I e F \\1 ,.. 
Xl [e f x 2) x2 X3 

which is the Prolog clause: 
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Let us now consider a rule with gaps and how it should be represented graphically: 

ae, gap( G), zb -+ /a}, ae, gap( G) 

We can think or a gap G simply as a substring or the input that is skipped unanalyzed and 
appended elsewhere in the output string. Thus, if we denote the appending of G to a string z as 
a-z, we can represent this rule graphically by: 

gap( t, ) 

as 

fJ 
,*X 

?. 

The symbol gap{ G) , in fact, can be thought or as a version or app end. When translating rules into 
clauses, gap( G) becomes the predicate call gap( G,X11Xo), which can be specified as the appending 
of G to Xo yielding X,. In other words, the input string X, is non-det-erministically divided into 
two substrings G and Xo- The rule above can thus be expressed in Prolog as: 

ae(JalXo},X) - as(Xo,X1), 

gap( G,X1,X2), gap{ G,X,Xs), zb(Xs,X2) 

or alternatively as: 

as(/alXoJ,X, - as(Xo,X1), append( G,X2,x
1
), 

appen~ G,X8,X), zb(X8,X2) 

Notice that the remainder of the rule's left hand side becomes a part of the clauses's body, and 
we therefore remain within the Horn clause subset of first order logic. Notice too, that this trans
lation scheme allows the left hand side of a rule to be nearly as unrestricted as the right hand 
side: though the head must be a non-terminal, any combination of terminals, non-terminals, and 
even Prolog calls can be expressed as context. 

The compiler shown below produces the corresponding Prolog clauses from gapping gram
mar rules by first constructing two pseudo-rules. From a rule such as 

A, B-+ C 

where A is the non-terminal bead symbol, and where B is the remainder of the left hand side or 
the rule, and C is the right hand side, it constructs clauses corresponding to the pseudo-rules: 

c_nonterm -+ C 

h_nonterm -+ B 

where c-nonterm and h_nonterm are pseudo-non-terminals. In doing so, it also binds the output 
strings corresponding to both pseudo-non-terminals. In our example, the clauses generated are: 

c_nonterm(/alXo},Z) - as(Xo,X1), gap( G,X1,Z) 

h_nonterm(X, Z) - gap( G,X,Xa), zb{Xa,Z) 

Next it constructs the head of the desired clause by using and retrieving the input and output 
strings from the input strings of c_nonterm and h_nonterm. In our example this yields 

as<.f alXoJ,X) 

The desired clause's body is constructed by appending the two bodies of the pseudo-clauses 

as(/alXo},X) - 11s(Xo.X1), 

gap( G,X1,X2), gap( G,X,Xa),.zb(Xa,X2) 

The compiler's full listing is shown below. In addition to accepting purely syntactic gapping 
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grammar rules, it also accepts gapping grammar rules with a superadded semantic component to 
specify a translation. The general rorm or such a rule is: 

A, B- C<:>Sem 

where Sem consists or one or more Horn clauses which specify how semantic attributes or the head 
symbol A are computed in terms or semantic attributes or C and possibly even or B. The Horn 
clauses in Sem govern traversal or the derivation or parse tree which is constructed automatically 
jAbramson,1984J. Gapping grammar rules which are purely syntactic have the trivial semantic 
unit clause true attached to them. The predicate form_node below creates the derivation tree for 
the head symbol A by concatenating the trees for the pseudo-clauses corresponding to B and C. 

synal((A,B-> C<:>Sem),Clause) :- !, 
expand_term( 

(c_nonterm-> C< :>Sem),CClause), 
expand_term((b_nonterm-> B),BClause ), 
clauseparts(CClause,OHead,CBody), 
cl auseparts(BClause ,BHead ,BBody), 

Head = .. jc_nonterm,CTree,X,ZJ, 
BHead = .. jb_nonterm,BTree,Y,ZJ, 
A = .. jPred!Arg I, 
rorm_node(CTree,BTree,Pred,ATree), 
concaten(Args,IATree,X,YJ NewArgs), 
NewA = .. IPred!NewArgsJ, 
combine( CBody ,BBody ,Body), 
formclause(New A,Body, Clause). 

synal((A,B -> C),CJause) :- !, 
synal{(A,B -> C<:>true),Clause). 

clauseparts( (Head :- Body ),Head ,Body) :- !. 
clauseparts(Head ,Head, true). 

formclause(Head,true,Head) :- !. 
formclause(Head,Body ,(Head :- Body)). 

combine(true,B,B) :- !. 
combine(A,true,A) :- ! . 
combine(A,B,(A,B)). 

Corm_node(node(_,Nl,Sem), 
node(_,N2,_), 
Pred,node(Pred,N,Sem)) :-

concaten(Nl ,N2,N). 

gap(II)-> IJ. 
gap(IWordlListl) •> IWordJ, gap(List). 

concaten(ll ,X,X). 
concaten(IXILJ ,M,IXINI) :- concaten(L,M,N). 

The beauty or the compiler resides in its simplicity and conciseness. The compiler is dumb, 
however, in that the gap predicate successively consumes substrings or length 0, 1, 2, ... with no 
further control than simple backtracking as to what should be in the gap. Thus, even on simple 
languages, such as { a"b"c"} with relatively low va.lu s or n, say n = 5, it is very slow. Some more 
information needs to be incorporated in the gap predicate, but this seems to involve dynamic 
information about the state or the computation, and such information is accessible onJy in some 
Prolog implementations. Another alternative which we are considering is to use concurrency in 
parsing; we sketch this idea below and are planning a ruture detailed article on the subject. 
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Although the ideas on compiling GGs are due to V. Dahl, credit is due to Michael McCord 
for the actual writing or the compiler in terms or pseudo-clauses. 

3.Z. Another CompUers Efficient but not general. 

In this section we introduce a class of Gapping Grammars which can be implemented in 
Prolog efficiently. This class consists or those Gapping Grammars in which each gapping rule is of 
the form: 

a, gap(X), /term]- 1, gap(X) (A) 

That is, there is only one gap which is rewritten to the rightmost position or the right hand sid.e, 
and on the left there is a single (pseudo-)terminal following the gap. This class or grammars 
includes a subclass or Pereira's Extraposition Grammars, but also, depending on the definition of 
the gap and fill predicates, may include grammars which cannot be handled by Extraposition 
Grammars, such as, for example, a grammar for the language { a"b"'c"d"'}, with m,n~O. 

This class may be viewed as a generalization of normalized Metamorphosis Grammars. A 
normalized Metamorphosis Grammar rule is or the form: 

a, fJ- 1 (B) 

or 

(C) 

where 

and 

1El1LJV1 
The notation gap(X), {term} therefore represents a large set or MG rules. 

The implementation technique is based on message passing during parsing and rests on the 
following considerations. The terminal symbols which occur on the left hand side or XG rules and 
to the immediate right of a gap may be said to be pseudo-symbols in that they are generally not 
expected to occur in input strings to be parsed, but are generated during parsing to act as signals 
or som sort, and are absorbed later in the parse. Consider, for example, in the XG grammar for 
the language { a"b"c"} the rule: 

ae, gap(X), :d - fa], ae, gap(X) 

The zb is generated to mark the end or the gap and to count an occurrence or an fa]. The zb is 
then absorbed by a matching {1,J in the rule: 

be, gap(X), zc - zh, {1,J, be 

Similarly, in the XG for a small subset or English, the rule (1) in Section 2 generates trace to 
mark the point from which a noun phrase has been left-extraposed, and the rule 

np-+ trace 

absorbs the trace. The introduction or such pseudo-symbols, moreover, produces a slight theoreti
cal problem in that they may occur in some sentential forms or the grammar, but not in the ter
minal sentential forms. 

Since there is only one gap in our restricted rules, and this gap is followed by a "terminal", 
we write instead or A the following: 

a, gap(X), /term}-+ 1 (D) 

and read this: an a, in the context or a gap which is terminated by a signal term may be 
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rewritten to a 'Y followed by the gap. The gap is implicit on the right hand side or the rule. Thus 
our signal gappiag grammar rules are or the form (B), (C) or (D). The sending or a signal which 
closes such a gap is indicated by the predicate 

/il~term) 

which generates (accepts) the empty string. Our version of the grammar for the language {a"b"c"} 
is as follows: 

s->as,bs,cs. 

as,gap(X),lxbJ-> !aJ,as. 
as->11. 
bs,gap(X), !xcJ- > fill(xb ), lbl,bs. 
bs->!1. 

cs->fill(xc ),lcl,cs. 
cs->IJ. 

In implementing this form of GG we specialize the synal predicate as follows: 

synal(((A,gap(Name),ISignall)->C<:>Sem), 
Clause) :- I, 

expand_term( 
(c_nonterm->(C,gap(Signal,Name))<:>Sem), 
CClause), 

cl auseparts( CClause , CHead, CBody), 
CHead = .. lc_nonterm,G0,Gn,CTree,X,ZJ, 
A = .. IPredlATgsJ, 
GTree = node(gap,ISignal,Nam !,true), 
form_node( CTree, GTree,Pred ,A Tree), 
append(Args;jG0, Gn,ATree,X, Yl,NewArgs), 
NewA = .. IPredlNewArgsJ , 
combine(CBody , 

gap(Signal,Name,GTree,Y,Z), 
Body), 

formclause(New A,Body, Clause). 

synal(((A,gap(Name),!Signall) -> C), 
Clause):- I, 

synal( 
((A,gap(Name),ISignall)-> C<:>true), 
Clause). 

In the goal expand_term the Signal is added to the named gap which is placed at the right end of 
the syntactic portion or the rule; since the only context of a rule is of the form 
gap(Name), {Signalj, we dispense with BClause and construct the clause for A directly; other 
changes in / orm_node involve the formation or a "tree" to record the contents of the gap as a 
difference list (see below). synal compiles, for example, the rule 

bs, gap(Name), fzc)- /ill(zb), I bl, bs. 

to: 

bs(S0, 
S3, 
node(bs, 

!FillTree, 



b, 
BsTree, 
GapTree, 
node(gap,lxc,NameJ,true)J, 

true), 
X, 
Y) :-

fill(xb,S0,Sl,FillTree,X,Xl), 
c(Xl,b,X2), 
bs(Sl,S2,BsTree,X2,X3), 
gap(xc,Name,S2,S3,GapTree,X3,Z), 
gap(xc,Name,node(gap,lxc,NameJ,true),Y,Z). 
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The reader will notice that in addition to the pair of arguments for the "input" and "output" 
strings (X,A1 ,X2,X3,Y,Z), and the argument for the parse tree, there is another pair of arguments 
- the "input message stream" and the "output message stream" - which has been added to all the 
non-terminals except the rightmost instance of gap. These are .SU, SI, 82, and S3, and are added 
to non-terminal symbols only by the predicate tranelate_rule (not shown here, but called by 
ezpand_term: see IAbramson,10841) which processes non-gapping rules. Note that non-gapping 
rules are normalized metamorphosis grammar rules and are translated as outlined in Section 3.1. 
The ordinary non-terminals, such as ba, will neither add mes.5ages to the input stream nor delete 
messages from the input stream in order to produce a new output stream: the input stream will be 
passed to whatever is called, and a p08sibly new output stream will be formed as a result or the 
call. Messages are inserted by gap and removed by fill. Let us examine the definition of gap and 
fill to see how these streams are manipulated: 

gap(Symbol, 
Gap, 
node(gap ,!Symbol,GapJ ,true), 
StartGap, 
EndGap) :-

Gap = StartGap - EndGap. 

gap(Symbol, 
Gap, 
Stackln, 
!ISymbol,GapJIStacklnj, 
node(gap,!Symbol,Gapj,true), 
StartGap, 
EndGap) :-

Gap = StartGap - EndGap. 

fill(Symbol, 
l!Symbol,GapJjStackOutJ, 
StackOut, 
node(fill,!Symbol,Gapj ,true), 
EndGap, 
EndGap) :-
Gap = StartGap - EndGap. 

When gap is called with a pair of stream arguments, the start of a gap is known. Gap is instan
tiated to the difl'erence list StartGap - EndGap, with EndGap uninstantiated. The pair 
/Symbol, Gap/ is added to the input message stream to form a new output message stream. The 
Symbol is the signal which will indicate the end of a gap. When gap is called without the stream 
arguments, as in the last call to gap in the compiled version of be, the context is merely being 
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checked (please refer to the discussion or eynal in the previous section) and the input and output 
strings, Start Gap and End Gap, respectively, verity the extent or the gap. End Gap will still be 
uninstantiated. 

When fill is called, the end or a gap with the signal Symbol has been Cound. There must be 
a pair or the form /Symbol, Gap) at the front or the input message stream. End Gap is instantiated 
at this point, and the pair is removed Crom the input message stream to yield a new output mes
sage stream. When EndGap is instantiated, the "trees" or the gap and fill predicates, which have 
been made to look like ordinary non-terminals, are also instantiated. The trees tor both gap and 
/ill contain a record or the signal Symbol and the gap itselr as the di.fference list to which Gap is 
instantiated. The message streams act as a stacking mechanism for unfilled gaps. Note that fill 
accepts the empty string. 

A string is parsed with this grammar by a call to: 

s(Source) :-
s(ll,[l,Tree,Source,[I ). 

which indicates that Source is an e, with no input left, and that no messages are lert in the 
streams, ie, the stack or messages, initially empty, is empty at the end or parsing. A parse tree 
Tree records the derivation. (See !Abramson,19841). 

With this definition of gap and fill we have a new implementation or a subset of XGs: it con
tains rules with only one gap followed by a terminal. The compiler for this subset, 1111nal above, is 
somewhat simpler than the general processor of Pereira. 

By changing the definition of gap and /ill, however, we can process grammars which cannot 
be handled by XGs. Here is our signalling GG for the language { a"bmc"d"'}: 

s-> as,bs,cs,ds. 

as,gap(X),!xcJ-> lal,as. 
as->IJ. 

bs,gap(X), !xdJ-> lbl, bs. 
bs->IJ. 

cs-> fi IJ(xc ), lcJ ,cs. 
cs->11 , 

ds->fill(xd),ldl,ds. 
ds-> [I. 

We redefine gap and fill so that the input and output message streams manipulate a pair or 
stacks, one to handle zc signals, and the other to handle zd signals. The gaps can now be dealt 
with independently of one another. 

gap(Symbol, 
Gap, 
node(gap,(Symbol,GapJ,true), 
StartGap, 
EndGap) :-

Gap = StartGap - EndGap. 

gap(xc, 
Gap, 
jStackC,StackDJ, 
ll!xc,GapJISta.ckCJ,StackDJ, 
node(gap,lxc,GapJ,true), 
StartGap, 
EndGap) :-

Gap = StartGap - EndGap. 



gap(xd, 
Gap, 
jStac k C ,S ta.ckDj, 
jStackC,[jxd,Gap!IStackDJI, 
node(gap,jxd ,Gapj ,true), 
StartGap, 
EndGap) :-

Gap = StartGap - EndGap. 

fill(xc, 
ll!xc ,GapJ !Stack CJ ,StackDJ, 
!StackC,StackD), 
node(611,lxc,GapJ ,true), 
EndGap, 
EndGap) :-
Gap = StartGap - EndGap. 

fill(xd, 
!StackC,llxd,GapJ[StackDJI, 
!StackC,StackDI, 
node(fill,lxd,GapJ,true), 
EndGap, 
EndGap) :-
Gap= StartGap - EndGap. 
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The general GG implementation is very powerful and inefficient; this implementation , 
although not general, is more efficient; and is, at the c06t of some programming of the gap and fill 
predicates by the grammar writer, extendable to classes or grammars with independent gapping 
systems which cannot be handled by XGs. It is interesting that subclasses of GGs can be 
parameterized by data structures: one may think of trying to characterise the subclass of GGs 
with a queue (deque, tree) implementation of gap and fiU, for example. 

A complete listing of these Prolog implementations is available from H. Abramson or V. 
Dahl. 

3.3. Toward■ a concurrent Implementation of gapping gramman. 

The beautiful but dumb compiler is inefficient because or the way it tries to establish what 
is contained in a gap. It simulates the non-deterministic breaking up or the input string into the 
contents of the gap and the unconsumed output string by trying one solution or 
append( Gap, Outpul,lnput), backtracking to the next solution ii the first is not suitable, and so on. 
A concurrent implementation might, however, proceed as follows. For each solution or 
append( Gap, Output,lnput) a copy of the process which represents the state of the parse so far is 
created. Each or these processes is a clone of the original process up to the call or gap. Each pro
cess continues, how ver, with a different solution to append(Gap,Output,Input). Those processes 
which have not been given a solution which will permit the parse to continue will eventually die. 
Those processes which have been given a solution which allows the parse to complete will each be 
left suspended at the end with a derivation tree representing the successful parse. (Note that this 
notion of process is similar to the notion of process which is used in the Unix operating system.) 
For this strategy to work, it will be necessary to have a meta--logical predicate whjcb gives access 
to the state of a Prolog computation. This strategy utilizes independent sequential Prolog 
processes - the parsing, except when handling a gap, proceeds by top-down, depth-first search 
with backtracking. An alternative strategy would be to develop an entirely concurrent implemen
tation of grammars. 

The authors plan to investigate whether Concurrent Prolog !Shapiro,1983J, the distributed 
logic or !Mooteiro,19821, or Epilog [Pereira, 1982J, 1Porto,H>82J could easily specify such implemen
tations or Gapping Grammars. 
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4. Dlacu1■lon, work In progreu. 

4.1. Advantage■ of gapping grammars. 

GGs, although theoretically no more powerful than MGs - which have the computational 
power or a Turing machine - have more expressive power than MGs in that they permit the 
specification of rewriting transformations involving components or a string separated by arbitrary 
strings. The expressive power takes the form or conciseneSB: one does not have to g-ive a rule or 
rules for the generation or the intervening string, but rather a single meta-rule involving gaps 
replaces a possibly infinite set of non-gapping rules. 

One aspect or GG expressiveness has not yet been fully explored. GGs, like MGs and XGs, 
allow Prolog calls in the right band side or a rule, but unlike them, GGs allow Prolog calls in the 
left hand side or a rule (rerer to sunal above to St~e why this is so). It is possible therefore to write 
GGs which can establish context checks dynamically during parsing. 

The compiler for GGs • our second implementation - provides an alternative implementation 
of a restricted class of extraposition grammars, but also, depending on the definition of gap and 
fill , provides the grammar writer with a mechanism for writing rules which go beyond the nesting 
constraints of the XG formalism. Our example above shows how to deal with two independent 
gapping systems: the extension to the general case is obvious. Another poosibility is to parameter
ize classes of grammars by the data structures used to implement the gap and Jill predicates, for 
example, by queues instead or stacks, etc. Another extension lies in permitting the signal to be 
parameterized, i.e., instead of having rules of the form (D) with term a functor or zero arity, term 
might be a functor or positive arity. This would permit more sophisticated gap handling by the 
gap and Jill predicates. 

4.t. Llmltatlon1. 
In some cases GGs may prove, however, to be too powerful. Consider, for instance, the fol

lowing grammar which one naively might think suitable for checking that input strings are bal
anced with respect to ( and ): 

left, gap(X), l')'J -> ('('J, gap(X). 

s -> left, l')'J, gap(X), s. 
s -> IJ. 

With this grammar, strings such as ( a + ( b + c)) and (( a + b) - ( c - d)) / / are recognized as 
balanced, but also a string such as ( a + b is recognized as balanced. The reason for this error is 
that nothing in th grammar precludes the gaps from containing parentheses, so that unbalanced 
parentheses will be absorbed into gaps. The grammar can, of course, be modified so that only 
those strings which are balanced with respect to parentheses are accepted, but it seems appropri
ate for the grammar formalism to provide the user with a convenient means for constraining the 
gaps. It would be interesting to determine bow much of an extension along these lines could be 
usefully provided without falling into the trap or describing the complement of a language. 

Another approach to be investigated with respect to too genera.I a notion or gaps is allowing 
strings no.I in the language to be generated, these strings to be subsequently filtered out by 
another process. Primitives for describing filters would then be necessary. In natural language 
applications, a mixture or both approaches may be needed. Both constraints and filters have 
already been proposed in Chomsky's Extended Standard Theory (see references in !Rad
ford,19821), and, i.t would be interesting to study ways or constraining and filtering GG rules in 
the light of this theory. 

4.3. Work In progreu. 
We have only tentatively sketched a concurrent implementation or GGs. Details or this stra

tegy have to be worked out and speci.fied in Prolog, Concurrent Prolog !Shapiro,H>83], the distri
buted logic or jMonteiro,19821, or Epilog !Pereira,1982], [Porto,1982j. Ideally, a parallel 
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architecture should support a concurrent GG system. 

Another implementation or GGs which we are exploring is an interpreter which works with 
derivations directly rather than with Prolog calls or non-terminal procedures. By this method, we 
would for a rule such as 

8-+ as, be, ca 

rather than call aB, then bB, then cs, maintain a list of goals which would represent a sentential 
rorm. The original list or goals s would be replaced by a list or goals os, h, cs. Context sensitive 
rules would involv manipulation or the goals in the r;cntential rorm to see ir some of them could 
appropriately derive the desired context. 

These extensions, as well as the addition of constraints and filters to GGs, are the object or 
ruture research by the authors. 

&. Acknowledgement,. 

This work was supported by the National Science and Engineering Research Council or 
Canada. Micha.el McCord's contribution, mentioned in Section 3.1, is gratefully acknowledged. A 
referee's suggestion that we expand on our comments about right extraposition will be treated in 
a later paper: length constraints prevent such expansion here. 

e. Referencea. 
Abramson, H., Definite Clause Translation Grammars Proceedings IEEE Logic Programming 
Symposium, 6-9 February 1984, Atlantic City, New Joisey. 
Oolmerauer, A., Metamorphosis Grammars, in Natural Language Communication with Comput
ers, Lecture Notes in Computer Science 63, Springer, 1978. 
Dahl, V. Translating Spanish into logic through logic, American Journal of Computational 
Linguistics, vol. 13, pp. 149-164, 1981. 
Dahl, V. k McCord, M. Treating Coordination in Logic Grammars, to appear in American Jour
nal or Computational Linguistics. 
Monteiro, L ., A Horn clause-like logic Jor epecirying concurrency, Proceedings or the First Interna
tional Logic Programming Conrerence, pp. 1-8, 1982. 
Pereira, F.C.N., Extraposition Grammars, American Journal or Computational Linguistics, vol. 7 
no. 4, 1981, pp. 243-255. 
Pereira, L.M., Logic control with logic, Proceedings of the First International Logic Programming 
Con!erence, pp. 9-18,1982 
Pereira, F.C.N. k Warren, D.H.D, Definite Clause Grammars for Language Analysis, Artificial 
Intelligence, vol. 13, pp. 231-278, Hl80. 
Porto, A. Epilog - a language ror extended programming in logic, Proceedings or the First Inter
national Logic Programming Conrerence, pp. 31-37, 1982. 
Radrord, A., Transformational Syntax Cambridge University Press, 1981. 
Shapiro, E.Y., A subset or Concurrent Prolog and its interpreter, ICOT Technical Report TR-003, 
1983. 
Van Wijngarden, A. et al., Revised report on the algorithmic language Algol 68, Acta Informatica, 
vol. 5, pp. 1-236, 1975. 


